MEMORANDUM
RM-3337-PR
FEBRUARY 1963

A GUIDE TO THE GENERAL
PROBLEM-SOLVER PROGRAM GPS-2-2

Allen Newell

PREPARED FOR:
UNITED STATES AIR FORCE PROJECT RAND

RN

SANTA MONICA « CALIFORNIA —

MEMORANDUM

RM-3337-PR
FEBRUARY 1963

A GUIDE TO THE GENERAL
PROBLEM-SOLVER PROGRAM GPS-2-2
Allen Newell

This research is sponsored by the United States Air Force under Project RAND—
contract No. AF 49(638)-700 monitored by the Directorate of Development Planning,
Deputy Chief of Staff, Research and Development, Hq USAF. Views or conclusions
contained in this Memorandum should not be interpreted as representing the official
cy of the United States Air Force. Permission to quote from or repro-

opinion or poli
f this Memorandum must be obtained from The RAND Corporation.

duce portions o

1700 MAIN ST =+ SANTA MONICA » CALIFORNIA

PREFACE

This Memorandum provides a detailed account of the

internal structure of a problem-solving program, the
General Problem-Solver (GPS). This program in its various

versions has been one central part of work at RAND on
artificial intelligence and simulation of cognitive pro-
cesses during the past five years. Although GPS has been
reported on many times, there has never been a completely
adequate account of its detailed structure. This Memo-
randum attempts to {ill this gap.

This guide will be of use only to those who are
deeply and technically concerned with the problems of pro-
gramming complex systems. It is essentially a reference
document which provides a level of description which is
normally unavallable in the field of complex programs.

The general fileld of artificial intelligence and
information processing psychology, to which this Memo-
randum is contributory, aims at understanding the complex
information processes that underlie man's ablllty to solve
problems, learn, adapt, and create. From a scientiflc
viewpoint, such activities are intrinsically worthwhile;
from an applied viewpoint they form the essential basis
for increasing the sophistication and eventual effectiveness
of our large command and control systems.

GPS in its various forms and guises 1s the joint
work of J. C. Shaw of RAND, H. A. Simon, and the author.
The latter two are members of the faculty of the Carnegle
Institute of Technology, and consultants to The RAND
Corporation.

SUMMARY

The General Problem-Solver (GPS) is a computer pro-
gram being used for explorations into both the general
mechanisms involved in problem-solving and the way humans
solve problems. The program has existed in several ver-
sions since it was first developed in 1957. This
Memorandum 1is a guide to the detailled structure of one of
the versions, GPS-2-2., It assumes a substantial knowledge
of IPL-V, the programming language 1in which GPS is written,
and a general knowledge of GPS as 1t has been described
in the published literature. It 1s also meant to be used
in conjunction with an assembly listing of the program,
but can be used alone.

After the Introductlon, Sec. II gilves the gross
topography of the program. It also includes a run-through
of a simple problem to put the parts in context. Section
JIT discusses the various data structures used in GPS:
goals, expressions, derivation lilsts, operators, location
programs, and differences. Section IV 1s devoted to a
detalled description of the subroutine hierarchy, working
from the top executive down through the technique of
method interpretation to a consideration of each method
and method segment. Section V describes the Experlimenter;
i.e., the embedding program used to put GPS 1nto operation
and to output selected aspects of 1ts performance. Section
VI takes up the information provided for each task envi-
ronment. For GPS-2-2 these are Logic, and Misslonariles
and Cannibals. In additlon there 1s a description of how
a new task environment might be added to GPS. Four ap-
pendices provide additional specific data on the program.

CONTENTS

PREFACE ® 0 5 4 0 9 60 0 6 8 &S 0 G0 BSOS LD e 0PSSO0 e O

SUMVIARY S 9 9 0 6 5 0 8 5 0 00 5 P B 0 OSSO E P S SO SO0 NG00 E eSO

Section
I' INTRODUCTIONQQQ.....0.....0....0...0t...tt.

II. GENERAL STRUCTURE OF THE PROGRAM. .:e0ocosees
ReglonsS..ceecersecesceenassansssssosssccoccnss
GPS=COrCuieseosssvesecoosocessoscosscsnscses
Task Environment. ..ceeeeeeeocecsscncacenes
ExXperimenter. . .cceeeeseececccescssascscccneas
Additions to the Baslc System..eeieiecec..
Slgnal System.eeeeeeeceseososseaccesaconans
A Tour Through a Simple Problem.....e.ce.

ITII. DATA STRUCTURES..eteeeeocsosscscscssccccscas
Content TyPCiceeivesesososccsascsccscsannsse
GOBlSeieoeeasessesssssasssasosssescscsseccas

GOl TYPEeSueieosesscassasssssssescsnnnens
Goal SufficieNnCYieceeeesossassscsscoscs
Goal Repeatabllity cesesarsesna
Goal ConteXxt.ieceeeereosossccosccssscnncne
Goal Creatlon and Destruction....ceesee
Goal TIdentity Test.ieivececsecsocsesccsns
Goal Duplication vs. Equlvalence...oeee.
Goal Modification.. .
Expressions and ObjectS.ceeeesccesocecans
Structures of TEX's and EX'S.veeveeeces
Creation and Destruction of TEX'S.eeesss
Derivatlion ListS.eioeeseesceccccessnns
OperatorS . icseesecssccsccessocscsosnsnss
Form OperatorsS.ieeeeeesscesscosccnsocancaes
Expressions for Operators..cceccecceccsess
Direct OperatorS.ceeecseceescsescenscancss
Locatlion ProgramsS.c.icecoesescsesosasosansas
Inputs Are Locations Not Names of EX's..
Structure of Location Programs..eeoeece..
Location Program Reference Tree -
ADSOlULE . veceeestsnssasscscscessesasosancs
Location Program Reference Tree -
RelatlVe . ovesersoesnsscssorcsssscenses
DifferenCeS e csecsoscesosssssstssssnssosnnssos

IV. ROUTINE STRUCTURES...ccecccceoocsassccccssscs
Top Executive.cieeieoercreceecscsocennonns
Problem-Solving Executlve..oecececesccccscs

Centralization of Decision-Making.......

Control Techniques to Handle
Centralization..ieeieeessescocessocses
Structure O0f RlO.eeveveesvoeresasooces
Antecedent Goa2l...ceeececooccocssassns
Gl - Expanded GOa@l.e.ceosoesacsonssssss
Lower Goal SeleCctiON.cceececcoscsooscsce
Execution of Selected Attempt..ceeccese
Recording Attempts..cccecsescesnsocasns
Method Execution and R1ll......
Methods and Method Status.....
Method Structure: Segments..... .
Method Interpretation: Rll...........
Goal Values and Goal Evaluation.......
Goal ValueS.ieeieeseeesoossccossacssas
Goal Evaluation.e.veeevoeccecccccsses
Matching..oiieeeeeeesosessccocooscans
R20 Match.eeeeeieeereneeonvonnns
Housekeeping for Match.seiveoeene
R2]1 Match.eeeieoeieeoreceoeonnonnannes
Combination of Differences Q92.....
The Match Method for Transform Goals
(KAO) e vevevnennnnonannn .
The Method... crecees .
Match #1 to #2: Segment R30......
Immediate OperatorS.ecieeececececcsnscss
Create Subgoal....... cesesanse
Rematching..... cesesssaansace
Difference Selection. teseses
Create Modified Transform Goal
Segment Q28. ... iiieiererenn
Final Segment: Ql116.......
The Try Operator Method for Apply Goals
(KUl) eeveeveeeneoennns
The Method . .
Discriminate Type of Operator.
Segment R31l...cceeceesscnscansos
Form Operators with One Input.
Form Operators with Two Inputs...
Create Modifiled Apply Goal:
Segment Q38 Ceeseceesseenaes
Final Segment: R33: Transferring Re~
sult $Q29) or Creating New Apply
Goal (Q103) . eeeeeseroensocasasonnoas
The Find Relevant O erator Method for
Reduce Goals (KU2)...veeeonooosrnennas
The Method..ivieieiieeocerecncosnscsncns
Find Operator: Segment R32. i ieveeeeen
Find Next Untried Operator....¢eeceeeee
FllterSeoeieescesceocceoncssoscscnsecnanaas
Transferring Result: Segment Q29....
Repeatability of Method....eevveen.

.
LI B]

The Transfer Equivalent Result Method
for All Goals (K43)..eieeeoeeoecensons
Single Segment: Q7O0..eecesecocssccces
Blocking the Method..cceeecocsocsrvons

VO THE EXPERIMNTER.O.....'.t...“l..........
Input Conversion and SetuP.ceeceseescosss

Set Up Trivia: El3.iiiieeescecsoccosaes
TE CONvVersSiON.eceiescesscssscssssscocsosos
Goal Converslon...ceetcesossscscsscocns
TEX Conversion: E2l...ceeveccosccnces
Conversion of Parenthetical Expres-
S1ONS . eveeersassscesosscscccsscsoss
Output and Debugging...ccceceeeeercocenns
Behavlior TracCceeecesceccossssocscncsocs
Printing FormatS.ececcecescsceceeccces
Debugging Facilities....cceeveeceens
Set Up for RUNning...cieeececocececonns
Assemblies and Modificatlons........
Spec Sheef.iiiseesescecesesessscnsnss
Auxiliary Storage.ceseeeececscscenccess

VI. TASK ENVIRONMENTS seseecoscccascccsssnsosnss
Symbolic Logic TE (KT70).eeeeeencacoonass
Types of Information...ceeeceocececsns
Differences and Associated Structures.
Multiple Negation Signs...cceceeeecoce
Filters and Simllarity Tests..ecccaecse
Missionaries and Cannibals TE (M19).....
Types of Information....eceeceeeccecns
Admissibility Test.iieeececescocrsconnss
External Task Space: Top Executive
Rloo-ooooo.-o-.oocoo.ooo.oootoooo.oo
Adding New Task Environments...cceoeeeee
Difference Ordering: KB8l....oveeeeeses
List of Variables: KB2...ccevceveessns
Difference Print List: K84.....c.c....
Convert TEX: Z80...cceeecsessscsssass
Multiple OperandsS...ccceeccesceocoscsss
Print TEX: Z8l..c.ccececscsonscscsscs
List of Operators: ¥5l...ciececececees
Numerical Calculation...ceceecscocscses
Table of Connections: Y52...ec0cceees
List of Immediate Operators: Y53.....
List of ObJects: YBH..ueeeeeeeeecenns
TIdentity Comparison: Y60.......c.c...
Similarity Test for Object Sets: Y62,
Compare Objects: Y63...ceeeecnccecnss
Compare Operators: Y64..........cee..
Search Filter on Operator Conditions:

Y65 . csveeoencssesacasssossssnsnsnses

Standardization: Y69......0..

Similarity Test for Operator Sets:
O'....l.l...‘...t.....'.l.......'.
Adjustment for EX1 2Q513: Y72.ceeennn
Adjustment for EX2 (Q52): Y73.ieeeces
Sumary..0.."..l..'l..'.’........'...

Appendix
A. GPS RUN ON "R.(-PIQ) INTO (QVP).R"....e...
Specification Sheet.ieceieeeeeesannsonans
Trace of Problem RUn....ceceveceesooncce

B. GPS-2-2 VOCABULARY (ROUTINES)..eeeeeeeesns

C. GPS-2-2 VOCABULARY (DATA).v.eeeerrenonaass

D. FIGURES.......0...!..."..l.........l....l
REFERENCES.ll.l.'.....l....l.....‘...‘........'l'.

I. INTRODUCTION

The General Problem-Solver (GPS) is a computer program
being used for explorations both into the general mechan-
isms involved 1n problem-solving and into the way humans
solve problems. As its name 1indicates, there is both an
aspiration that GPS should be capable of handling a wide
range of tasks and the fact the GPS's organization is
task independent in many respects.

GPS grew out of The Logilc Theory Machine,(1_3) a
program for proving theorems in the sentential calculus
of Whitehead and Russell. The first version, called
GPS-1, was coded in IPL-IV for JOHNNIAC.(M) The most
complete description of GPS existing in the published

literature is the "Report on a General Problem-solving

n(5) which gives only the highest
level organization. A discussion of some organizational

Program for a Computer,

issues arising in GPS will be found in "Some Pro?éims of
GPS

has been dlscussed in several other papers in(conniction
T-11

Basic Organization in Problem-solving Programs."

and
(13)

also discusses the first steps in getting GPS to program
by constructing an independent, GPS-like program called

with 1ts use as a simulation of human thought

(12)

in an investigation of learning. A recent paper

the Heuristic Coder.

GPS rapidly outgrew the small storage capacity of
JOHNNIAC (4096 words), and was recoded in IPL-V to run on
the TO4-T709-T090 series machines, which have 32,576 words
of fast storage. The new program was called GPS-2-1.
Functionally it was almost identical to GPS-1, but sub-
stantial organizational changes were made. The change to
GPS-2-2 involved somewhat smaller organizational changes,
but required a separate designation, since both versions
were running at the same time. Thils document 1s a de-
scription of the structure of GPS-2-2. GPS-2-1 1s not

separately documented and 1is no longer a functioning pro-
gram. Additional versions, GPS-2-3 and GPS-2-4, now exist.
They involve more substantial organizational changes from
GP8-2-2, and will be documented separately.

This document is a gulde to someone trying to under-
stand the GPS program in detail; it 1s not written as a
general introduction. It assumes knowledge of IPL-V 15
and the published general descriptions of GPS. Thus, the
user of this guide should already understand that GPS uses
goals of three types in a recursive way to build up a hi-
erarchical goal tree for the problem at hand; and he
should understand in a general way the nature of the meth-
ods that generate this tree and the devices that are used
to prune the tree. He will find in this gulde numerous
additional mechanisms that are unmentioned in the pub-
lished papers.

IPL-V is written in a vertical format with specific
fields assigned to various parts of the IPL words. We
will adopt a convention here that will allow us to write
IPL code without specifically assigning fields on the
page. We use a slash (/) to separate NAME from PQ SYMB
and a period (.) to separate PQ SYMB from LINK. Thus the
following IPL program would be transcrilbed as shown below:

NAME PQ SYMB LINK

PT 10 L5
P4
11 WO
J2
70 9-1 9-2
9-2 P5
P6 P8
9-1 P9 0

P7/ 10L5
P4

11WO
J2
709-1.9-2
9-2 P5
/ P6.P8
9-1/ P9.0

-3-

We will use an equals sign (=) to indicate an integer data

term; e.g., 9-1=5 means that 9-1 1s the name of data term

integer 5. (We will have no occasion to use the other

types of data terms.)

U

II. GENERAL STRUCTURE OF THE PROGRAM

REGIONS

The total program is divided into several parts: the
Experimenter, the GPS-Core, and the various specialized
parts for each task environment. Each part uses symbols
from different regions for its routines and data. One
rough picture of the total program 1s obtained by giving
a schematic division of the 32K store into the separate
parts, showing the different regions and their functions.
The amount of space devoted to a part and the number of
separate entities 1s necessarily approximate, since the
program 1s under continual modifilcation. It also includes

numerous alternative versions of routines and lists.
GPS~Core: 4700 words

A: General attributes (50) (one word
per attribute)
Goal attributes (50) (one word
per attribute)
Basic routines (70) (1200 words)
Y cell routines (100) (2500 words)
Top level routines (10) (500 words)
Constants and lists (60) (300 words)
Local context working cells (100)

Logic Task Environment: 2100 words

F: Routines (20) (900 words)

C: Constants and lists (50) (400 words)
D: Differences (50)

B: Operators and objects (80) (800 words)

Missionaries and Cannibals Task Environment:
800 words

M: Routines (10) (600 words)
M: Data (20) (300 words)

Experimenter: 1100 words

E: Routines (50) (900 words)
L: Lists (30) (100 words)
Z: Cells and constants (100)

Additional Basic System: 200 words

I: Routines (103 éSO words)
S: Signals (100
N: Integers (100)

one word per signal)

IPL-V System: 7000 words

H: Basic communication cells (10)
J: Primitive routines (200)
W: Working cells (30)

Working Space: 16,000 (less after set up,
conversion, etc.5
Goals run about 100-150 words per goal
Expressions (in logic) run about 30 words
per expression

GPS-CORE

The data structures that GPS uses are expressilons,
which describe the objects GPS wishes to manipulate; and
goals, which describe the situations GPS wishes to obtailn.
(There are also a few miscellaneous structures.) These
are described by numerous attributes. G-symbols (e.g.,
Gl, G25) are used for attributes that are pecullar to
goals; A-symbols are used for all other attributes. All
A-symbols and G-symbols define routines of identical form--
for example: Al/ 10A1.J10. Thus executing Al on the
name of an expression will retrieve the value of attribute
Al on the description list of that expression. The sltu-
ation is similar with the G-symbols, except they check to
see if the goal is stored on auxiliary storage.

GPS is always 1in the context of attempting a single
specific goal. The goals form a hierarchical network,
so that one may visualize the program in operation as
located at some one node of this network. Depending on
the result of problem-solving activity on this current
goal, the program will move to another goal; e.g., back
up to the supergoal, down to a newly created subgoal, and
S0 on.

The Y-cells hold the immediate context. That is,
they hold the information pertinent to the current goal
that 1s being attempted. Each ¥Y-cell has a specific func-
tion. For example, Y2 holds the name of the current
goal, Y3 holds its type, and so on. Each Y-cell holds
only a single symbol, so that when one says, for example,
"the goal in Y7" or "the expression in Y13" one means the
list structure whose name is in the cell Y7 or Y13, respec-
tively. (Y-cells are occasionally pushed down on a
temporary basis within a single Q-routine, but this 1is a
local matter, not within the cognizance of the system
conventions.) Thus, the gross action of the program 1s
to get into the context of a goal by setting the Y-cells
appropriately; to engage in some problem-solving activity,
working in and out of the Y-cells; to record the infor-
mation that should be kept permanently in the goal
structure; and to leave this goal context for another one.

The routines of the core are divided according to
thelr relation to the Y-cells. At the top level there are
R-routines. These are independent of the ¥Y's and follow
a speclal set of coding conventions. Next come the Q-
routines. These routines take their inputs from the ¥Y-
cells and put their outputs back in the Y-cells. Thus,
the R-routines use the Q-routines in order to accomplish
all their actions. Finally, there are the P-routines.
These are general purpose routines that take their inputs
from HO and put their outputs in HO. They know nothing
of the Y-cells either. (A major purpose of this division
1s to guarantee that Y~-cells are safe over P-routines.)

TASK ENVIRONMENT

Baslic to the current version of GPS 1s the assumption
that problems or tasks can be grouped into large classes
which are homogeneous with respect to the particular facts,

heuristics, operations, etc., required to solve them.
Thus, there 1s a collection of parciculars that make up
"knowing about chess" or "knowing about symbolic logic";
if these are known, then many problems about chess (or

symbolic logic) can be posed and attempted. GPS-Core

makes no reference to such particulars. It knows only
about "objects" and "operators" in the abstract; e.g.,

that there are differences between objects, that two ob-
jects can be put into correspondence, and so on. The
additional program and data needed to complete GPS so that
it can work on tasks of a given class is called a task
environment part. The symbolic logic task environment
part, for example, consists of routines that accomplish
input and output conversilons; routines that compare two
expressions to determine what differences hold; routines
that perform similarity tests and identity tests; and

data structures for the table of connections, the oper-
ators, and logic expressions. The Missionaries and
Cannibals task environment, the other environment that
exlsts in GPS-2-2 in completed form, 1s similar in struc-
ture. Its principal addition is a routine for accomplishing
the basic operators (M22), since these are not conveniently
expressible as forms of the same kind used 1n symbolic
logic.

It is assumed that the routines of a task environment
know about the Y-cells and accomplish their functlons by
working directly into and out of Y-cells. They may use
the P-routines as subprocesses, but may not use either the
Q- or R-routines.

The information for each task environment is given
by a list (K70 for O. K. Moore symbolic logic, M19 for
Missionaries and Cannibals). GPS always works in the con-
text of a single task environment (TE), given in Y4,

There 1s a routine, Q79, which changes TE's. To be 1n

context for a TE means to have all the routines and data
for that TE available (currently localized to Y50-YT79,
K80-K89, and Z80-Z89). A TE list is formed as a list of
pairs: the name of the cell that should hold a given type
of information followed by the symbol it should hold for
this TE. Q79 accomplishes the function of changing to a
new TE, including blanking out all the cells from the old
TE (by putting K92 in the cell), so that old routines and
data will not be spuriously used.

EXPERIMENTER

Besides the problem-solver, which consists of GPS -~
Core plus the TE parts, there is another part of the
program, called the Experimenter, whose function is to
handle input and output conversilons; to make the initial
setup; to present GPS with the problems we wish it to

attempt; to provide GPS with any approprilate "external en-
vironment" (such as the autonomous play of an opponent);
and to monitor the activity of GPS for any debugging or

performance data. The Experimenter has its own routines
(E-routines) and its own lists (L's) and its own cells and
constants (Z's). Insofar as these occur in P-, Q-, and R-
routines, they indicate monitor and output functilons and
have nothing to do with the problem-solving activity.

ADDITIONS TO THE BASIC SYSTEM

GPS is coded in IPL-V and uses the basic set of J-
routines already availlable. The only additions to this
are a universal set of symbols for positive integers (Nx
for integer x); a few scattered P-routines, which accom-
plish basic lists processes (such as P60/ J7T4.J136, copy
and make local); a couple of routines (I20, I21) for
handling the assembly and correction procedures; and the
signal system. This latter is sufficiently important to
be described in detail.

SIGNAL SYSTEM

The purpose of the signal system is to allow a sym-
bolized multi-way branch as a basic coding operation.
Imagine a routine, say R20, accomplishing some function
and leaving in a special cell (the signal cell) one of
several symbols, say S10, S11, S12, 816, S18, or S23.
Each of these indicates that some particular generalized
outcome has occurred. We now want to transfer to dif-
ferent routines depending on which outcome happened. As
a flow diagram, we might write:

R20

S10 311 312 S16 S18
: 323

In IPL-V terms we can think of following the executlon of
R20 with a list of pairs, the first symbol giving the
signal (S-symbol) and the second glving the locatlon to
transfer to:

9-1/ R20.9-2

9-2/ Il
310
9-10
S11
9-11
Si2
9-12
S16
9-13
S18
9-14
323
91500

We can visualize the execution of this structure pro-
ceeding as follows. Instruction 9-1 1is executed. This

leads to R20 being executed, resulting in a signal, say
S12, being put in the signal cell. Having finished R20,

the next instruction to be executed 1s 9-2, which leads to
the execution of Il. Il now goes to Hl, the current in-
struction address 1list, and recovers the symbol 9-2. It
then searches down 9-2 looking for the symbol that matches
the symbol in the signal cell (S12). This search 1s es-
sentially J10: find the value of an attribute on a
description 1list. In this case the value of S12 is the
symbol 9-12. Il removes 9-2 from Hl, since the 1list 9-2
should not be executed as a string of instructions, and
puts 9-12 into Hl in such a way that the next instruction
that 1s picked up for execution is 9-12. (The routines
that manipulate H1l [IS and I19] must really be considered
additions to the IPL-V basic system, since they imply de-
tailed knowledge of how the IPL-V interpreter works.) If
the signal is not found in the 1list, a special signal, SO,

' and a search

is used to stand for "in all other cases,'
is made to see if S9 is on the 1list. If S9 is not on the
1ist, then Il behaves like JO.O--that is, the routine (at
this level) terminates.

All S-symbols are signals. The signal cell is Y1
and all S-symbols are defined as routines which put theilr

name into Y1:

S12/ 10S12
20Y1 .0

It is sometimes desirable to take a multi-way branch on
some other class of symbols than the signals. Thus, 12
is a routine analogous to Il, but taking its symbol from
Y18, which contains the current difference symbol. This
permits a discrimination on the difference that 1s being
considered. Similarly I3 takes its symbol from Y3, which
contains the goal type, and I4 takes its symbol from Y85,
which contains the expression type.

Besides Il1, I2, etc., the routines Ill, I12, etc.,
are also defined. Ill is identical to Il, except that in

-11-

I1 the signal is recorded for output (via the monitor
routine, E70, in Z92) whereas in I1l, it is not. The sit-
uation is similar for the others.

A TOUR THROUGH A SIMPLE PROBLEM

To provide an overview of the operation of the pro-
gram, its behavior on a simple problem will be described.
All the information in this subsection 1is described 1n
more detail elsewhere, so that only the single thread that
GPS follows need be outlined.

The problem is C36, Transform R.(-PIQ) into (QVP).R.
A trace of the program's behavior is given in Appendix A.
The first page 1s a list of speclfications; the only part
that concerns us here is the task environment part, speci-
fied to be K70, and the task, specified to be C36.

The program starts at E2. This 1s the top executive
of the experimenter and oversees the converslon of all the

inputs into internal form (including the assignment of
names like Rl to operators and L1 to objects). By the
time the trace begins to print, all the conversion of

goals, operators, and objects has been completed and E2

has fired R2, which 1s the top executive of GPS-Core. The
number at the far right shows that 35,592 IPL cycles have
already gone by. R2 prints out the two expressions, the
goal expression, and sets up three derilvation lists. These
1ists hold the names of expressions that have been derived
from a common source. Thus, list 28 now holds Ll. As

soon as some operator is applied to Ll to produce a new
expression, then the name of thls expression is put on 28.
Adding to 28 is essentlally working forward; adding to 29
is working backward (not done in this run). All the oper-
ators are on list 30, and any new operators that are
generated (not done in this run) would be put on list 30

as well. R2 also sets a 1imit to the complexity of the ex-
pressions that GPS will consider (which does not affect
behavior in this run).

