
MEMORANDUM
RM-3337-PR
FEBRUARY 1963

A GUIDE TO THE GENERAL
PROBLEM-SOLVER PROGRAM GPS-2-2

Allen Newell

PREPARED FOR

UNITED STATES AIR FORCE PROJECT RAND

7/k K-H \jfrtpwaXioH
SANTA MONICA " CALIFORNIA

MEMORANDUM
RM-3337-PR
FEBRUARY 1963

A GUIDE TO THE GENERAL
PROBLEM-SOLVER PROGRAM GPS-2-2

Allen Newell

This research is sponsored by the United States Air Force under Project RAND —
contract No AF 49 (638) -700 monitored by the Directorate of Development Planning,
Deputy Chief of Staff, Research and Development, Hq USAF. Views or conclusions
contained in this Memorandum should not be interpreted as representing the official
opinion or policy of the United States Air Force. Permission to quote from or repro-

duceTortious oi this Memorandum must be obtained from The RAND Corporation.

1700 MAIN ST " SANTA MONICA " CALIFORNIA
7/fc K-H I I V&>*?»**&>«

111

PREFACE

This Memorandum provides a detailed account of the
internal structure of a problem-solving program, the
General Problem-Solver (GPS). This program in its various
versions has been one central part of work at RAND on
artificial intelligence and simulation of cognitive pro-
cesses during the past five years. Although GPS has been
reported on many times, there has never been a completely
adequate account of Its detailed structure. This Memo-
randum attempts to fill this gap.

This guide will be of use only to those who are
deeply and technically concerned with the problems of pro-
gramming complex systems. It is essentially a reference
document which provides a level of description which is

normally unavailable in the field of complex programs.
The general field of artificial Intelligence and

information processing psychology, to which this Memo-

randum is contributory, aims at understanding the complex

information processes that underlie man's ability to solve

problems, learn, adapt, and create. Prom a scientific
viewpoint, such activities are intrinsically worthwhile;
from an applied viewpoint they form the essential basis
for increasing the sophistication and eventual effectiveness
of our large command and control systems.

GPS in its various forms and guises is the joint

work of J. C Shaw of RAND, H. A. Simon, and the author.

The latter two are members of the faculty of the Carnegie

Institute of Technology, and consultants to The RAND
Corporation.

SUMMARY

The General Problem-Solver (GPS) Is a computer pro-
gram being used for explorations into both the general
mechanisms involved in problem-solving and the way humans
solve problems. The program has existed in several ver-
sions since it was first developed in 1957. This
Memorandum is a guide to the detailed structure of one of
the versions, GPS-2-2, It assumes a substantial knowledge
of IPL-V, the programming language in which GPS is written,
and a general knowledge of GPS as it has been described
in the published literature. It is also meant to be used
in conjunction with an assembly listing of the program,
but can be used alone.

After the Introduction, Sec. II gives the gross
topography of the program. It also includes a run-through

of a simple problem to put the parts in context. Section
111 discusses the various data structures used in GPS:
goals, expressions, derivation lists, operators, location
programs, and differences. Section IV is devoted to a
detailed description of the subroutine hierarchy, working
from the top executive down through the technique of

method interpretation to a consideration of each method
and method segment. Section V describes the Experimenter;

i.e., the embedding program used to put GPS into operation

and to output selected aspects of its performance. Section
VI takes up the information provided for each task envi-

ronment. For GPS-2-2 these are Logic, and Missionaries
and Cannibals. In addition there is a description of how
a new task environment might be added to GPS . Four ap-
pendices provide additional specific data on the program.

-VII-

CONTENTS

PREFACE iii

SUMMARY v

Section
I . INTRODUCTION 1

11 . GENERAL STRUCTURE OF THE PROGRAM 4
Regions 4
GPS-Core 5
Task Environment 6
Experimenter 8
Additions to the Basic System 8
Signal System 9
A Tour Through a Simple Problem 11

111 . DATA STRUCTURES 24
Content Type 24
Goals 24

Goal Types 25
Goal Sufficiency 26
Goal Repeatability 26
Goal Context 27
Goal Creation and Destruction 28
Goal Identity Test 28
Goal Duplication vs . Equivalence 29
Goal Modification 30

Expressions and Objects 30
Structures of TEX's and EX's 31
Creation and Destruction of TEX's 33

Derivation Lists 35
Operators 36

Form Operators 36
Expressions for Operators 37
Direct Operators 37

Location Programs 38
Inputs Are Locations Not Names of EX's.. 39
Structure of Location Programs 39
Location Program Reference Tree -

Absolute 40
Location Program Reference Tree -

Relative 4l
Differences 42

IV. ROUTINE STRUCTURES 43
Top Executive 43
Problem-Solving Executive 43

Centralization of Decision-Making 43

-VIII-

Control Techniques to Handle
Centralization 45

Structure of RIO 46
Antecedent Goal 46
Gl - Expanded Goal 47
Lower Goal Selection 48
Execution of Selected Attempt 49
Recording Attempts 51

Method Execution and Rll 51
Methods and Method Status 51
Method Structure : Segments 52
Method Interpretation : Rll 52
Goal Values and Goal Evaluation 55
Goal Values 55
Goal Evaluation 56

Matching 56
R2O Match 57
Housekeeping for Match 57
R2l Match 6l
Combination of Differences: Q92 63

The Match Method for Transform Goals
(K4O) 65
The Method 66
Match #1 to #2: Segment R3O 66
Immediate Operators 66
Create Subgoal 69
Rematchlng 69
Difference Selection 70
Create Modified Transform Goal:

Segment Q2B 70
Final Segment : Qll6 70

The Try Operator Method for Apply Goals
(K4l) 71
The Method 71
Discriminate Type of Operator:

Segment R3l 72
Form Operators with One Input 72
Form Operators with Two Inputs 74
Create Modified Apply Goal:

Segment Q3B 75
Final Segment: R33: Transferring Re-

sult (Q29) or Creating New Apply
Goal (Q103) 76

The Find Relevant Operator Method for
Reduce Goals (K42) 76
The Method 77
Find Operator: Segment R32 77
Find Next Untried Operator 79
Filters 79
Transferring Result: Segment Q29 79
Repeatability of Method 79

-IX-

The Transfer Equivalent Result Method
for All Goals (K43) 80
Single Segment: Q7O 80
Blocking the Method 8l

V . THE EXPERIMENTER §2
Input Conversion and Setup o2

Set Up Trivia: El382
TE Conversion 83
Goal Conversion 83
TEX Conversion : E2l 84
Conversion of Parenthetical Expres-

sions 84
Output and Debugging 86

Behavior Trace 86
Printing Formats 87
Debugging Facilities 88

Set Up for Running 89
Assemblies and Modifications 89
Spec Sheet 89

Auxiliary Storage 90
VI . TASK ENVIRONMENTS 91

Symbolic Logic TE (K7O) 91
Types of Information 91
Differences and Associated Structures. 91
Multiple Negation Signs 92
Filters and Similarity Tests 93

Missionaries and Cannibals TE (M19)..... 93
Types of Information 93
Admissibility Test 94
External Task Space: Top Executive

Rl 95
Adding New Task Environments 96

Difference Ordering : KBl 97
List of Variables: KB2 97
Difference Print List: KB4 98
Convert TEX: ZBO 98
Multiple Operands 99
Print TEX: ZBl 99
List of Operators: Y5l 100
Numerical Calculation 100
Table of Connections: Y52 101
List of Immediate Operators: Y53 101
List of Objects: Y54 102
Identity Comparison : Y6O 102
Similarity Test for Object Sets: Y62. 102
Compare Objects: Y63. 103
Compare Operators : Y64 103
Search Filter on Operator Conditions:

Y65 104
Standardization : Y69 104

-X-

Similarity Test for Operator Sets:
Y7O 104

Adjustment for EXI (Q5l): Y72 104
Adjustment for EX2 (Q52): Y73 104
Summary 105

Appendix
A. GPS RUN ON "R. (-PIQ) INTO (QVP).R" 107

Specification Sheet 107
Trace of Problem Run 108

B. GPS-2-2 VOCABULARY (ROUTINES) 109

C. GPS-2-2 VOCABULARY (DATA) 121

D. FIGURES 135

REFERENCES 147

1

I. INTRODUCTION

The General Problem-Solver (GPS) is a computer program
being used for explorations both into the general mechan-
isms involved in problem-solving and into the way humans

solve problems . As its name indicates, there is both an

aspiration that GPS should be capable of handling a wide
range of tasks and the fact the GPS's organization is

task independent in many respects.

GPS grew out of The Logic Theory Machine, v ~" a
program for proving theorems in the sentential calculus
of Whitehead and Russell. The first version, called
GPS-1, was coded In IPL-IV for JOHNNIAC .^ ' The most
complete description of GPS existing in the published

literature is the "Report on a General Problem-solving
Program for a Computer,"^-s''5 '' which gives only the highest
level organization. A discussion of some organizational
issues arising in GPS will be found in "Some Problems of

(6)
Basic Organization in Problem-solving Programs."^ ' GPS

has been discussed in several other papers in connection
with its use as a simulation of human thought^'" ' and

in an investigation of learning.^ ' A recent paper*'
also discusses the first steps in getting GPS to program

by constructing an independent, GPS-llke program called

the Heuristic Coder.
GPS rapidly outgrew the small storage capacity of

JOHNNIAC (4096 words), and was recoded in IPL-V to run on

the 704-709-7090 series machines, which have 32,576 words
of fast storage. The new program was called GPS-2-1.

Functionally it was almost identical to GPS-1, but sub-
stantial organizational changes were made. The change to
GPS-2-2 involved somewhat smaller organizational changes,

but required a separate designation, since both versions
were running at the same time. This document is a de-

scription of the structure of GPS-2-2. GPS-2-1 is not

■2

separately documented and is no longer a functioning pro-

gram. Additional versions, GPS-2-3 and GPS-2-4, now exist

They involve more substantial organizational changes from

GPS-2-2, and will be documented separately.

This document is a guide to someone trying to under-

stand the GPS program in detail; it is not written as a

general introduction. It assumes knowledge of IPL-V
and the published general descriptions of GPS. Thus, the

user of this guide should already understand that GPS uses

goals of three types in a recursive way to build up a hi-

erarchical goal tree for the problem at hand; and he

should understand in a general way the nature of the meth-
ods that generate this tree and the devices that are used

to prune the tree. He will find in this guide numerous
additional mechanisms that are unmentioned in the pub-

lished papers.
IPL-V is written in a vertical format with specific

fields assigned to various parts of the IPL words. We

will adopt a convention here that will allow us to write
IPL code without specifically assigning fields on the
page. We use a slash (/) to separate NAME from PQ SYMB

and a period (.) to separate PQ SYMB from LINK. Thus the
following IPL program would be transcribed as shown below

NAME PQ SYMB LINK
P7 10 L 510 L5

P4
11 WO

J2
70 9-1 9-2

9-2 P5
P6 P8

9-1 P9 0

P7/ 10L5
P4

11W0
J2

709-1.9-2
9-2/ P5 nP6.PB
9-1/ P9.0

3

We will use an equals sign (=) to indicate an integer data
term; e.g., 9-I=s means that 9-1 is the name of data term
integer 5. (We will have no occasion to use the other
types of data terms .)

4

11. GENERAL STRUCTURE OF THE PROGRAM

REGIONS

The total program is divided into several parts: the
Experimenter, the GPS-Core, and the various specialized
parts for each task environment. Each part uses symbols

from different regions for its routines and data. One

rough picture of the total program is obtained by giving

a schematic division of the 32K store into the separate

parts, showing the different regions and their functions.

The amount of space devoted to a part and the number of

separate entities is necessarily approximate, since the
program is under continual modification. It also Includes
numerous alternative versions of routines and lists.

GPS-Core: 4700 words

A: General attributes (50) (one word
per attribute)

G: Goal attributes (50) (one word
per attribute)

P: Basic routines (70) (1200 words)
Q: V cell routines (lOO) (2500 words)
R: Top level routines (10) (500 words)
X: Constants and lists (60) (300 words)
V: Local context working cells (lOO)

Logic Task Environment: 2100 words

F: Routines (20) (900 words)
C: Constants and lists (50) (400 words)
D: Differences (50)
B: Operators and objects (80) (800 words)

Missionaries and Cannibals Task Environment:
900 words

M: Routines (10) (600 words)
M: Data (20) (300 words)

Experimenter: 1100 words

E: Routines (50) (900 words)
L: Lists (30) (100 words)
Z: Cells and constants (100)

■5

Additional Basic System: 200 words

I: Routines (lO) (50 words)
S: Signals (100) (one word per signal)
N: Integers (lOO)

IPL-V System: 7000 words

H: Basic communication cells (lO)
J: Primitive routines (200)
W: Working cells (30)

Working Space: 16.000 (less after set up,
conversion, etc.)

Goals run about 100-150 words per goal
Expressions (in logic) run about 30 words

per expression

GPS-CORE

The data structures that GPS uses are expressions,
which describe the objects GPS wishes to manipulate; and
goals, which describe the situations GPS wishes to obtain.
(There are also a few miscellaneous structures.) These
are described by numerous attributes. G-symbols (e.g.,
Gl, G25) are used for attributes that are peculiar to
goals; A-symbols are used for all other attributes. All
A-symbols and G-symbols define routines of identical form-

for example: Al/ 10A1.J10. Thus executing Al on the

name of an expression will retrieve the value of attribute
Al on the description list of that expression. The situ-

ation is similar with the G-symbols, except they check to

see if the goal is stored on auxiliary storage.

GPS is always In the context of attempting a single

specific goal. The goals form a hierarchical network,
so that one may visualize the program in operation as
located at some one node of this network. Depending on
the result of problem-solving activity on this current

goal, the program will move to another goal; e.g., back

up to the supergoal, down to a newly created subgoal, and
so on.