At this point, R2 executes the main problem-solving
executive, R10. From here on the trace gives a blow-by-
blow account of all the decisions that are made. The
lines of symbols that run across the page are the signals
that occur at each point in the higher programs and that
are used to control the transfers (see the earlier section
on the signal system). The names of the R-routines are
also recorded in the "signal line" to make 1t easler to
keep track of what declsions are occurring. In the

appendices, along with the run, is a series of flow

diagrams for these higher routines. They should be con-
sulted as we go through the behavior.

At the moment when R10 takes over, Goal 1 (C36) is
the current goal (it is also the only goal). Thus, its
name 1s in cell Y2, and as long as we are working on it
directly, various information about 1t will occupy other
Y-cells. Most of these are blank at the moment, since
nothing has happened yet.

Consulting the flow diagram for R10 we see that we
enter at Q1. Q1 tests if the "external limits" are viola-
ted—either too many cycles or too great a depth 1in the
goal tree. The signal (in Y1) was originally set by R2
to be S50; if either of these limits had been violated Q1
would have changed the signal (to either S72 or ST4).
What we observe in the signal line of the trace 1is an
S50 right after "R10." This is the signal that existed
after Ql; thus no limits were violated and the next Q-
routline to be executed 1s Q2.

Q2 finds the next method. There is a list of methods
associated with each goal, consisting of the method name
followed by a status symbol; which shows whether the
method has been used with the goal, whether it can still
be used, etec. In this case, of course, no methods have
been - tried at all and method K40 1s chosen. Its status
(550) is made the signal, so that on the trace we see a
second S50 Just before we go into R11l.

-13-

A method is not a program; instead it is a list of
method-segments. Each segment is a routine. R1l1l is the
program that executes these segments and interprets the
signals that are sent back from them. Method K40 is the
method that matches two expressions agalnst each other
and sets up subgoals to reduce the difference between them.
In Fig. 1% we glve a flow diagram that is similar to the
ones in the published papers but containing more detail

R11 first detects that the signal is S50, which indi-
cates that it is to perform the first segment of the
method, R30. This segment sets the two expressions to be
matched, L1l and LO, into the Y-cells and then calls on the
match routine proper (R20) to match them. R20 reads the
signal, S19, which tells it that it is at the beginning
of a mateh. This leads it (see R20's flow diagram) to
Q4T, which checks that the match is between two objects
(which it is), rather than between, say, an object and a
set of objects. No difference being found, the output is
S20, which means, "T have a point of correspondence between
two objects which needs comparison," and leads to Q20.

The total match proceeds by a series of comparlsons as
the various parts of the two expressions are brought into
correspondence. At this point, the total expressions are

being compared; l.e., the connective (here both dot), the

sign of the total expressions (here both positive), whether
both expressions have the same letters (here both have one
occurrence each of P, Q, and R), and whether their arrange-
ment is the same. On this last a difference 1s found, in
that the left of Ll has R, whereas no R occurs on the left
of LO but does occur on its right, and analogously with

P and Q. Thus, R20 finds that a difference in positlon,

*A1]1 figures, in addition to appearing in the text,
are reproduced together in Appendix D.

Transform A into B

Method K40

'R30

R20

identical

Goal solved

Match A to B SHNe

S12 difference D found

v

b Try immediate

operators

S12

y

Q2T

Create goal:
Reduce D between
A and B

> S30

S40 new subgoal
\
Attempt subgoal

S30 modified object A'

v

Create subgoal:
Transform A' into B

lsuo new subgoal
Attempt subgoal

S30 success

Set output for K40 method.

Done by Rll
(not part of method)

produced

Done by Rll
(not part of method)

Fig. 1 Rough Flow Diagram for K40 Method.

-15-

D9, exists at the top level of the expressions. This
causes the signal to be set to S12, and since S12 1is not
in the discrimination list of R20, R20 quits at this point
and control returns to R30.

The response of R30 to S12 is not to set up a sub-
goal, but to see 1f there are any "immediate operators"
that might take care of the difference right away. An
immediate operator is pragmatically defined as a course
of action that is guaranteed to remove the difference with-
out further caution. Examples from this loglc task are
substitution and the elimination of double negation signs
(such as --P into P). To this end GPS discriminates on
the difference symbol (D9) which is in Y18 (and shows in
the trace). This occurs twice, once for GPS-Core immedi-
ate operators and once for loglc operators, but with no
success. Hence R30 1is led to Q27, which is the routine
for creating the subgoal of reducing the position dif-
ference between L1 and LO. All the informatlon for
creating this goal is sitting in the Y-cells-—the names of
the objects, the difference symbols, the names of other
goals to which this new goal should be linked, and so on.
This first segment of the K4O method ends at this point

with Q27 setting the signal to be S40—+there 1s a new sub-
goal created. However, before Q27 could set S40 it had

to check whether this new goal was like any other goal in
the memory. In this case there was only Goal 1 to worry
about, and Goal 2 was indeed found to be a new one.

At this point we are back in Rll, having performed
the first segment. The decision to work on the subgoal
is not part of the method, but 1s made by R1ll using the
routine in Y92 (which happens to be Q74, as can be seen
from the initial sheet of specifications). The result of
this goal evaluation is S8, which means "undefined," and
can be interpreted as saying that no goals could be found

-16-

against which to compare Goal 2. Rll interprets this to
imply that Goal 2 should be tried, so it is led to execute
the problem-solving executive in Y90 (which is R10) on
Goal 2. This requires, first of all, that GPS get out of
the context of Goal 1 and into that of Goal 2; Q81, which
immediately precedes 1Y90 in R1l1l, accomplishes this.

Later on, when this attempt at Goal 2 is over, Q82 will
perform the task of bringing GPS back into the context of
Goal 1. This change of goal contexts involves changing
the contents of the Y-cells.

The cycle now starts over with Goal 2. R10 first
checks the external limits (Ql) and gets S50; it then
obtains a method and finds an untried one (S50); it then
goes to R1l to carry out this method. This method, K42,
is given in Fig. 2. Its first segment, which 1s now exe-
cuted by R1l1l, is R32. It consists of finding a relevant
operator to apply. The initial selection is done from
the table of connections, where the difference (here D9)
i1s used to select a sublist of relevant operators. These
are subjected to some additional tests. First, they
should not have been used before. There 1s a list of
used operators on the goal against which to check; at this
stage, of course, none have been used. Then each operator
is subjected to a preliminary test of feasibility. This
test requires, among other things, that the connectlves
of the operator and the expression agree. L1l has a dot
main connective, so that one form of Rl (AVB => BVA) is
rejected but the second form (A.B => B.A) is accepted.
This can all be seen in the signal line of the trace,
where the S69 shows that we are dealing with form opera-

tors (as opposed to various other kinds of operators that
are possible); the first S1 S2 shows the selection of the
AVB rule as untried (S1 = OK) and its rejectlon as infea-
sible (S2 = reject); and the next S1 S1 shows the selection

Reduce D from A to B

Method K42

R32

~» Select the next relevant operator
reject 1f used before

[reject if faill preliminary feasibillty test
reject if fail prellmlnary desirability test

S35 o
No more”
operators

Q34

Create operator subgoal

S4O new subgoal

l
Attempt subgoal Done by R1l

(not part of method)
S30 modified object A' produced

Make A' the result of goal

Fig. 2 Rough Flow Diagram for K42 Method.

of the A.B form and its acceptance on the feasibllity
test. The last S1 before R32 quits is a preliminary test
for desirability, which in this case 1s vacuous and auto-
matically S1. At this point, R32 1s prepared to put
together a subgoal to apply this form of Rl to L1l. This
is again checked to see 1f 1t has been created earlier,

and the answer being in the negative, a signal S40 (new

subgoal) is set.

We are again back in R11l, which reads the S40 and
evaluates the subgoal to see if it wants to do it. Again
the result of the evaluation is S8; however, this time it
stems from the fact that only reduce goals can be evalu-
ated, since they are the only ones that have differences.
Hence, all transform and apply goals are automatically
evaluated S8, which is interpreted to mean "try it."

R1ll executes Q81 and then 1Y90 which leads to the
second recursion of R10, this time on Goal 3. Repeating
the cycle of three S50's we are agailn in R11l executing
the first segment of the method K41 for trying to apply an
operator. A flow diagram is shown in Fig. 3. The method
for applying operators is somewhat more complicated than
the other methods for two reasons. First, operators are
of various types—some are forms, some are IPL programs,
some have side conditions, and so on. Hence the first
step is to discriminate which kind of operator is being
applied; the 361 indicates we are working with a form
operator. (The alternatives have been left out of Fig. 3.)
Second, operators can have more than one input. This
leads to a host of complications, which show up in Fig. 3
as the production of modified operators rather than modi-
fied objects. Since no multiple input operators are used
in this simple problem, we will lgnore these varilous
alternatives; however, 1t seemed necessary to put them
into the figure.

Apply R to A

Method K41

R31
Discriminate type
of operator

S61 form operator

R20

Match A to identical %102’Q37 S30 Produce object Al
condition form of R. 10 repare

new obJjecti|S131 Produce operator 3;

work S12 found difference D
S10

S11 v
ry immediate operators

S12 not work

R

Q2T

Create goal:
Reduce D between
A and C (R)

S40 new subgoal
v
Attempt subgoal Done by R1l1l

S30 modified object A" (not part of method)
c produced

or modified operator R"
Y

Q38

Create subgoal:
Apply R to A"
or Apply R" to A

1840 new subgoal
Attempt subgoal Done by R1l1l

S30 modified object A" produced (not part of method)
or modified operator R"' produced

R33

If A'", make it the result of goal.
If R'", create subgoal:
Apply R'" to derivation list of |A
Set to repeat R33

Fig. 3 Rough Flow Diagram for K41 Method.

A form operator is applied by matching the input
expression against the condition form of the operator;
1.e., R.(-PIQ) against A.B. This not only verifies that
the conditions of the operator are satisfied (that the
connective is a dot), but also gathers the information
necessary to produce the new expression; i.e., A 1s R and
B is -PIQ. If the match (R20) is followed through on the
signal line, it will be seen that difference D15 is found
twice. D15 stands for a varlable versus an expression;
it is one of the differences for which GPS has an lmmediate
operator. Consequently, after R20 sets S12, R31 finds the
substitution operator, performs it, gets the S12 changed
to S10 (i.e., after substitutlon this part of the expres-
sion must be ldentical), and returns to the match routine.
At the end, after the two substitutions, the condition
form and the input expression are identical (SlO) and so
R31 gets Q37 to produce the new expression from the output
form (here, B.A) which has now been filled in. Thus L2
is produced, and Goal 3 has been attailned.

Before L2 was printed out as the result of Goal 3,

a check was made to see if the expression, (-PIQ).R, had
already been derived. This was done by checking each of
the expressions on the derivation list (#28). 1In this
case there was only Ll, and so L2 was a new expression
and L2 was added to the list.

At this point in the signal line, we have S30, 1indi-
cating that Goal 3 was attained. This 1s detected by
R1l, serving as a signal for it to quit, and by R10,
serving as a signal for it to quit. GPS then returns to
Goal 2, as indicated in the signal line, and 1s back in
R1l. The 'Goal 2' is actually printed by Q82 in R11,
which changes the goal context. R1l1l detects the S30 and
sets S48, which is the sign that the subgoal in the method
succeeded and that the next segment is to be obtained.
(This takes an additional turn around the main R11l loop,

since it must be determined whether to go on to the next
method segment [S41, which occurs herel], or to repeat the

previous segment [S46].)

From the flow diagram for method K42, we see that
the next segment is just the trivial step of assigning
L2 to be the result of Goal 2. Thus Goal 2 has been at-
tained, and again S30 (success) 1s detected by both R1l1l
and R10, so that GPS returns to the context of Goal 1.
Again R11l goes through the motions of detecting the S30,
setting S48, and finding that it wants to go to the next
segment of method K40. This segment 1s Q28, which creates
the goal of going from L2 to LO; 1.e., the rest of the
way after L2 (presumably) has taken the first step of
eliminating the difference in position.

At thils stage, we are back to famillar ground. The
pattern of behavior for Goal 4 is identical to that for
Goal 1 originally. A match is performed, which discovers
a difference in connective between the left subexpression
of L2 and that of LO. (The P9 in the goal expression
indicates "lower left.") If the match is traced through,
it will be seen that the comparison at the top level fails
to find a difference (S11 following the first S20 in R20),
so that the two left subexpresslons were put into cor-
respondence and the comparison routine (Q20) executed for
them. Having found a difference, Goal 5 1s set up to re-
duce this difference. At this point, the goal evaluation
accomplished in R1l (at Y92) is effective. A change of
connective on the left subexpression (D5 on P9) is com-
pared with a change of posltlon on the maln expressilon
(D9), with the conclusion that the former difference 1s
smaller than the latter. This 1s reflected in the ST
following the SL4O just before GPS attempt Goal 5. Until
this time, there was nothing against which an evaluation

could be made.

As in the earlier sequence, Goal 5 leads to a search
for a relevant operator. R6 (AIB => -AVB) is selected be-
cause: 1) it is on the table of connections as changing
connectives; 2) it has not been used before; and 3) it
has the same main connective as the left of L2 (which 1s
where it is to be applied). Again there 1s no difficulty
in matching the condition form of R6 to the left of L2
and so L3 is produced.

The entire cycle repeats 1ltself once more: obtaining
L3 implies success on Goal 6, which in turn implies suc-
cess on Goal 5. This leads to Goal 7 to transform L3 into
L0, analogously to the creation of Goal 4. Attempting
Goal 7 reveals yet one more dlfference, a change of posi-
tion on the left subexpression, which generates Goal 8 to
reduce it. Again the evaluatlon 1s favorable (S6) and
Goal 8 attempted, leading to Rl (this time the AVB => BVA
variant) and Goal 9. Rl can be applied, giving L4, which
is the result for both Goal 9 and Goal 8. Finally Goal 10
1s created, to transform L4 into LO. At this point, the
mateh finds no more differences between them and so Goal
10 is attained (S30). This success rapldly propagates
back up the goal hierarchy to Goal 7, then Goal 4,and then
Goal 1. At this point, GPS realizes it has solved the
problem and qults.

It should be apparent that there 1s a large number
of features and responses of GPS that have not been 1l1-
lustrated. The most apparent example 1is that the operators
always worked right away. Often, of course, when an in-
put expression is matched to a condition form, a difference

more serious than D15 (variable versus expression) shows
up. The flow diagram for method K41l shows that GPS will
then set up the reduce subgoal to try to eliminate this
difference. In addition to this, all the goal evaluations
were favorable, so that we never saw a goal rejection;

likewise, none of the created goals and expresslons

-23-

duplicated any structures already on hand. And as we
commented earlier, no multiple line rules were applied.
All these features, and a number of others, add variety,

and sometimes zest, to GPS's behavior.

Dl

II1I. DATA STRUCTURES

There are several major kinds of data structures on
which the program operates. For each a description of
the structure, the conventions that govern its use, and a
discussion of the ways in which it is created, modifiled,
and destroyed is given. Various minor data structures,
such as the reference trees, are defined and discussed
where they naturally arise in the use of the major struc-
tures.

CONTENT TYPE

Some of the major kinds of data structure are la-
beled by a content type at A51. The ones currently
defined are:

K161 Object TEX

K162 Operator TEX

K163 Set of TEX's

K170 Constants

K172 Primitive operations

K173 Varilables
K179 Object types

GOALS

A goal 1s a collection of information that defines a
desired state of affairs plus the means to attain this
state of affairs and the history of previous attempts.

All the information about a goal 1s on 1ts description
list; the 1list named by the goal symbol is always empty.
Thus all information is obtained via attributes, usually
G-symbols, but occasionally A-symbols, where the attrlbutes
are common across goals and expressions. The A-attributes

used with goals are A2 (external name, an integer, which
is the order of generation), A7 and A8 (used with auxil-
iary storage), and A18 and A19 (used in output). The

attributes are routines and are executed to find the at-
tribute values. For the inverse operation of putting
values on goals, three routines are deflned:
Q13 Put (1) to be non-local value of attribute
(0) of goal in Y2.

Q14 Put (1) to be local value of attribute (0)
of goal in ¥Y2.

Q15 Add (1) to front of value list of attribute
(0) of goal in Y2.

Goal Types

Goals are of several types. Each type dictates the
kind of information required to specify the state of af-
fairs desired. Externally, a goal 1s specified by a
simple 1list giving 1its type and the objects involved.

This 1ist 1s converted to a description list internally
and all the additional information added to it (by E22).
The current goal types, denoting the attributes and values
used internally by A V without a separating comma are:

External Internal

#1/ O Transform expression B50 lnto expression B51.
K1l G21 Kl.
B50 Gl B50, Gl11 P8.
B51.0 G2 BS51l, G12 P8.

#2/ O Apply operator Bl to expression B50.
K2 G21 K2.
Bl G5 Bl.
B50.0 Gl B50, Gl1 P8.

#3/ O Reduce difference D1 between expressions B50
and B51l.
K3 G21 K3.
D1 G4 D1.
B50 Gl B50, Gl1 P8.
B51.0 G2 B51, G12 P8.

The attributes Gll and Gl2 are for locatlon programs,
which locate the subpart of the expression that 1s belng
designated. Externally, subparts of the expresslon can be
designated by putting a * next to the subexpression.

Goal Sufficiency

An important property of a goal 1is the sufficiency
of 1ts information: given an arbitrarily selected goal
at any point in the course of problem-solving, it 1s pos-
sible without additional information, to commence problem=-
solving activity on that goal and to integrate the results
of such activity with the rest of the total problem-
solving activity. Thils means that it is possible to find
out from a goal the kind of situation that is desired (g1,
G2, G3, G4, G5, G11, Gl2, G13, Gl4, G15, G21, G31); the
current state of solutlon (G20, G625, G30, G36, G39, G52,
G53, G54); its role with respect to its supergoal (G23,
G28, G29, G37); the kind of techniques available for at-
taining 1t (G27); its subgoals (G24, G25); and its
relation to various other goals (Ge2, G633, G35, G38, G40,
G50).

Goal Repeatability

A second important general property that goals have
is their repeatability. A goal may be attempted any
number of times; i1.e., an attempt made to attaln it.

Each attempt by a problem-solving executive (currently

R10) takes into account the previous history of attempts
with the goal, and tries something different. If the
goal has been solved previously, then additlonal attempts
result (if successful) in alternative ways to attain the
goal. For example, if the goal was to transform expres-
sion B50 into expression B51, then successlve successful
attempts would provide different ways in which this could
be done; i.e., alternative proofs. It is possible, of
course, that the opportunities for attaining a goal may
be exhausted, either because all solutlons have been
generated or because more varlations on methods and
techniques would yield nothing new. In this case every

-27 -

attempt to obtain the goal will yield a signal that indi-
cates this state of affairs (such as S35 of sS52).

Goal Context

The current goal is given in Y2. All information in
the Y-cells is relative to this goal. Thus, several other

Y-cells contain goals:

Y7 supergoal (K90 if not exists).

Y9 most recently tried subgoal (K90 if
not exists).

Y10 equal goal (may not exist)}.

Y87 proposed goal (held here until deter-
mine if should be next in Y2).

Y88 temporary cell for prior goal (needed
while establishing new goal).

v11ll top goal (this is not relative to
current goal).

Goal contexts are changed by one of a set of routines,
Q81-Q87. Each of these establishes a goal under certain
conditions: setting up a new subgoal (Q81); setting up
arbltrary goal for a retry (Q83, Q85, Q86, Q87); or re-
turning to the goal from which the current goal was tried
(@82, Q84). All the goal setting routines use a common
subroutine, Q80. This routine sets Y2, Y3, Y4, Y7, Y9,
Y34, and Y86. In addition these routines establish the
method-segment context,* in which a goal was operating (Y5,
Y6) where this is required (@82, @85, Q87); adjust the
relative depth (Y35); and set the signal (Y1) to be the
goal status (G20). These eleven Y-cells, plus those that
are goal invariant by definition, are all the Y-cells that
can be relied upon to hold good information at the begin-

ning of an attempt on a goal.

X
See discussions on methods, Sec. 1IV.

-28-~

Goal Creation and Destruction

Goals are created by various Q-routines (Q27, Q28,
Q34, Q38, Q40, Q103, Q108, and R1l, the latter being a
temporary expedient). Each goal creatlon starts by giving
the type of goal desired (K1, K2, K3) as input to Q16.
Ql6 obtains from the goal type a form for that goal (A20
with values K11, K12, and K13 respectively). These forms
are copled (JT4) to produce the basic information for a
new goal and then Q16 links the new goal to its supergoal
and records the method-segment context in which the sub-
goal was created. The specific goal creating routine
records the particular components (Gl, G2, etc.) used to
define the goal. The final step in goal creation is Q17,
whilch records on the varlous components information about
the goals with which they are used.

Goals are independent structures. Whenever a goal
name occurs on another list, such as the name of a sub-
goal on the G24 1list of its supergoal, 1t is always non-

local. Thus, if a goal were to be erased (J72), no other

goals would automatically be erased as a consequence
(although access to them might be lost). Currently, goals
are never erased once created. Instead they are filed on
auxlllary storage when space becomes scarce.

Goal Identity Test

An 1mportant step in creating a goal is to determine
if thls goal already exists. Q17 makes this check, using
QU6. There is a goal reference tree (in ¥Y25) in which
all goals are recorded (by Q46). This is a branching
structure, corresponding to a variable pocket sort, which
i1s bullt up by QU6 as the set of goals increases. The
goals are first sorted by type (G21), then they are sorted
on the name of the first expression (Gl). All those goals
with the same G21 and Gl are put on a simple list.

Thus we get a structure:

Y25/9-0.0 9-0/9-1.0 9-10/9-11.0 9-100/0
9-1/0 9-11/0 c32
Kl B50 7010.0
9-10 9-100
K2 8425 9-110/0
2520 9-110.0 11320.0
9-30.0 9-20/9-21.0 etc.,
9-21,/0
B50
9-200.0

9-30/9-31.0

9-31/0
B50
9-300
12345
9-310
8425
9-320.0

Q46 takes a new goal and locates 1t in this tree struc-
ture. If there are any other goals in the same pocket

1t tests the new goal against each one on the remaining
attributes needed to determine 1if the goals are the same

(¢11, G2, G12, G4, G5). If the goals are not the same,
it adds the new goal to the list and reports back S40

(new goal generated). If no competitors exist, of course,
the goal 1s established as the first member of 1ts (new)

pocket.

Goal Duplicatlon vs. Equivalence

If the new goal 1s 1dentical to some already existing
goal, then there are two cases: either the goal 1s es-
sentially a duplicate and GPS does not want to attempt 1t
(indeed, it wants to clip the goal tree at this point);
or the goal, although identical, has been generated in a
different context for a different purpose. In this latter
case, GPS can attempt the new goal with profit and should
use any results that might have already been obtained on

30

the exlsting goal. Routine Q71 distinguishes between
these two cases.

The current criteria of duplication (leading to S54)
are: goals that are of type K1, or have the same super-
goal, or have the same super-supergoal unless goals are
of type K3. All other cases are taken to imply useful or
"equivalent" goals (and lead to S42). In this latter case
Q71 sets up a way for the two goals to borrow results back

and forth. For each set of equilvalent goals (there may

be more than two) there 1s a list. This is on each member
goal at G38. This list has on its description 1list at All,
a list of all the results obtained so far by all the mem-
ber goals. These results are two-item lists: the G3
component , followed by the G1l3 component. There is a
method called the Transfer Equivalent Result Method (K43),
which Q71 establishes as part of the method list (G27) of
each member goal. The section on method K43 should be
consulted for the detalls; Q71 simply sets up for this
method at the point when a new goal 1s found to belong to
an equivalence 1list.

Goal Modification

Goals are modified by innumerable routines (the in-
verse llsting for Ql3, Ql4, Q15 indicates the occasions).
They are never destroyed once they are created, but can
be stored out on auxlllary storage and only called in
when they are needed again. (See Sec. V on auxlliary
storage.)

EXPRESSIONS AND OBJECTS

The objects that GPS manipulates and the operators
wlth which 1t manipulates them are speclfied by expres-
sions. All expressions, regardless of the particular TE
in which they occur, satisfy a certain set of conventions
as to how they are encoded into 1list structures.

-31-

Structures of TEX's and EX's

The TE 1is concelved to consist of many, independent
objects. The expressions which describe these objects are
called Total Expressions (TEX's). Each expresslon may be
bullt up from many subexpressions; each of these 1s called
simply an expression (EX). An expression consists of a
hierarchical structure (a tree) of subexpressions related
together at each level by some operation or connective.

By conventions each node of the tree is given by a simple
1ist in which the head contains the operation or con-
nective and the 1list cells contain the names of the
subexpressions. Thus 1in symbolic logilc we would have:

external form: -(PVQ).(RI-A)

N,

tree form:

VAN
/N

11st form: 9-1/.
9-2 9-2/-
9-3.0 9-20.0 9-20 7

9-3/I P
R Q.0

9-30.0 9-30/-
A.O

(Since the computer alphabet 1s limited, the I stands for
"implies," usually denoted by > or = .) Notice that
none of the expressions 1s describable and that they all
form a single 1llst structure (1.e., thelr names all occur
as local symbols). On the other hand, a total expression

(TEX) 1s describable. Its description list contains in-

formatlon about the expression, its history, genesis, and
propertles. The actual expression (EX) that the TEX rep-
resents 1is gilven in the first 1list cell and 1s called the
maln expression. Thus, in the example above, 1f -(PVQ).
(RI-A) was to be a total expression, called 7155 say, it
would appear as:

7155/ 9-0
9-1.0 (9-1 is the same list as above)

9-0/ 0
A2

9-100= 3 7155 was the third expression
A3 created

9555 7155 was created by goal 9555
A4

9-110 9-110,/0 7155 used by goals C32 and 702
Al?2 C32

K70 702.0 7155 belongs to TE K70 (symbolic
Al13 logicg
9-120 9-120,/0 7155 has one variable, A

Al5 A.O

9-130= 9 Complexity of 7155 is 9 (number
216 of nodes)
9-140= 4 Maximum depth of the tree 1s 4
A51

K161.0 Object TEX's are of type K161.

The necessity for the distinction between main expression
and total expression arises because we make description

lists obligatory on TEX's but do not permit them on EX's,
storing the operation symbol in the head of EX's instead.

-33-

The external format for TEX's 1s a simple list:

os]
o3
N\
O

> | H e~ v£)<:"UAI

.O

There 1s no way to input an EX, since 1t cannot exlst by
itself.

Creation and Destruction of TEX's

TEX's are created by initial input from outside or
by the application of operators to TEX's that already

exist. Once created, a TEX is never modified and never de-
stroyed. Creation is always done by P50. It involves an
"official act" of assigning a name (A2, which has the
order of generation as value), and recording certain in-
formation about the TEX (Al3, Al5, and Al6 currently).
Expressions may exist temporarily and then be erased, if
they are no longer wanted. However, these are not TEX's.
Only when an expression 1s put on a goal (a G1, G2, G3,
or G5 currently) does it become a TEX with a name and,
hence, unmodifiable. A check exists 1n the system 1in Q1T:
all components being put on the goal must "exist"; if
not, they are given permanent status at that time by QlT7.
As discussed in additional detall in the section on
Matching, the Y-cells used to hold expressions while they
are being worked on are Y11-Y13-Y15 (for the first expres-
sion under consideration) and Y12-Y14-Y16 (for the
second expression under consideration). In the first
case, Y11l holds the location of the expression; Y13 holds

~34-

the TEX (that is, the name of the independent entity con-
taining the subpart in Y11); and Y15 holds the location
program that locates the part of the TEX initially con-
sidered. A similar interpretation holds for the second
expression. When setting up a process, such as the matching
of the expression at Gl to the exXpression at G2 during an
attempt on a K1 (transform) goal, the Gl TEX is put into
cells Y11-Y13-Y15 and a J3 is put into Y45. This latter
symbol indicates that the expression in cells Y11-Y13-Y15
is an official TEX and cannot be modified. It can be ex-
amined by the match process without restraint, but if

ever a modification occurs, a copy of the expression in
Y11-Y13~Y15 is generated, replacing the Gl TEX, and this
copy 1s modified. Concurrently, a J4 is put into Y45,
which indicates that the expression in Y11-Y¥13-Y1l5 1s no
longer an "existing" entity. Consequently, subsequent
modifications can be made in the expression in ¥11-Y13-Y15

without additional copies. Only when some routine (Qa7,

Q34, Q37, QUO) uses the expression on a goal is 1t made
into an officlal TEX and a J3 put back into Y45. An en-
tirely similar situation exists for Y12-Y14-Y16 using the
cell Y46, At the completion of any processing of expres-
sions in the Y-cells, a clean-up routine (Q24) is executed.
This erases any expressions named in the Y-cells where

Y45 and Y46 indicate that it does not have official status.
The routines Qll and Q12 are the ones that check Y45 and
Y46, respectively, copy (P13), and replace the expres-
sions in the Y-cells if they need it. Q11 or Ql2, as
approprlate, 1s executed at each point where it becomes
certain that an expression will be modified (Q1l1 in F4,
F28, Q37, and Q52; Q12 in F5, F29, Q37, and Q51).

Some other expressions (the operator at Y20 and the
difference expression at Y84) also use an indicator (Y47
and Y48, respectively) to indicate whether they have
"official" existence or are to be erased by Q24.

DERIVATION LISTS

There is no reference tree of objJects, analogous to
the reference tree of goals, even though each object must
be checked to see if it has already been created. This
role is played by derivation lists. Each expression 1s
generated from some other expression (or expressions) by
means of an operator. In general all those objects de-
riving from common parents are interchangeable in their
role as starting points in the application of additional
operators. Hence, as each expresslon 1is created 1t 1s
put on a single 1list, called the derivation list. For
all expressions with a common parenthood this same 1list
can be obtained at A5. It is possible for several de-
rivation 1lists to exist, however; one working forward from
the givens, one working backward from the desired, one
holding operators that have been derived from other oper-
ators, one starting from a conjJecture that was tied neither
to the given nor the desired, and so on. Derivation
lists are created (P58) every time a TEX is created that
is unrelated to any of the derivation lists already in
exlstence. At the beginning, this 1s done in Q45.

The derivation list 1s a TEX:

11245/9-1
9-2.0 9-2/, , 1s the connective for
B50 "set"
7155
8266.0

9-1/0
A51
K163 Derivation lists are of
etc. type K163

When a new expression is created, it is checked for
identity against all the expressions on its derivatlon
1ist (Q43). If it is really new, 1t is put on the list

-36-

and S30 reported. If 1t already exlsts, the new version
1s destroyed and S36 1s reported along with the name of
the o0ld version.

OPERATORS

The operators are also TEX's, but may be of several
kinds as indicated by Al which takes on signals as
values,

Form Operators

S60 indicates a form operator with some initial con-
dition that has to be tested by a program (at A10).
After this test is completed (see R31), the operator can
st1ll be any of the several kinds. 861 indicates a form
operator, without such conditions, such as exists in
logic. The left-hand subexpression of a form is the
condition form which must be matched to the input object.
The right-hand subexpression is the product form which
gilves the expression that is to replace the input expres-
slon. TUnless otherwise stated, a form operator may be
applied to any subexpression (EX) of a TEX. For example,
B20 is the operator A.B Y B in logic. (Since the com-
puter alphabet is limited, the Y stands for "yilelds,"
usually symbolized by => .)

B20/9-1
9-2.0 9-2/Y
9-3

B.O

9-1/0
Al
S60
Al0
F2

Operator TEX's are of
type K162

-37-~

A1l S60 indicates that a test must be performed, in this
case F2. F2 is an IPL-V routine, which if the expression
being operated on were a main expression and posltive,
would result in the signal being set 361, which would
then indicate that B20 1s a form operator.

Expressions for Operators

It is also possible for an operator to be given an

expression, such as, "the reverse operator to B12" (862).

Such an expression 1s 1tself a TEX:

B13/9-1
9-2.0 9-2/K60 K60 is the operation,
Bl12.0 "peverse

9-1/0
Al

S62
etc.

Before such an operator can be applied, it must be ex-
pressed more directly. K60 has assoclated wlth it a
program (P30 at All) that will be the operand (B12 here)
and create a new operator that 1s the reverse of 1t;
i.e., has Bl2's product form as condltion and Bl2's con-

dition form as product.

Direct Operators

Finally, it 1s possible to have a dilrect operator
(S63), which is given simply as an IPL-V program (at A1l1).
Such operators may have additional input information
given as an expresslon, but it is the routine at All that
manipulates thils information, not the general purpose
GPS routines for manipulating forms. Misslonariles and
Cannibals provides an example. A TEX in M&C looks llke
(where B = the boat, M = a missionary, C = a cannibal,

L = the left side,and R = the right slde of the river):

M&C TEX
9-3/L 9-4,/R Left side : MMCCB
M M Right side: MC
C.0
B.O

An operator for Missionaries and Cannibals looks like:

M30/9-1 Move MC from the left
9-2.0 9-2/Y to the right side (a
9-3.0 9-3/L direct operator)
M

9-1,/0
Al

S63

A1l

M22 M22 1s general operator
etc. routine

C.0

The operator specifies a general routine, M22, at All

and provilides an input form to tell M22 what specific
actlon to take. M22 interprets this form to mean, "test
if the boat 1s on the left side; if it 1s, take one M and
one C from the left-side 1list of the TEX and move them to
the right-side list of the TEX." In the case of M72

this could be accomplished; in other cases one of the
symbols (B, C, or M) might be missing and M22 would ter-
minate with a difference.

LOCATION PROGRAMS

The TEX is the independent unilt, consisting of a
hierarchy of subparts. GPS 1s concerned with the various
subparts (e.g., it can apply operators to them) and re-
quires a way of designating them. It needs a way that
1s independent of the particular names used for a subpart
(1.e., of the addresses); e.g., it must find corresponding
places in two expressions (such as a TEX and its copy).

In addition, it must be able to store the TEX out in
auxiliary storage and still find the same subpart after

-39~

retrieval. (Only the name of the TEX is preserved when
a structure is filled on auxiliary.) The device used is
called a location program. It is an IPL-V program which,
if applled to the TEX in HO, gilves (in HO) the location
of the subexpression designated.

Inputs Are Locations Not Names of EX's

Before dlscussing in detall the structure of loca-
tion programs, it is necessary to observe a major
convention about routines that work with expressions:
the approprilate input and output to such routines are the
locatlons of the expressions to be worked on, rather
than the expressions themselves. Thus, for example,

Y1l holds the locatlon of the expression designated; P15
generates the locations of all the terms 1in the expres-

sion whose location 1s (1); P26 tests 1f the expressions

located in (0) and (1) have the same terms; and so on.

Thls conventlon 1s necessary to permit the modifi-
catlion of expressions. If only the name of an expression
is available in HO, it 1s not posslible to change the
occurrence of the name in the hlgher expression. That
is, the 1list cell in the hilgher expression that holds
the name 1s no longer accessible.

Structure of Locatlon Programs

The location program is a simple list composed
from two routines:

P8 Locate the next EX after the EX located by (0);

P9 Locate the first EX in the subexpression of the EX
located by (0).

P8 is just a J60 and P9 is just a J80 followed by a J60.
Any position in a hierarchical list structure can be

found by executing a sequence of P3's and P8's. A

40O~

location program 1s always executed on the name of a TEX
in HO. Thus in the expression, 7155/ -(PvQ).(RI-A), we
get the following locatlon programs for locating each
subexpression (all with input 7155):

P8

P8 P9
P8 P9
P8 P9

P8 P9 P9 P9
P8 P9 P9 P9 P8

P8 P9 P8 P9
P8 P9 P8 P9 P8

-30/ -
9-3¢/ S.0

P8 P9 P8 P9 P8 P9

Notice that P8 is the location program to be applied to
the name of the TEX (not its location) to get the lo-
catlon of the main EX.

Location Program Reference Tree - Absolute

The same location programs arise over and over
again, and it 1s desirable to have fixed names for each
location program that is used (thus permitting the iden-
tity test for location programs to be a J2 test on their
names). This tree provides a node for each location
program that exists. If locatlon program X is applied
to K98 (as a TEX), then it will locate the node cor-
responding to X. At that node can be found the name of
the canonical locatlon program (at A60) and also the
number of levels down 1n the tree (at A6l), Thus, when-
ever a location program is constructed (e.g., during a

-43-

match), 1t is executed on K98 to find the canonical lo-
cation program, and that name i1s used. By the way P8 and
P9 are constructed, if a locatlon program 1s ever executed
on K98 that does not correspond to a node existing 1n
the tree, the reference tree will be automatically ex-
tended and the necessary canonical location programs will
be created.

Some of the location programs occur as P-routines,
since they are used in programming parts of GPS.

P10/P8 Locate first subexpression
P9.0 (also, locate operator condition)

P11/P8 Locate second subexpression

Pg (also, locate operator product)
PS.0O

P71/P8 P72/P8
P9 P9

P3.0 P9
P8.0

Locatlon Program Reference Tree - Relative

Besides having programs that take the TEX as input
and dellver the location of the desired expresslion as
output (called absolute location programs), it is also
desirable to have location programs that take the lo-
cation of an EX as Input and locate some EX below it.
These latter are called relative location programs. Due
to the conventions for TEX and main EX, relative location
programs differ slightly from absolute ones.

PO Relatlve location program: first subEX, one
level down
P70/P9 Relative location program: second subEX, one
P8.0 level down
Consequently, the relatlve location programs have theilr
own reference tree (K99).

There are a few routines for manipulating location

programs (P4O, P46, P4T).

DIFFERENCES

The differences are symbols which are assoclated on
the one hand with the difference between expressions, as
discovered by the match routines (R20, using Q20 and
Q47); and on the other hand with the operators (via the
table of connections in ¥52). At the moment, they have
no information at all associated with them.

IV. ROUTINE STRUCTURES

The performance of GPS after 1t has been given a
problem by the experimenter can be described by starting
at the executive routine, which 1s at the top of a hier-
archy of routines, and working down through successive
levels of detail.

TOP EXECUTIVE

The top routine of the experimenter (E2 currently)
sets up the initial goal in Y87 and executes the top
executive of GPS-core (R2, normally, or Rl). R2 sets

up the goal context, creates the equivalence lists (Qus),
initializes the various 1limits (Q44, Q10O7), and records
the initial goal on the goal reference tree (Q46). It
then executes the problem-solving executive in cell Y90
(R10). The top executive, as a temporary expedient, uses
the Y's directly (in violation of the conventions for R-
routines).

PROBLEM-SOLVING EXECUTIVE

The important executive 1is R10, which 1s used re-
cursively in attempting each goal. A flow diagram for
R10 is shown in Fig. 4. The flow diagrams for the R=
routines depend on the convention that each step consists
of executing a Q-routine and then taklng a multiway
branch on the basis of the signal. Indirect executions
(e.g., 1Y90 and 1Y96) occur in several places to make it
easy to change key routines. These Y-cells are occupied
elther by Q- or R-routines.

Centralization of Decision-Making

The signal system provides the basis for the most
important convention about the way GPS operates: all

$32,533,334,339,343,547,8130

d&l———*Q-lo
(9%10)

S43
'847

\

QT

> Q6

581

l

Q2

S50 S51

189

Q9

S50 S51

ls_c)

s5282 g5

S1

v
Q108

™

S50 Sh1

S4O sS4z

S9

S9

S1

v
S52 1Y96

[4

e
59

R
Q83
1Y90
Q84

S30
S31
S36
S37
S38
S131

7/
w52
SuT

‘§1322

N

Q86
1Y90
Q87

1S30
S31
S33
S36

S37
338

Q85

48
f
Q6

Fig. 4 R10:

N

Test for limits,
record attempt

Repeat method

Find next method

Try antecedent goal

Test 1f goal 1is at top

Try Gl-expanded goal

Select subgoal for re-
try

Try subgoal

Try method

Problem-Solving Executive.

important decisions are made by the problem-solving ex-
ecutive, rather than being delegated to lower routines.
Thus, no matter where 1n the routine hierarchy a crucial
decision is posed (e.g., whether to attempt a subgoal),
it is necessary to bring this decision back to the ex-
ecutive. The signal system can be viewed as providing

a symbolization of all the Important declsion sltuations
that occur in the course of operation. A Q-routine
represents a simple enough action (in terms of the de-
cisions which must be made to carry it out) that GPS can
commit itself to carrying through a Q-routine once it
has initiated 1it. Thus Q-routines represent, in a way,
the "unit actions" of GPS. When a Q-routine is executed,
the "unit action" is carried out, and information about
just what happened is reported back as a signal (by an

S-symbol), so that a declsion can be made about what to

do next.

Control Technigues to Handle Centralization

Actually, the important decislons are shared among
all the R-routines, and are not all localized in R10,
However, the tendency remains for decisions to be "kicked
upstairs" for solution. This implies a certain violation
of the hierarchical organization of processing, since it
often happens that a cruclal decision (such as whether
it is worthwhlle to continue) occurs in the middle of a
process. It 1s then necessary to leave the routine to
return to the higher routine for decision and then (ir
the decision is to continue) to return to the lower
routine again. Mechanically this 1s accomplished in GPS
by one of two mechanisms. The process may be split into
several Q-routines, so that the subroutine hierarchy is
formally preserved. This results in Q-routines with
rather truncated functions; i.e., Just a fragment of what

—U46-

would normally be incorporated in a subroutine. The

Second technique is to begin R-routines with discrimi-
nation on the signal. Then they can be entered several
times with different signals, which then cause an immediate
transfer to the appropriate starting or continulng place
(see R11 and R20). No difficulty arises in all of this,
but it makes the operation rather confusing until these
features of the brogram are understood.

Structure of R10

As revealed in Fig. 4, the operation of R10 is
rather easily comprehended, reflecting the crudity of the
ldeas about how to handle the top decisions. R10 consists
of a loop: Q1 — select an attempt — attempt 1t — Q6 and
recycle. Ql tests whether any "external 1imits have
been transgressed, such as effort limits (S72) or depth
limits (S74). It also sets up a record of the attempt
(Q72). This is a structure which is filled in by Q6 at
the end of the attempt and recorded on the goal at G26.
The vertical column at the right side or Fig. 4 represents
the choice of what attempt to make. Right after Q1, 1t
1s possible to attempt to repeat the methods just tried
(Q7); to select another method from the method 1list (Q2
using Y5, which is obtained from G27); or to quit any

further attempts on this goal (all S-symbols not occurring
at the branch point).

Antecedent Goal

As the next alternative, the antecedent goal to the
most recent subgoal may be retried (Q9). An antecedent
goal 1s one that produced a result used in defining a
goal. Thus, to retry 1t is to attempt to get an alter-
native result; ir Successful it will pProduce a modified
goal which may be more tractable, 1In 3 typical goal tree:

47~

Goal 1: A into B

/

Goal 2: Reduce D ----> Goal 4: A' into B

Goal 3: Apply Q to A

l

At

Here Goal 2 1s antecedent to Goal 4. Retrying it will
lead to some different operator, Q', being triled; hence
(perhaps) to some different expression, A", being pro-
duced; and then to a new goal, A" into B, being formed
which 1s an alternative to Goal 4.

Gl - Expanded Goal

Two other alternatives for attempting a goal exlst
in R10. Both of these are currently restricted to the
top goal (Q5 exits S2 if not top goal). One possibility
is to generalize the goal by using the derivation list of
the Gl expression 1n place of the expresslion. For ex-
ample, if the top goal were to transform A into B and A
had expressions A', A", A"' on its derivation 1list, then
the situation would develop as follows (Q108 plus subse-

quent problem-solving):

Goal 1: A into B

/

Goal 2: (A, A', A", A"') into B

/

Goal 3: Reduce D19 > Goal 4: A" into B

i,

~48-

Setting up Goal 2 to transform the set into the expression
generates a D19 difference (set versus element); this in
turn causes the selection of one of the elements of the
set (Q54), in this case A"; and this in turn leads to
creating the succeeding goal, A" into B. This technique
of generallzing a goal is a way of seeing if some of the
expresslons which may be substituted for A might not be
better starting points than A for reaching B. Some of
these other expressions may have been generated without

thelr relationship to B being considered (e.g., as a

modification of A in order to apply an operator). Thus,
it 1s sometimes possible to discover the possibility of a
useful expression among the ones already generated.
Although we have stated this notion with respect to trans-
form goals, the same concepts apply to the other two goal
types. This technique 1s inserted directly in the ex-
ecutive as Q1l08, rather than as a method. This is an
expedient to restrict 1ts usage to the top goal.

Lower Goal Selection

The final possibility for attempting a goal is to
select a lower goal and try it again (1Y96, which normally
holds Ql09; but also Q8). A lower goal 1is one that lies
anywhere in the goal tree headed by the given goal; or,
alternatively, a direct or indirect subgoal of the given
goal. The goal selection procedure involves first listing
all the goals that are either untried or unfinished (G20
S50 or G20 S51 in Q109). This 1list 1s then submitted to
a further selection (Q73 or Ql05). Q73 selects the best
Subgoal according to the goal values (G22) and the goal
evaluation procedure. Q105 first splits the goals 1into
those which are subgoals of transform goals and those
which are not. It tries to get a goal from the former
sublist first (with Q73). Only if no evaluable goal exlsts

on the Kl-subgoal-list, does Q105 select from the remain-
der 1list.

Once a goal has been selected it is retried, inde-
pendent of the reasons for its not being tried further at
the time it was last worked on. Thus, this procedure
"forces" its way past the tests for rejection of a goal.
The net result is to make the total problem-solving actlv-
ity of GPS proceed as a series of episodes, each one
starting from some goal that already exists in the goal
net and trying to extend it further until the various
limits and rejection criterla force a halt to the explo-
ration. After each episode GPS reselects another goal
somewhere 1in the total net to start the next epilsode.

Executlion of Selected Attempt

R10 does not choose among all these alternatlve ways
of attempting a goal in a very sophisticated way: the
vertical column in Fig. 4 implies an approximately
lexicographic ordering. Once an affirmative declsion has
been made about an attempt, then 1t 1s carried out by Rll
or by attempting a subgoal, as approprlate. The subgoal-
attempts require using a Q8x routine to get into the
context of the subgoal (Q83 or Q86), executing the exec-
utive (1Y90, holding R10), then returning to the context
of the present goal (Q84 or Q8T7).

In both cases of subgoal-attempts, R10 1s retrying
a goal that was created on another occasion, tried (per-
haps), and abandoned. Thus there are now three goals
involved: the current goal, the lower goal it wants to
attempt, and the supergoal to the lower goal, which
created it and, alone, has the information to utilize its
attainment. If the lower goal 1s an immedlate subgoal
(as in the antecedent goal), then the current goal and
the supergoal coincide; otherwise they differ. If the

-50-

attempt on the lower goal fails, then in all cases we
wish to return to the context of the current goal. But
if the attempt on the lower goal succeeds, 1t is neces-
sary to get into the context of 1its immediate supergoal
and to continue problem-solving from the position in that
supergoal's activity which 1s prepared to use the results.
Thils supergoal, of course, is still a subgoal of the pre-
sent goal. This is accomplished by Q85-R11-Q84. Notice
that there 1is a return afterwards to the context of the
initiating goal, since it is in this context that the
declsion must be made as to whether to continue or not.
If this supergoal (of the initially attempted lower goal)
i1s able to make some progress using the result, getting
yet another new result, it is then necessary to get into
the context of its supergoal to use the just obtained re-
sult. Thus, there is a loop around Q85-R11-Q84, which
continues until some supergoal up the line fails to make
poslitive use of the results and the whole attempt comes
to an end. Alternatively, of course, all goals are suc-
cessful until the supergoal being put into context by Q85
1s the present goal, which initiated the whole attempt
series in the first place (S1 at Q85); in this case it
1s appropriate to remain in the present context.

In the case of Q9 and Q108, which generate immediate

subgoals for retrying, it is not necessary to use Q85 to
obtain the supergoal, since it is known that the current

goal 1s the supergoal. Hence R11l is executed directly
after a success on the attempted subgoal.

In the case of Q7, Q2, and sometimes Ql08, we are
elther trying a method or working with an untried subgoal.
Hence we go directly into R11.

Recording Attempts

No matter where we quit in making the attempt in
R10, we return to do a Q6, which records the results of
the attempt. There is then opportunity to recycle and
continue with another attempt on this goal, or to quit
this goal and go back to the supergoal. Q6 does not
change the signal, so this decision is made on the basis
of the final signal resulting from the attempt.

Q6 records in the attempt record (created by Q72) the
signal that terminated the attempt (A40, the attempt status),
the method used (A41), its current status (A42; see section
on methods), and the limits of the attempt 1f they started
or ended somewhere in the middle (A43 and A44). The
attempt record is stored away at the front of the history
of attempts (G26). 1In addition Q6 updates the method
status: 1t changes it from S50 to S51, or from 351 to ShH2

1f the method quit with S35 (impossible).

METHOD EXECUTION AND R11l

Methods and Method Status

The main course of GPS 1s guided by a series of
methods (K4O-K4L). These are assoclated wilth goal types,
each method being a way to either attain the goal of the
given type or to analyze the task into subgoals and use
their results in attaining the goal. With respect to a
given goal, each method has a status indicating whether
this method has not yet been used (S50); has been used
but may be used again (S51); is no longer useful (S52);
or is temporarily blocked from being used (S53). Each
goal has a method 1list (G27) which contains the name of
each method applicable to the goal followed by the current
status for the goal. Status symbols are updated by Qb
after each attempt. The set of methods 1s not completely

-52-

fixed, although 1t 1s initially determined by the goal
type (the initial G27 l1list is on the goal form, A20, that
is copled to create a goal). For example, K43, the trans-
fer result method, is added to the list by Q71.

Method Structure: Segments

In the published papers on GPS (and in GPS-1 program)
the methods are given as subroutines. However, the re-
quirement that all important decisions be reserved to the
problem-solving executive implies that the method be
broken up into a number of method-segments. Between each
segment, control returns to the executive (R10 and Rl11l).
Thus methods are data lists of segments and R1ll acts in
many ways llke a higher level interpreter, executing each
segment on the list in turn and making the decision whether
to continue or not after each segment is finished. So
far it has been sufficient to have methods be simple lists
of segments which are executed strlictly sequentially with
possible repetitions. It has not been necessary to have
the methods be branching, conditional structures.