6

The Y-cells hold the Immediate context. That is,
they hold the information pertinent to the current goal
that is being attempted. Each Y-cell has a specific func-
tion. For example, Y2 holds the name of the current
goal, Y3 holds its type, and so on. Each Y-cell holds
only a single symbol, so that when one says, for example,

"the goal In Y7" or "the expression in Yl3" one means the
list structure whose name is in the cell Y7 or Yl3, respec
tively. (Y-cells are occasionally pushed down on a
temporary basis within a single Q-routine, but this is a
local matter, not within the cognizance of the system
conventions.) Thus, the gross action of the program is
to get into the context of a goal by setting the Y-cells
appropriately; to engage in some problem-solving activity,
working In and out of the Y-cells; to record the Infor-
mation that should be kept permanently in the goal
structure; and to leave this goal context for another one.

The routines of the core are divided according to
their relation to the Y-cells. At the top level there are
R-routines. These are independent of the V's and follow
a special set of coding conventions. Next come the Q-
routines. These routines take their inputs from the Y-
cells and put their outputs back in the Y-cells. Thus,
the R-routines use the Q-routines in order to accomplish
all their actions. Finally, there are the P-routines.
These are general purpose routines that take their inputs
from HO and put their outputs in HO. They know nothing
of the Y-cells either. (A major purpose of this division
is to guarantee that Y-cells are safe over P-routines.)

TASK ENVIRONMENT

Basic to the current version of GPS is the assumption
that problems or tasks can be grouped into large classes
which are homogeneous with respect to the particular facts,

■7

heuristics, operations, etc., required to solve them.
Thus, there Is a collection of particulars that make up
"knowing about chess" or "knowing about symbolic logic";
if these are known, then many problems about chess (or
symbolic logic) can be posed and attempted. GPS-Core
makes no reference to such particulars. It knows only
about "objects" and "operators" in the abstract; e.g.,
that there are differences between objects, that two ob-
jects can be put into correspondence, and so on. The
additional program and data needed to complete GPS so that
it can work on tasks of a given class Is called a task
environment part . The symbolic logic task environment
part, for example, consists of routines that accomplish

input and output conversions;
expressions to determine what
that perform similarity tests
data structures for the table
ators, and logic expressions.

routines that compare two
differences hold; routines
and identity tests; and

of connections, the oper-

The Missionaries and

Cannibals task environment, the other environment that
exists in GPS-2-2 in completed form, is similar in struc-
ture. Its principal addition is a routine for accomplishing

the basic operators (M22), since these are not conveniently

expressible as forms of the same kind used in symbolic

logic.

It Is assumed that the routines of a task environment

know about the Y-cells and accomplish their functions by

working directly into and out of Y-cells. They may use
the P-routlnes as subprocesses , but may not use either the

Q- or R-routines.
The information for each task environment is given

by a list (K7O for 0. K. Moore symbolic logic, Ml 9 for

Missionaries and Cannibals). GPS always works in the con-
text of a single task environment (TE), given in Y4.
There is a routine, Q79, which changes TE's. To be in

8

context for a TE means to have all the routines and data

for that TE available (currently localized to Y5O-Y79,
KBO-KB9, and ZBO-ZB9). ATE list is formed as a list of

pairs: the name of the cell that should hold a given type

of information followed by the symbol It should hold for

this TE. Q79 accomplishes the function of changing to a

new TE, including blanking out all the cells from the old

TE (by putting K92 in the cell), so that old routines and

data will not be spuriously used.

EXPERIMENTER

Besides the problem-solver, which consists of GPS-

Core plus the TE parts, there is another part of the
program, called the Experimenter, whose function is to

handle input and output conversions; to make the initial
setup; to present GPS with the problems we wish it to
attempt; to provide GPS with any appropriate "external en-
vironment" (such as the autonomous play of an opponent);
and to monitor the activity of GPS for any debugging or
performance data. The Experimenter has its own routines

(E-routines) and its own lists (L's) and its own cells and

constants (Z's). Insofar as these occur in P-, Q-, and R-

routines, they Indicate monitor and output functions and
have nothing to do with the problem-solving activity.

ADDITIONS TO THE BASIC SYSTEM

GPS is coded in IPL-V and uses the basic set of J-
routines already available. The only additions to this
are a universal set of symbols for positive integers (Nx
for integer x); a few scattered P-routines, which accom-
plish basic lists processes (such as P6O/ J74.J136, copy

and make local); a couple of routines (120, 121) for
handling the assembly and correction procedures; and the
signal system. This latter is sufficiently important to

be described in detail.

9

SIGNAL SYSTEM

The purpose of the signal system is to allow a sym-

bolized multi-way branch as a basic coding operation.
Imagine a routine, say R2O, accomplishing some function

and leaving in a special cell (the signal cell) one of

several symbols, say SlO, Sll, Sl2, Sl6, SlB, or 523.
Each of these indicates that some particular generalized

outcome has occurred. We now want to transfer to dif-

ferent routines depending on which outcome happened. As
a flow diagram, we might write:

R2O

SlO/Sll / Sl2 Sl6\ Sl^^.
-ST 323/ \

In IPL-V terms we can think of following the execution of

R2O with a list of pairs, the first symbol giving the
signal (S-symbol) and the second giving the location to
transfer to:

9-1/ R20.9-2
9-2/ II

SlO
9-10
Sll
9-11
Sl2
9-12
Sl6
9-13
SlB
9-14
523
915.0

We can visualize the execution of this structure pro-

ceeding as follows. Instruction 9-1 is executed. This

leads to R2O being executed, resulting In a signal, say

Sl2, being put in the signal cell. Having finished R2O,

10

the next instruction to be executed is 9-2, which leads to

the execution of 11. II now goes to HI, the current in-

struction address list, and recovers the symbol 9-2. It

then searches down 9-2 looking for the symbol that matches

the symbol in the signal cell (Sl2). This search is es-
sentially J10: find the value of an attribute on a
description list. In this case the value of Sl2 is the

symbol 9-12. II removes 9-2 from HI, since the list 9-2
should not be executed as a string of instructions, and

puts 9-12 into HI In such a way that the next instruction
that is picked up for execution is 9-12. (The routines
that manipulate HI [19 and 119lmust really be considered

additions to the IPL-V basic system, since they imply de-

tailed knowledge of how the IPL-V interpreter works.) If

the signal is not found in the list, a special signal, S9,

is used to stand for "in all other cases," and a search
is made to see if S9 is on the list. If S9 is not on the

list, then II behaves like JO.o—that is, the routine (at
this level) terminates.

All S-symbols are signals. The signal cell is Yl

and all S-symbols are defined as routines which put their
name into Yl:

Sl2/ 10S12
20Y1 .0

It is sometimes desirable to take a multi-way branch on
some other class of symbols than the signals. Thus, 12

Is a routine analogous to 11, but taking its symbol from

VlB, which contains the current difference symbol. This

permits a discrimination on the difference that is being

considered. Similarly 13 takes its symbol from Y3, which

contains the goal type, and 14 takes its symbol from YB5,
which contains the expression type.

Besides 11, 12, etc., the routines 111, 112, etc.,

are also defined. 11l is identical to 11, except that in

11

ll the signal is recorded for output (via the monitor
routine, E7O, in Z92) whereas in 111, It is not. The sit-

uation is similar for the others.

A TOUR THROUGH A SIMPLE PROBLEM

To provide an overview of the operation of the pro-

gram, its behavior on a simple problem will be described.
All the information in this subsection is described in
more detail elsewhere, so that only the single thread that
GPS follows need be outlined.

The problem is C36, Transform R.(-PIQ) into (QVP).R.
A trace of the program's behavior is given in Appendix A.
The first page is a list of specifications; the only part

that concerns us here is the task environment part, speci-

fied to be K7O, and the task, specified to be C36.
The program starts at E2. This is the top executive

of the experimenter and oversees the conversion of all the
Inputs into internal form (including the assignment of
names like Rl to operators and Ll to objects). By the
time the trace begins to print, all the conversion of
goals, operators, and objects has been completed and E2
has fired R2, which is the top executive of GPS-Core. The
number at the far right shows that 35,592 IPL cycles have
already gone by. R2 prints out the two expressions, the
goal expression, and sets up three derivation lists. These

lists hold the names of expressions that have been derived

from a common source. Thus, list 28 now holds Ll. As

soon as some operator Is applied to Ll to produce a new
expression, then the name of this expression is put on 28.
Adding to 28 is essentially working forward; adding to 29
is working backward (not done in this run). All the oper-

ators are on list 30, and any new operators that are
generated (not done in this run) would be put on list 30
as well. R2 also sets a limit to the complexity of the ex-

pressions that GPS will consider (which does not affect

behavior in this run).

12

At this point, R2 executes the main problem-solving
executive, RIO. From here on the trace gives a blow-by-

blow account of all the decisions that are made. The
lines of symbols that run across the page are the signals

that occur at each point in the higher programs and that
are used to control the transfers (see the earlier section
on the signal system). The names of the R-routines are
also recorded In the "signal line" to make it easier to
keep track of what decisions are occurring. In the

appendices, along with the run, is a series of flow

diagrams for these higher routines . They should be con-
sulted as we go through the behavior.

At the moment when RIO takes over, Goal 1 (C36) Is
the current goal (it is also the only goal). Thus, Its
name Is in cell Y2, and as long as we are working on it
directly, various information about it will occupy other
Y-cells. Most of these are blank at the moment, since
nothing has happened yet .

Consulting the flow diagram for RIO we see that we
enter at Ql . Ql tests if the "external limits" are viola-

ted—either too many cycles or too great a depth in the

goal tree. The signal (in Yl) was originally set by R2
to be S5O; if either of these limits had been violated Ql
would have changed the signal (to either 572 or 574) .
What we observe in the signal line of the trace is an

S5O right after "RIO." This is the signal that existed
after Ql; thus no limits were violated and the next Q-
routine to be executed is Q2.

Q2 finds the next method. There is a list of methods
associated with each goal, consisting of the method name
followed by a status symbol, which shows whether the
method has been used with the goal, whether it can still
be used, etc. In this case, of course, no methods have
been- tried at all and method K4O is chosen. Its status
(S5O) is made the signal, so that on the trace we see a
second S5O just before we go into Rll.

13

%"

A method Is not a program; Instead It is a list of
method-segments. Each segment is a routine. Rll is the

program that executes these segments and interprets the
signals that are sent back from them. Method K4O is the

method that matches two expressions against each other
and sets up subgoals to reduce the difference between them.

In Fig. 1* we give a flow diagram that is similar to the
ones in the published papers but containing more detail.

Rll first detects that the signal is S5O, which indi-
cates that it is to perform the first segment of the

method, R3O. This segment sets the two expressions to be
matched, Ll and LO, Into the Y-cells and then calls on the
match routine proper (R2O) to match them. R2O reads the

signal, Sl9, which tells it that it is at the beginning

of a match. This leads It (see R2o's flow diagram) to

Q47, which checks that the match is between two objects

(which it is), rather than between, say, an object and a
set of objects. No difference being found, the output is
S2O, which means, "I have a point of correspondence between
two objects which needs comparison," and leads to Q2O.
The total match proceeds by a series of comparisons as
the various parts of the two expressions are brought into
correspondence. At this point, the total expressions are
being compared; i.e., the connective (here both dot), the
sign of the total expressions (here both positive), whether

both expressions have the same letters (here both have one

occurrence each of P, Q, and R), and whether their arrange-

ment is the same. On this last a difference is found, in

that the left of Ll has R, whereas no R occurs on the left

of LO but does occur on its right, and analogously with

P and Q. Thus, R2O finds that a diff.erence in position,

*All figures, in addition to appearing in the text,
are reproduced together In Appendix D.

14

Goal solved
S3O

(not part of method)

S3O modified object A' produced

Qll6
Set output for K4O method.

Fig. 1 Rough Flow Diagram for K4O Method.

Attempt subgoal Done by Rll

■ ■

>rS4O new subgoal
Attempt subgoal Done by Rll

(not part of method)

S3O success
vl — 1

15

D9, exists at the top level of the expressions. This
causes the signal to be set to Sl2, and since Sl2 Is not

in the discrimination list of R2O, R2O quits at this point
and control returns to R3O.

The response of R3O to Sl2 is not to set up a sub-
goal, but to see if there are any "immediate operators"
that might take care of the difference right away. An
immediate operator is pragmatically defined as a course
of action that is guaranteed to remove the difference with-
out further caution. Examples from this logic task are
substitution and the elimination of double negation signs

(such as P into P). To this end GPS discriminates on
the difference symbol (D9) which is in VlB (and shows in
the trace). This occurs twice, once for GPS-Core immedi-

ate operators and once for logic operators, but with no
success. Hence R3O is led to Q27, which is the routine
for creating the subgoal of reducing the position dif-

ference between Ll and LO. All the information for
creating this goal is sitting in the Y-cells —the names of

the objects, the difference symbols, the names of other

goals to which this new goal should be linked, and so on.
This first segment of the K4O method ends at this point

with Q27 setting the signal to be S40—there is a new sub-

goal created. However, before Q27 could set S4O it had

to check whether this new goal was like any other goal in

the memory. In this case there was only Goal 1 to worry

about, and Goal 2 was indeed found to be a new one.
At this point we are back in Rll, having performed

the first segment. The decision to work on the subgoal

is not part of the method, but is made by Rll using the

routine in Y92 (which happens to be Q74, as can be seen

from the initial sheet of specifications). The result of

this goal evaluation is SB, which means "undefined," and

can be interpreted as saying that no goals could be found

16

against which to compare Goal 2. Rll interprets this to

imply that Goal 2 should be tried, so it is led to execute
the problem-solving executive in Y9O (which is RIO) on
Goal 2. This requires, first of all, that GPS get out of

the context of Goal 1 and Into that of Goal 2; QBl, which
immediately precedes IY9O in Rll, accomplishes this.
Later on, when this attempt at Goal 2 Is over, QB2 will
perform the task of bringing GPS back into the context of
Goal 1. This change of goal contexts involves changing
the contents of the Y-cells.

The cycle now starts over with Goal 2. RIO first
checks the external limits (Ql) and gets SSO; It then
obtains a method and finds an untried one (S50); it then

goes to Rll to carry out this method. This method, K42,
is given in Fig. 2. Its first segment, which is now exe-
cuted by Rll, is R32. It consists of finding a relevant
operator to apply. The Initial selection is done from

the table of connections, where the difference (here D9)
is used to select a sublist of relevant operators. These
are subjected to some additional tests. First, they

should not have been used before. There is a list of
used operators on the goal against which to check; at this
stage, of course, none have been used. Then each operator
is subjected to a preliminary test of feasibility. This
test requires , among other things , that the connectives
of the operator and the expression agree. Ll has a dot

main connective, so that one form of Rl (AVB => BVA) Is
rejected but the second form (A.B ==> B.A) is accepted.

This can all be seen In the signal line of the trace,
where the 569 shows that we are dealing with form opera-
tors (as opposed to various other kinds of operators that
are possible); the first SI S2 shows the selection of the
AVB rule as untried (SI = OK) and its rejection as infea-
sible (S2 = reject); and the next SI SI shows the selection

17

Reduce D from A to B

Method K42

Select the next relevant operator
reject if used before
reject if fail preliminary feasibility test
reject if fail preliminary desirability test

Fig. 2 Rough Flow Diagram for K42 Method.

R32

Q34
Create operator subgoal

S4O new subgoal

Attempt subgoal Done by Rll
(not part of method)

S3O modified object A 1 produced

V

18

)

of the A.B form and its acceptance on the feasibility

test. The last SI before R32 quits is a preliminary test

for desirability, which in this case is vacuous and auto-

matically SI. At this point, R32 is prepared to put

together a subgoal to apply this form of Rl to Ll. This

is again checked to see if It has been created earlier,

and the answer being in the negative, a signal S4O (new
subgoal) is set.

We are again back in Rll, which reads the S4O and

evaluates the subgoal to see if it wants to do it. Again

the result of the evaluation is S8; however, this time it

stems from the fact that only reduce goals can be evalu-

ated, since they are the only ones that have differences.

Hence, all transform and apply goals are automatically

evaluated SB, which is interpreted to mean "try it."
Rll executes QBl and then IY9O which leads to the

second recursion of RIO, this time on Goal 3. Repeating

the cycle of three Sso's we are again in Rll executing

the first segment of the method K4l for trying to apply an
operator. A flow diagram is shown in Fig. 3- The method

for applying operators is somewhat more complicated than
the other methods for two reasons. First, operators are
of various types —some are forms, some are IPL programs,

some have side conditions, and so on. Hence the first

step is to discriminate which kind of operator is being

applied; the S6l indicates we are working with a form
operator. (The alternatives have been left out of Fig. 3-
Second, operators can have more than one input. This

leads to a host of complications, which show up in Fig. 3
as the production of modified operators rather than modi-

fied objects. Since no multiple input operators are used

in this simple problem, we will ignore these various

alternatives; however, it seemed necessary to put them

into the figure.

19

Method K4l

Fig. 3 Rough Flow Diagram for K4l Method.

Apply R to A

Q3B
Create subgoal:
Apply R to A"
or Apply R" to A

S4O new subgoal
Attempt subgoal Done by Rll

, . _ ,11 j j (not part of method;
S3O modified object A produced v

or modified operator R" produced
J_ — r

R33

If A'", make it the result of goal.
If R'", create subgoal:

Apply R 1 " to derivation list of A
Set to repeat R33

20

A form operator is applied by matching the Input

expression against the condition form of the operator;

i.e., R.(-PIQ) against A.B. This not only verifies that
the conditions of the operator are satisfied (that the
connective is a dot), but also gathers the information
necessary to produce the new expression; i.e., A is R and
Bis -PIQ. If the match (R2O) is followed through on the
signal line, it will be seen that difference Dl5Is found
twice. Dl 5stands for a variable versus an expression;
it is one of the differences for which GPS has an immediate
operator. Consequently, after R2O sets Sl2, R3l finds the
substitution operator, performs it, gets the Sl2 changed

to SlO (i.e., after substitution this part of the expres-
sion must be identical), and returns to the match routine.

At the end, after the two substitutions, the condition
form and the input expression are identical (S10) and so
R3l gets Q37 to produce the new expression from the output

form (here, B.A) which has now been filled in. Thus L 2
is produced, and Goal 3 has been attained.

Before L2was printed out as the result of Goal 3,

a check was made to see if the expression, (-PIQ).R, had
already been derived. This was done by checking each of

the expressions on the derivation list (#2B). In this
case there was only Ll, and so L2was a new expression
and L2was added to the list.

At this point in the signal line, we have S3O, Indi-

cating that Goal 3 was attained. This is detected by

Rll, serving as a signal for it to quit, and by RIO,
serving as a signal for it to quit. GPS then returns to
Goal 2, as indicated in the signal line, and is back in
Rll. The 'Goal 2' Is actually printed by QB2 in Rll,
which changes the goal context. Rll detects the S3O and

sets S4B, which is the sign that the subgoal in the method
succeeded and that the next segment is to be obtained.
(This takes an additional turn around the main Rll loop,

21

slnce it must be determined whether to go on to the next
method segment [S4l, which occurs here], or to repeat the
previous segment [546] .)

From the flow diagram for method K42, we see that
the next segment is just the trivial step of assigning

L2to be the result of Goal 2. Thus Goal 2 has been at-
tained, and again S3O (success) is detected by both Rll
and RIO, so that GPS returns to the context of Goal 1.
Again Rll goes through the motions of detecting the S3O,

setting S4B, and finding that it wants to go to the next
segment of method K4O. This segment is Q2B, which creates
the goal of going from L2to LO; i.e., the rest of the
way after L 2(presumably) has taken the first step of
eliminating the difference in position.

At this stage, we are back to familiar ground. The

pattern of behavior for Goal 4 is Identical to that for

Goal 1 originally. A match is performed, which discovers

a difference in connective between the left subexpression

of L2and that of LO. (The P9 in the goal expression

Indicates "lower left.") If the match is traced through,

it will be seen that the comparison at the top level fails

to find a difference (Sll following the first S2O in R2O),
so that the two left subexpressions were put into cor-

respondence and the comparison routine (Q2O) executed for

them. Having found a difference, Goal 5 is set up to re-
duce this difference. At this point, the goal evaluation

accomplished in Rll (at Y92) Is effective. A change of

connective on the left subexpression (D5on P9) is com-
pared with a change of position on the main expression

(D9), with the conclusion that the former difference is

smaller than the latter. This is reflected in the S7
following the S4O just before GPS attempt Goal 5- Until

this time, there was nothing against which an evaluation

could be made.

22

As In the earlier sequence, Goal 5 leads to a search

for a relevant operator. R6 (AIB => -AVB) is selected be-

cause: 1) it is on the table of connections as changing

connectives; 2) it has not been used before; and 3) it

has the same main connective as the left of L 2(which is

where it is to be applied). Again there is no difficulty

in matching the condition form of R6 to the left of L 2
and so L3is produced.

The entire cycle repeats itself once more: obtaining

L3implies success on Goal 6, which in turn implies suc-

cess on Goal 5. This leads to Goal 7 to transform L3into

LO, analogously to the creation of Goal 4. Attempting

Goal 7 reveals yet one more difference, a change of posi-

tion on the left subexpression, which generates Goal 8 to

reduce it. Again the evaluation is favorable (S6) and

Goal 8 attempted, leading to Rl (this time the AVB => BVA
variant) and Goal 9. Rl can be applied, giving L4, which

is the result for both Goal 9 and Goal 8. Finally Goal 10

is created, to transform L4into LO. At this point, the

match finds no more differences between them and so Goal

10 is attained (S3O) . This success rapidly propagates

back up the goal hierarchy to Goal 7 > then Goal 4, and then

Goal 1. At this point, GPS realizes it has solved the

problem and quits.
It should be apparent that there is a large number

of features and responses of GPS that have not been il-

lustrated. The most apparent example is that the operators

always worked right away. Often, of course, when an in-

put expression is matched to a condition form, a difference

more serious than Dl 5(variable versus expression) shows

up. The flow diagram for method K4l shows that GPS will

then set up the reduce subgoal to try to eliminate this

difference. In addition to this, all the goal evaluations
were favorable, so that we never saw a goal rejection;
likewise, none of the created goals and expressions

23

duplicated any structures already on hand. And as we
commented earlier, no multiple line rules were applied.

All these features, and a number of others, add variety,

and sometimes zest, to GPS's behavior.

a
__

24

111. DATA STRUCTURES

There are several major kinds of data structures on
which the program operates. For each a description of

the structure, the conventions that govern its use, and a
discussion of the ways in which it is created, modified,
and destroyed is given. Various minor data structures,

such as the reference trees, are defined and discussed
where they naturally arise in the use of the major struc-
tures .
CONTENT TYPE

Some of the major kinds of data structure are la-
beled by a content type at A5l. The ones currently

defined are :
Kl6l Object TEX
K162 Operator TEX
K163 Set of TEX's
Kl7O Constants
K172 Primitive operations
K173 Variables
K179 Object types

GOALS

A goal Is a collection of information that defines a
desired state of affairs plus the means to attain this
state of affairs and the history of previous attempts.

All the information about a goal is on its description

list; the list named by the goal symbol is always empty.

Thus all information is obtained via attributes, usually
G-symbols, but occasionally A-symbols, where the attributes
are common across goals and expressions. The A-attributes
used with goals are A 2(external name, an integer, which
is the order of generation), A7and A 8(used with auxil-
iary storage), and AlB and Al9 (used in output). The

25

attributes are routines and are executed to find the at-
tribute values. For the inverse operation of putting

values on goals, three routines are defined:

Ql3 Put (l) to be non-local value of attribute
(0) of goal in Y2.

Ql4 Put (l) to be local value of attribute (0)
of goal in Y2.

Ql5 Add (l) to front of value list of attribute
(0) of goal in Y2.

Goal Types

Goals are of several types . Each type dictates the
kind of information required to specify the state of af-

fairs desired. Externally, a goal Is specified by a
simple list giving its type and the objects involved.

This list Is converted to a description list Internally

and all the additional information added to it (by E22).
The current goal types, denoting the attributes and values

used internally by A V without a separating comma are:

External Internal

#1/ 0 Transform expression 850 into expression 851
XI G2l XI.
850 Gl 850, Gil PB.
851.0 G2 851, Gl2 PB.

#2/ 0 Apply operator Bl to expression 850.
K2 G2l K2.
Bl G5 81.
850.0 Gl 850, Gil PB.

#3/ 0 Reduce difference Dl between expressions 850
and 851.

K3 G2l K3.
Dl G4 Dl.
850 Gl 850, Gil PB.
851.0 G2 851, Gl2 PB.

The attributes Gil and Gl2 are for location programs,

which locate the subpart of the expression that is being

designated. Externally, subparts of the expression can be

designated by putting a * next to the subexpression.

26

Goal Sufficienc

An important property of a goal Is the sufficiency

of its information: given an arbitrarily selected goal

at any point in the course of problem-solving, it is pos-

sible without additional information, to commence problem-
solving activity on that goal and to Integrate the results
of such activity with the rest of the total problem-
solving activity. This means that it is possible to find
out from a goal the kind of situation that is desired (Gl,
G2, G3, G4, G5, Gil, Gl2, Gl3, Gl4, Gl5, G2l, G3l); the
current state of solution (G2O, G25, G3O, G36, G39, G52,

G53, G54); its role with respect to its supergoal (G23,
G2B, G29, G37); the kind of techniques available for at-
taining it (G27); its subgoals (G24, G25); and its

relation to various other goals (G22, G33, G35, G3B, G4O,
G5O).

Goal Repeatability

A second important general property that goals have

is their repeatability. A goal may be attempted any

number of times; i.e., an attempt made to attain it.
Each attempt by a problem-solving executive (currently
RIO) takes Into account the previous history of attempts

with the goal, and tries something different. If the

goal has been solved previously, then additional attempts
result (if successful) in alternative ways to attain the
goal. For example, if the goal was to transform expres-
sion 850 into expression 851, then successive successful
attempts would provide different ways in which this could
be done; i.e., alternative proofs. It is possible, of
course, that the opportunities for attaining a goal may
be exhausted, either because all solutions have been

generated or because more variations on methods and
techniques would yield nothing new. In this case every

27

attempt to obtain the goal will yield a signal that Indi-

cates this state of affairs (such as 535 of 552).

Goal Context

The current goal Is given In Y2. All Information in

the Y-cells is relative to this goal. Thus, several other
Y-cells contain goals:

Y7 supergoal (K9O If not exists).
Y9 most recently tried subgoal (K9O if

not exists).
YlO equal goal (may not exist).

YB7 proposed goal (held here until deter-
mine if should be next in Y2).

YBB temporary cell for prior goal (needed
while establishing new goal).

Ylll top goal (this Is not relative to
current goal) .

Goal contexts are changed by one of a set of routines,

QBI-QB7. Each of these establishes a goal under certain

conditions: setting up a new subgoal (Q8l); setting up

arbitrary goal for a retry (QB3, QB5, QB6, Q87); or re-

turning to the goal from which the current goal was tried
(QB2, QB4). All the goal setting routines use a common
subroutine, QBO. This routine sets Y2, Y3, Y4, Y7, Y9,

Y34, and YB6. In addition these routines establish the

method-segment context,* In which a goal was operating (Y5,
Y6) where this is required (QB2, QB5, Q87); adjust the

relative depth (Y35); and set the signal (Yl) to be the

goal status (G2O) . These eleven Y-cells, plus those that

are goal invariant by definition, are all the Y-cells that

can be relied upon to hold good Information at the begin-

ning of an attempt on a goal.