Method Interpretation: R1l

Flgure 5 gives the flow dilagram for R1ll, the R-
routine that interprets and carries out methods. It
consists of a loop through a single large branch 1list
which distinguishes numerous signals. Typically R1ll is
entered from R10 with the status of the methods as the
signal. If this is S50 or S51 (untried or unfinished)
then the first method-segment is obtained (Q3); if the
status 1s S52 or 553 (finished or blocked) R1l quits with-
out doing anything (S52 and S53 do not appear in the branch
list). If R1l is entered with S81, this symbolizes the
repetltion of a method (from Q7 in R10) and again leads
o executing the first segment.

l

rt

__S41 S50 S51 S81’Q3

__S46

__S48

-1

-S1

N—S40_voo

S6 ST

00

0l

38

S9
Qlok
5

N—S42 1v100

L—Si“'L.SLW

S6 ST

Q‘|81
1Y90
Q82

SUT.

Fig. 5 Rll:

S9 832 S34 5130

S30
S31
S33
S36
S37
538
S131
S132
S48

Obtain next method-segment
(includes first)

Repeat current method-seg-
ment

Find segment to take next
(S41l or S46)

Evaluate new subgoal

Subgoal rejected (exits S43)
Evaluate equivalent subgoal

Attempt subgoal

Executive Method until Faill.

~5L-

Q3 obtailns each successive segment of the method and
automatically executes it (thus i1t performs the "fetch"
and "execute" steps of a standard interpreter). The re-
sulting signal 1s discriminated by the same major branch
list. The results of a segment that R11l recognizes are
to go on to the next segment (sl41); to repeat the current

segment (S46); to find out whether to repeat or go on (S48);

that a new subgoal has been created (S40); that a new sub-
goal has been created which 1s equivalent to an exlsting
goal (S42); and, that the method cannot possibly work
(335). Each of these leads to an approprilate routine,
which result is again discriminated for further actilon.
Several kinds of failing silgnals can occur (832, S39),

but R11l quits in these cases, so they do not show up in
the branch 1ist; the same 1s true of signals which indi-
cate goal success (S30, S31, S37, S38, S44, S45, 5131,
S132).

In case a subgoal is generated (S40, S42) it is neces-
sary to evaluate it before attempting it (1Y92 and 1Y100,
normally holding Q74, but sometimes Ql06, or Q4). This
evaluation (see below) results in a signal (S3, S4, S5,
S6, S7, S8), and for the appropriate set (S6, ST, S8) the
subgoal is tried (Q81-1Y90-Q82). Afterwards, the results
are summarized either as a faillure (S47 and quit R11l) or
as a success (S48 and recycle in R11).

It is also possible to enter R11l with a subgoal to be
tried (e.g., with S40 or S42). Then R11l starts with the
evaluation and attempt (if appropriate) of the subgoal,
followed by the other method-segments called for by Q3.
The only unmentioned action is setting S47 if the subgoal
is a duplicate (S54).

Goal Values and Goal Evaluation

In the published accounts of GPS, mention 1s made of
"progress tests," which determine if a goal should really
be tried. These are embodied in the goal evaluation
routines (QT4, Q106, QU4). Certain goals can have a value
(at G22); currently only reduce-type goals (K3) have
values, the other (Kl, K2) being unevaluable. Two goals
with values can be compared (P56) with one of several re-
sults (83, S4, S5, S6, S7); if either of the goals is
unevaluable, the result of P56 is "undefined" (S8).

Goal Values

There are several kinds of values, each kind beilng
identified at A83 by a structure (KlOl, K102, K103) which
tells how to process the value. A K101 value compares
first on the level at which the difference occurs (A84),
giving S3 or S7 if the levels are unequal. If the levels
are the same, it compares on the difference symbol (A89),
giving S4, S5, or S6, depending on whether the first value
is less than, equal to, or greater than the second value
on the difference ordering (e.g., C10 for TE K70). A K102
value compares first on the number of levels up from the
bottom of the expression (the maximum level minus the
level) (A85) and then on the difference symbol (A89). A
K103 value compares first on the difference symbol (A89)
and then on the level (A84) (Just the opposite from K101).
Each of these values was introduced by experience with
certain specilal situations; none of them seems to be
appreclably better than the others. ZEach of these value
types has on it (at Al7) the appropriate comparison routines
(P49, P57, and P59 respectively). Values of each type

are created by separate routines (Q76, Q77, Q78 respec-

tively); creation occurs in the Q-routines that create
K3 goals (Q27 and Q40, by executing 1Y95).

Goal Evaluation

The evaluation of a goal to determine if 1t should
be attempted consists first of a search for the goal
against which the candidate should be compared, and second,
of the comparison by P56 as described above. The search
(in Q7T4) consists in finding the first evaluable ante-
cedent goal, or supergoal. The rationale is that a
subgoal should be less difficult than its supergoals,
since it purports to solve only part of the total problem.
Similarly, if GPS works from hard differences to easy dif-
ferences, then a goal should be less difficult than its
antecedent goals. Finally, of several potential ante-~
cedent and supergoals for comparilson, Q74 prefers near
supergoals to more distant (higher) supergoals, and ante-
cedent goals to supergoals.

MATCHING

A crucial part of two methods (K4O, K4l) is the pro-
cess of matching two expression together in order to
determine thelr differences (or identity). There are two
alternative match routines (R20, R21), of which R20 is the
easier to understand and will be described first.

Matching is factored into two parts: two expressions
are first put into correspondence; then the contents of
various corresponding EX's are compared. Since all ex-
pressions have a common form (the tree structure with the
operation in the head) a set of GPS-Core routines handle
the task of putting two expressions in correspondence and
cycling through the successive pairs of corresponding
cells (Q21, Q22, Q23). For each pair a TE routine (in
Y17) is executed which compares the expressions at that
point (Q20).

R20 Match

The flow diagram for R20, shown in Fig. 6, consists
of iteration through a basic discrimination, where Q20 is
used to compare EX's (following 320, meaning "both found").
The other Q2x's are used to locate the next corresponding
EX's in response to whether two cells are found to con-
tain identical subexpressions (S10) so that further sub-
exploratlion was unnecessary; whether no difference was
found for this pair at this level, but exploration of the
subexpressions should occur (811); or whether a boundary
of the expression has been reached (S23). Several nega-
tive signals are possible (S12, S13, S16, S21, S22) which
do not appear in the discrimination since they imply that
R20 should terminate. S19 1s a signal indicating the
beginning of a match (not, however, Jjust entry into R20,
since R20 may be executed and terminated numerous tilmes

during a single, successful match). At thils occasion

R20 executes a special comparison (Q4T7) of the top ele-
ments of the expressions being matched for differences
directly recognizable by GPS-core (D19, D20, D21 currently).
The final exit at S10 at the bottom of the dilagram indi-

cates an inference that 1f the expressions have been
thoroughly scanned (Q23 yielding S23 indicates a return
to the top of the expressions being matched) and no dif-
ferences have shown up at any point (always S11), then
the two expressions are ldentical (S10).

Housekeeping for Match

The match occurs by setting one expression to be
matched (the "#1" or matching expression) in Y11-Y13-
Y15 and the other ("#2" or the expression being matched
to) in Y12-Y14-Y16. The initial setup (Q25, Q36) puts
the TEX into Y13 (for #1); puts the location program
that locates the EX into Y16; and uses this location

Test if DE already exists

Compare

GPS Compare for top level

Go down one level

Advance down 1list

Return one 1level

Identilcal

Fig. 6 R20: Match Element by Element, Depth First.

~59-

program to put the location of the EX into Y1l. A similar
setup occurs for the #2 expression. The location programs
for the two expressions need not be the same. For example,
in applying an operator, the main EX of an object (p8
location program) is matched against the condition form

of the operator (P10 location program).

The movement through the tree structures of the two
expressions (Q21, Q22, Q23) involves pushing down Y1l and
Y12 as the scan goes deeper and popping up these cells to
come back up a level (this is due to the one-way nature
of 1ists). It is also necessary to construct the location
program to any point that might be reached (say to record
a difference). This can be done by adding onto the
location program in Y15 (or Y16) the incremental location
program from the initial location down to where Y11 (or
Y12) currently is. Y19 is used for this and holds the
incremental location program. Since the location program
is only rarely desired, compared to all the movement back
and forth over expressions, this location program 1s kept
in reverse order so that it can be modified by push-down
and pop-up operations. Thus, the Q2x routilnes put P8's
and P9's into Y19 when going deeper and remove them when
coming up. (Carrying out a simple example will make
these considerations clear.) Routines exist which aid in
the manipulation of Y19 (Q10, Q18).

The routine for comparing two corresponding cells
pelongs to the TE (F1 for K70, M23 for M19). This same
routine is repeated for each pair of cells. It outputs
the difference symbol applicable to the pair (into Y18).
Since several differences may be applicable, this routine
contains within it implicitly the order of Importance of
the differences. A flow diagram for Fl, the comparison
for symbolic logic (K70), is shown in Fig. 7.

=names —i—-. S10

l=term

l=var — D1l

2=term 2=term

'1/=TEX 2=-'-+/Dl3 Pmvar —'—m D15
+ -
S11 2=TEX p=-vartp7 D18

D25 D16

All 1 terms in 2 ———a=D1
+

All 2 terms in 1 —=—e D2
+

All 2 terms occur at
least as often in 1 ——e=D3

All 1 terms occur at
least as often in 2 -—e=Di

D?-i— =

D5 w——=— =connectives
+

L1~R2, Rl~ L2
- +

D10 «—t—LR1~ RL2 rl i\-LE ——e=D9
- +
D11 =Y —RL1~ RL2 s11 Legend

negative

double negative
varlable

negative varlable
left subEX

right subEX
similar

Fig. 7 Fl: Compare EX1 and EX2,

R21 Match

The R20 match involves an impliclt double lteration
over the expressions. One iteratlon is employed by the
scan represented by the Q2x's. But 1f the comparison
routines are to see differences such as differences in
terms (Dl, D2, etc.), they must independently scan over
the entire subexpression each time they are applied. The
R21 match is an attempt to eliminate thils feature by
scanning over the expression Just once, picking up infor-
mation from each of the nodes, and then assembling the
effective difference from the scraps of partial infor-
mation. R21 still takes almost as much effort as the
double iteration. However, it 1s useful 1n other ways;
e.g., making it easy to see certain multiple and complex

differences. Consequently it is the one normally used.
Figure 8 shows the flow diagram for R21, which is

very similar to that for R20. The important differences
are that when a difference is found (S12) a new signal is
set (S16) before exiting. When this signal is seen by

the main discrimination, data on the difference 1s recorded
in 1list of difference expressions (in ¥84). Q90 then re-
sets the signal to S10 and the match proceeds (even though
a difference has been found). The use of S16 allows
termination of R21 when a difference is found, and the
higher R-routines are to regain control. Subsequent re-
entry of R21 to contlnue the match 1s then possible. By
the time the entlre expressions have been scanned, all

the differences that have been found are recorded on the
1ist in Y84. Then, instead of quitting with S10 (as R20
does), R21 executes Q92, whose Job is to analyze all the
differences on the difference expression list and deter-
mine a single effective difference.

Test if DE already exists

—e Q20— Compare
1320

- QU7 If beginning, do GPS match

4-Q9O-—————} Construct difference ex-

pression

--316 If difference, set to be
provisional

— Q2] Go down one level
S23

4-Q22—J Advance down 1list

S23 S20

Q23 Ascend one level
S23
Q92 Combine 1list of difference

expressions

Flg. 8 R21: Match with Single Pass
Getting List of Difference Expressions.

63

Combinatlon of Differences: Q92

Q92 consists of a serles of scans over the difference
expression list, each time determining which pair of dif-
ferences should be combined into a difference at a higher
level. This 1is continued until only a single difference
expression is left, which is then the effective difference
for the match.

An important feature of the R21 match 1s that it
scans the expressions only down to the point where a dif-
ference 1s found. At that point, the entire subexpressions
are described on the difference expression. Besides the
difference symbol (A89), the relative location program
(the one determined by Y19) is created (A88) and lists
are made of the terms in the subexpressions (A86 for #1,
A87 for #2). These lists are marked to indicate the terms
of each that are held in common (P44). This is done by
putting S1 behind each term found on both lists. The
term difference (if any) that exists at this location can
be found from these lists (P45, yielding D30, D31, D32,
D33, D34). Figure 9 shows two matched expressions and
the resulting list of difference expressions.

In the main loop of Q92 the first part consists of
determining two difference expressions to be combined.
Notice in Fig. 9 that the difference expressions are on
the 1list in order, so that adjacent difference expres-
sions on the 1list designate adjacent differences 1n the
tree. The basic act of comblnatlon 1s to take two dif-
ferences and form them into a single difference at the
lowest point in the tree that covers both of them (i.e.,

at their Joln, in lattice terms). Q92 is only prepared
to combine pairs of differences, which 1mplies that 1t
must plck two differences whose Join does not 1include any
other differences. A way of doing this 1is to combine

only adjacent differences whose levels constitute a

EX1 EX2
[RI(T.R)].Q (TVR).R

N N\,
A /\

R T//Q\\R

Y84/ 3725. Cell holding 1list

3725/ O List of difference expressions
9-1 (DE's)
9-2

9-1/ 9-10. DE for lefthand side
9-10/ 0
A89
D32 D32 = delete from EX1
A88
Péo P10 = location program "left"
Aot
9-11 Lists of terms
A86
9-12.

DE for righthand side
D34 = disjoint terms
location program "right"

9-21/0. 9/22/0 of terms
Q. R.

Fig. 9 Two Matched Expressions.

-65-

relative low. Thus Q92 moves along the 1list comparing
successive triples; if it finds two that can be combined,
it does so and starts over.

Combination involves creating a new difference ex-
pression whose location program (A88) is the Jjoin of the
two components. The lists of terms for the join are de-
termined afresh and compared against each other for term
identity (P4l4).

The difference of the combination can be determined
from some simple rules. If at least one of the component
differences 1s not a term difference, then there is no
interaction between the differences, and the difference of
the join is simply the most important component difference,
as determined by the difference ordering (e.g., by C10).
If both component differences are term differences (D31 -
D34) then interactlon is possible i1f the difference in
terms vanishes at the level of the combined difference
(D30 from P45). For this means that the same set of terms
is involved overall, but differences occur in subexpres-
sions because of their arrangement. This implies either
a position difference (D9) or a grouping difference (D10,
D11), the exact inference depending on the type of dif-
ferences of the subexpressions.

THE MATCH METHOD FOR TRANSFORM GOALS (K40)

A transform goal (K1) is defined as, "finding a way
to transform object #1 (Gl, Gll) into object #2 (G1, G12)."
The objects are given by both a TEX and a locatlon pro-
gram. Thus, Gl obtains TEX #1 and Gll locates the EX 1t
is desired to transform. The transform goal has no

specific output; 1ts result 1s the sequence of operator
applications that resulted in getting from #1 to #2. This
is embedded in the goal tree. (Under some conditions, it
would be appropriate to build a data structure of the
operators that were used.)

The Method

The mailn method for attaining a transform goal is by
the match method (K40). This method consists in matching
#1 to #2 and, if a difference 1s found, setting up a sub-
goal of reducing this difference (K2). If no difference
is found, then the two objects are already the same. If
this reduce goal is successful, then a modification of #1
is produced and the subgoal 1s set up to transform the
modified expression into #2. Thus, the method attempts
to divide the total goal into two subgoals: one takes an
initial step and the other attempts to go the rest of the
way. The method consists of a list of segments, the
separation between segments corresponding to major de-
cisions to be made by the executive:

K4o/ O
R30 Match and produce subgoal if difference exists

Q28 Create and modify transform goal
Q116 O Set output

Match #1 to #2: Segment R30

The flow diagram for R30 i1s given in Fig. 10. It
consists of a setup routine (Q25), which sets up the Y-
cells from information on the goal (¥Y11-Y13-Y15-Y45, Y12~
Y1U-Y16-Y46, Y84-YU8, Y1T7); a major loop through a
discrimination 1ist; and a cleanup routine (Q24), which
erases all the structures that have been created but not
made into official structures and cleans out Y1ll, Y12, and
Y19, which can have symbols stacked 1n them.

Immedliate Operators

The initlal signal set by Q25 1s S19; this triggers
the match (1Y91). The match can result in numerous sig-
nals. If S10 occurs, the two objects have been found to
be identical, and it is only necessary to reset the signal

Q25— 9-l=mp Q21U

'
(9-1)

| o

N

SO e332

S10 - S30

17

—==l—eQ1l4

S18

—e=1Y99

S12

-e=K110
Joae
1¥Y53

v
Q113
\S 9

4

12 o Qo7
S10
S11
S16
S20

L S16 S19 1_1%91 }

Fig. 10 R30:

Set up and clean up

all other cases method
faills

identical, method suc-
ceeds

something has changed,
rematch

have DE's, select one
difference, try GPS
immediate operator

difference, try TE immedi-
ate operator

difference, set up subgoal

Match Gl to G2,
If Not Match Produce K3 (Reduce) Subgoal.

-68-

to S30, indication that the goal 1s achleved. If S12
occurs, a difference has been found. This 1is not neces-
sarily the end of the line, since there exist immediate
operators which might be applied to eliminate differences.
An immediate operator is a routine that GPS can apply to
take care of a difference. These may be part of the core
(K110) or part of the TE (C3 or M3, in ¥53). For example,
C3 looks 1like:

C3 I2
/ D14

Q52
D15
Q51
D18
Q53
D21
Q53.0

C3 is a branch on the difference (I2, which inspects Y18);
if the difference found is D14, Q52 1s executed, etc.

Q51 and Q52 are substitution operators, corresponding to
differences between a variable and an expression. Thus,
if GPS sees a variable opposite an expression (D14, D15)
it will immediately substitute for it. Q53 1s a routine
which resets the signal to indicate that matchlng is
impossible (S13). For example, D18 is the difference of
two terms in logic (e.g., P versus Q); when this occurs
there 1s no way to transform P into Q, and so GPS should
stop this attempt immediately rather than expend a large
effort simply to conclude that one letter cannot be turned
into another.

The immediate operators, if they occur, may change
the signal (e.g., S12 to S10 for a successful substitution,
or S12 to S13 for Q53); if they cannot correct the dif-
ference they will leave the signal S12. Q1l1l3, which
follows 1Y101l in R30, 1s Just a bookkeepling operation that
records the final signal on the difference expressilon.

Create Subgoal

After the immedliate operators have been tried, 1if a
difference still exists (S12), then the reduce subgoal 1is
created (Q27) and the segment is finished. Control re-
turns to R1l which attempts the new subgoal, rejects 1it,
etec. If the signal indicates that the difference 1is
taken care of (S10, S11, S16, S20), then the match routine
(1Y91) is re-entered and matching continues from where it
left off. The match routine will continue 1in different
ways depending on which signal occurs: S10 says the
subEX's are ldentical, so go back up a level to continue
matching; S11 says the subEX's are the same at this level,
but the expressions need to be explored so go down a
level to continue matching; S20 says there may be more

comparison needed at this level; S16 says the provisional
difference (1n R21) still exists, so record it and con-

tinue matching.

Rematching

Two other signals are currently possible in the loop
of R30. S17 indicates that something has happened, say
because of the application of immediate operators, so
that what was assumed no longer holds. The result 1s to
start the match all over again (Qll4 is another setup
operation). The necesslity of S17 arises because several
differences may be discovered in a match; say, two occur-
rences of variables (two D15's) which require substitution,
but happen to be the same varlable. Actlon taken on
them sequentlally without exploring the consequences of
intermediate actions causes trouble: the first substl-
tution removes both varlable occurrences and thus the
second substitutlion cannot work.

Difference Selection

The other possible signal is S18, which indicates
that a set of differences has been obtained, from which
one must be selected (1Y99). This occurs in R21 after
Q92 has finished. It 1s possible, when R30 is executed,
that the two expressions have already been matched
previously and as a consequence, the list of differences
already exists on the goal (G53). In this case Q25 pro-
vides S18 and R30 immediately selects another difference,
rather than going through the work of matching again.

Currently R30 can terminate with 3530, Suo, S42, or
S32. This last implies failure 1n the attempt, and is
used to summarize all the various ways the attempt could
fail.

Create Modified Transform Goal: Segment Q28

If R30 supplies a reduce difference subgoal (K3) and
R11l attempts it and succeeds, then R1l1l will execute the
next segment of the method, Q28. The subgoal has ob-
tained a result (G2, G13 on the subgoal) which can be
used to bulld a transform goal to get from that result to
the same final expressilon as the current goal (g2, G12
of the current goal). Q28 builds up this goal, tests to
see if the newly constructed goal 1s ldentical to one
already existing in the system (Q46 in Q17 in Q28), and
turns the new subgoal over to the executive for action.

Final Segment: Q116

If R1l attempts the modified transform goal and suc-
ceeds, then 1t executes the final segment of the K40
method, Q116. This routine simply finds the correct
signal (at ALO of the record of the most recent attempt)
to indicate to the higher goal the final result. It 1s

-71-

necessary to obtain the slgnal from the goal, rather than
having 1t available in a Y-cell, because it is unknown
what might transpire between the attempt to obtain the
modified transform goal and the use of this result by

the supergoal.

THE TRY OPERATOR METHOD FOR APPLY GOALS (K41)

An apply goal (K2) i1s defined as "applying an oper-
ator (G15, G5) to an object (Gl, Gl1)." The goal has a
specific output (the first symbols in G3, G13), which is
a new expression. (Recall that existing expressions
cannot be modified.)

The Method

The method for applyling an operator 1s agaln a list
of several segments:

K41/ O
R31 Try operator; if fail produce difference subgoal
Q38 Create modified applied goal
R33.0 Produce output (Q29 or Ql03)

The method has separate parts for each of the varilous
types of operators. For the maln type — the form oper-
ator — 1t matches the input (as the #1 expression)
against the condition form of the operator (as the #2
expression). If this is successful, then the information
so gained can be used to produce a new, modified expres-
sion from the produce form. If this is not successful,
then a difference goal 1is set up. If this difference
goal 1s attained, an apply subgoal 1s created using the
modified expression provided by the reduce goal. In the
case of operators with more than one input, this scheme
requires an essentlal extension, which applies one of

the component condition forms to the input expression and
sets up a goal to find other sultable inputs from the

derivation list of the input expression for the addil-
tional components'condition forms.

Discriminate Type of Operator: Segment R31

The flow diagram for R31l, the main segment, 1s
given in Fig. 11. It divides roughly into two parts. In
the upper part, there is a discrimination on the type of
operator (Al) being applied. If the type is S60, there
is a silde condition to be applied (Q35, using a routine
at Al10). If this test falls, there may be a difference
(S12), an attempt at immediate operators (9-900), and
the creation of a reduce subgoal. If the side condition
is satisfied, then the operator may still be of any other
type and the discrimination is repeated. An operator
may also be given directly by a routine (s63), in which
case it 1s tried (Q42 from the routine at All); again
there 1s the possibility of a difference. An operator
may be glven by an expression (S62); for example, "re-
verse of operator X." 1In this case the actual operator
1s obtained (Q41) and then it 1s processed. Finally the
operator may be given by a condition form and a product
form (S61); this is the case GPS 1s set up to handle in
detail and leads to the lower half of the R31 flow dla-
gram.,

Form Operators with One Input

This lower half is very similar to R30, consisting
of a match, the use of immedlate operators, the selectlon
of differences, and so on. It differs from R30 in the
action to be taken if a match is achieved (S10). R31
matches the expression (Gl, Gl1) as #1 against the
condition form of the operator (G5, Gl5 or P10 if G15
does not exist) as #2. The purpose 1s not only to see
if the conditions are met, but to gather information

Q3G wete G- ——em Q24

(9-1)

2 _eS32

362

360

Q102
¥s10
37

—t 1YG9

512 e 9900
S
@Eﬁi-Q27

S10
S11
516

$20
S16 510 ,1vg1 J

9-900 K111l

59 (0512
1
!

Q13

In all other cases method falls

Find operator given by expression

Test for operator applicabllity

Try immediate operators

If still difference, set up subgoal

Try direct operator

Try immediate operators

If still difference, set up subgoal

If a form operator, set up for match

In all other cases method faills

If match, prepare output if product undetermined

Produce product
If something has changed, rematch
If have DE's, select one

If difference, try immediate operators

If still difference, set up subgoal

Try GPS immedlate operators
If difference, try TE immediate Operators

Record result

Fig. 11 R31l: Try Operator, If Not Work Produce K3 (Reduce) Subgoal.

T4

in order to form the product; 1.e., to identify the
values of the variables. Hence Q37, which produces the
output objJect, occurs after S10.

Form Operators with Two Inputs

GPS has to deal both with operators that have one
input and with operators that have two inputs. In the

former case, once the input 1s accepted (match in R31)

the output can be produced (Q102 does nothing and S10 re-
mains). However, if the operator has two inputs then
even though the first input has been accepted, a second
input is needed before the output can be produced. Two
solutions to this problem are possible. First, the in-
put to the operator 1s defined to be a single thing; 1l.e.,
a pair of objects. Thus, an attempt to apply a two-input
operator to a single object reveals a "single vs. pair"
difference, which can trigger a process for creating a
pair. This solution was tried (Q55) and has been aban-
doned. The second solution 1s to permit the two-input
operators to be applied to a single object, by deciding
with which of the two input forms the object will be
identified. The result, if successful, is a partially
specified operator. This can be created as a new oper-
ator; it now only has a single input (the "other one")
and it can be applied to varilous objects to see 1f a
final result can be produced. In particular, 1t can be
applied to all the objects on the derivation list. This
attempt to apply an operator to a set will result in a
"set vs. single" difference (D19), which will result in
a selection of one of the objects on the derivation list.
The mechanics of this are somewhat involved. Two-
input operators have a list (A17) which consists of pairs
of symbols: location programs to their different input
forms, followed by a cell for the name of the expression

=-75=-

which is accepted for this form (blank to begin with).
As each of these input forms (there may be more than two)
is used, 1ts spot in the Al7 list 1s filled and Q102
selects the next form to be filled. The first one 1s
selected on the basis of trying the (two-input) operator
against a single object, thus getting a "single vs. set"
difference (D20), which results in the selection of one
of the input forms as most similar to the object.
Although the total actlon depends on the other seg-
ments of the apply method, we glve below a dlagram of a
typlcal application of a two line rule. (B25 is (AIB,
BIC)Y(AIC); L stands for left subEX, R for right subEX.)