See discussions on methods, Sec. IV.

28

Goal Creation and Destruction

Goals are created by various Q-routlnes (Q27, Q2B,
Q34, Q3B, Q4O, QlO3, QlOB, and Rl, the latter being a
temporary expedient). Each goal creation starts by giving
the type of goal desired (XI, K2, K3) as input to Ql6.
Ql6 obtains from the goal type a form for that goal (A2O
with values Kll, Kl2, and Kl3 respectively). These forms
are copied (J74) to produce the basic information for a
new goal and then Ql6 links the new goal to its supergoal

and records the method-segment context in which the sub-
goal was created. The specific goal creating routine
records the particular components (Gl, G2, etc.) used to
define the goal. The final step in goal creation is Ql7,
which records on the various components information about
the goals with which they are used.

Goals are Independent structures . Whenever a goal
name occurs on another list, such as the name of a sub-
goal on the G24 list of its supergoal, it is always non-
local. Thus, If a goal were to be erased (J72), no other
goals would automatically be erased as a consequence
(although access to them might be lost). Currently, goals
are never erased once created. Instead they are filed on
auxiliary storage when space becomes scarce.

Goal Identity Test

An important step in creating a goal Is to determine
if this goal already exists. Ql7 makes this check, using
Q46. There is a goal reference tree (in Y25) in which
all goals are recorded (by Q46). This is a branching
structure, corresponding to a variable pocket sort, which
is built up by Q46 as the set of goals Increases. The
goals are first sorted by type (G2l), then they are sorted
on the name of the first expression (Gl). All those goals
with the same G2l and Gl are put on a simple list.

29

Thus we get a structure

Q46 takes a new goal and locates it in this tree struc-

ture. If there are any other goals in the same pocket

it tests the new goal against each one on the remaining

attributes needed to determine if the goals are the same

(Gil, G2, Gl2, G4, G5). If the goals are not the same,

It adds the new goal to the list and reports back S4O

(new goal generated). If no competitors exist, of course,

the goal is established as the first member of its (new)
pocket .

Goal Duplication vs. Equivalence

If the new goal Is identical to some already existing

goal, then there are two cases: either the goal Is es-

sentially a duplicate and GPS does not want to attempt it

(indeed, it wants to clip the goal tree at this point);

or the goal, although Identical, has been generated in a

different context for a different purpose. In this latter

case, GPS can attempt the new goal with profit and should

use any results that might have already been obtained on

'25/9-0.0 9-0/9-1.09-1/0Xl
9-10
K2
9-20
K3
9-30.0

9-10/9-n.o
9-11/0

850
9-100
8425
9-110.0

9-20/9-21.0
9-21/0

850
9-200.0

9-100/0
C32
7010.0

9-HO/o
11320.0

etc . ,

9-30/9-31.0
9-31/0

850
9-300
12345
9-310
8425
9-320.0

etc. ,

30

3

the existing goal. Routine Q7l distinguishes between
these two cases.

The current criteria of duplication (leading to 554)
are: goals that are of type XI, or have the same super-
goal, or have the same super-supergoal unless goals are
of type K3. All other cases are taken to imply useful or
"equivalent" goals (and lead to 542). In this latter case
Q7l sets up a way for the two goals to borrow results back
and forth. For each set of equivalent goals (there may
be more than two) there is a list. This is on each member
goal at G3B. This list has on its description list at Al4
a list of all the results obtained so far by all the mem-
ber goals. These results are two-item lists: the G3
component, followed by the Gl3 component. There is a
method called the Transfer Equivalent Result Method (K43),
which Q7l establishes as part of the method list (G27) of
each member goal. The section on method K43 should be
consulted for the details; Q7l simply sets up for this
method at the point when a new goal is found to belong to
an equivalence list.

Goal Modification

Goals are modified by innumerable routines (the in-
verse listing for Ql3, Ql4, Ql5 indicates the occasions).
They are never destroyed once they are created, but can
be stored out on auxiliary storage and only called in
when they are needed again. (See Sec. Yon auxiliary
storage.)

EXPRESSIONS AND OBJECTS

The objects that GPS manipulates and the operators
with which It manipulates them are specified by expres-
sions. All expressions, regardless of the particular TE
in which they occur, satisfy a certain set of conventions
as to how they are encoded into list structures.

31

jl
i

Structures of TEX's and EX's

The TE is conceived to consist of many, independent

objects. The expressions which describe these objects are
called Total Expressions (TEX's). Each expression may be

built up from many subexpressions; each of these is called
simply an expression (EX) . An expression consists of a
hierarchical structure (a tree) of subexpressions related
together at each level by some operation or connective.

By conventions each node of the tree is given by a simple

list in which the head contains the operation or con-

nective and the list cells contain the names of the
subexpressions. Thus in symbolic logic we would have:

external form: -(PVQ) . (RI-A)

tree form:

(Since the computer alphabet is limited, the I stands for

"Implies," usually denoted by 3 or =» .) Notice that

none of the expressions is describable and that they all

form a single list structure (i.e., their names all occur

as local symbols). On the other hand, a total expression

P 'Q
Ist form: 9-1/.

9-2
9-3.0

9-2/-
-9-20.0

9-3/E
R
9-30.0

9-20/ Vp
Q.

9-30/-
A.

32

(TEX) is describable. Its description list contains in-
formation about the expression, its history, genesis, and
properties. The actual expression (EX) that the TEX rep-
resents is given in the first list cell and Is called the
main expression. Thus, in the example above, if -(PVQ).
(RI-A) was to be a total expression, called 7155 say, it
would appear as

7155/ 9-0
9-1.0 (9-1 is the same list as above)

9-0/ 0
A2

7155 was the third expression
created

9555
A 4

7155 was created by goal 9555

9-110 9-HO/O
Al2 C

7155 used by goals C32 and 702
C32

K7O 702.0 7155 belongs to TE K7O (symbolic
logic)

7155 has one variable, A

Complexity of 7155 is 9 (number
of nodes)

Maximum depth of the tree Is 4

Object TEX's are of type Kl6l.
The necessity for the distinction between main expression
and total expression arises because we make description
lists obligatory on TEX's but do not permit them on EX's,
storing the operation symbol in the head of EX's instead.

9-100- 3
A3

Al3
9-120 9-120/0
Al5 A.O
9-130= 9
Al6
9-140= 4
A5l
K161.0

33

The external format for TEX's is a simple list:

888/0
(
P
V
Q
)

(
R
I

A
).o

There is no way to input an EX, since it cannot exist by

itself.

Creation and Destruction of TEX's

TEX's are created by Initial Input from outside or
by the application of operators to TEX's that already

exist. Once created, a TEX is never modified and never de

stroyed. Creation is always done by P5O. It involves an
"official act" of assigning a name (A2, which has the

order of generation as value), and recording certain in-

formation about the TEX (Al3, Al5, and Al6 currently).
Expressions may exist temporarily and then be erased, if

they are no longer wanted. However, these are not TEX's.

Only when an expression is put on a goal (a Gl, G2, G3>
or G5 currently) does it become a TEX with a name and,
hence, unmodifiable. A check exists in the system in Ql7:

all components being put on the goal must "exist 1 ; if

not, they are given permanent status at that time by Ql7.

As discussed in additional detail in the section on

Matching, -the Y-cells used to hold expressions while they

are being worked on are Yll-Yl3-Yl5 (for the first expres-

sion under consideration) and Yl2-Yl4-Yl6 (for the

second expression under consideration). In the first
case, Yll holds the location of the expression; Yl3 holds

34

the TEX (that is, the name of the independent entity con-
taining the subpart in Yll); and Yls holds the location
program that locates the part of the TEX initially con-
sidered. A similar interpretation holds for the second
expression. When setting up a process, such as the matching

of the expression at Gl to the expression at G2 during an
attempt on a XI (transform) goal, the Gl TEX is put into

cells Yll-Yl3-Yls and aJ3 is put into Y45- This latter
symbol indicates that the expression in cells Yll-Yl3-Yls
is an official TEX and cannot be modified. It can be ex-
amined by the match process without restraint, but if
ever a modification occurs, a copy of the expression in

Yll-Yl3-Yls is generated, replacing the Gl TEX, and this
copy is modified. Concurrently, aJ4 is put into Y45,
which indicates that the expression in Yll-Yl3-Yls is no
longer an "existing" entity. Consequently, subsequent
modifications can be made in the expression in Yll-Yl3-Yls
without additional copies. Only when some routine (Q27,
Q34, Q37, Q4O) uses the expression on a goal is it made

into an official TEX and aJ3 put back Into Y45. An en-
tirely similar situation exists for Yl2-Yl4-Yl6 using the
cell Y46. At the completion of any processing of expres-

sions in the Y-cells, a clean-up routine (Q24) is executed.
This erases any expressions named in the Y-cells where
Y45 and Y46 indicate that it does not have official status.
The routines Qll and Ql2 are the ones that check Y45 and

Y46, respectively, copy (Pl3), and replace the expres-

sions in the Y-cells if they need it. Qll or Ql2, as
appropriate, is executed at each point where it becomes
certain that an expression will be modified (Qll in F4,
F2B, Q37, and Q52; Ql2 in F5, F29, Q37, and Qsl).

Some other expressions (the operator at Y2O and the
difference expression at YB4) also use an indicator (Y47
and Y4B, respectively) to indicate whether they have
"official" existence or are to be erased by Q24.

35

DERIVATION LISTS

There is no reference tree of objects, analogous to

the reference tree of goals, even though each object must

be checked to see if it has already been created. This

role is played by derivation lists. Each expression is

generated from some other expression (or expressions) by

means of an operator. In general all those objects de-

riving from common parents are interchangeable in their

role as starting points in the application of additional

operators. Hence, as each expression is created It Is

put on a single list, called the derivation list. For

all expressions with a common parenthood this same list

can be obtained at A5. It is possible for several de-

rivation lists to exist, however; one working forward from

the givens, one working backward from the desired, one

holding operators that have been derived from other oper-

ators, one starting from a conjecture that was tied neither

to the given nor the desired, and so on. Derivation
lists are created (P5B) every time a TEX is created that

is unrelated to any of the derivation lists already In

existence. At the beginning, this is done In Q45.

The derivation list is a TEX

11245/9-1
9-2.0 9-2/,

850
, is the connective for*

"set"
7155
8266.0

9-1/0
A5l
K163 Derivation lists are of

type K163etc.

When a new expression is created, it is checked for

identity against all the expressions on its derivation
list (Q43). If it is really new, It is put on the list

36

and S3O reported. If it already exists, the new version
is destroyed and 536 is reported along with the name of
the old version.

OPERATORS

The operators are also TEX's, but may be of several
kinds as indicated by Al which takes on signals as
values .
Form Operators

S6O indicates a form operator with some initial con-
dition that has to be tested by a program (at A10).

After this test is completed (see R3l), the operator can
still be any of the several kinds. S6l indicates a form
operator, without such conditions, such as exists in
logic. The left-hand subexpression of a form is the
condition form which must be matched to the input object.
The right-hand subexpression is the product form which
gives the expression that is to replace the input expres-
sion. Unless otherwise stated, a form operator may be
applied to any subexpression (EX) of a TEX. For example,
820 is the operator A.B V B in
puter alphabet is limited, the
usually symbolized by => .)

logic. (Since the com
V stands for "yields,"

820/9-1
9-2.0 9-2/Y

9-3
8.0

9 3/-
A
8.0

9-1/0
Al
S6O
AlO
F2
A5l
K162
etc . Operator TEX's are of

type K162

37

Al S6O indicates that a test must be performed, in this

case F2. F2 is an IPL-V routine, which if the expression

being operated on were a main expression and positive,

would result in the signal being set S6l, which would

then indicate that 820 is a form operator.

Expressions for Operators

It is also possible for an operator to be given an

expression, such as, "the reverse operator to B12" (562).
Such an expression is itself a TEX:

Before such an operator can be applied, It must be ex-

pressed more directly. K6O has associated with it a

program (P3O at All) that will be the operand (812 here)

and create a new operator that is the reverse of it;

i.e. has Bl2's product form as condition and Bl2's con-

dition form as product.

Direct Operators
Finally, it is possible to have a direct operator

(563), which is given simply as an IPL-V program (at All)

Such operators may have additional input information

given as an expression, but it is the routine at All that

manipulates this information, not the general purpose

GPS routines for manipulating forms. Missionaries and

Cannibals provides an example. A TEX in M&C looks like

(where B = the boat, M = a missionary, C = a cannibal,

L = the left side, and R = the right side of the river):

813/9-1
9-2.0

'13, 9-2/K6O
812.0

K6O Is the operation,
"reverse"

9-1/0Al
562
etc .

38

M72/9-1
9-2.0

M&C TEX
9-2/+

9-3 9-3/ L 9-4/R9-4.0 M M
Left side : MMCCB
Right side: MC

M CO
C
C
8.0

An operator for Missionaries and Cannibals looks like

M3O/9-1
9-2.0 9-2/Y

Move MC from the left
to the right side (a
direct operator)9-3.0 9 3A

M
C

9-1/0
Al 0
563
All
M22
etc

M22 is general operator
routine

The operator specifies a general routine, M22, at All
and provides an input form to tell M22 what specific
action to take. M22 interprets this form to mean, "test
if the boat is on the left side; if it is, take one M and
one C from the left-side list of the TEX and move them to
the right-side list of the TEX." In the case of M72
this could be accomplished; in other cases one of the
symbols (B, C, or M) might be missing and M22 would ter-
minate with a difference.

LOCATION PROGRAMS

The TEX is the independent unit, consisting of a
hierarchy of subparts. GPS Is concerned with the various
subparts (e.g., it can apply operators to them) and re-
quires a way of designating them. It needs a way that
is independent of the particular names used for a subpart
(i.e., of the addresses); e.g., it must find corresponding
places in two expressions (such as a TEX and its copy).
In addition, it must be able to store the TEX out In
auxiliary storage and still find the same subpart after

39

retrieval. (Only the name of the TEX Is preserved when
a structure is filed on auxiliary.) The device used is
called a location program. It is an IPL-V program which,
if applied to the TEX in HO, gives (in HO) the location
of the subexpression designated.

Inputs Are Locations Not Names of EX's

Before discussing in detail the structure of loca-
tion programs, It is necessary to observe a major

convention about routines that work with expressions:
the appropriate input and output to such routines are the
locations of the expressions to be worked on, rather
than the expressions themselves. Thus, for example,

Yll holds the location of the expression designated; Pl 5
generates the locations of all the terms in the expres-

sion whose location is (1);P26 tests If the expressions

located in (0) and (l) have the same terms; and so on.
This convention is necessary to permit the modifi-

cation of expressions. If only the name of an expression

is available In HO, It is not possible to change the
occurrence of the name In the higher expression. That
is, the list cell In the higher expression that holds
the name is no longer accessible.

Structure of Location Programs

The location program is a simple list composed
from two routines:

P8 Locate the next EX after the EX located by (0);

P9 Locate the first EX in the subexpression of the EX
located by (0) .

P8 is just a J6O and P9 is just a JBO followed by a J6O.
Any position in a hierarchical list structure can be
found by executing a sequence of P9's and PB's. A

40

location program Is always executed on the name of a TEX
in HO. Thus in the expression, 7155/ -(PVQ) . (RI-A) , we
get the following location programs for locating each
subexpression (all with input 7155):

Notice that P8 is the location program to be applied to
the name of the TEX (not its location) to get the lo-
cation of the main EX.

Location Program Reference Tree - Absolute

The same location programs arise over and over
again, and it is desirable to have fixed names for each
location program that is used (thus permitting the Iden-
tity test for location programs to be a J2 test on their
names). This tree provides a node for each location
program that exists. If location program X is applied
to K9B (as a TEX), then it will locate the node cor-
responding to X. At that node can be found the name of
the canonical location program (at A6O) and also the
number of levels down In the tree (at A6l). Thus, when-
ever a location program is constructed (e.g., during a

P8

P8
P8

P9
P9 P8

7155/9-0
9-1.0

9-1/.
9-2
9-3.0

P8 P9 P9 9-2/
9-20.

P8
P8

P9
P9

P9
P9

P9
P9 P8

9-20/ Vp
Q.O

P8
P8

P9
P9

P8
P8

P9
P9 P8

9-3/ I
R
9-30.

P8 P9 P8 P9 P8 P9
9-30/ -

S.O

41

I

match), it is executed on K9B to find the canonical lo-
cation program, and that name is used. By the way P8 and

P9 are constructed, if a location program Is ever executed
on K9B that does not correspond to a node existing In
the tree, the reference tree will be automatically ex-
tended and the necessary canonical location programs will
be created.

Some of the location programs occur as P-routines,
since they are used in programming parts of GPS.

Location Program Reference Tree - Relative

Besides having programs that take the TEX as input
and deliver the location of the desired expression as
output (called absolute location programs), lt is also

desirable to have location programs that take the lo-

cation of an EX as input and locate some EX below it.
These latter are called relative location programs. Due
to the conventions for TEX and main EX, relative location
programs differ slightly from absolute ones.

P9 Relative location program: first subEX, one
level down

P7O/P9
PB.O

Relative location program: second subEX, one
level down

Consequently, the relative location programs have their
own reference tree (K99) " \

There are a few routines for manipulating location
programs (P4O, P46, P47).

10'10/P8
P9.0

Locate first subexpression
(also, locate operator condition)

11/P8
P9
PB.O

Locate second subexpression
(also, locate operator product)

71/P8
P9
P9.0

P72/P8
P9
P9
PB.O

42

DIFFERENCES

The differences are symbols which are associated on
the one hand with the difference between expressions, as
discovered by the match routines (R2O, using Q2O and
Q47); and on the other hand with the operators (via the
table of connections in Y52). At the moment, they have
no information at all associated with them.

43

IV. ROUTINE STRUCTURES

The performance of GPS after it has been given a
problem by the experimenter can be described by starting
at the executive routine, which is at the top of a hier-
archy of routines, and working down through successive
levels of detail.

TOP EXECUTIVE

The top routine of the experimenter (E2 currently)
sets up the initial goal in YB7 and executes the top
executive of GPS-core (R2, normally, or Rl). R2 sets
up the goal context, creates the equivalence lists (Q45),
initializes the various limits (Q44, Q107), and records

the initial goal on the goal reference tree (Q46). It
then executes the problem-solving executive in cell Y9O
(RIO) . The top executive, as a temporary expedient, uses
the V's directly (in violation of the conventions for R-
routines).

PROBLEM-SOLVING EXECUTIVE

The Important executive is RIO, which is used re-

cursively in attempting each goal. A flow diagram for
RIO is shown in Fig. 4. The flow diagrams for the R-
routines depend on the convention that each step consists
of executing a Q-routine and then taking a multiway

branch on the basis of the signal. Indirect executions
(e.g., IY9O and 1Y96) occur in several places to make it
easy to change key routines. These Y-cells are occupied
either by Q- or R-routines.

Centralization of Dec is ion-Making

The signal system provides the basis for the most
important convention about the way GPS operates: all

44

Test for limits,
record attempt

Repeat method

Find next method

Try antecedent goal

Test if goal is at top

Try Gl-expanded goal

Select subgoal for re-
try

Try subgoal

Try method

Fig. 4 RIO: Problem-Solving Executive

45

I:

i

i

important decisions are made by the problem-solving ex-
ecutive, rather than being delegated to lower routines.
Thus, no matter where In the routine hierarchy a crucial
decision is posed (e.g., whether to attempt a subgoal),
it is necessary to bring this decision back to the ex-

ecutive. The signal system can be viewed as providing
a symbolization of all the Important decision situations
that occur In the course of operation. A Q-routine
represents a simple enough action (in terms of the de-
cisions which must be made to carry it out) that GPS can
commit itself to carrying through a Q-routine once it

has initiated lt. Thus Q-routines represent, in a way,
the "unit actions" of GPS. When a Q-routine is executed,
the "unit action" is carried out, and information about
just what happened is reported back as a signal (by an
S-symbol), so that a decision can be made about what to
do next .

Control Techniques to Handle Centralization

Actually, the important decisions are shared among

all the R-routlnes, and are not all localized in RIO.
However, the tendency remains for decisions to be "kicked
upstairs" for solution. This implies a certain violation
of the hierarchical organization of processing, since It
often happens that a crucial decision (such as whether
it is worthwhile to continue) occurs in the middle of a

process. It is then necessary to leave the routine to
return to the higher routine for decision and then (if
the decision is to continue) to return to the lower
routine again. Mechanically this is accomplished in GPS

by one of two mechanisms. The process may be split into
several Q-routines, so that the subroutine hierarchy is
formally preserved. This results in Q-routines with
rather truncated functions; 1.c., just a fragment of what

46

would normally be incorporated in a subroutine. The
second technique is to begin R-routines with discrimi-
nation on the signal. Then they can be entered several
times with different signals, which then cause an immediatetransfer to the appropriate starting or continuing place(see Rll and R2O). No difficulty arises in all of thisbut it makes the operation rather confusing until these'features of the program are understood.

Structure of Rio

As revealed in Fig. 4, the operation of RIO Israther easily comprehended, reflecting the crudity of theideas about how to handle the top decisions. RIO consistsof a loop: Ql - select an attempt - attempt it -Q6 and
recycle. Ql tests whether any "external" limits havebeen transgressed, such as effort limits (S72) or depth
limits (574). It also sets up a record of the attempt(Q72). This is a structure which is filled in by Q6 atthe end of the attempt and recorded on the goal at G26The vertical column at the right side of Pig. 4 representsthe choice of what attempt to make. Right after Ql itis possible to attempt to repeat the methods just tried(Q7); to select another method from the method list (Q2
using Y5, which is obtained from G27); or to quit any
further attempts on this goal (all S-symbols not occurringat the branch point).

Antecedent Goal

As the next alternative, the antecedent goal to themost recent subgoal may be retried (Q9). An antecedentgoal is one that produced a result used in defining agoal. Thus, to retry It Is to attempt to get an alter-native result; If successful It will produoe _ mgoal which may be more tractable. i„ _ typlc __

47

Goal 1: A into B

/
Goal 2: Reduce D > Goal 4: A' Into B

/
Goal 3= Apply Qto A

A'

Here Goal 2 is antecedent to Goal 4. Retrying it will
lead to some different operator, Q' , being tried; hence

(perhaps) to some different expression, A", being pro-

duced; and then to a new goal, A" into B, being formed

which is an alternative to Goal 4.

Gl - Expanded Goal

Two other alternatives for attempting a goal exist
in RIO. Both of these are currently restricted to the
top goal (Q5 exits S2 if not top goal). One possibility

is to generalize the goal by using the derivation list of

the Gl expression in place of the expression. For ex-
ample, if the top goal were to transform A into B and A

had expressions A', A", A"' on its derivation list, then

the situation would develop as follows (QlOB plus subse-

quent problem-solving)
Goal 1: A into B

Goal 2: (A, A', A", A" 1) Into B

/ \.■oal 3: Reduce Dl 9 > Goal 4: A" into

48

Setting up Goal 2 to transform the set into the expression
generates a Dl9difference (set versus element); this in
turn causes the selection of one of the elements of the
set (Q54), In this case A"; and this in turn leads to
creating the succeeding goal, A" Into B. This technique
of generalizing a goal is a way of seeing if some of the
expressions which may be substituted for A might not be
better starting points than A for reaching B. Some of
these other expressions may have been generated without
their relationship to B being considered (e.g., as a
modification of A in order to apply an operator). Thus,
it is sometimes possible to discover the possibility of a
useful expression among the ones already generated.
Although we have stated this notion with respect to trans-
form goals, the same concepts apply to the other two goal
types. This technique is inserted directly in the ex-
ecutive as QlOB, rather than as a method. This is an
expedient to restrict its usage to the top goal.

Lower Goal Selection

The final possibility for attempting a goal Is to
select a lower goal and try it again (1Y96, which normally
holds Q109; but also Q8) . A lower goal is one that lies
anywhere in the goal tree headed by the given goal; or,
alternatively, a direct or indirect subgoal of the given
goal. The goal selection procedure involves first listing
all the goals that are either untried or unfinished (G2O
S5O or G2O S5l In Q109). This list is then submitted to
a further selection (Q73 or Q105). Q73 selects the best
subgoal according to the goal values (G22) and the goal
evaluation procedure. QlO5 first splits the goals into
those which are subgoals of transform goals and those
which are not. It tries to get a goal from the former
sublist first (with Q73). Only if no evaluable goal exists

49

on the Kl-subgoal-list , does QlO5 select from the remain-

der list.

Once a goal has been selected it is retried, inde-

pendent of the reasons for its not being tried further at
the time it was last worked on. Thus, this procedure

"forces" its way past the tests for rejection of a goal.

The net result is to make the total problem-solving activ
ity of GPS proceed as a series of episodes, each one
starting from some goal that already exists in the goal
net and trying to extend it further until the various
limits and rejection criteria force a halt to the explo-
ration. After each episode GPS reselects another goal
somewhere In the total net to start the next episode.

Execution of Selected Attempt

RIO does not choose among all these alternative ways
of attempting a goal in a very sophisticated way: the

vertical column in Fig. 4 implies an approximately
lexicographic ordering. Once an affirmative decision has

been made about an attempt, then it is carried out by Rll

or by attempting a subgoal, as appropriate. The subgoal-
attempts require using a QBx routine to get into the
context of the subgoal (QB3 or QB6), executing the exec-
utive (IY9O, holding RIO), then returning to the context
of the present goal (QB4 or QB7).

In both cases of subgoal-attempts , RIO is retrying
a goal that was created on another occasion, tried (per-
haps) , and abandoned . Thus there are now three goals
involved: the current goal, the lower goal it wants to
attempt, and the supergoal to the lower goal, which
created it and, alone, has the information to utilize Its
attainment. If the lower goal is an immediate subgoal
(as in the antecedent goal), then the current goal and
the supergoal coincide; otherwise they differ. If the

50

attempt on the lower goal falls, then in all cases we
wish to return to the context of the current goal. But
if the attempt on the lower goal succeeds, it is neces-
sary to get into the context of its immediate supergoal
and to continue problem-solving from the position in that
supergoal 's activity which is prepared to use the results
This supergoal, of course, is still a subgoal of the pre-
sent goal. This is accomplished by QB5-Rll-QB4. Notice
that there is a return afterwards to the context of the
initiating goal, since it is in this context that the
decision must be made as to whether to continue or not.
If this supergoal (of the Initially attempted lower goal)
is able to make some progress using the result, getting
yet another new result, it is then necessary to get into

the context of its supergoal to use the just obtained re-
sult. Thus, there is a loop around QB5-Rll-QB4, which
continues until some supergoal up the line fails to make
positive use of the results and the whole attempt comes
to an end. Alternatively, of course, all goals are suc-
cessful until the supergoal being put Into context by QB5
is the present goal, which initiated the whole attempt
series in the first place (SI at Q85); in this case it
is appropriate to remain in the present context.

In the case of Q9 and QlOB, which generate immediate
subgoals for retrying, it is not necessary to use QB5 to

obtain the supergoal, since it is known that the current
goal is the supergoal. Hence Rll is executed directly
after a success on the attempted subgoal.