Goal 1l: Apply B25 to PIQ
Goal 2: Reduce D20 between PIQ and input set
Select: LL B25
Goal 3: Apply LL B25 to PIQ
Produce operator: 1l: (PIQ, QIC)Y(PIC)

Goal 4: Apply LR 1 to Deriv. list of PIQ =
(sv(QIP), SVR, QIR)

Goal 5: Reduce D19 between set and LR 1
Select: QIR

Goal 6: Apply LR 1 to QIR
Produce object: 2: PIR

Although 1t appears that a good many steps are required
to get through a single straightforward application of

a two-input rule, 1t will be seen that the various se-

lections, etc., are necessary.

Create Modified Apply Goal: Segment Q38

The second segment of the apply method (Q38) is
analogous to Q28 for the transform-method. It sets up

the modified apply goal after the preceding reduce goal
has provided a modified expression. The only difference
is that Q38 must be prepared for the result to be either
an object (K161) or an operator (K162). In the latter
case, Q38 must set up a different modified apply goal in
which the result becomes the new operator. (See example
above.)

Final Segment: R33: Transferring Result (Q29) or
Creating New Apply Goal (Q1l03)

The final segment (R33) either executes Q29, 1f the
result is an object (S30, S36), or Ql03, i1f the result
is still not completely specifiled (8131, S132). Q29
transfers the results of this goal to be the result of
the supergoal; e.g., the result of Goal 6, PIR, is also
the result of Goal 1. Q103 creates another apply goal
which applies one of the stlll undetermined input forms
to the equivalence list of the orilginal object; e.g.,
Goal 4 above. It then sets the signal for repeating the
step (S46); this guarantees that Ql03 will be executed
enough times to get all of the input forms determined.

THE FIND RELEVANT OPERATOR METHOD FOR REDUCE GOALS (K42)

A reduce goal (K3) is defined as, "reduce the dif-
ference (G4) between an object (Gl, G1l1l) and a second
object (G2, Gl12)." The goal has a specific result, a
new object (the first symbols on G3, G13), which is a
modification of object #1 (Gl, Gll). This object should
not differ from the #2 object with respect to the specl-
fied difference (G4), although there is no guarantee of
this. Likewlse there 1s no guarantee that new differ-
ences have not been introduced.

The Method

The K42 method for reducing differences is a list
of two segments:
K42 /0
R32 Find relevant operator and set up apply goal

Q29.0 If subgoal successful, transfer result to
this goal

Find Operator: Segment R32

The flow dlagram for the main segment, R32, is given
in Fig. 12. It consists of a setup (Q30), followed by
the bulk of the program, followed by the standard clean-
up routine, Q24. Q30 finds the list of relevant operators
in the table of connections. There are two tables, one
for GPS generally, which contains differences such as
D19 and D20 (K59), and the other for the particular TE
(in ¥52). The tables of connections are description
lists with differences as attributes and lists of rele-
vant operators as values. Q30 will use the TE 1list if it
exists (setting S69); if not, 1t will use the GPS list
(setting S63); and if neither exists, it will set S2.
Besides the table of connections, Q30 also sets up the #1
and #2 components, the various filters (see below), and
the list of operators already tried (G30).

The body of R32 consists of one part for S63 (direct
operators) and another for S69 (general operators). The
distinction reflects the fact that GPS core has operators
that are directly executed programs (1Y20). In the more
general situation, it is necessary to go through the
steps of setting up a subgoal and trying 1t through R31
(ultimately).

Q30~—> 9-100——p Q24 Set up and clean up

(9-100)

In all other cases impossible

Find next untried operator
(direct)

Execute direct operator

Find next untried operator

Filter on condition

131
S2
Q33 Filter on product

{s1
Q34 Create operator goal

Fig. 12 R32: Find Next Untried Relevant Operator
and Produce K2 Goal.

Find Next Untried Operator

Q31 is used to find the next untried operator by
getting the next operator from the list of relevant oper-
ators and checking to see if it has been used before.
There 1s no assumption that operators will be used in
order; therefore, this check involves a J77 test on the
1ist of used operators (in Y21 from G30).

Filters

There are two opportunities to test whether a pro-
posed operator should be set up in a goal (usually called
filters). The first involves testing for feaslbility,
the second for desirability (this latter has not yet been
used). Examples of feasibility tests used 1in logic are
tests for ildentical main connectives, or for size simi-
larity. If the operator passes these preliminary tests,
it 1s set up as an apply goal (Q34). The output 1s then
sS40, Sh2, S54 depending on QL6 in Q17 of Q34.

Transferring Result: Segment Q29

As usual, the executive takes the output of the
segment, and if it indicates a subgoal, decides whether
or not to attempt it. If it does and the result i1s
favorable, then the next segment (Q29) simply makes the
object produced by the subgoal (and avallable as the
first symbols on G3, G13) the result of the reduce goal.

Repeatability of Method

If the apply subgoal fails (S32, etc.) then the
executive decides whether to retry the method or to do
something else. In the flow diagrams normally given for
the methods, failure to produce a modified expression
leads to a loop back to obtain another operator. Con-
sistent with the general philosophy, this decision 1is up

-80~

to the executive (R10). Thus, methods are labeled (at
A30) as either "not repeatable" (S80) or "repeatable"
(s81).

THE TRANSFER EQUIVALENT RESULT METHOD FOR ALL GOALS (K43)

As described in the section on goal identity test,
we distinguish duplicate goals (S54), which are of no

use to GPS, and equivalent goals (S42), which are poten-

tially valuable. In both cases the goal is identical (in
the sense of defining attributes: Gl, Gll, G2, Gl2, G4,
G5, G15, and G21) to some other goal already created.

In the case of equivalence, the identical goals serve
different purposes, and it may be profitable to share
results obtained on one of the goals with the other (or
others).

Single Segment: Q70

The mechanics of thils are initiated in Q71, as
already descrilbed; the borrowing is carriled through by
the K43 method, which consists of only a single segment,
Q70. This method gets initiated because Q71 placed K43
on the method list of the goal with status S50. By the
time Q70 is executed, Q71 has also already created a
list of equivalent goals. This is available to each of
the member goals (at G38). This common 1list contains on
its description list, a 1list of all results generated to
date by all the goals put together (Al4). Each result
consists of two parts (G3 and G13) and is packaged as a
two-element 1ist. On the description list of the equiva-
lence list there is for each goal (as attribute) the name
of the last result that was transferred to it from the
common pool. Q70 gets one more result from this list and
transfers it to the goal for which the K43 method is
being executed. It then resets the marker so that this
result will not be transferred again.

Blocking the Method

A problem in the use of thils method is to avold the
continual checking for new results when none exist. Con-
sequently, when a goal has received all the results
available, Q70 changes the method status from S50 (or
S51) to S54. This blocks the method from being used
further. When a new result is added to the result 1list
(Alu) Q6, in recording this, goes to each of the member
goals and changes the S54 back to S51.

-82-

V. THE EXPERIMENTER

INPUT CONVERSION AND SETUP

The experimenter executlve 1s the first routine
executed (currently E2). It first does a number of mis-
cellaneous setups (E13); then converts and sets up the
TE, which is given in Z90 (E23); then converts and sets
up the top goal, which is given in Z91 (E22). At this
point, it 1s ready to have GPS attempt the goal (1Y94).
Following this a number of lists are printed and erased
(L10 for goals, L1l for TEX's, L12 for goal equivalence
lists).

Set Up Trivia: E13

E13, which does all the miscellaneous initialization,
first sets up the signals and attributes. These items
each have a common form: a signal Sx 1s of form 10Sx.I8;
an attribute Ax 1s of form 10Ax.J10; and an attribute Gx
is of form 10Gx.L, where L 1links to a routine (see E15)
that will bring the goal back 1n from auxiliary storage
if needed. Lists of the symbols to be made into signals
and attributes (L5 for signals, L6 for attributes, L15
for goal attributes) are fed to E10 along with their
forms (E13, E17, E15). Initially this was done to avoid
writing each routine separately; 1t has slnce proved of
advantage in changing the action taken by attributes.

(It also permits new signals and goal attributes to be
defined by GPS, but this feature has not been exploited.)

E1l3 next takes an input list of ldentifications to
be made (L1l). This 1list consists of palirs, say X Y,
which may be read "make X identical to Y." This is ac-
complished by a full word store in which X receives the
same PQ SYMB LINK as Y.

-83-

Next, E13 sets up a number of things for output (see

also Output). The routines named on input list L3 are
marked with Q=3 for tracing; the symbols on input l1list
L4 are marked with Q=4 for propagating trace; the sym-
bols on input list L7 are fixed to "trace" by putting
their names in the signal line (E19); and the symbols on
list L18 are given the output names associated with them
on L18 (by E16, at Al9).

Finally E13 modifies the TE (in Z90) by putting on
it the pairs given on 1list L17. This is either an
addition or a replacement depending on whether the value
is new or already exlsts on the TE.

TE Conversion

E23, which converts and sets up the TE, uses Q79 to
put the TE symbols into the ¥-cells. It then constructs
a composite list of varliables, adding the list from GPS
(in K56) to the list from the TE (in K82). Finally it
takes the TE operators (on list in ¥51) and the TE ob-
Jects (on list in Y54) and converts them to internal
form (E21).

Goal Conversion

E22, which converts an externally given goal, first
checks to see 1f the goal 1s In internal form (since
we wish to allow a complete goal list structure to be
put in from outside). The indicator 1s the existence of
the goal type at attribute G21; in the external form
this 1is given in the first list cell. If the goal needs
conversion, &4 form 1s obtained at A20 of the goal type,
copied, and established as the baslc description list of
the goal. Then the various components of the goal are
converted. Thils requlires a divislon of the routine ac-
cording to goal type, since the format of information on

-8l

the external goal 1list depends on goal type. Again, con-
version of objects 1s done with E21, so that the objects
for goals need not have been previously converted.

TEX Conversion: E21

The most complex initial conversion is from the ex-
ternal form of a TEX, which is a linear 1list, such as
(AV B) = (BV A), to the internal form, which is a tree
structure. This 1s handled by E21 in two parts. Each
TE has 1ts own external format, and hence the conversion
of TEX itself 1s done by a TE routine (in Z80). Beyond
this, however, there are several things to be done in
common for all TE objects. If a location program is
given externally, then this should be recorded at A9, as
well as being put at ¥81. The TE must be recorded at
Al2. If the object 1s an expression for an operator,
the operator must be produced. If the object is an oper-
ator with a set of inputs, it requires a list to keep
track of what objects are assigned to which component
input forms. This 1s obtalned by copying a form (K97)
and attaching it at A70. Finally, if a TEX 1s a set of
objects, then 1ts subobjects should be set up as TEX's,
and not just as EX's (P43).

Conversion of Parenthetical Expressions

The conversion of parenthetical expressions,
although specific to the TE and accomplished by a TE

routine (F10 for logic), is of common enough occurrence
that central processes are available out of which

Specific conversion routines can be bullt. A set of

cells (240 to ZUT) is assigned purely to conversion
processes and a set of routines (E30 to E41) provides com-
ponent routines. A basic assumption is that the input
list (to be converted) will be a linear list, consisting

-85~

of a finlte known alphabet of significant characters
(i.e., those that signal some actlon in the conversion
process), plus additional characters which are simply to
be transferred. Thus the organization of the conversion
routine is in the form of description lists, with char-
acters as attrlibutes and conversion action programs as
values. Any symbol which is not on this list 1ls taken
over into the converted expression without change.
These lists are loaded into Z30 by the conversion routine
and interpreted there by E31. Thls permits the lnter-
pretation to change as a function of the conversion
process (e.g., F10 uses one list for converting the
description list, another for converting the loglc expres-
sion). Another assumption is that the converted expression
will have the same name as the original; hence E30 removes
the head from the input list and establishes it as the
first cell of the converted expression (Z41, Z42, Z43).
The initial 1list, now called the working list, 1s saved
in Z45 for later erasing (E39) and put into Z44, which
acts as a running pointer to 1t (being advanced by E32).

Throughout the conversion process it 1s necessary
to keep a pushdown list of P8's and P9's (in Z46) out of
which a locatlion program can be fashioned i1f a character
is encountered that requires 1t (E36, which puts it in
Z4T). This list, as well as other stacks that might be
buillt up during the conversilon process, are all cleaned
up by E39.

Several composite routines are avallable which
accomplish large portions of a conversion. E37 takes
the next step in a conversion where parentheses have
thelr usual meaning, either transferring a symbol or, if
the next symbol is "(", creating the sublist to the

matching ")" and transferring its name as the next symbol.
E38 makes a sublist out of the remaining symbols on the

-86-

input 1ist. EU4O simply follows the basic cycle of
interpret and advance. EU41 1is a conversion of a paren-
thetical expression into a list structure, leaving all
other symbols unchanged.

OUTPUT AND DEBUGGING

The output of all runs is a trace of the behavior
of the program. A run is shown as Appendix A. This is
a clean run without any tracing for debugging purposes;
1f there had been some it would have been intermixed at
the point of its occurrence in the run.

The first page 1s the spec sheet, which will be
dlscussed in the next section on setting up a run. The
second page 1s the problem-solving attempt proper. This
i1s followed by the Post-Mortem, which is not shown.

Behavlor Trace

Each goal 1s printed out in full the first time it
is attempted (E24 in Q81). The level in the goal tree
is first given followed by the name (at A2, which is the
order of generation number taken from Y34); then the
defining phrase; then the supergoal; and finally the
internal name of the list structure (for debugging pur-
poses). The integer at the far right glves the cycle
count, H3. The occurrence of this expression indicates
that GPS 1s now attempting this goal.

The course of the program's behavior can be fol-
lowed by the "signal trace"; i.e., the lines of signals
and other symbols occurring throughout the run. Each
time a signal is discriminated (by Il1, I2, I3, or I4),
it 1s put into the print line (by E70 in Z92). If the
discrimination is made by Ill, I12, etc., then the sig-
nal 1s not recorded in the print line. In addition,
whenever certain routines occur (those recorded on L7),

-87-

they record theilr own name in the print line along with
parentheses; this makes 1t easy to group the signals in
terms of the subroutlnes 1n which they occur. Also,
whenever GPS passes into the context of a goal (other
than a new one), it records the goal name in the print
line (E25). With these items and the flow diagrams of
the R-routines it 1s possible to trace what GPS did
through a run.*

Every new obJect that 1s created 1s also printed
out (E26 or E68 in P50). This includes its name (at A2,
which 1s the order of generation from Y36), the object
according to 1ts format as given by the TE routlne, and
the internal symbol for the list structure (for debugging
purposes). In addition, various other major decisions
of the program rate special messages: goal rejected,
operator rejected (E27), goal selected (E69), object too
complex, and so on.

Printing Formats

The printing of all the expressions and statements
is handled in a uniform way. There is a print format
consisting of a list of information to be printed across
the page. Thils format is interpreted by E50, which reads
each symbol of the format and loads the print line. The
rules E50 follows are: 1f the symbol in the format l1list
is an alphabetic data term, it 1is entered as the next
chunk of information to be printed; if the symbol is not
an alphabetic data term, it 1s assumed to be a "format
routine" and it is executed. The format routines take
their inputs in HO. The main one, E57, is used to re-
cord the external name of (0) in the print 1line: if (0)

*See Sec. II, "A Tour Through a Simple Problem."

-88~

is a data term, the data term is printed; if (0) has a
value at Al9 thls is taken as the name; if it has a value
(integer) at A2 then this 1is used for the name; finally,
1f none of these hold, the symbol 1tself is taken as the
name. Besldes E57 there are several others: E54 and

E55 for advancing the column number; E56 if (0) is a
format; E61 if (0) is a 1list of names, E63 if (0) is a
location program (which might involve substituting a

special expression); and E64 if (0) 1is a difference
(which might involve substituting a special expression).
E50 uses several subroutines (E51, E52, E53) and some
standard cells (250, Z51) to perform its task.

Besides E50 there are a few additional print
routines: E58 to print a simple list, and E59 to print
a "linear" 1list. The latter is a special form that comes
from the execution of E60 on a list structure. E60
creates a linear parenthesized form of a structure,
consisting of nothing but alphabetic data terms.

Debugging Facllities

Besides the abllity to trace any routine selectively,
as provided for in the IPL manual, a few additional de-
bugging facllities are provided. The most useful is a
collection of "monitor points" that are buillt into
various routines where experience has shown it is desir-
able to be able to execute an arbitrary monitoring
routine., These are the Z29x cells, each of which glves
in its title the routine in which it is executed (e.g.,
1295 executed in E25). The IPL Post-Mortem on the 7090
executes the routine in W1l after 1t has executed the
rest of the Post-Mortem (a GPS patch). T12 is the stand-
ard routine used to gilve the contents of various cells
plus the prints of a few lists. The final debugging aid
conslsts of two routines which will trace a routine if

-89-

and only if it occurs in certaln goal contexts (i.e.,
the number at A2 of 1Y2). E1l1l specifies the goal; E18
specifies an interval of goals.

SET UP FOR RUNNING

Assemblies and Modifications

In general,runs are made from an assembled version
on tape. A typical run consists of reading the total
system in from the tape; loading some addltional perma-
nent routines and data, either new ones or modifications
of old ones (J165); saving the updated system on tape
(J166); loading some additional routines and data that
are unique to thils run and temporary; and then kicking
off with E2.

Spec Sheet

There 1s always at least a page of assembled infor-
mation unique to the run to specify the various parameters
and lists. This is called the spec sheet and is shown
as the first page of the run in Appendix A. Most of the
individual cells are self-explanatory. Z90 holds the TE;
Z91 holds the task; i.e., the top goal. The rest of the
79x cells hold the monitor routines. This 1is followed
by some Y-cells (Y90 - Y101) which hold the names of
various important routines in GPS-Core. All the varilous
lists for tracing and modifying (Ll, L3, etc.) also occur
here. Finally there are a few data terms, such as 27, the
avallable space limit for reading goals to auxillary stor-
age; K32, the time limit in cycles (H3); and K34, the
limit on goal depth.

AUXILIARY STORAGE

There 1s automatic storage of goals onto auxiliary

storage when space becomes scarce. Every time a new
goal 1s created (Q16) routine E7 (file goals if avail-
able space is less than Z7) 1s executed. If it is
necessary to get more space, E7 starts at the top goal
(1Y111) and attempts to file each goal. Certain excep-
tlons are made: 1f the goal 1s c¢losely related to the
current context (in Y2, Y7, Y9, Y10, Y87, ¥88, Z28); ir
the goal 1s already on auxiliary (A8); or if the goal
has been marked to stay in core (A7). A goal to be
filed is split into two parts: all those attributes
named on list L29 are kept in core with the goal; all
the rest are moved to a separate structure, which is
then filed (J107). The head cell of this structure
(which 1s now the auxiliary control word) 1s kept on the
goal at A8. After E7 has flled all the goals it can,
avallable space 1s rechecked; if space 1s still shy, the
signal S139 1s recorded and the run is terminated.
Whenever it 1s necessary to work with a goal (Q80),
E8 is executed to bring the goal back into core if it
was on auxiliary. Thls action simply undoes what E7 did:
the structure at A8 is moved in (J105) and it is merged
with the goal structure that was left 1n main storage.
Besides the transitions from one goal context to another,
there are also occasions to examlne a few features of a
great number of goals, such as in the process of selec-
ting which subgoal to try next (Q109). Thus, every time
a goal attribute (Gx) is executed and 1ts value not
found, it 1is necessary to determine if that goal is on
auxiliary and, if so, to bring 1t in. Thils is automati-

cally handled by the goal attribute routines (from form
E1l5).

~91-

VI. TASK ENVIRONMENTS

SYMBOLIC LOGIC TE (K70)

Types of Information

This TE gives the necessary info?ngion to do the
of a set of operators (Bl to B25), given as forms (e.g.,
AVB = BVA); a set of objects (B50 to B99), which are
logic expressions (e.g., (-P.Q)V(P.-P)); various lists
of objects and constants (Cl to C9); the table of con-
nections (C2); a set of differences (D1 to D39); the
ordering of the differences by difficulty or importance

kind of problems used by O. K. Moore. It consists

(c10, C11); and a collection of routines for various
functions (Fl1 through F32). All of these items of in-
formation are obtained either directly or indirectly
through K7O0.

Differences and Assoclated Structures

The differences have no iInformation associated wilth
them directly. They function purely as selective inter-
mediates: they are produced by the comparison routines
during the match (Fl1, F2U, F26), and are used to select
1ists of operators on the table of connections (c2).

The relations between them are glven by the ordering of
differences (C10, C1ll). These latter consist of a list
whose items are either difference symbols or lists of
difference symbols. There is a routine (P48) to test 1if

a difference 1s on the ordering (some, such as D19 and

D20, are not). There is also a routine (P7) to compare

two differences. This outputs a signal: S4 if (0)

occurs before (1) in the 1list; S5 if (0) and (1) are the
same difference or occur in the same sublist of differences;
and S6 if (0) occurs after (1) in the 1list.

-92-

Several TE routines implement the comparison of two
EX's in Y11l and Y12. Recall that the match 1s divided
into two parts: the putting of two structures into cor-
respondence, done by GPS-core; and the comparison of two
such pileces, done by the TE routine. The latter 1is the
one that detects and assigns the differences. These

comparisons are discussed 1in detall in the sectlion on
matching and will not be repeated here. There are
several comparison routines (Fl1 for R20; F20, F24, F26
for R21) reflecting attempts to fit GPS to different
protocols. Several of the tests for specific differences
have been centralized into routines (F30, F31, F32),

Just to make modifications easier.

Multiple Negation Signs

Several of the TE routines (F4, F5, F6, F7) deal

with the manipulation of multiple negative signs. Ac-
cording to the rules of logic used in these problems, a
positive sign may be freely replaced with a double nega-
tion and vice versa. This 1s actually expressed in the
rules by talking of "sign changes,” but is realized in
GPS-2-2 by doing sign manipulatlion by means of lmmediate
operators (see C3). The problem of signs is also re-
flected in handling substitutions. Thus, in the system
of logic used here 1f ~-A 1s opposite FVP (where A is a
variable), then it is possible to substitute A = -(PVP)
to produce identity. This requires an adjustment in the
substitution routines (F25 and F27, which use some ele-
mentary operations; F28 and F29).

Double negations occur mostly through the act of
substitution. The format of expressions makes 1t dif-
ficult to become aware of a double negation when it is
formed. Hence the philosophy has been to carry them
along untll they are spotted as a difference (D6 or D7)

-93-

during some later match. At this time, an immediate
operator (F6 or F7) would get rid of them. It has also
proved convenient, mostly for output purposes, to go
over the TEX and remove all multiple negation signs at
once (F9).

Filters and Similarity Tests

The final part of the routines provides the various
operator conditions, filters, and similarity tests which
cannot be expressed by forms (F2, F3, F8, F21, F22, F23).

MISSIONARIES AND CANNIBALS TE (M19)

This TE gives the necessary information to enable
GPS to work on the Missionaries and Cannibals puzzle.
There are three missionaries and three cannibals on one
side of a river, with a boat that holds two people.
All six can row the boat. The problem is to get all slx
people to the other side of the river wilthout ever
letting more cannibals than misslonaries exist on elther
side of the river, in which case the missionaries would
be eaten. The cannibals are sufficlently rellable,
however, to be trusted to row the boat by themselves or
stay on one side of the river by themselves.

Types of Information

The TE consists of a set of operators (M30 to M39);
a set of differences (MUO to M59); a set of objects
(M70 and M71); a single problem (MB0); a set of lists of
various items (M1 to M9); a table of connections (M2);
an ordering of differences (M10); a set of routines (M20
to M28); and a set of symbols for handling the side

condition about more missionaries than cannibals (M11,
M60 to M63, M0 to M93).

-9l

Most of these entities are strictly analogous to
those in the symbolic logic TE (K70): the table of con-
nections, the difference ordering, the identity test,
the fllters, etc. The differences reside in the way of
handling the operators (M22), the admissibility test
(M27, etc.), and a speclal executive used for some runs
(R2 involving M28). The basic format for obJjects has
already been discussed in the section on TEX's. Like-
wise, M22 and the format for operators was illustrated
in detaill In the section on Operators. Neither of these
will be discussed further here.

Admissibility Test

The admissibility test (M27) is built to take as
input a symbol (M90 - M93) which designates which side
1s to be checked. It checks the indicated side by putting
the missionaries and cannibals in one-to-one correspondence
and emits either "satisfied" (S1) or an "unsatisfied" (S2),
along with an indication of the failure (M60 to M63 in

Y18). There are four ways of specifying the side to be
checked: the left side, which initially holds all the
men (M90); the right side, which must hold all the men
at the end (M91); the side from which the men are moving
on this boatload (M92); and the side to which the boat-
load is moving (M93). The reason for the different ways

of designating sides comes from attempts to simulate human
subjects, who have a tendency to check, say, left side

and "to" side. Since these sometimes designate only a
single side between them, they can lead to failure to
observe the admissibility constraint. There 1s a list
(M11) which gives the set of admissibility tests to be
applied.