In the case of Q7, Q2, and sometimes QlOB, we are
either trying a method or working with an untried subgoal
Hence we go directly into Rll.

51

Recordlng Attempts

No matter where we quit in making the attempt in

RIO, we return to do a Q6, which records the results of

the attempt. There is then opportunity to recycle and

continue with another attempt on this goal, or to quit

this goal and go back to the supergoal. Q6 does not

change the signal, so this decision is made on the basis

of the final signal resulting from the attempt.

Q6 records in the attempt record (created by Q72) the
signal that terminated the attempt (A4O, the attempt status),

the method used (A4l), its current status (A42; see section

on methods), and the limits of the attempt if they started

or ended somewhere in the middle (A43 and A44). The
attempt record is stored away at the front of the history

of attempts (G26). In addition Q6 updates the method

status: it changes it from S5O to S5l, or from S5l to 552
if the method quit with 535 (impossible).

METHOD EXECUTION AND Rll

Methods and Method Status

The main course of GPS is guided by a series of

methods (K4O-K44) . These are associated with goal types,

each method being a way to either attain the goal of the

given type or to analyze the task into subgoals and use
their results In attaining the goal. With respect to a
given goal, each method has a status Indicating whether
this method has not yet been used (S50); has been used

but may be used again (S5l); is no longer useful (552);
or is temporarily blocked from being used (553). Each
goal has a method list (G27) which contains the name of

each method applicable to the goal followed by the current

status for the goal. Status symbols are updated by Q6
after each attempt. The set of methods is not completely

52

fixed, although it is initially determined by the goal
type (the initial G27 list is on the goal form, A2O, that
is copied to create a goal). For example, K43, the trans-
fer result method, is added to the list by Q7l.

Method Structure: Segments

In the published papers on GPS (and in GPS-1 program)
the methods are given as subroutines. However, the re-
quirement that all Important decisions be reserved to the
problem-solving executive implies that the method be
broken up into a number of method-segments . Between each
segment, control returns to the executive (RIO and Rll).
Thus methods are data lists of segments and Rll acts in
many ways like a higher level interpreter, executing each
segment on the list in turn and making the decision whether
to continue or not after each segment is finished. So
far it has been sufficient to have methods be simple lists
of segments which are executed strictly sequentially with
possible repetitions. It has not been necessary to have
the methods be branching, conditional structures.

Method Interpretation: Rll

Figure 5 gives the flow diagram for Rll, the R-
routine that interprets and carries out methods . It
consists of a loop through a single large branch list
which distinguishes numerous signals. Typically Rll is
entered from RIO with the status of the methods as the
signal. If this is S5O or S5l (untried or unfinished)
then the first method-segment is obtained (Q3); if the
status is 552 or 553 (finished or blocked) Rll quits with-
out doing anything (552 and 553 do not appear in the branch
list). If Rll is entered with SBl, this symbolizes the
repetition of a method (from Q7 in RIO) and again leads
to executing the first segment.

53

Obtain next method-segment
(includes first)

Repeat current method- seg-
ment

Find segment to take next
(S4l or 546)

Evaluate new subgoal

Subgoal rejected (exits 543)

Evaluate equivalent subgoal

Attempt subgoal

Fig. 5 Rll: Executive Method until Fail

54

Q3 obtains each successive segment of the method and

automatically executes it (thus it performs the "fetch"
and "execute" steps of a standard interpreter). The re-
sulting signal is discriminated by the same major branch

list. The results of a segment that Rll recognizes are
to go on to the next segment (S4l); to repeat the current
segment (546); to find out whether to repeat or go on (S48);
that a new subgoal has been created (S40); that a new sub-
goal has been created which is equivalent to an existing

goal (542); and, that the method cannot possibly work
(535). Each of these leads to an appropriate routine,

which result is again discriminated for further action.
Several kinds of failing signals can occur (532, 539),
but Rll quits in these cases, so they do not show up in

the branch list; the same is true of signals which indi-

cate goal success (S3O, S3l, 537, S3B, 544, 545, Sl3l,
5132).

In case a subgoal is generated (S4O, 542) it is neces-
sary to evaluate it before attempting it (1Y92 and IYIOO,

normally holding Q74, but sometimes QlO6, or Q4). This
evaluation (see below) results in a signal (S3, S4, S5,

S6, S7, S8), and for the appropriate set (S6, S7, S8) the
subgoal is tried (QBl-IY9O-QB2) . Afterwards, the results
are summarized either as a failure (547 and quit Rll) or
as a success (S4B and recycle in Rll).

It is also possible to enter Rll with a subgoal to be
tried (e.g., with S4O or 542). Then Rll starts with the

evaluation and attempt (if appropriate) of the subgoal,

followed by the other method-segments called for by Q3.
The only unmentioned action is setting 547 if the subgoal

is a duplicate (554).

55

Goal Values and Goal Evaluation

In the published accounts of GPS, mention is made of
"progress tests," which determine if a goal should really

be tried. These are embodied in the goal evaluation
routines (Q74, QlO6, Q4). Certain goals can have a value
(at G22); currently only reduce-type goals (K3) have
values, the other (XI, K2) being unevaluable. Two goals
with values can be compared (P56) with one of several re-
sults (S3, S4, S5, S6, S7); if either of the goals is

unevaluable, the result of P56 is "undefined" (S8).

Goal Values

There are several kinds of values, each kind being
identified at AB3 by a structure (KlOl, KlO2, K103) which
tells how to process the value. A KlOl value compares
first on the level at which the difference occurs (AB4),
giving S3 or S7 if the levels are unequal. If the levels
are the same, it compares on the difference symbol (AB9),
giving S4, S5, or S6, depending on whether the first value
is less than, equal to, or greater than the second value

on the difference ordering (e.g., ClO for TE K?0). A KlO2
value compares first on the number of levels up from the

bottom of the expression (the maximum level minus the
level) (AB5) and then on the difference symbol (AB9) . A

KlO3 value compares first on the difference symbol (AB9)
and then on the level (AB4) (just the opposite from KlOl).
Each of these values was introduced by experience with
certain special situations; none of them seems to be
appreciably better than the others. Each of these value
types has on it (at Al7) the appropriate comparison routines
(P49, P57, and P59 respectively). Values of each type
are created by separate routines (Q76, Q77, Q7B respec-
tively); creation occurs in the Q-routines that create
K3 goals (Q27 and Q4O, by executing 1Y95).

56

Goal Evaluation

The evaluation of a goal to determine if it should

be attempted consists first of a search for the goal

against which the candidate should be compared, and second,

of the comparison by P56 as described above. The search

(in Q74) consists in finding the first evaluable ante-

cedent goal, or supergoal. The rationale is that a
subgoal should be less difficult than its supergoals,

since it purports to solve only part of the total problem.

Similarly, if GPS works from hard differences to easy dif-

ferences, then a goal should be less difficult than its

antecedent goals. Finally, of several potential ante-

cedent and supergoals for comparison, Q74 prefers near
supergoals to more distant (higher) supergoals, and ante-

cedent goals to supergoals .
MATCHING

A crucial part of two methods (K4O, K4l) is the pro-

cess of matching two expression together in order to
determine their differences (or identity). There are two

alternative match routines (R2O, R2l), of which R2O is the

easier to understand and will be described first.

Matching is factored into two parts: two expressions

are first put into correspondence; then the contents of

various corresponding EX's are compared. Since all ex-
pressions have a common form (the tree structure with the
operation in the head) a set of GPS-Core routines handle
the task of putting two expressions in correspondence and
cycling through the successive pairs of corresponding

cells (Q2l, Q22, Q23). For each pair aTE routine (in
Yl7) is executed which compares the expressions at that
point (Q2O).

57

R2O Match

The flow diagram for R2O. shown in Fig. 6, consists
of iteration through a basic discrimination, where Q2O is
used to compare EX's (following S2O, meaning "both found").
The other Q2x's are used to locate the next corresponding
EX's in response to whether two cells are found to con-
tain identical subexpressions (S10) so that further sub-
exploration was unnecessary; whether no difference was
found for this pair at this level, but exploration of the
subexpressions should occur (Sll); or whether a boundary
of the expression has been reached (523). Several nega-

tive signals are possible (Sl2, Sl3, Sl6, S2l, 522) which
do not appear in the discrimination since they imply that
R2O should terminate. Sl9 is a signal indicating the

beginning of a match (not, however, just entry into R2O,
since R2O may be executed and terminated numerous times
during a single, successful match). At this occasion
R2O executes a special comparison (Q47) of the top ele-

ments of the expressions being matched for differences
directly recognizable by GPS-core (Dl9, D2O, D2l currently)
The final exit at SlO at the bottom of the diagram indi-
cates an inference that if the expressions have been
thoroughly scanned (Q23 yielding 523 indicates a return
to the top of the expressions being matched) and no dif-
ferences have shown up at any point (always Sll), then
the two expressions are identical (S10) .
Housekeeping for Match

The match occurs by setting one expression to be
matched (the "#l" or matching expression) in Yll-Yl3-
Yl5 and the other ("#2" or the expression being matched
to) in Yl2-Yl4-Yl6. The initial setup (Q25, Q36) puts

the TEX into Yl3 (for #l); puts the location program
that locates the EX into Yl6; and uses this location

Test if DE already exists

Go down one level

Advance down list

Return one level

Fig. 6 R2O: Match Element by Element, Depth First.

Compare

GPS Compare for top level

Identical

59

program to put the location of the EX into Yll. A similar
setup occurs for the #2 expression. The location programs

for the two expressions need not be the same. For example,

in applying an operator, the main EX of an object (P8
location program) is matched against the condition form

of the operator (PlO location program).
The movement through the tree structures of the two

expressions (Q2l, Q22, Q23) involves pushing down Yll and

Yl2 as the scan goes deeper and popping up these cells to

come back up a level (this is due to the one-way nature

of lists). It is also necessary to construct the location
program to any point that might be reached (say to record
a difference). This can be done by adding onto the

location program in Yl5 (or Yl6) the incremental location
program from the initial location down to where Yll (or
Yl2) currently is. Yl9 is used for this and holds the
incremental location program. Since the location program

is only rarely desired, compared to all the movement back

and forth over expressions, this location program is kept

in reverse order so that it can be modified by push-down

and pop-up operations. Thus, the Q2x routines put PB's
and P9's into Yl9 when going deeper and remove them when

coming up. (Carrying out a simple example will make

these considerations clear.) Routines exist which aid in

the manipulation of Yl9 (QlO, Ql8).
The routine for comparing two corresponding cells

belongs to the TE (Fl for K7O, M23 for Ml9). This same

routine is repeated for each pair of cells. It outputs

the difference symbol applicable to the pair (into Yl8) .
Since several differences may be applicable, this routine
contains within it implicitly the order of importance of

the differences. A flow diagram for Fl, the comparison

for symbolic logic (K7O) , is shown in Fig. 7.

60

2 Dl3

All 1 terms in 2 **D1

All 2 terms In 1 "* D2

All 2 terms occur at
least as often In 1 »D3

I"
All 1 terms occur at
least as often in 2 -^»D4

Legend

1 EXI
2 EX2

negative
double negative

var variable
-var negative variable
L left subEX
R right subEX

similar

Fig. 7 Fl: Compare EXI and EX2.

Dls *_L-2=var I=TEX

+ I" * v
D6« + l=-var Sll 2=TEX 2=TEX

Dl7D25 V

61

R2l Match

The R2O match involves an implicit double iteration
over the expressions. One iteration is employed by the
scan represented by the Q2x's. But if the comparison
routines are to see differences such as differences in
terms (Dl, D2, etc.), they must independently scan over
the entire subexpression each time they are applied. The
R2l match is an attempt to eliminate this feature by
scanning over the expression just once, picking up infor-
mation from each of the nodes, and then assembling the
effective difference from the scraps of partial infor-
mation. R2l still takes almost as much effort as the
double Iteration. However, it is useful In other ways;
e.g., making it easy to see certain multiple and complex

differences. Consequently it is the one normally used.
Figure 8 shows the flow diagram for R2l, which is

very similar to that for R2O. The important differences
are that when a difference is found (Sl2) a new signal is

set (Sl6) before exiting. When this signal is seen by

the main discrimination, data on the difference is recorded
in list of difference expressions (in YB4) . Q9O then re-
sets the signal to SlO and the match proceeds (even though
a difference has been found). The use of Sl6 allows
termination of R2l when a difference is found, and the
higher R-routines are to regain control. Subsequent re-

entry of R2l to continue the match is then possible. By
the time the entire expressions have been scanned, all
the differences that have been found are recorded on the
list in YB4. Then, instead of quitting with SlO (as R2O
does), R2l executes Q92, whose job is to analyze all the
differences on the difference expression list and deter-
mine a single effective difference.

62

I
Test if DE already exists

If difference, set to be
provisional

Go down one level

Advance down list

Ascend one level

Q92 Combine list of difference
expressions

Fig. 8 R2l: Match with Single Pass
Getting List of Difference Expressions.

Compare

If beginning, do GPS match

Construct difference ex-
pression

63

Q92 consists of a series of scans over the difference

expression list, each time determining which pair of dif-
ferences should be combined into a difference at a higher

level. This is continued until only a single difference
expression is left, which is then the effective difference

for the match.
An important feature of the R2l match is that it

scans the expressions only down to the point where a dif-
ference is found. At that point, the entire subexpressions
are described on the difference expression. Besides the
difference symbol (AB9), the relative location program
(the one determined by Yl9) is created (A88) and lists
are made of the terms in the subexpressions (AB6 for #1,
AB7 for #2). These lists are marked to indicate the terms
of each that are held in common (P44) . This is done by
putting SI behind each term found on both lists. The
term difference (if any) that exists at this location can
be found from these lists (P45, yielding D3O, D3l, D32,

D33, D34). Figure 9 shows two matched expressions and

the resulting list of difference expressions.