=95

External Task Space: Top Executive R1

In running GPS on the M&C problem and comparing it
with human performance, it was observed that the humans
often did not remember any of the intervening positions.
They knew the initial position, they knew the position
they were at, and they knew the position they had just
come from. This contrasted with the situation in logic
where intermedlate positions were known and often used.
Part of thls difference rests 1in the different external
arrangements of the tasks. In logic (K70) the "official"
results of applylng operators were kept on the black-
board in plain view. (There could, of course, be other
results which the subject though of but never made
explicit.)

In M&C the subJects worked with a graphlcal repre-
sentation of the river, using physical objects for
missionaries and cannibals and physically moving them
from one side to the other. As a consequence, they had
no external memory of any position but the current one.
Top executive Rl 1is an attempt to simulate this latter
situation. A list of external TEX's (L13) is kept, which
simulates the external graphical device. For recording
purposes this contains all the TEX's ever obtained 1n
order, but for GPS the only TEX that counts 1s the last
one on the list, which represents the current situation,
GPS must command the experimenter to apply an operator
to this current position (done by executing M28 rather

than by a communication). M28 applies the operator to
be the last TEX on L13, 1f it is feasible, and adds a
new TEX to the end of L13. It then applies a complete
set of admissibility tests and if the move 1is not admis-
sible another move is made that undoes the move (thus

leaving a graphical record of the failure to satisfy the
rules). Two new signals are used in the problem-solving

-96~

executive: S44 (final problem solved) which occurs if

the final state is ever obtained by the TEX on L13, and
Si5 (external progress made) which occurs whenever a new
TEX 1s generated on L13 (excluding the returns to previous
TEX). When S44 occurs R10 1s able to quit. Whenever

S45 occurs, Rl sets up a new transform goal to get from

the new TEX to the final result. Rl 1s written in a
reasonably general fashion; however, 1t has never been
tried with any task except M&C.

ADDING NEW TASK ENVIRONMENTS

The addition of a new TE still requires an intimate
knowledge of the way GPS works and of its internal con-
ventions. To install a new TE, the best course 1s to
take one of the existing TE's and ask what the relevance
of each part 1s to the new task. To illustrate, suppose
we wanted GPS to work on trigonometric identities--a task
that has been hand simulated in detail,(S) but not run
yet on GPS. We consider K70, the TE 1list for symbolic
logic, as providing the most approprlate check list.

K70/0

K81 Difference ordering

Cl0
K82 List of variables

c6
K84 Difference print 1list

Cl9
Z80 Convert TEX
F10
z81 Print TEX
E26
List of operators

Table of connectives
List of immediate operators

List of objJects

Identity comparison

ggg Similarity test for objects sets
52; Compare objects

gé& Compare operators

gé5 Search filter on operator conditions
523 Standardization

g?o Similarity test for operator sets
g?% Adjustment for EX1 (Q51)

5?2 Adjustment for EX2 (Q52)

F27.0

Many of the considerations below are obvious and parallel
to information already given. Nevertheless, it is useful
to have it all in one place, oriented toward introducilng

a new TE. To be simple-minded, we will take up the items
as they occur on K70.

Difference Ordering: K81

The set of difference symbols (Dx) are not yet se-
lected, but will be later. A look at ClO shows that we
can assign differences to indifference subclasses if we
wish. In any event we will undoubtedly need a speclal
list for Trig (call it T10). The function of the ordering
is to permit the evaluation of goals.

List of Variables: K82

For simple problems in trigonometry, we will only
need variables in the algebralc operators (like A°-B® =
(A+B). (A-B)). We might as well use A, B, C, D, which

are used in Logic; hence C6 can be used directly.

Difference Print List: K84

This structure 1s used to make the output pretty.

When a difference symbol 1is going to be printed in a
format, this list is consulted and if format information
exlsts for the difference symbol, it is used. Thus,
"REDUCE D9 ON L1 TO LO" becomes, "CHANGE POSITION ON L1l
T0 LO." There is no need to develop such a list for a

new TE at the outset, so we will just leave 1t out.

Convert TEX: 280

For most new TE's the input format is quite idlo-
syncratic to the task area and an entirely new routine
has to be thought through. For Trig, however, we can
work quite close to Logic, since they both use parenthet-
ical notations. An examination of F10 shows that there
is an interpretation of the varlous symbols in the input
line, each calling forth its own conversion subroutine.
Thus V, ., I are treated as blnary operators. Trig de-
mands a symbol for equality, addition, subtraction,
multiplication, division, and exponentliation. Suppose
we use =, +, -, *, /, and ** for these. We incur a few
additional problems in the minus sign, which must be
admitted as a unary operator when it occurs 1nitilally;
and in the exponentiation sign, which has a double symbol,
S0 that the decision on whether ¥* or *¥* has occurred re-
quires some memory or a forward and backward lock. Since
equality 1s part of the object expression connectilves,
we need another symbol, say E, for the operator connectlve.
In any event, a routine (Ul0) can be written using F10
as a model that will convert an expression in standard
external notation into the accepted internal structure.

Multiple Operands

A much more difficult problem will be encountered
1f it is desired to use addition and multiplication as
operations with an indefinite number of operands; e.g.,
sinx + cosx + sin2x + 1. It is easy enough to code the
conversion routine to give a list with + as the head and
all the operands in the 1list cells. The problems arise
in getting operators to work on expressions with indefi-
nite operands. The kind of form GPS knows about--e.g.,
A¥(B+C) = A*B+A*C--assumes fixed structure. To get GPS
to work with A*(B+...4+D) = A*B+...+A*D requires some ad-
ditional ingenuity. Even to apply a binary operator
anywhere wilthin a set of operands of indefinite length
requires ingenuity. Since the purpose here is to illus-

trate, rather than solve new problems, let us agree to
stick wlth operations with fixed operands. (This is

what was done in the hand simulation.)

Print TEX: Z81

A look at E26, the Loglc print, shows it depends on
E60, which produces a linear string of characters from
a tree structure. Examination of E60 shows that it, like
P10, examines each of the important symbols in the input
structure to select a specific subroutine to bulld the
linear 1list. A routine is needed for Trig that can
easlly be modeled on E60 (say U60), However, E60 is not
directly named in the TE list. Either a variant of E26
must be written using U60, or perhaps a new TE cell can
be created (say ¥Y79) such that E26 uses the routine in
Y79 and the TE 1list speciflies what routine 1t should be.
(The TE cell for printing cannot be eliminated, since
not all TE's can use E26.)

List of Operators: Y51

Most of the operators for Trig can be written down

right away. The algebraic ones are clear; so are the

trigonometric ldentities--e.g., singx + cos2x = 1. This

may be expressed as two rules, one running in each di-
rection; GPS does not yet recognize rules as two slded.
(However, the second rule can be expressed simply as the
reverse of the first.)

However, one operator--the combine operation--cannot
be expressed as a form. It simplifies expressions by
recursively applying to them a whole series of rules:

O+ 0 =20, 1*¥n = n, xl = X, xo =1, x/x =1, x + x =

2%x, etc. This operator should be coded as a direct
operator (Al = 363)--that is, as an IPL program. This
will be a rather extensive piece of code; it was coded
once for GPS-1 in IPL-IV and ran about 200 instructilons.
In coding this operator, it can be assumed that the
operand is in Y11-Y13-Y15. Alternatively, of course, the
component laws could be expressed as separate forms,
letting the simplification emerge from the general at-
tempts at a solution. Some sort of general trend toward
simplicity, as expressed by additional differences, might
be requlred.

Numerical Calculation

A subsidiary problem, but one that 1s qulte l1lmpor-
tant for mathematical manipulation in general, 1s how to
represent numbers and get numerical calculations carried
out. Some form of ratlonal arithmetic 1s required, such
that 2/2 = 1 and 4/2 = 2, but 3/2 = 3/2. In Trig this
only shows up in the combine operator; still it requires

an agreement on representation, on when operations will
be performed, etc.

Table of Connectlons: Y52

The form of the table of connections can be seen
from C2. For each of the differences there must be a
list of what cperators are considered relevant and in
what order. Clearly a new structure T2 is needed for
Trig.

List of Immediate Operators: Y53

Again the form of the list can be seen from C3. For
Loglc 1t consists of ways of handling the double negation,
and a response to two different constant terms (e.g., P
versus Q) that the difference is impossible to reduce
(set S13). The immedliate operators for D14 and D15 that
accompllish substitutlon are assoclated with GPS-core,
slnce they are part of the general apparatus to apply
form operators. For Trig, according to the way we were
proceeding above, the sign is to be a bilnary operation
(with some unresolved problems about the initial sign).
This means we do not want the D6, D7, D12, D13 immediate
operators, and thelr function will be taken over by the
combine operator. On the other hand, 1t may be easier
to still think of '-' as an unary operator. This would
change the conversion routines so that x-y becomes

x + (-y); then these immediate operators of Logic would
perhaps be appropriate. One can see from this that
basic decisions about representation can affect everything

else.

In a similar veln, if we handle the trigonometric
functions as constants (since we are ignoring their
arguments completely for simple problems), then there
exist ways of transforming one term into another via
trigonometric identities. Hence we do not want the D18
immediate operator. On the other hand, if we continue
to represent "sinx" as an expression with sin as the

-102-

operation and x as the operand, then the D18 immediate

operator 1s stlll reasonable.

There 1s probably 1little point in trying to think
of additional immediate operators until some runs show
where something 1s needed. If we take the right options
above, we don't need any immediate operators at all, and
can Just leave Y53 off the list.

List of Objects: Y54

For Logic, C4 1s an empty list, since the only ob-
jects used are those defined in the top goal and objects
derived from them. Y54 could Just as well have been
left out. The same is true of Trlg. However, any ob-
jects put on the obJect 1llst will be converted.

Identity Comparison: Y60

This test is used when a new object has been created
to find if an 1dentical TEX already exlists. P20 1s a
general comparison of two list structures, l1gnoring the
description lists. It should be perfectly sultable for
Trig.

Similarity Test for Object Sets: Y62

This routine is directed toward selecting out the
one member of a set of objJects that is most similar to
an external object. It occurs in Q54, the direct operator
that 1s evoked by D19. For example, if the 1lnitlal prob-
lem 1s given as getting from a set of objects to a
specified one, then matching produces D19, which ends up
by selecting the most similar one of the set as the
starting point. The similarity test used for loglc, F21,
demands that the main connective (read operation, for
Trig) is the same and that the two objects have at least
one term in common. If used in Trig, it would tend to

-103-

classify sums with sums, products with products, etc.,
and would call expressions dissimilar if they didn't

both contain the sin, or the cos, etc. This probably

isn't exactly the right shape for Trig, but 1t is a good
start.

Compare Objects: Y63

This is the part of the match routine that 1s task
independent. The two expressions are put into corres-
pondence on their structure and the routine in Y63 is
executed at each palr of subexpressicns. The output of
the comparison routine 1s one of the signals: S10 (the
entlire subexpressions headed at this point are identical);
S11 (no differences at this point, but the subparts of
the subexpressions need investigation); S12 (a difference
exlists at this point); or S13 (it is impossible to make
these two expressions the same). In the latter two
cases the difference symbol (Dx) is placed in Y18.

This IPL routine provides half the operational defi-
nition of the differences, the rest being provided by
the table of connections. The routine for Logic, Fl, is
diagrammed in Fig. 7. Many of the same differences will
be approprilate; in fact, perhaps Fl could be used to get
started for Trig. New differences can be introduced by
expanding the compare routine to output a new symbol when
it detects some new feature, and associating some oper-
ators with the symbol on the table of connections.

Compare Operators: Y64

Conceivably a difference comparison should be used
when trying to satisfy the condition form of an operator
rather than comparing two objects. This has not proved
to be the case for Logilc, and initially there 1s no
reascen to suppose 1t true for Trig.

-104-

Search Filter on Operator Conditions: ¥65

In selecting an operator to reduce a difference, a
preliminary selection is made on the feasibility of the
operator. GPS will run perfectly well without any
filter; and one can be added later. Again however, the
ones for Logic (F22 or F8) are good candidates for use-
ful ones for Trig.

Standardization: Y69

This routine was introduced into Logic to remove
all the double negation signs prior to printing the ob-
Ject. There is no reason to consider such a routine for
Trig until the need becomes manifest.

Similarity Test for Operator Sets: Y70

This routine is analogous to the similarity
test for objects, Y62. It occurs in connection with Q56
and D20, which is related to the two-line rules. Since
there are no two=-line rules in the operator set for Trig,
there 1s no need for this.

Adjustment for EX1 (Q51): Y72

This routine permits GPS to see a negative varilable
as a variable--that 1s, if -A is opposite PVQ, then
-(PVQ) is substituted for A. The immediate operators
take care of whatever double negations occur. Whether
something like this 1s needed for Trig depends intimately
on the issues mentioned earlier about how to handle
slgns.

Adjustment for EX2 (Q52): Y73

This routine 1s analogous to the one for Y72, but
concerns variables in EX2 rather than variables in EX1,.

Summary

We have now covered the range of ltems in the Logic
TE 1list. We have ralsed some representational issues
plus the question of how to get arithmetic done. These
may require a good bit of thought before they can be
satisfactorily settled. There are several substantial
routines to code: the conversion, the print, and (at
some time) the compare. However, the Logic routines
provide good models. There may be entirely new TE de-
pendent elements, but none of these are apparent yet.
Hence, 1f we assume the analysis above, we can build a
new list for Trig, say K71l:

K71/O8
K31
T10 difference ordering
K82
4
Z80
U%O conversion
Z31
U26 print, like E26, but using U60 in
Y51 place of E60
T1 list of operators
Y52
T2 table of connections, but with Loglec
Y60 differences
P20
Y62
F%l
Y03
Fl Loglc compare to get started

Y64

Fl

Y65

F22.0 Use Logic fillter to get started

Besides K71 and the structures that are named on it,

we must write down all the operators and code up the
combine operator. Also, we must write down a few objects
and put their names on goals. Finally, we are ready to
assemble all the new routines, put K71l in 290 and the

goal name in Z9l1, and GPS will attempt a problem in the

-106-

Trig task environment. In fact, over and above the bugs
in the new programs and structures, there are sure to be

a few conceptual errors that will require modification

of the TE, including perhaps the addition of new routines.
The chosen example, trigonometry, was almost guar-

anteed to be easy, since it is so similar to Logic. If

we had picked a quite different task, say chess or varlous

puzzles, we would have been faced with a much more intri-

cate problem of how to represent the essentials of the

task so that they fit GPS's way of doing thing.

INI¥d S$S3¥ddNS dW3l 0 or 0 8629¢
3dAl 3NTVA V09 o 10 0 S601
H1d43G 31n70S8v (174
1INIT 130443 31NT0S8v 0000 OOt
0 |
h9A
L4
§9A
NOI1VII4IGOW 31 ¥0d4 1SIT 0
feu
'A%
(3%]

0¢
0000001t

0 Sil
S0921 89ne
h0oclt sll
£0921 19n2
20921 0

0 1502
L1092t 9£0C
009¢Z1L S£0<
66521 hf0OC
86G21 G20¢
LesZl wZo<l
9652t S10C
56821 nlOC
€66l 0
0
0

{) TYNSIS ¥0d4 S3INILINCY 40 1S11
1S17 30VvHL ¢=0

SNOIL1VOI31IN3GQI 40 1S1T
Tv09ENS INITIVAINDI 3LIVNIVAI
4410 1IX3N 40 NOIL1D373S

1S17 d3IXdvik 40 NOI1ldI¥WIS3A
1SI7 WO¥4 v09dNS 40 NOILD313S
oLY NI Tv09 M3IN 40 NOI1D2373S
INTVA V09 1INYLSNOD

23X3 401

INIOFSIQ SUVA VW

Av098NS MIN J1IVATIVAS

HJ1VW

33x3 9NIAT0S W3IT80¥d

1VAY04 INIY¥d LINdNT YOLINOW

P I I I O I S S

0
0
0
0
0
0
0
Y
0
0
0
0
0
0
0
0

COQOQOO0OO0O0O0ODOO

YOLINOW TVNOIS
ASVL
INTWNIYIANID SVL

000000000 IITIOOODOLOCODOITIFOOOO~~0OO0O
OO0 COOLOOOOODOULOLDOCOCO0O0OQOLOOOO

D0

L2°(dAD) oMY (OId-) ¥, NO MOH S0
v xypuaddy

(0€S (0f£S

LS ShS 0SS | 1v09 (0ES (OFS LhS 88S OES nh V09 (0€S (0ES (nS 8nS 0fS L TvOD (0fS (0FS

(OLS (£2S §£2S 0ZS €25 O1S 0ZS 0ZS €25 OIS 0ZS O1S 02S LIS 02S LIS 0ZS 61S °~02¥) 61S *0¢¥) 0GS “tid) 0GS 0SS °0L¥)

62¢98

tLing

) 0OLS OLS GtQ 2iS (ZLS 0¢S 0iS
®8S8L

122191

9280L

80989

) 01S 01S G610 ZiS (Z1S 0¢ZS OiS
0c0e9

t0g09

£S60S

88125

(ogsgnl)l 2 30 Iv0o99NS) 07 OINI f1 WYO4SNVYL Ot 1v09

8BS ONS LhS 81S O0FS 2 V09 (0€S (0ES [nS 8#S 0ES 8 DO (0€S (0%S
(notnt) ¥* dAD %1

OLS OIS (£ZS €25 0ZS £2S OLS °0c¥
*0Z¥) 01S OLS S1G ZLS (Z1S 0ZS LIS 0TS 61S -0Z¥) 61S 19SS “LEY) 0SS “Lid) OGS 0SS “OLY)
{sogrid(8 40 Iv0o9oENS) €1 64 01 1Y AddV 6 V09 S

8S OhS (1S 1S LS 69S “2ZE¥) 0SS "1i¥W) 0GS 0SS °*OL¥)
(hiZal}(2 40 Tvoo8NnsS) 01 6d 01l €1 6d NO 60 32nQ3y¥ 8 V09

9S OnS (21S 60 ZIS 60 TIS (ZL1S 0ZS LIS 02S 61S °02¥} 61S 0¥} 0SS *Li¥) 0GS 0SS ~OL¥)
(egini)¢ »n 30 Tvoo8ns) 07 DINI £7 WY0ISNVYL L V0O ¢

8S OnS [hS 8nS 0fS h V09 (0fS (0€S tnS 84S OfS S V09 (0€S (0fS
(60Lnl) ¥* DAd £

OLS OLS (£2S £ZS 02S €¢2S 0IlS °0cv

*0Z¥) OLS OLS SLO ZIS (ZLS 0ZS 11S 02S &1S "0TY) 61S 19S °LEY) 0SS "ti¥) 0GS 0SS °0Ld)
(61081){ S 40 IV094ANS) 21 6d 01 94 Alddv 9 V0O n

8S OnS (1S IS IS 2S 1S 2S 1S 69S °2gd) 0GS “Lid) 0SS 0SS °0L¥)
(62681)(n JO 1v0928NS) 01 6d 01 21 64 NO SO 3I2NA3Y S V09 ¢

1S OnS (ZLS SO 21S Sa ZIS (ZLS 02S 1LS 02S 61S °0Zd¥) 61S °0gn) 0SS “LL¥) 0SS 0SS °*0lY)
(o6L£1)(1 40 v094ENS) 01 OINI 27 WYDJSNV¥L ® V09D ¢

8S OhS 1®S 8nS 0€S | 1vO9 (0£S (OES LnS 8nS 0€S Z W09 (0fS (OES ¢
(96251} ¥* DId- 21

0LtS OLS (g2S £ZS 02ZS £2S 0LlS “0ZY¥

) OIS OIS S1Q Z1S (ZLS 02S OIS °0Z¥) OLS OLS S1a ZLS (ZIS 02ZS LIS 02ZS 61S ~0Z¥) 61S 19S5 "Lle¥) 0SS “Lid) 0SS 0SS “OLY)

0804n

0Sinn

0flo¢
0698¢
9181¢
££89¢
6929¢
8595¢

(tt2g1)t T 40 voosens) L1 01 LY Alddv £ V09 ¢

8S OhS (1S 1S IS ¢S IS 695 °Zgy) 0SS “Lid) 0SS 0SS “OLY)
(£€9€L)(| 40 vo9o9ns) 01 01 L1 NO 40 33NA3¥ T V09 ¢

8S 0hS (Z1S 60 ZIS 60 ZLS (ZIS 0ZS &1S °0T¥) 61S °"OEu} 0SS “LI¥) 0SS 0SS °0L¥)
1SI7 NOILVAIY¥3Q ly of

1SI7 NOILVAIY3A 01 62
1S17 NOILVAIYIG 17 8¢

(9€2)(3INON 4O 1v098NS) 071 OLINI |7 WY¥O4SNVY¥L [V09
(Zgd) DIid- *¥ 11

(£89) ¥® dAD 01

Appendix B

GPS—-2-2 VOCABULARY (ROUTINES)

GENERAL ATTRIBUTES
COMPONENT ATTRIBUTES

Al
A2
A3
A4
AS
A7
A8
A9
Al0
All
Al2
Al3
Al4
Al5
Al6
Al
Al9

TYPE OF COMPONENT

ORDER OF GENERATION (NAME)
GOAL THAT PRODUCED COMPONENT
LIST OF GOALS USING COMPONENTS
LIST OF EQUIVALENT COMPONENTS
MARK TO KEEP IN CORE

CONTROL WORD FOR AUX STORAGE
LOCATION PROGRAM, IF EXTERNAL
TEST FOR OPERATOR CONDITIONS
DIRECT PROGRAM FOR OPERATOR
TE OF OBJECT

LIST OF VARJIABLES FOR TEX

RESULT LIST (EQUIVALENT GOALS LIST)

COMPLEXITY OF TEX (0) (INTEGER)
MAX DEPTH OF TEX {0) (INTEGER)
DIRECT PROGRAM FOR COMPARISON
CHARACTER TO BE PRINTED

GOAL TYPE ATTRIBUTES

A20

GOAL FORM

METHOD ATTRIBUTES

A30

METHOD TYPE

RESULT ATTRIBUTES

A4Q
A4l
A42
A43
A44

GENERAL
AS51

ATTEMPT STATUS

LOCATION OF METHOD USED
STATUS OF METHOD

START OF SUBGOAL ATTEMPT
FINAL SUBGOAL

ATTRIBUTES
CONTENT TYPE

LOCATION PROGRAM TREES

A60
A6l

LOCATION PROGRAM
LEVEL

MISCELLANEQUS ATTRIBUTES
LIST OF COMPONENTS USED (MULT. OPR)

A70

CIFFERENCE EXPRESSION ATTRIBUTES

A80
A8l
AB2
A83
A84
A8S
AB7
AB8
A89
A90
Al09

STATUS

NBR 1 SuB DE

NBR 2 SUB Dt

EVALUATION TYPE- KLOX
LEVEL (ABSOLUTE)

MAX - LEVEL (ABSOLUTE)
NBR 2 LIST OF OCCURRENCES
RELATIVE LOC PROGRAM
DIFFERENCE TYPE

LIST OF DIFFERENCE TYPES
HIGHEST DEFINED REGIONAL

EXPERIMENTER ROUTINES
EXECUTIVES

E2
E7
E8

TOP EXECUTIVE FOR SINGLE TASK
FILE GOALS IF SPACE LESS THAN 27
MOVE GOAL (0) IN FROM AUX

MISCELLANEQUS

ELlO
El2
El3
El4
ELlS
Elé6
El9

INPUT
£21
E22
€23
E24
E25
E26
E27
€28
E29

DEFINE ONE WORD ROUTINES

POST MCRTEM PRINT

INITIAL SET UP OF TRIVIA

FORM FOR SIGNAL

FORM FOR ATTRIBUTE

SET PRINT NAMES (Al19) A/C LIST (0)
SET SUBR (0) FOR SIGNAL-LINE TRACE

OUTPUT ROUTINES

CONVERT TEX (1), CONTENT TYPE (O0)
CONVERT GOAL (0) TO INTERNAL FORM
CONVERT TE (0) TO INTERNAL FORM
PRINT GOAL EXPRESSION

PRINT GOAL NAME AND DEPTH

PRINT TEX (0)

PRINT OPERATOR REJECTED

PRINT GOAL NAME

PRINT GOAL STRUCTURE

BASIC CONVERSION ROUTINES
€30 SET UP FOR CONVERSION
E31 INTERPRET CURRENT SYMBOL
E32 LOCATE NEXT INPUT SYMBOL
E33 CREATE SUBLIST (NOT CONNECTED)
E34 CREATE NEXT CELL
E35 RETURN TO LOC IN PRIOR SUBLIST
E36 FIND LOC PROG, PUT IN 247 (SAFE)
E37 CREATE NEXT UNIT, SYMBOL OR ()
E38 CREATE NEXY EXTENDED UNIT
€39 CLEAN UP CONVERSION (HS SAFE)
E4Q FOLLOW INTERPRETATION LIST
E4l CONVERT () TO LIST STRUCTURE
E49 ASSIGN A PRINT NAME TO (0)