In the main loop of Q92 the first part consists of

determining two difference expressions to be combined.
Notice in Fig. 9 that the difference expressions are on
the list in order, so that adjacent difference expres-
sions on the list designate adjacent differences in the
tree. The basic act of combination is to take two dif-

ferences and form them into a single difference at the
lowest point in the tree that covers both of them (i.e.,
at their join, in lattice terms). Q92 is only prepared
to combine pairs of differences , which implies that it
must pick two differences whose join does not include any
other differences. A way of doing this is to combine
only adjacent differences whose levels constitute a

Combination of Differences: Q92

64

EXI

[RI(T.R)].Q
EX2

(tvr).r

YB4/ 3725 .
3725/ 0

Cell holding list

List of difference expressions
(DE ' s)9-1

9-2

9-1/ 9-10.
9-10/ 0

AB9

DE for lefthand side

D32
ABB

D32 = delete from EXI

PlO = location program "left"
Lists of terms

PlO
AB7

9-11/0R 9-12/0
T

9-11
AB6

SI
R
SI

9-12. SI
T
SI
R.

9-2/ 9-20

9-20/ 0

DE for rlghthand side

AB9
D34
ABB

Pll = location program "right"
Lists of terms

Pll
AB7
9-21
AB6 9-21/0. 9/22/0

Q. R.

Fig 9 Two Matched Expressions.

D34 = disjoint terms

65

relative low. Thus Q92 moves along the list comparing

successive triples; if it finds two that can be combined,

it does so and starts over.
Combination involves creating a new difference ex-

pression whose location program (A88) is the join of the
two components. The lists of terms for the join are de-

termined afresh and compared against each other for term
identity (P44) .

The difference of the combination can be determined
from some simple rules . If at least one of the component

differences is not a term difference, then there is no
interaction between the differences, and the difference of

the join is simply the most important component difference,

as determined by the difference ordering (e.g., by C10).

If both component differences are term differences (D3l -
D34) then interaction is possible if the difference in

terms vanishes at the level of the combined difference
(D3O from P45). For this means that the same set of terms
is involved overall, but differences occur in subexpres-

sions because of their arrangement. This implies either
a position difference (D9) or a grouping difference (DlO,
Dll), the exact inference depending on the type of dif-

ferences of the subexpressions.

THE MATCH METHOD FOR TRANSFORM GOALS (K4O

A transform goal (Xl) Is defined as, "finding a way
to transform object #1 (Gl, Gil) into object #2 (Gl, Gl2).'
The objects are given by both a TEX and a location pro-
gram. Thus, Gl obtains TEX #1 and Gil locates the EX it
is desired to transform. The transform goal has no
specific output; its result is the sequence of operator

applications that resulted in getting from #1 to #2. This
is embedded in the goal tree. (Under some conditions, it

would be appropriate to build a data structure of the
operators that were used.)

66

The Method

The main method for attaining a transform goal is by

the match method (K4O). This method consists in matching

#1 to #2 and, if a difference is found, setting up a sub-

goal of reducing this difference (K2). If no difference

is found, then the two objects are already the same. If

this reduce goal is successful, then a modification of #1
is produced and the subgoal Is set up to transform the

modified expression into #2. Thus, the method attempts

to divide the total goal into two subgoals: one takes an

initial step and the other attempts to go the rest of the

way. The method consists of a list of segments, the

separation between segments corresponding to major de-

cisions to be made by the executive:

K4O/ 0 . .
R3O Match and produce subgoal If difference exists
Q2B Create and modify transform goal
Qll6 0 Set output

Match #1 to #2: Segment R3O

The flow diagram for R3O is given in Fig. 10. It

consists of a setup routine (Q25), which sets up the Y-

cells from information on the goal (Yll-Yl3-Yl5-Y45, Yl2-

Yl4-Yl6-Y46, YB4-Y4B, Yl7)j a major loop through a

discrimination list; and a cleanup routine (Q24), which

erases all the structures that have been created but not

made into official structures and cleans out Yll, Yl2, and

Yl9, which can have symbols stacked in them.

Immediate Operators

The initial signal set by Q25 is Sl9; this triggers

the match (1Y91). The match can result in numerous sig-

nals. If SlO occurs, the two objects have been found to

be identical, and it is only necessary to reset the signal

67

Fig. 10 R3O: Match Gl to G2,
If Not Match Produce K3 (Reduce) Subgoal.

68

to S3O, indication that the goal is achieved. If Sl2
occurs, a difference has been found. This is not neces-
sarily the end of the line, since there exist immediate
operators which might be applied to eliminate differences.

An immediate operator is a routine that GPS can apply to
take care of a difference. These may be part of the core
(K110) or part of the TE (C3orM3, in Y53). For example,

C3looks like:

03/ 12
Dl4
Q52
Dl5
Q5l
DlB
Q53
D2l
Q53.0

C3is a branch on the difference (12, which inspects Yl8);
if the difference found is Dl4, Q52 is executed, etc.
Q5l and Q52 are substitution operators, corresponding to
differences between a variable and an expression. Thus,

If GPS sees a variable opposite an expression (Dl4, Dl5)
it will immediately substitute for it. Q53 is a routine

which resets the signal to Indicate that matching is

impossible (Sl3). For example, DlB is the difference of

two terms in logic (e.g., P versus Q); when this occurs

there Is no way to transform P into Q, and so GPS should
stop this attempt immediately rather than expend a large

effort simply to conclude that one letter cannot be turned
Into another.

The immediate operators, if they occur, may change

the signal (e.g., Sl2 to SlO for a successful substitution,

or Sl2 to Sl3 for Q53); if they cannot correct the dif-

ference they will leave the signal Sl2. Qll3* which
follows IYIOI in R3O, is just a bookkeeping operation that
records the final signal on the difference expression.

69

Create Subgoal

After the immediate operators have been tried, if a
difference still exists (Sl2), then the reduce subgoal Is

created (Q27) and the segment is finished. Control re-
turns to Rll which attempts the new subgoal, rejects it,

etc. If the signal indicates that the difference is
taken care of (SlO, Sll, Sl6, S2O), then the match routine
(lY9l) Is re-entered and matching continues from where it
left off. The match routine will continue in different
ways depending on which signal occurs: SlO says the
subEX* s are Identical, so go back up a level to continue
matching; Sll says the subEX' s are the same at this level,
but the expressions need to be explored so go down a
level to continue matching; S2O says there may be more
comparison needed at this level; Sl6 says the provisional

difference (in R2l) still exists, so record it and con-
tinue matching.

Rematchlng

Two other signals are currently possible in the loop
of R3O. Sl7 indicates that something has happened, say
because of the application of immediate operators, so
that what was assumed no longer holds. The result Is to
start the match all over again (Qll4 is another setup
operation). The necessity of Sl7 arises because several
differences may be discovered in a match; say, two occur-
rences of variables (two Dls's) which require substitution,
but happen to be the same variable. Action taken on
them sequentially without exploring the consequences of

intermediate actions causes trouble: the first substi-
tution removes both variable occurrences and thus the
second substitution cannot work.

70

L

Difference Selection

The other possible signal is SlB, which indicates

that a set of differences has been obtained, from which

one must be selected (1Y99). This occurs in R2l after

Q92 has finished. It is possible, when R3O is executed,

that the two expressions have already been matched

previously and as a consequence, the list of differences

already exists on the goal (G53). In this case Q25 pro-

vides SlB and R3O immediately selects another difference,

rather than going through the work of matching again.

Currently R3O can terminate with S3O, S4O, 542, or

532. This last implies failure in the attempt, and is

used to summarize all the various ways the attempt could

fail.

Create Modified Transform Goal: Segment Q2B

If R3O supplies a reduce difference subgoal (K3) and

Rll attempts it and succeeds, then Rll will execute the

next segment of the method, Q2B. The subgoal has ob-

tained a result (G2, Gl3 on the subgoal) which can be

used to build a transform goal to get from that result to

the same final expression as the current goal (G2, Gl2

of the current goal). Q2B builds up this goal, tests to
see if the newly constructed goal is identical to one
already existing in the system (Q46 in Ql7 in Q2B), and

turns the new subgoal over to the executive for action.

Final Segment: Qll6

If Rll attempts the modified transform goal and suc-
ceeds, then it executes the final segment of the K4O
method, Qll6. This routine simply finds the correct
signal (at A4O of the record of the most recent attempt)

to indicate to the higher goal the final result. It is

71

necessary to obtain the signal from the goal, rather than
having it available in a Y-cell, because it is unknown

what might transpire between the attempt to obtain the
modified transform goal and the use of this result by

the supergoal.

THE TRY OPERATOR METHOD FOR APPLY GOALS (K4l

An apply goal (K2) is defined as "applying an oper-
ator (Gl5, G5) to an object (Gl, Gil)." The goal has a
specific output (the first symbols in G3, Gl3), which is

a new expression. (Recall that existing expressions

cannot be modified.)

The Method

The method for applying an operator is again a list
of several segments :

K4l/ 0
R3l Try operator; if fail produce difference subgoal
Q3B Create modified applied goal
R33.0 Produce output (Q29 or Q103)

The method has separate parts for each of the various
types of operators. For the main type — the form oper-

ator — it matches the input (as the #1 expression)
against the condition form of the operator (as the #2
expression). If this is successful, then the information
so gained can be used to produce a new, modified expres-

sion from the produce form. If this is not successful,
then a difference goal is set up. If this difference
goal is attained, an apply subgoal Is created using the
modified expression provided by the reduce goal. In the
case of operators with more than one input, this scheme
requires an essential extension, which applies one of
the component condition forms to the input expression and
sets up a goal to find other suitable inputs from the

72

L

derivation list of the input expression for the addi-

tional components' condition forms.

Discriminate Type of Operator: Segment R3l

The flow diagram for R3l, the main segment, is

given In Fig. 11. It divides roughly into two parts. In

the upper part, there is a discrimination on the type of
operator (Al) being applied. If the type is S6O, there

is a side condition to be applied (Q35, using a routine

at A10). If this test falls, there may be a difference
(Sl2), an attempt at immediate operators (9-900), and
the creation of a reduce subgoal. If the side condition
is satisfied, then the operator may still be of any other

type and the discrimination is repeated. An operator

may also be given directly by a routine (563), in which

case it is tried (Q42 from the routine at All); again

there is the possibility of a difference. An operator

may be given by an expression (562); for example, "re-
verse of operator X." In this case the actual operator

is obtained (Q4l) and then it is processed. Finally the

operator may be given by a condition form and a product

form (S6l); this is the case GPS is set up to handle in

detail and leads to the lower half of the R3l flow dia-
gram.

Form Operators with One Input

This lower half is very similar to R3O, consisting

of a match, the use of immediate operators, the selection
of differences, and so on. It differs from R3O in the

action to be taken if a match is achieved (S10). R3l
matches the expression (Gl, Gil) as #1 against the
condition form of the operator (G5, Gl5 or PlO if Gl5
does not exist) as #2. The purpose is not only to see
if the conditions are met, but to gather information

73

In all other cases method falls

operator given by expression

Test for operator applicability

Try immediate operators

If still difference, set up subgoal

Try direct operator

Try

If

immediate operators

still difference, set up subgoal

If form operator, set up for matcha

In all other cases method falls

If match, prepare output if product undetermined

Produce product

If something has changed, rematch

If have DE's, select one

If difference, try immediate operators

Try GPS immediate operators9-900 Kill
S9 /*SI2(T3

0113

If difference, try TE immediate Operators

Record result

Fig. 11 R3l: Try Operator, If Not Work Produce K3 (Reduce) Subgoal.

Find

If still difference, set up subgoal

Match

74

in order to form the product; i.e., to identify the

values of the variables. Hence Q37, which produces the

output object, occurs after SlO.

Form Operators with Two Inputs

GPS has to deal both with operators that have one

input and with operators that have two inputs. In the

former case, once the input is accepted (match in R3l)

the output can be produced (QlO2 does nothing and SlO re-

mains). However, if the operator has two inputs then

even though the first input has been accepted, a second
input is needed before the output can be produced. Two

solutions to this problem are possible. First, the in-

put to the operator is defined to be a single thing; i.e.,

a pair of objects. Thus, an attempt to apply a two-input

operator to a single object reveals a "single vs. pair"

difference, which can trigger a process for creating a

pair. This solution was tried (Q55) and has been aban-

doned. The second solution is to permit the two-input

operators to be applied to a single object, by deciding

with which of the two input forms the object will be

identified. The result, if successful, is a partially

specified operator. This can be created as a new oper-

ator; it now only has a single input (the "other one")

and it can be applied to various objects to see if a

final result can be produced. In particular, it can be

applied to all the objects on the derivation list. This

attempt to apply an operator to a set will result in a

"set vs. single" difference (Dl9), which will result In

a selection of one of the objects on the derivation list.

The mechanics of this are somewhat Involved. Two-

input operators have a list (Al7) which consists of pairs

of symbols: location programs to their different input

forms, followed by a cell for the name of the expression

75

which is accepted for this form (blank to begin with).
As each of these input forms (there may be more than two)
is used, its spot in the Al7 list is filled and QlO2
selects the next form to be filled. The first one is

selected on the basis of trying the (two-input) operator

against a single object, thus getting a "single vs. set"
difference (D2O), which results in the selection of one
of the input forms as most similar to the object.

Although the total action depends on the other seg-
ments of the apply method, we give below a diagram of a
typical application of a two line rule. (825 Is (AIB,
BIC)Y(AIC); L stands for left subEX, R for right subEX.)

Goal 1: Apply 825 to PIQ

Goal 2: Reduce D2O between PIQ and Input set

Select: LL 825
Goal 3: Apply LL 825 to PIQ

Produce operator: 1: (PIQ, QIC)Y(PIC)

Goal 4: Apply LR 1 to Deriv. list of PIQ
(SV(QIP), SYR, QIR)

Goal 5: Reduce Dl9between set and LR 1

Select: QIR

Goal 6: Apply LR 1 to QIR

Produce object: 2: PIR

Although it appears that a good many steps are required
to get through a single straightforward application of
a two-input rule, it will be seen that the various se-
lections, etc., are necessary.