OUTPUT ROUTINES
E50 PRINT STANDARD FORMAT (0)
E51 SET UP FOR PRINTING
ES52 CLEAN UP PRINTING
E53 LOCATE NEXT CELL IN FORMAT
ES54 ADVANCE COL NUMBER 1 SPACE
E55 ADVANCE COL A/C DEPTH (0)
ES56 PRINT SUBFORMAT (0)
ES? ENTER NAME (0)
ES8 ENTER SIMPLE LIST OF SYMBOLS (0)
€59 ENTER LINEAR LIST (0)
E60 CREATE LINEAR LIST FOR EX{(0)
E61 ENTER LIST OF NAMES (0)
E62 ENTER CIFFERENCE EXPRESSION
E63 ENTER LOCATION PROGRAM
E64 ENTER DIFFERENCE (0)
E68 PRINT EQUIVALENCE LIST (0)
E69 PRINT GOAL SELECTED
E70 ENTER SIGNAL (O0) IN PRINT LINE
ET1 TEST IF XO IN HO
€109 HIGHEST DEFINED REGIONAL

LOGIC TE
PROCESSES

Fl DIFFERENCE NET
F2 OPR APPL TEST, EX 1 MAIN, POSITIVE
F3 OPR APPL TEST, EX 1 MAIN
Féa ADD A DOUBLE NOT TO EX 1 {KNOWN +)
F£5 ADD A DOUBLE NOT TO EX 2 (KNOWN +)
Fé6 REDUCE MULTIPLE NOTS ON EX 1
F7 RECUCE MULTIPLE NOTS ON EX 2
F8 OPERATOR FILTER
F9 STANARDIZE EX{0) (DOUBLE NOTS)
F1l0 CONVERT TEX (0) TO INTERNAL
F20 DIFFERENCE NET, LOCAL
F21 SIMILARITY TEST ON TEXS (0), (1)
F22 OPR FILTER, NBR 2
F23 SIMILARITY TEST FOR OPR SETS
F24 DIFF NET, TEST IF EX2 - TERM (D5)

ADJUST EX 14 VAR 2 FOR 5SUBS

OIFF NET, TEST IF EX2 - TERM (D9)
ADJUST EX 24 VAR 1 FOR SUBS

ADD A DOUBLE NOT

ADD A DOuBLE NOT

TEST IF CONNECTIVE DIFF (D5)

TEST IF POSITION DIFF (D9)

TEST IF LOWER SIGN DIFFS EXIST (D8)
HIGHEST DEFINED REGIONAL

GOAL ATTRIBUTES
COMPONENTS
Gl TEX 1
G2 TEX 2
G3 LIST OF RESULTS
G4 DIFFERENCE
G5 OPERATOR

ADDITIONAL COMPONENT SPECS
Gl1 LOC PROGRAM FOR EX 1
Gl2 LOC PROGRAM FOR EX 2
G13 LIST OF LOC PROGRAMS FOR RESULTS

G1l5 LOC PROGRAM FOR OPERATOR

MISCELLANEQUS
G20 GOAL STATUS
G21 GOAL TYPE
G622 CURRENT VALUE
G23 SUPERGOAL
G24 LIST OF SUBGOALS
G25 LIST OF SUBGOAL TRIES
G26 HISTORY OF ATTEMPTS
G27 METHOD LIST
G28 METHOD USED TO GET THIS GOAL
G29 LOC OF SEG USED TO GET THIS GOAL
G30 LIST OF OPERATORS TRIED
G31 TE FOR THIS GOAL
G32 ACTION FOR SEGMENT
G33 GOAL NET (TOP GOAL ONLY)
G34 LISY OF VARIABLES USED
G35 ANTECECENT GOAL
G3e6 RESULT STATUS
637 LIST OF ATTEMPTS THE GOAL PART OF
G38 LIST OF EQUIVALENT GOALS
G39 LIST OF UNTRIED LOWER GOALS

MEASURES
G40 ABSOLUTE DEPTH

MISCELLANEQUS
G50 G1-EXPANDED GOAL
G51 PERMANENT LIST, S50-S51 SUBGOALS
652 GOAL NBR AT LAST TRY {FOR G50 GOAL)
G53 COMPOUND DIFFERENCE EXPRESSION
G54 MOST RECENT ATTEMPT STATUS
G109 HIGHESY DEFINED REGIONAL

ADDITIONAL SYSTEM ROUTINES
INTERPRETATION ROUTINES

Il INTERPRET SIGNAL IN Y1 (S9 IF NONE)
12 INTERPRET OIFFERENCE IN Y18
I3 INTERPRET GOAL TYPE IN Y3
14 INTERPRET CONTENT TYPE IN Y85
18 LOAD SIGNAL FROM HO
I9 FIND SIGNAL LIST, PLUG Hl.
111 Il WITHOUT MONITOR
112 [2 WITHOUT MONITOR
113 I3 WITHOUT MONITOR
114 14 WITHOUT MONITOR
I8 1292 118
119 FIND SIGNAL INTERPRETATION,

MISCELLANEQOUS
120 SAVE FOR RESTARTY
121 SAVE ON SYSBR1
129 HIGHEST DEFINED REGIONAL

MISSIONARIES AND CANNIBALS TE
PROGRAM

M20 CONVERT TEX (0) TO INTERNAL
M21 PRINT TEX (0)
M22 GENERAL OPERATOR ROUTINE
M23 DIFFERENCE NET
M24 IDENTITY TEST (0), (1) (LOC MAIN)
M25 FILTER OPR ON CONDITION
M26 FILTER OPR ON CONDITION
M27 TEST ADMISSIBILITY OF EX(0) (LOC)
M28 COMMAND TEX 1Y80
M109 HIGHEST DEFINED REGIONAL

P — ROUTINES
MISCELLANEOUS

P1 TALLY 1 AND RESTORE
P2 SET (0) TO O AND RESTORE
P3 SET EFFORT BASE INTO (0)
P5 SUBTRACT 1 FROM (0), RESTORE
P6 COMPARE (0) AND (1) {(NUMBERS)
P? COMPARE (0) AND (1) ON ORDERING (2)
P8 LOCATE MAIN EX, LOCATE NEXT EX
P9 LOCATE FIRSYT SUBEXPRESSION

EXPRESSIONS (INPUTS ARE LOCS OF EX)
P10 LOC PROG FOR FIRST SUBEX (IN K98)
P11 LOC PROG FOR SECOND SUBEX (IN K98)
P12 EXECUTE EX(0). OUTPUT IS INPUT (0O)
P13 coPY TEX {0)
Pl4 MAKE VARS OF (0) AND (1) DISJOINT
P15 GENERATE LOC OF TERMS OF EX(1)
PLlé6 GENERATE LOC OF VARIABLES OF EX(1)
P17 GENERATE LOC OF CONSTANTS OF EX(1)
P18 GENERATE LOC OF SUBEX OF EX(1)
P19 CREATE A NEW VARIABLE
P20 COMPARE LIST STRUCTURES LOC (0),(1)
P21 TEST IF (0) IS A VARIABLE
P22 TEST IF (0) IS A SETY
P23 TEST IF (0) IS TEX
P24 TEST IF TERMS OF EX{1) ARE ON EX(O)
P2s TEST IF ALL CONSTANT TERMS OF EX(1)
P26 TEST IF EX{0), (1) HAVE SAME TERMS
P27 TEST IF (0) FIRST LEVEL EX OR TERM
P28 TEST EX{0) HAS MORE TERMS THAN EX 1
P29 TEST IF EX{0), (1) HAVE COMMON TERM

OPERATOR ROUTINES
P30 PRODUCE REVERSED OPR

MISCELLANEOUS
P40 FIND LEVEL OF ABS LOC PROG (0)
P4l LOC 1ST ITEM LIST{2) THAT PASS COMP
P42 DELETE ITEMS LIST(2) THAT FAIL COMP
P43 IF OPR(0O)=, MAKE OPERANDS INTO TEXS
P44 MARK COMMON TERMS OF LISTS (0),(1)
P45 DESCRIBE MARKED LISTS IN Y18
P46 COMPARE LEVEL OF LOC PROGS (0), (1)
P47 FIND LOCPRG OF JOIN LOCPRGS {0),(1)
P48 TEST IF (0) ON ORDERING (1)
P49 COMPARE VALUES (0), (1) (K1lOl)
P50 ASSIGN NAME YO TEX (0)
PS1 MAKE VARS OF (0) AND (1) DISJOINT
P52 CREATE VAR LIST FOR TEX (0) (Al3)
P53 COMPUTE COMPLEXITY OF TEX(0) (Al5)
P54 COMPUTE MAX DEPTH OF TEX (0) (Al6)
P55 COMPUTE MAX DEPTH OF EX{(0)

P56 GENERALIZED COMPARE {0), (1)

P57 COMPARE VALUES (0), (1) (K102)

P58 FIND(CREATE) EQUIV LIST FOR TEX (0)
P59 COMPARE VALUES (0), (1) (K103)

BASIC HOUSEKEEPING
P60 COPY AND MAKE LOCAL
P61 DELETE ALL SYMBOLS
P62 IF LOCAL COPY LOCALLY, IF NOT NO-OP
P63 GENERATE LOCATION OF LIST (0)
P64 GEN LOCATIONS OF LIST (1)y (2)
P66 MOVE ATR-VALUE (0) FROM (1) TO (2)
P68 POP HO TWICE
P69 JO/0

LOCATION PROGRAMS (IN K97, K98)
P70 LOC 2ND SUBEX 1 LEVEL DOWN {K97)
P71 ABS LOC PROG. LEFT OF LEFT (K98)
P12 ABS LOC PROG. RIGHT OF LEFT (K98)
P73 RELATIVE NEXT
P74 RELATIVE FIRST SUBEX, 1 LEVEL OOWN

EXPRESSIONS
P80 LOC FIRST NON-UNARY EX IN EX(1)
P81 FIND MAIN EX OF {(0)
P82 LOC MAIN GIVEN (0) = LOC OF TEX/EX

MISCELLANEQUS
P90 DESCRIBE MARKED LISTS, NBR 2
P9l FIND LEVEL OF REL LOC PROG (0)
P92 LIST HIGHEST VALUED DE-S IN DE(O)
P93 TEMP FOR K70 ON S4 C32
P109 HIGHEST DEFINED REGIONAL

Q - ROUTINES
EXECUTIVE SEGMENTS

Ql WHAT LIMIT IS EXCEEDED
Q2 LOCATE NEXT UNTRIED METHOD
Q3 LOC NEXTVT SEGMENT AND EXECUTE
Q4 EVALUATE GOAL
Q5 TEST IF AT TOP LEVEL
Q6 RECORD ATTEMPT (LEAVE SIGNAL)
Q7 REPEAT CURRENT METHOD IF REPEATABLE
Qs SELECT BEST UNTRIED LOWER GOAL
Q9 RETRY ANTECDENT GOAL

MISCELLANEGUS

Cl0
Ql1
Clz2
Q13
Ql4
Cl15
Qlé
Q17
Q18
<19

FIND NEW LOC PROG=(0) + Y19 RECORD
COPY Y11-Y13-Y15-Y45 IF NEEDED
COPY Y12-Yl4-Y1l6-Y46 [F NEEDED
ASSIGN (1) TO BE ATR (0) OF GOAL
ASSIGN (1) TO Bt ATR (0) OF GOAL
ADD (1) TO ATR LIST (0) OF GOAL
COMMON FRONT PART OF GOAL CREATION
COMMON END PART OF GOAL CREATION
FIND REL LOC PROG FOR Y19 LISY
ASSIGN LIST ATRS (0) FROM GOAL (1)

METHOD SEGMENTS AND SUBSEGMENTS

Q20
Q21
Q22
Q23
Q24
Q25
Q26
Q27
Q28
Q29
Q30
Q31
Q32

COMPARE NBR 1 AND NBR 2 A/C 1Y17
FIND FIRST PAIRy, 1 LEVEL DOWN
FIND NEXT PAIR, THIS LEVEL
RETURN ONE LEVEL UP

CLEAN UP Y11-Y20

SET UP MATCH FOR Gl TO G2

FIND IMMEDIATE TE OPR

CREATE DIFFERENCE GOAL

CREATE MODIFIED TRANSFORM GOAL
USE RESULT OF SBGL AS RESLY OF GOAL
SET UP TO FIND RELEVANT OPERATOR
FIND NEXT UNTRIED OPERATOR
FILTER OPERATOR ON CONDITIONS
FILTER OPERATOR ON PRODUCT
CREATE APPLY OPERATUR GOAL

TEST OPR COND FOR APPLICABILITY
SET UP OPR FOR MATCH (Q39 DONE)
CREATE PRODUCT FROM FORM

CREATE MODIFIED APPLY GOAL

FIND OPERATOR TYPE AND SET UuP
CREATE DIFF GOAL FOR DIRECT TEST
FIND OPR GIVEN BY EXP, SET uP
TRY DIRECT OPERATOR

TEST IF NEW TEX ON EQUIV LIST
SET VALUES ON Y3X LIMITS

CREATE EQUIVALENCE LISTS

TESY IF GOAL ALREADY EXISTS ON 1Y25
FIND GPS DIFFERENCES

RECORDS FOR NEW TEX

RECORDS FOR SELECTED TEX

IMMEDIATE GPERATORS
Q50 COMMUTE SET EX 1
Q51 SUBS EX 1 FOR EX 2 (VAR) IN TEX 2
Q52 SUBS EX 2 FOR EX 1 (VAR) IN TEX 1
Q53 IMPOSSIBLE IF NOT PROVISIONAL
Q54 SELECT FROM Y1l SET
Q56 SELECT FROM Y12 SET

METHOD SEGMENTS AND SUBSEGMENTS
c70 TRANSFER A RESULT FROM EQUIV GOALS
Q71 TEST IF GOALS EQUIV, AND SET UP
Q72 CREATE ATTEMPT RECORD
Q73 SELECT BEST SUBGOAL ON LIST (0)
Q74 EVALUATE GOAL (NBR 2)
Q75 OBJECT VARIATION METHOD FOR K1
Q76 CREATE GOAL VALUE (K101)
Q17 CREATE GOAL VALUE (K102)
Q78 CREATE GOAL VALUE (K103)
Q79 SET NEW TE (0)

GOAL SETTING ROUTINES
Q8o GOAL SET ROUTINE, (0) = GOAL
Q81 SET UP NEW SUBGOAL (IN Y87)
Q82 SET UP SUPER-GOAL FOR RETURN
Q83 SET UP GOAL FOR RETRY
Q84 SET UP PRIOR GOAL FOR RETURN
Q8s SET UP SUPERGOAL OF 1Y88 FOR RETRY
Q86 SET UP SUBGOAL FOR RETRY
Q87 SET UP SUPER-GOAL FOR RETRY
Q89 RESET MTH-SEG CONTEXT FROM GOAL (0)

MATCH ROUTINES
Q90 CREATE DIFF-EXP AND PUT ON 1Y84
Q92 COMBINE LIST Y84 OF DES (NBR 2)

METHOD SEGMENTS AND SUBSEGMENTS
Q100 RE-EXECUTE CURRENT SEGMENT
Q101 SET METHOD ACTION SIGNAL
Q102 PREPARE OUTPUT IF NOT DETERMINED
Ql03 CREATE NEXT OPR GOAL FROM SET
Ql04 GOAL REJECTED
Q105 SELECT BEST GOAL FROM LIST (0)
Q106 EVALUATE GOAL (NBR 3)
Q107 SET COMPLEXITY LIMITS
Q108 TRY Gl-EXPANDED GOAL
Q109 SELECT BEST S50, S51 LOWER GOAL
Q110 SELECY NEXT DIFF FROM 1Y84
Q111 SET Y1X CONTEXT FOR DE (0)
Ql12 TEST IF MATCH ALREADY DONE
Q113 RECORD STATUS OF DE
Qll4 ERASE DE AND SETUP FOR REMATCH
Q115 RECORD METHOD ATTEMPT

|
|

%

SET QUTPUT FOR K40 METHOD
ADO P8 TO Y19

ADD P9 TO VY19

HIGHEST DEFINED REGIONAL

R - ROUTINES (NO PREFIXES, NO YS)
EXECUTIVES

R1
R2

PROBLEM
R10
R11

MATCHES
R20
R21

KEEP WORKING FROM EXTERNAL
TOP EXECUTIVE FOR NEW PROBLEM

EXECUTIVES
PROBLEM SOLVING EXECUTIVE
EXECUTE METHOD UNTIL FAIL

MATCH DEPTH FIRST
MATCH, SINGLE PASS (Q90-Q92)

METHOD SEGMENTS

R30
R31
R32
R33
R109

MATCH Gl TO G2, CREATE SUBGOAL
TRY QPERATOR, CREATE SUBGOAL
FIND NEXT UNTRIED RELEVANT (PR
SECOND STEP IN K41 METHOD
HIGHEST DEFINED REGIONAL

SIGNALS (SX = 10SX/18)

GENERAL
Sl
S2
S3
S4
S5
Sé6
S7
S8
S9

YES, +, POSITIVE, OK, FIND, ACCEPT
NO, -y NEGATIVE, NOT FIND,y REJECT
MUCH WORSE

SOME WORSE, LESS

THE SAME

SOME BETTER, GREATER

MUCH BETTER

UNDEF INED

NO INTERPRETATION

DIFFERENCE RESULTS

Slo0
sl
sSi2
S13
S14
S15
Sié
S17
Sls
S19

IDENTICAL

NO DIFF SO FAR, MAY BE DEEPER
DIFFERENCE FOUND

HOPELESS, TOO DIFFERENT
OPERATCORS DIFFER

OPERANDS DIFFER

PROVISIONAL DIFFERENCE
SOMETHING HAS CHANGED
DIFFERENCE EXPRESSION EXISTS
START OF DIFFERENCE

CORRESPONDENCE RESULTS
520 BOTH 1Y11l AND 1lY1l2 FOUND
s21 1Yll FOUND, 1Y12 NOT, DEEPER
S22 1Yll NOT, 1Y1l2 FOUND, DEEPER
s$23 NEITHER 1Y1ll NOR 1Y12 FOUND, DEEPER
$24 lYll FOUND, 1Y12 NOT, MORE OPERANDS
525 lYll NOT, 1Y12 FOUND, MORE OPERANDS
S26 1Yll, 1Y12 HAVE SAME NBR OPERANDS

ATTEMPY STATUS
S$30 SUCCESS,y ONE RESULT
$31 SUCCESS, SEVERAL RESULTS
$32 TRIED UNSUCCESSFULLY
S$33 UNTRIED
S$34 INCOMPLETE
S35 IMPOSSIBLE (METHOD EXHAUSTED)
536 IDENTICAL RESULT
S37 BORROWED, ONE RESULT
S38 BORROWED, SEVERAL RESULTS
$39 BORROWED, UNSUCCESSFUL

SEGMENT RESULTS
S40 SUCCEED, NEW SUBGOAL GENERATED
S41 SUCCEEC, MORE SEGMENTS
S42 SUBGOAL GENERATED (=ONE EXISTING)
$43 SUBGOAL REJECTED
S44 FINAL PROBLEM SOLVED
S$45 EXTERNAL PROGRESS MADE
S46 SUCCEED, REPEAT SEGMENT
Satv SUBGOAL FAILS
S48 SUBGOAL SUCCEEDS

METHOD STATUS AND GOAL STATUS
S50 UNTRIED
S$51 NOT THROUGH
$52 THROUGH
$53 BLOCKED
S54 DUPLICATION

COMPONENT TYPE
S60 OPERATOR WITH INITIAL CONDITIONS
S61 FORM OPERATOR
S62 EXPRESSION FOR OPERATOR
S63 DIRECT ACTION OPERATOR (KNOWS Y'S)
S69 GENERAL OPERATOR

LIMITS
S70 ABSOLUTE NUMBER
S71 RELATIVE NUMBER
S12 ABSOLUTE EFFORT
$73 RELATIVE EFFORT
S74 ABSOLUTE DEPTH
S715 RELATIVE DEPTH
$76 ABSOLUTE NUMBER OF OBJECTS
sT17 RELATIVE NUMBER OF OBJECTS
S78 ABSOLUTE NUMBER OF METHOD TRIES
S79 RELATIVE NUMBER OF METHOD TRIES

METHOD AND GOAL TYPE PROPERTIES
S80 NOT REPEATABLE
S8l REPEATABLE

GENERAL
$90
S91
$92
S$93
S94
595 SOME
$96 TERM
S$97 UNARY
598 FIRST LEVEL
$99 COMPLEX
S100 PERMANENT
S101 TEMPORARY

ATTEMPT STATUS
S130 SUCCESS, REJECT FOR COMPLEXITY
S131 SUCCESS, STILL INDETERMINENT
$132 SUCCESS, S131, IDENTICAL
S139 O0UT OF SPACE
$S209 HIGHEST DEFINED REGIONAL

-121-

Appendix C

GPS-2-2 VOCABULARY (DATA)

LCGIC TE OPERATORS AND OBJECTS
OPERATORS (OKMOORE)y RX ARE HIS NAMES

81 R1 AVB YIELDS BVA
B2 R1 A.B YIELDS B.A
83 R2 AIB YIELDS -BI-A
84 R3 AVA = A
BS R3 REVERSE B4y A = AVA
B6 R3 A.A = A
B7 R3 REVERSE B6y A = A.A
88 R4 AV(BVC) = (AVB)VC
89 R4 REVERSE B8, (AVB)VC = Av(BVC)
B1C R4 A.(B.C) = (A.B).C
8l1 R4 REVERSE B10, (A.B).C = A.(B.C)
Ble RS AVB = -(-A.-B)
813 RS REVERSE Bl12, -(-A.-B) = AVSB
Bl4 R6 AIB = -AvVS
B1S R6 REVERSE Bl4, -AVB = AIB
Bl6 R7 A.(BVC) = (A.BIVIA.C)
817 R7?7 REVERSE Bl6, (A.BIV(A.C)=A.(BVC)
Bl8 R7 AV(B.C) = (AVB).(AVC)
B19 R7 REVERSE B18, (AVB).(AVC)=AV(B.C)
820 R8 A.B YIELDS A MAIN,y, POSITIVE
821 R8 A.B YIELDS 8 MAIN, POSITIVE
B22 R9 A YIELDS AvVB, MAIN
B23 R1C A,B YIELDS A.8B
B24 R11l AIB,A YIELDS B
B2S R12 AIBy BIC YIELDS AIC

OBJECTS
B50 (-P.Q)VIP.-P)
851 Q
BS2 P.(Q.R)'—‘RIT)K—(P.Q)
853 T.7T
B54 PVIQVR) 4y~ (QVR).52-P
BSS -QI-S
856 PVQy~RI-QySsRI-S
B57 PVT
BS58 (Pe—-P).(RIT)
859 Qvs
B60 (PVQ)I=(-RVP) ,-{-{S.Q)VR)
Bel -Q
B62 -PIQy-RIQ,-PV-R
B63 Qvs
B64 (PVP)I-QyQVR,yRIS,P
B65 {S.RIVT
B66 (PVQ) . {QIR)
B67 PV(Q.R)

-122-

(P.QIVIP.T),TI(P.R)

QVR
‘S,RVS'(
-Q
PIQ.-RI{

PIQ)I-R

P.Q)yQI-T,(P.Q)I-P

-PV{-T.R)

(REI-T) o (
-{-Q.P)

(PVQ)IR,
-PVS

-RIQ)

RIS

(PIQ)I'R!RVSQ'S

-Q

(PVQ)I(RVS),P,-TI-(QVR),-T

S
Ro(‘P[Q,
(QVP).R

—S.(SV-Q.

-Q

(P.Q)V(P.-P)

PIQ

PsQ
PyPIQ
PIQ,QIR
AV{(BVP)

= {AVB)VP (CoPYy B8)

~(PVP)IR,-R

[

-PvQ
PIQ

Q

P.Q
HIGHEST

DEFINED REGIONAL

LOGIC TASK ENVIRONMENT

CONSTANTS,

C1
c2
c3
Cé
Cc5
cé
c?
cs
c9
ci0
Cl1
cl9

O.K‘
ca20
ca21
ca22
C23
C24

LIST OF

LISTS, PROBLEMS

OPERATORS

TABLE OF CONNECTIONS

LIST OF
LIST OF
LIST OF
LIST OF
LIST OF
LIST OF
LIST OF

IMMEDIATE OPRS FOR DIFFS
OBJECTS

EQUIVALENCE LIST OF OBJECTS
VARIABLES

CONSTANT TERMS

OPERATIONS

DIFFERENCES

ORDERING ON RELEVANT DIFFERENCES
ORDERING ON REL DIFFS, S9 ON C36

FORMATS

FOR DIFFERENCES

MOORE PROBLEMS

PROBLEM
PROBLEM
PROBLEM
PROBLEM
PROBLEM

OKMOORE
OKMOORE
OKMOORE
OKMOORE
OKMOORE

PROBLEM
PROBLEM
PROBLEM
PROBLEM
PROBLEM
PROBLEM
PROBLEM
PROBLEM
PROBLEM
PROBLEM
PROBLEM
PROBLEM
PROBLEM
PROBLEM

OKMOORE
OKMOORE
OKMOORE
OKMOORE
OKMOORE
OKMOORE
OKMOORE
OKMOORE
OKMOORE
OKMOORE
OKMOORE
OKMOORE
OKMOORE
OKMOORE

B2
B3
B4
Cl1
c2
Cc3
Ca
D1
D2
03
D4
ALPHA 1
ALPHA 2
ALPHA 3

APPLY 819 TO B74

APPLY 823 TO B90

APPLY 824 TO B9l

APPLY B2S TO B892
TRANSFORM B93 INTO B8
TRANSFORM B94 INTO B95
TRANSFORM B97 INTO B96
TRANSFORM B99 INTO B98

HIGHEST DEFINED REGIONAL

DIFFERENCES

o1l
D2
03
D4
D5
D6
D7
D8
09
D10
D11l
12
013
D14
015
016
017
018
019
D20
D21
022
D23
D24
D25

ADD TERMS (EXTRA TERMS IN NBR 2)
DELETE TERMS (EXTRA TERMS IN NBR 1)
INCREASE TERMS {MORE OFTEN IN NBR2)
DECREASE TERMS (MORE OFTEN [N NBR1)
CHANGE CONNECTIVES (NEITHER =)
CHANGE SIGN (NBR 1 -, NBR 2 +)
CHANGE SIGN (NBR 1 +, NBR 2 -)
CHANGE LOWER SIGN

CHANGE POSITION

CHANGE GROUPING A{(BC) TO (AB)IC
CHANGE GROUPING (AB)C TO A(BC)

NBR 1 HAS MULTIPLE NOTS

NBR 2 HAS MULTIPLE NOTS

VAR NBR 1 VS EXP NBR 2

EXP NBR 1 VS VAR NBR 2

CONSTANT NBR 1 VS EXP NBR 2

EXP NBR 1 VS CONSTANT NBR 2
CONSTANT VS CONSTANT

EXP NBR 1 HAS COMMA, EXP NBR 2 NOT
EXP NBR 2 HAS COMMA, EXP NBR 1 NOT
BOTH HAVE COMMA, EXP NBRL MORE OPER
80TH HAVE COMMAA, EXP NBR2 MORE OPR
BOTH HAVE COMMA, SAME NBR OPERANDS
TEX NBR 1 VS. EX NBR 2

EX NBR 1 VS TEX NBR 2

EX 1 VS. EX 2y UNMATCHED TERMS
30 NONE, NONE
D31 NONE, SOME
D32 SOME, NONE
D33 SOME, SOME
D34 ALL, ALL
039 UNION OF INODEPENDENT SUB DIFFS
D69 HIGHEST DEFINED REGIONAL

CONSTANTS, GOAL TYPES, FORMS, ETC.
GOAL TYPES
Kl TRANSFORM OBJECTS GOAL TYPE
K2 APPLY OPERATOR GUAL TYPE
K3 REDUCE DIFFERENCE GOAL TYPE

GOAL FORMS
Kll TRANSFORM GOAL FORM
K12 APPLY OPERATOR GOAL FORM
K13 REDUCE DIFFERENCE GOAL FORM

ATTRIBUTE TRANSFER LISTS
K20 TRANSFER LIST G2ty Gll, G2, Gl2
K2l TRANSFER LIST Gl, Gll, G2, Gl2
K22 TRANSFER LIST GlL, G2, G1l2
K23 TRANSFER LIST FOR ALL COMPONENTS
K29 TRANSFER LIST FOR COPYING TEX

CRITERIA FOR LIMITS
K30 CRITERIA FOR ABSOLUTE NBR OF
K31 CRITERIA FOR RELATIVE NBR OF
K32 CRITERIA FOR ABSOLUTE EFFORT
K33 CRITERIA FOR RELATIVE EFFORT
K34 CRITERIA FOR ABSOLUTE DEPTH
K35 CRITERIA FOR RELATIVE DEPTH
K36 CRITERIA FOR ABSOLUTE NBR OF OBJECT
K37 CRITERIA FOR RELATIVE NBR OF ODOBJECT
K38 CRITERIA FOR ABSOLUTE NBR MTH TRIES
K39 CRITERIA FOR RELATIVE NBR MTH TRIES

METHODS
K40 MATCH METHOD FOR TRANSFORM GOAL
K&l TRY OPR METHOD FUR APPLY OPR GOAL
K42 RELEVANT OPR METHOD FOR REDUCE GOAL
K43 TRANSFER RESULTS METHOD

MISCELLANECUS
K50 BLANK LIST
K51 TEMPORARY STORAGE
K52 TEMPORARY STORAGE
K53 TEMPORARY STORAGE
K54 TEMPORARY STORAGE
K56 LIST OF GPS VAR
K59 GPS TABLE OF CONNECTIONS

OPERATOR EXPRESSION OPERATIONS
K60 REVERSE (OPR EXP OPERATION)

TASK ENVIRONMENTS
K70 TE FOR O.K. MOORE LOGIC

TE GENERAL REFERENCE
K80 REMOTE INFORMATION ABOUT TE
K8l CIFFERENCE ORDERING
K82 LIST OF VARIABLES
K83 GOAL VALUE TYPE
K84 DSC LIST OF DIFFERENCE FORMATS

MISCELLANEQUS
K90 NONEXISTANT GOAL SYMBOL
K9l NONEXISTANT ATTEMPT RECORD
K92 NONEXISTENT TE
K97 FORM FOR A70 LIST FOR BINARY OPR
K98 REFERENCE TREE FOR ABSOLUTE
K99 REFERENCE TREE FOR INCREMENTAL

VALUES
K101 GOAL VALUE, LEVEL, DIFF
K102 GOAL VALUE, MAX - LEVEL, DIFF
K103 GOAL VALUE, DIFF, LEVEL

IMMEDIATE OPERATORS
K110 GPS IMMEDIATE OPERATOR LISTS
K111 GPS IMMEDIATE OPRS FOR R31

CONTENT TYPES
K161 OBJECT TEX
K162 OPERATQOR
K163 EQUIVALENCE LIST
K179 HIGHEST DEFINED REGIONAL

EXPERIMENTER LISTS
SET UP LISTS
L1 LIST OF IDENTIFICATIONS
L2 LIST FOR OFF TRACE
L3 TRACE LIST FOR Q=3
L4 TRACE LIST FOR Q=4
LS5 LIST OF SIGNALS
L6 LIST OF ATTRIBUTES
L7 LIST OF ROUTINES FOR SIGNAL TRACE
L8 A2 MONITOR LIST
L9 H3 MONITOR LIST
L10 LIST OF GOALS FOR A PROBLEM
L1l LIST OF TEX*S FOR A PROBLEM
L12 LIST OF LISTS QF EQUIVALENT GOALS
L13 LIST OF EXTERNAL TEXS
L7 LIST FOR TE MODIFICATION
L18 LIST OF NAMES
L19 POPUP LIST OF OBJECT NAMES
L29 GOAL ATTRIBUTES TO KEEP IN CORE

PRINTING FORMATS
L30 FORMAT FOR PRINTING GOAL NAME
L31 FORMAT FOR TRANSFORM GOAL PRINT
L32 FORMAT FOR APPLY GUAL PRINT
L33 FORMAT FOR DIFFERENCE GOAL PRINT
L4Q FORMAT FOR SELECTED TEX
L4l FORMAT FOR TEX
L42 FORMAT FOR PRINTING OPERATOR
L43 FORMAT FOR SAME OBJECT
La4 FORMAT FOR TOO COMPLEX
L4S FORMAT FOR GOAL SOLVED
L46 FORMAT FOR GOAL FAILED
L47 FORMAT FOR NO GOOD
L48 FORMAT FOR GOAL SELECTED
L49 PRINT DERIVATION LIST
L50 NBR 2 L30 ALTERNATIVE
LS1 NBR 2 L31 ALTERNATIVE (K1)
L52 NBR 2 L32 ALTERNATIVE (K2)
L53 NBR 2 L33 ALTERNATIVE (K3)
L109 HIGHEST DEFINED REGIONAL

MISSIONARIES AND CANNIBLES TE

M1
M2
M3
M6
M7
M9
M10
M1l
M19

LIST OF OPERATORS

TABLE OF CONNECTIONS

IMMEDIATE OPERATOR

LIST OF VARIABLES

LIST OF CONSTANTS

LIST OF DIFFERENCES

ORDERING OF DIFFERENCES

LIST OF ADMISSIBILITY TESTS

TE FOR MISSIONARIES AND CANNIBALS

OPERATORS

M30
M31
M32
M33
M34
M35
M36
M37
M38
M39

LM
LC
LMC
LMM
LCcC
RM
RC
RMC
RMM
RCC

DIFFERENCES

M40
M4l
M42
M43
Ma4
M45
M46
M4
M48
M49
M50
M51
M52
M53
M54
M57
M58
M59

ON
-8B ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
3 MC ON R
3M ON R
3C ON R
4 ON R
5 ON R
6 ON R-

INADMISSIBILITY SIGNALS

M60
M61
M62
M63

1 EXTRA C ON L
1 EXTRA C ON R
2 EXTRA C ON L
2 EXTRA C ON R

OBJECTS
M70 L BMMMCCC,y R = -
MT1 L -y R = BMMMCCC

PROBLEM
M80 TRANSFORM MTO INTO M71
M109 HIGHEST DEFINED REGIONAL

INTEGERS 0 THRU 99
NO
N1
N2
N3
N4
NS
N6
NT
N8
N9
N10O
N1l
N12
N13
N1l4
N15S
N1lé6
N17
N18
N19
N20
N21
N22
N23
N24
N25
N26
N27
N28
N29
N30
N31
N32
N33
N34
N35S
N36
N37

N38
N39
N4C

N94
N95
N96
N97
N98
N99
N209 HIGHEST DEFINED REGIONAL

LOCAL CONTEXT CELLS
Yl SIGNAL
Y2 CURRENT GOAL
Y3 GOAL TYPE
Y4 TASK ENVIRONMENT
Y5 CURRENT METHOD
Y6 LOCATION OF CURRENT SEGMENT
\ X4 SUPER GOAL
Y9 MOST RECENT SUBGOAL
Y10 EQUAL GOAL, IF EXISTS
Yll EX 1 (LOC)
Ylz2 EX 2 {LOC)
Yl3 TEX 1
Ylé TEX 2
Y15 LOC PROGRAM FOR EX 1
Ylé LOC PROGRAM FOR EX 2
Yi?v DIFFERENCE NET
Yi8 DIFFERENCE TYPE
Y19 ADDITIONAL LOC PROGRAM (INVERTED)
Y20 OPERATQOR
Y21l LOC IN LIST OF RELEVANT OPERATOR
Y22 LIST OF OPERATORS TRIED
Y23 TEST FOR OPERATOR CONDITION
Y24 TEST FOR OPERATOR PRODUCT
Y25 NET OF GOALS
Y26 FINAL TEX
Y271 LOC PROGRAM OF FINAL TEX
Y28 PRIOR SIGNAL IN Y1
Y29 LIST OF LIMIT CRITERIA TO BE USED

LIMITS
Y30 ABSOLUTE NUMBER OF GOALS
Y31 RELATIVE NUMBER OF GOALS
Y32 ABSOLUTE EFFORT (BASE)
Y33 RELATIVE EFFORT (BASE)
Y34 ABSOLUTE DEPTH
Y35 RELATIVE DEPTH
Y36 ABSOLUTE NUMBER OF OBJECTS
Y37 RELATIVE NUMBER OF OBJECTS
Y38 ABSOLUTE NUMBER OF METHOD TRIES
Y39 RELATIVE NUMBER OF METHOD TRIES

Y40
Y4l
Y42
Y43
Y44
Y45
Y46
Y&
Y48

TEMPORARY WURKING CELL
TEMPORARY WORKING CELL
TEMPORARY WORKING CELL
TEMPORARY WORKING CELL
TEMPORARY WORKING CELL
SIGNAL FOR Y11 COPIED
SIGNAL FOR Y12 COPIED
SIGNAL FOR Y20 COPIED
SIGNAL FOR Y84

TASK ENVIRONMENT CELLS

Y51
Y52
Y53
Y54
Y55
Y60
Y61
Y62
Y63
Y64
Y65
Y66
Y617
Y68
Y69
Y70
Y72
Y73

LIST OF OPERATORS

TABLE OF CONNECTIONS

LIST OF IMMEDIATE OPERATORS
LIST OF OBJECTS

LIST OF EQUIVALENCE LISTS
IDENTITY COMPARISON

COMMAND

SIMILARITY TEST, OBJECT SETS
COMPARE OBJECTS

COMPARE OPERATORS

SEARCH FILTER ON OPR CONDITIONS
SEARCH FILTER ON OPR PRODUCT
TEX ADMISSIBILITY TEST
ADMISSIBILITY TESTS TO BE DONE
STANDARDIZATION

SIMILARITY TEST, OPERATORS SET
ADJUSTMENT FUR EX1 (QS1)
ADJUSTMENT FOR EX2 (Q52)

NEW TEX

LOC PROGRAM OF NEW TEX
IDENTICAL TEX

LIST OF DIFFERENCE EXPRESSIONS
CONTENT TYPE OF NEW OBJECT
METHOD LIST

PROPOSED GOAL

TEMPORARY FOR PRIOR GOAL
ATTEMPY RECORD

INCIRECT ROUTINES

Y90
Y91
Y92
Y93
Y94
Y95
Y96
Y97
Y98
YS9
Y100
Y110
Yill
Y130
Y209

EXECUTIVE

MATCH

EVALUATE NEW SUBGOAL

MAKE VARIABLES DISJOUINT

TOP EXECUTIVE

CONSTRUCT GOAL VALUE
SELECTION OF NEW GOAL IN R1O0
SELECTION OF SUBGOAL
DESCRIBE MARKED LIST

SELECYT NEXT DIFFERENCE
EVALUATE EQUIVALENT SUBGOAL
CURRENT DIFFERENCE EXPRESSION
TOP GOAL

COMPLEXITY LIMIT

HIGHEST DEFINED REGIONAL

EXPERIMENTER CELLS

27

9

z20
121
122
123
124
129
130

WORKING
140
141
142
143
144
145
146
147

WORKING
250
51
152

AVAILABLE SPACE LIMIT
ALPHABETIC BLANK

BLANK CELL

TEMPORARY WORKING CELL
TEMPORARY WORKING CELL
TEMPORARY WORKING CELL
TEMPORARY WORKING CELL

CELL FOR SIGNAL INTERPRETER
CRITERION FOR SPACE LEFT

CELLS FOR CONVERSION

HOLDS INTERPRETATION LIST

HOLDS ORIGINAL HEAD

HOLDS HEAD OF CURRENT SUBLIST

LAST LIST CELL OF CURRENT SUBLIST
HOLDS CURRENT CELL OF INPUT LIST
HOLDS INPUT WORKING LIST

PUSHDOWN LIST OF LOC PROGRAM OF 743
HOLDS LOC PROGRAM

CELLS FOR PRINT

HOLDS REFERENCE COL NBR
HOLDS LOC IN FORMAT LIST
HOLDS SIGNAL IF ANY SIGNALS

COMMON WORDS

260
61
262
163
164
165
266
167

GOAL

0 (SUBG
OAL O

F

)

{

REJEC
TEDC

EXPERIMENTER TE CELLS

z80
181

CONVERT

TEX

PRINT TEX

INITIAL SET UP AND MONITORING

290
191
192
194
295
296
2917
198
199
2129

PROGRAM

FOR THIS RUN

TASK FOR THIS RUN

MONITOR
MONITOR
MONITOR
MONITOR
MONITOR
MONITOR
MONITOR
HIGHEST

CHARACTER SYMBOLS

A
B
C
0
E
F
G
I
K
L
M
P
Q
R
)
T
u
v
X
Y
z

SIGNAL

GOAL EXP PRINT (E24)
GOAL NAME PRINT (E25)
IN €2 PRIOR TO RZ
NEW TEX (Q48)

RECORD ATTEMPT {Q6)
LIMITS (Ql)

DEFINED REGIONAL

-135-

Appendix D

FIGURES

Transform A into B

Method K40

R30

R20
ldentical « Goal solved
Match A to B 15 > $30

S12 difference D found

Try immedilate
operators

lSlZ

Create goal:
Reduce D between
A and B

Q27

S40 new subgoal

N
Attempt subgoal Done by Rll
(not part of method)

S30 modified object A' produced

v

Create subgoal:
Transform A' into B

lsuo new subgoal

Attempt subgoal Done by R1ll
(not part of method)

S30 success

Set output for K4O method.

Fig. 1 Rough Flow Diagram for K40 Method.

Reduce D from A to B

Method K42

R32

-» Select the next relevant operator

reject i1f used before
l— _reject if fall preliminary feasibillity test
reject 1f fall preliminary desirabllity test

S35
No more”
operators

Q34

Create operator subgoal

S40 new subgoal

v
Attempt subgoal Done by R1ll
(not part of method)

S30 modified object A! produced

Make A' the result of goal

Fig. 2 Rough Flow Diagram for K42 Method.

Apply R to A
Method K41

R31
Discriminate type
of operator

S61 form operator

R20
Match A to jdentica Q102,Q37 S30 Produce object A!

Prepare
condition form of R. new object{[S131 Produce operator

work 812 found difference D
S10
S1l

ry immediate operators

812 not work

Q27

Create goal:
Reduce D between
A and C (R)

S40 new subgoal

¥
Attempt subgoal Done by R1l1l
(not part of method)
$30 modified object A" produced
or modified operator R"

Q38

Create subgo§1:
Apply R to A
or Apply R" to A

lsuo new subgoal
Attempt subgoal Done by Rll

$30 modified object A" produced (not part of method)
or modified operator R"" produced

R33

If A'", make it the result of goal.
If R'", create subgoal:
Apply R'" to derivation list of A
Set to repeat R33

Rough Flow Diagram for K4l Method.

$32,533,534,539,543,547,5130
dg;———ag-lo > Q6

(9-10)

S43
S47

Q7 581

k’Q2 S50 851

lsg

S50 S51

Q9

lsg

131

S50 S51

)

S40 s42

S1

85282 1v96 —
Q83
1Y30
Q384
S30
s9” {531
$36
S37
538
s131
1322

Q8548
A
Q6

Q8h

S47

Test for limits,
record attempt

Repeat method

Find next method

Try antecedent goal

Test 1f goal 1s at top

Try Gl-expanded goal

Select subgoal for re-
try

Try subgoal

Try method

Fig. 4 R10: Problem-Solving Executive.

__S41 850 S51 S81 -Q3 Obtain next method-segment
(includes first)

N—S46 Q100 Repeat current method-seg-
ment

NS48 Find segment to take next
(S41 or S46)

540 1Y 92 Evaluate new subgoal

S9
Qlok Subgoal rejected (exits S43)

‘89

\—jggL-ﬂYlOO S6 S Evaluate equivalent subgoal
Qll
;SLSUF{ 1Y90 Attempt subgoal
Q82

Si7<S9 832 S34 S130

Fig. 5 Rll: Executive Method until Fall.

Test 1f DE already exists

Compare

GPS Compare for top level

Go down one level

Advance down list

Return one level

Identical

Fig. 6 R20: Match Element by Element, Depth First.

=name s —t—em S10

l=term

T=var — e D14

2=term

2=--+/—.m3 2=var — == D15

2=-varXp7 D18

D16

All 1 terms in 2 ———e=D1
‘+

All 2 terms in 1] —— D2
+

All 2 terms occur at
least as often in 1 ——e=D3

All 1 terms occur at
least as often in 2 ——e=Di

D7t 2=

D5 w—— =connectives
‘+
L1~R2, Rl~ L2
- I
D10 «—t—IR1~ RL2 Llrm — D9
- +

D11 =—t—RL1~ RL2 Legend

EX1
S11 EX2
negative
double negative
variable
negative variable
left subEX
right subEX
similar

Fig. 7 F1: Compare EX1 and EX2.

Test 1f DE already exists

Compare

If beginning, do GPS match

Construct difference ex-
pression

If difference, set to be
provisional

Go down one level

Advance down 1list

S23

Q23 Ascend one level
523

Q92 Combine 1ist of difference
expressions

Fig. 8 R21l: Match with Single Pass
Getting List of Difference Expressions.

EX1 EX2
(RI(T.R)].Q (TVR).R

AN N
A I\

R °
/' \
T R

Y84,/ 3725. Cell holding list

3725/ O List of difference expressions
- (DE's)
9-2

9-1/ 9-10. DE for lefthand side
9-10/ 0
A89
Dga D32 delete from EX1
ABB

Péo P10 = locatlon program "left"
ABT
9-11 9-11/0 9-12/0 Lists of terms
A86 R T
9-12. s1 s1
T R
sS1 S1.
R.

DE for righthand side

D34 = disJoint terms
P11l = location program "right"
9-21/0. 9/22/0 Lists of terms
Q. R.

Fig. 9 Two Matched Expressions.

Q5= Q-le—p Q24

(9-1)

Set up and clean up

all other cases method
fails

ldentical, method suc-
ceeds

something has changed,
rematch

)
Q113

310
S11
S16
520

'

_ S16 519

N - Q27

have DE's, select one

difference, try GPS
immediate operator

difference, try TE immedi-
ate operator

difference, set up subgoal

1Yol

Filg. 10 R30:

Match

Match Gl to G2,

If Not Match Produce K3 (Reduce) Subgoal.

W7

_ S17 - Q114 __._J

k.___iﬂéi___q-1Y99-—-—-J

S0 j

L2 027

S10
511
S16
520

S16 S19 _1vo1

9-900 K111

89 /§s12
1353

Q13

In all other cases method fails

Find operator given by expression

Test for operator applicablility

Try immediate operators

If still difference, set up subgoal

Try direct operator

Try immediate operators

If still difference, set up subgoal

If a form operator, set up for match

In all other cases method fails

If match, prepare output if product undetermined

Produce product
If something has changed, rematch
If have DE's, select one

If difference, try immedlate operators

If still difference, set up subgoal

Try GPS immediate operators
If aifference, try TE immediate Operators

Record result

FPig. 11 R31: Try Operator, If Not Work Produce K3 (Reduce) Subgoal,

Q30> 9-100——p Q24

(9-100)

____S63

- Q31

S9
S

1Y20)
S9

- Q31

131

Q3232
1s1

Q33252

§s1
Q34

Set up and clean up

In all other cases impossible

Find next untried operator
(direct)

Execute direct operator

Find next untried operator

Filter on condition

Filter on product

Create operator goal

Fig. 12 R32: Find Next Untried Relevant Operator
and Produce K2 Goal.

~147-~

REFERENCES

Newell, Allen, and H. A. Simon, The Logic Theory Machilne:
A Complex Information Processing System, The RAND
Corporation, P-003d, publlished also in IRE Transaction
on Information Theory, Vol. IT-2, No. 3, September 1956,

pp. 61-79.

Newell, Allen, H. A, Simon, and J. C. Shaw, Empirical
Explorations of the L%ggp Theory Machine: ~A Case Study
in Heuristics, The RAND Corporation, P-951, published
also in Proceedings of the 1957 Western Joint Computer
Conference, February 1957, pp. 216-230.

Newell, Allen, and J. C. Shaw, Programming the Logic
Theory Machine, The RAND Corporation, P-954, published
also 1n Proceedings of the 1957 Western Joint Computer
Conference, February 1957, pp. 230-240.

Newell, Allen, J. C. Shaw, and H. A. Simon, "Preliminary
Description of General Problem-Solving Program--I
(GPS-1)," CIP Working Paper No. 7, December 1957.

Newell, Allen, J. C. Shaw, and H. A. Simon, Report on a
General Problem-Solving Program for a Computer, The RAND
Corporation, P-1584, also published in Information
Processing: Proceedings of the International Conference
on Information Processing, UNESCO, June 1959, Paris,
1960, pp. 250-2064, and in Computers and Automation, July
1959.

Newell, Allen, Some Problems of Basic Organization in
Problem-Solving Programs, The RAND Corporation, RM-3283,
December 1902.

Newell, Allen, J. C. Shaw, and H. A. Simon, The Process
of Creative Thinking, The RAND Corporation, P-1320,
September 19503.

Newell, Allen, and H. A. Simon, The Simulation of Human
Thought, The RAND Corporation, P-1734 and RM-2506, also
published in Current Trends in Psychological Theory,
University of Pittsburgh, 1961, pp. 152-170.

Newell, Allen, and H. A. Simon, GPS, A Program that
Simulates Human Thought, The RAND Corporation, P-2257,
also pupblished in Lernende Automaten, H. Billings (ed.),
(Proceedings of a Conference at Karlsruhe, Germany,
April 1961), Oldenbourg, Munich, 1961, pp. 109-124.

Newell, Allen, and H. A. Simon, Computer Simulation of
Human Thought, The RAND Corporation, P-22706, also pub-
Iished 1in Science, Vol. 134, No. 3495, December 1961,
pp. 2011-2017. '

-148-

Newell, Allen, and H. A. Simon, Computer Simulation and
Human Thinking and Problem-Solving, The RAND Corporation,
P-2312, also published in Management and the Computer
Future, M. Greenburger (ed.), Wiley, 1962, pp. 95-13l.

Newell, Allen, J. C. Shaw, and H. A, Simon, A Variety of
Intelligent Learning in a General Problem-Solver, The
RAND Corporation, P-1742, also published in Self-Organ-
izing Systems, M. C. Yovits, and S. Cameron (eds.),
Pergamon, 1960, pp. 153-189.

Simon, H. A., Experiment with the Heuristic Compiler, The
RAND Corporation, P-2343, June 1901.

Newell, Allen (ed.), Information Processing Language V
Manual, The RAND Corporation, F-1897 and P-19018, also
published by Prentice-Hall, 1961.

Moore, O. K., and S. B. Anderson, "Modern Logic and Tasks
for Experiments on Problem-Solving," Journal of
Psychology, Vol. 38, 1954, pp. 151-160.