Create Modified Apply Goal: Segment Q3B

The second segment of the apply method (Q3B) is
analogous to Q2B for the transform-method. It sets up

76

the modified apply goal after the preceding reduce goal

has provided a modified expression. The only difference
is that Q3B must be prepared for the result to be either
an object (Kl6l) or an operator (K162). In the latter
case, Q3B must set up a different modified apply goal in

which the result becomes the new operator. (See example

above.)

Transferring Result (Q29) orFinal Segment: R;
Creating New Apply Goal (QlO

The final segment (R33) either executes Q29, if the
result is an object (S3O, 536), or QlO3, if the result
is still not completely specified (Sl3l, 5132). Q29
transfers the results of this goal to be the result of

the supergoal; e.g., the result of Goal 6, PIR, is also

the result of Goal 1. QlO3 creates another apply goal

which applies one of the still undetermined input forms

to the equivalence list of the original object; e.g.,

Goal 4 above. It then sets the signal for repeating the

step (546); this guarantees that QlO3 will be executed
enough times to get all of the input forms determined.

THE FIND RELEVANT OPERATOR METHOD FOR REDUCE GOALS (K42

A reduce goal (K3) Is defined as, "reduce the dif-

ference (G4) between an object (Gl, Gil) and a second
object (G2, G12)." The goal has a specific result, a
new object (the first symbols on G3, 013)* which is a
modification of object #1 (Gl, Gil). This object should
not differ from the #2 object with respect to the speci-
fied difference (G4), although there Is no guarantee of
this. Likewise there is no guarantee that new differ-
ences have not been introduced.

77

The Method

The K42 method for reducing differences is a list
of two segments :

K42/0
R32 Find relevant operator and set up apply goal
Q29.0 If subgoal successful, transfer result to

this goal

The flow diagram for the main segment, R32, is given
in Fig. 12. It consists of a setup (Q3O) , followed by
the bulk of the program, followed by the standard clean-
up routine, Q24. Q3O finds the list of relevant operators
in the table of connections. There are two tables, one
for GPS generally, which contains differences such as
Dl9and D2O (K59), and the other for the particular TE
(in Y52). The tables of connections are description

lists with differences as attributes and lists of rele-
vant operators as values. Q3O will use the TE list if it
exists (setting 569); if not, it will use the GPS list
(setting 563); and if neither exists, it will set S2.
Besides the table of connections, Q3O also sets up the #1
and #2 components, the various filters (see below), and
the list of operators already tried (G3O) .

The body of R32 consists of one part for 563 (direct
operators) and another for 569 (general operators). The
distinction reflects the fact that GPS core has operators

that are directly executed programs (1Y20). In the more
general situation, it is necessary to go through the
steps of setting up a subgoal and trying it through R3l
(ultimately) .

Find Operator: Segment R32

78

Set up and clean up

In all other cases impossible

Find next untried operator
(direct)

Execute direct operator

Find next untried operator

Filter on condition

Filter on product

Create operator goal

Fig. 12 R32: Find Next Untried Relevant Operator
and Produce K2 Goal.

i

i
.i.
i

i

79

Find Next Untried Operator

Q3l is used to find the next untried operator by

getting the next operator from the list of relevant oper-

ators and checking to see if it has been used before.

There is no assumption that operators will be used in

order; therefore, this check involves a J77 test on the
list of used operators (in Y2l from G3O).

Filters

There are two opportunities to test whether a pro-
posed operator should be set up in a goal (usually called
filters). The first involves testing for feasibility,

the second for desirability (this latter has not yet been

used). Examples of feasibility tests used in logic are
tests for identical main connectives, or for size simi-
larity. If the operator passes these preliminary tests,

it is set up as an apply goal (Q34). The output is then
S4O, 542, 554 depending on Q46 in Ql7 of Q34.

Transferring Result: Segment Q29

As usual, the executive takes the output of the

segment, and if it indicates a subgoal, decides whether

or not to attempt it. If it does and the result is

favorable, then the next segment (Q29) simply makes the

object produced by the subgoal (and available as the

first symbols on G3, Gl3) the result of the reduce goal.

Repeatability of Method

If the apply subgoal fails (532, etc.) then the

executive decides whether to retry the method or to do

something else. In the flow diagrams normally given for

the methods, failure to produce a modified expression

leads to a loop back to obtain another operator. Con-

sistent with the general philosophy, this decision is up

80

|:

I:

to the executive (RIO). Thus, methods are labeled (at
A3O) as either "not repeatable" (S80) or "repeatable"
(S8l).

THE TRANSFER EQUIVALENT RESULT METHOD FOR ALL GOALS (K4

As described in the section on goal identity test,
we distinguish duplicate goals (554) , which are of no
use to GPS, and equivalent goals (542), which are poten-
tially valuable. In both cases the goal is identical (in
the sense of defining attributes: Gl, Gil, G2, Gl2, G4,
G5, Gl5, and G2l) to some other goal already created.
In the case of equivalence, the identical goals serve
different purposes, and it may be profitable to share
results obtained on one of the goals with the other (or
others) .
Single Segment: Q7O

The mechanics of this are initiated in Q7l, as
already described; the borrowing is carried through by
the K43 method, which consists of only a single segment,
Q7O. This method gets initiated because Q7l placed K43
on the method list of the goal with status S5O. By the
time Q7O is executed, Q7l has also already created a
list of equivalent goals. This is available to each of
the member goals (at G3B). This common list contains on
its description list, a list of all results generated to
date by all the goals put together (Al4). Each result
consists of two parts (G3 and Gl3) and is packaged as a
two- element list. On the description list of the equiva-
lence list there is for each goal (as attribute) the name
of the last result that was transferred to it from the
common pool. Q7O gets one more result from this list and
transfers it to the goal for which the K43 method is
being executed. It then resets the marker so that this
result will not be transferred again.

81

Blocking the Method

A problem in the use of this method is to avoid the
continual checking for new results when none exist. Con
sequently, when a goal has received all the results
available, Q7O changes the method status from S5O (or
S5l) to 554. This blocks the method from being used
further. When a new result is added to the result list
(Al4) Q6, in recording this, goes to each of the member
goals and changes the 554 back to S5l.

82

V. THE EXPERIMENTER

INPUT CONVERSION AND SETUP

The experimenter executive is the first routine
executed (currently E2). It first does a number of mis-
cellaneous setups (E13); then converts and sets up the
TE, which is given in Z9O (E23); then converts and sets
up the top goal, which is given in Z9l (E22). At this
point, it is ready to have GPS attempt the goal (1Y94).
Following this a number of lists are printed and erased
(LlO for goals, Lll for TEX's, Ll2 for goal equivalence
lists).

Set Up Trivia: El

El3, which does all the miscellaneous initialization,
first sets up the signals and attributes. These items
each have a common form: a signal Sx is of form 10Sx.l8;
an attribute Ax is of form IOAx.JIO; and an attribute Gx
is of form IOGx.L, where L links to a routine (see El5)
that will bring the goal back in from auxiliary storage

if needed. Lists of the symbols to be made into signals

and attributes (L5for signals, L6for attributes, Ll5
for goal attributes) are fed to ElO along with their
forms (El3, El7, El5). Initially this was done to avoid
writing each routine separately; it has since proved of

advantage in changing the action taken by attributes.
(it also permits new signals and goal attributes to be
defined by GPS, but this feature has not been exploited.)

El3next takes an input list of identifications to
be made (Ll). This list consists of pairs, say XV,
which may be read "make X identical to Y." This is ac-
complished by a full word store in which X receives the
same PQ SYMB LINK as Y.

83

Next, El 3sets up a number of things for output (see
also Output). The routines named on input list L3are
marked with Q=3 for tracing; the symbols on input list
L4are marked with Q=4 for propagating trace; the sym-
bols on input list L7are fixed to "trace" by putting

their names in the signal line (E19); and the symbols on
list LlB are given the output names associated with them
on LlB (by El6, at Al9).

Finally El3modifies the TE (in Z9O) by putting on
it the pairs given on list Ll7 . This is either an
addition or a replacement depending on whether the value
is new or already exists on the TE.

TE Conversion

E23j which converts and sets up the TE, uses Q79 to
put the TE symbols into the Y-cells. It then constructs
a composite list of variables, adding the list from GPS
(in K56) to the list from the TE (in KB2). Finally it
takes the TE operators (on list in Ysl) and the TE ob-
jects (on list in Y54) and converts them to internal
form (E2l).

Goal Conversion

E22, which converts an externally given goal, first
checks to see if the goal is In internal form (since
we wish to allow a complete goal list structure to be
put in from outside). The indicator is the existence of
the goal type at attribute G2l; in the external form
this is given in the first list cell. If the goal needs
conversion, a form Is obtained at A2O of the goal type,
copied, and established as the basic description list of
the goal. Then the various components of the goal are
converted. This requires a division of the routine ac-
cording to goal type, since the format of information on

t"::

84

;l:

the external goal list depends on goal type. Again, con-
version of objects is done with E2l, so that the objects
for goals need not have been previously converted.

TEX Conversion: E2l

The most complex initial conversion is from the ex-
ternal form of a TEX, which is a linear list, such as
(AVB) = (B V A), to the internal form, which is a tree
structure. This is handled by E2l in two parts. Each
TE has its own external format, and hence the conversion
of TEX Itself is done by aTE routine (in Z8o). Beyond
this, however, there are several things to be done in
common for all TE objects. If a location program is
given externally, then this should be recorded at A9, as
well as being put at YBl. The TE must be recorded at
Al2. If the object is an expression for an operator,
the operator must be produced. If the object is an oper-

ator with a set of inputs, it requires a list to keep
track of what objects are assigned to which component
input forms. This is obtained by copying a form (K97)
and attaching it at A7O. Finally, if a TEX is a set of
objects, then its subobjects should be set up as TEX's,
and not just as EX's (P43).

Conversion of Parenthetical Expressions

The conversion of parenthetical expressions,
although specific to the TE and accomplished by a TE
routine (FlO for logic), is of common enough occurrence
that central processes are available out of which
specific conversion routines can be built. A set of
cells (Z4O to Z47) is assigned purely to conversion
processes and a set of routines (E3O to E4l) provides com
ponent routines. A basic assumption is that the input
list (to be converted) will be a linear list, consisting

85

of a finite known alphabet of significant characters
(i.e., those that signal some action in the conversion
process), plus additional characters which are simply to
be transferred. Thus the organization of the conversion
routine is in the form of description lists, with char-
acters as attributes and conversion action programs as
values. Any symbol which is not on this list is taken
over into the converted expression without change.
These lists are loaded into Z3O by the conversion routine
and interpreted there by E3l. This permits the inter-
pretation to change as a function of the conversion
process (e.g., FlO uses one list for converting the
description list, another for converting the logic expres-
sion). Another assumption is that the converted expression
will have the same name as the original; hence E3O removes
the head from the input list and establishes it as the
first cell of the converted expression (Z4l, Z42, Z43).
The Initial list, now called the working list, is saved
in Z45 for later erasing (E39) and put into Z44, which
acts as a running pointer to it (being advanced by E32).

Throughout the conversion process it is necessary

to keep a pushdown list of PB's and P9's (in Z46) out of
which a location program can be fashioned if a character
is encountered that requires It (E36, which puts it in
Z47). This list, as well as other stacks that might be
built up during the conversion process, are all cleaned
up by E39.

Several composite routines are available which
accomplish large portions of a conversion. E37 takes
the next Step in a conversion where parentheses have
their usual meaning, either transferring a symbol or, If
the next symbol is "(", creating the sublist to the
matching ")" and transferring its name as the next symbol.

E3B makes a sublist out of the remaining symbols on the

86

i

!

input list. E4O simply follows the basic cycle of
interpret and advance. E4l is a conversion of a paren-

thetical expression into a list structure, leaving all
other symbols unchanged.

OUTPUT AND DEBUGGING

The output of all runs is a trace of the behavior
of the program. A run is shown as Appendix A. This is
a clean run without any tracing for debugging purposes;

if there had been some it would have been intermixed at
the point of its occurrence In the run.

The first page is the spec sheet, which will be
discussed in the next section on setting up a run. The
second page Is the problem-solving attempt proper. This
is followed by the Post-Mortem, which is not shown.

Behavior Trace

Each goal Is printed out in full the first time it
is attempted (E24 in Q8l). The level in the goal tree
is first given followed by the name (at A2, which is the
order of generation number taken from Y34); then the
defining phrase; then the supergoal; and finally the
internal name of the list structure (for debugging pur-
poses). The integer at the far right gives the cycle
count, H3. The occurrence of this expression indicates
that GPS is now attempting this goal.

The course of the program's behavior can be fol-
lowed by the "signal trace"; i.e., the lines of signals
and other symbols occurring throughout the run. Each
time a signal is discriminated (by 11, 12, 13, or 14),
it is put into the print line (by E7O in Z92). If the
discrimination is made by 111, 112, etc., then the sig-
nal is not recorded in the print line. In addition,
whenever certain routines occur (those recorded on L7),

87

they record their own name in the print line along with
parentheses; this makes it easy to group the signals in
terms of the subroutines in which they occur. Also,
whenever GPS passes into the context of a goal (other
than a new one) , it records the goal name in the print

line (E25). With these items and the flow diagrams of
the R-routines it is possible to trace what GPS did

through a run.*
Every new object that is created is also printed

out (E26 or E6B In P5O) . This includes Its name (at A2,
which is the order of generation from Y36), the object
according to its format as given by the TE routine, and

the Internal symbol for the list structure (for debugging
purposes). In addition, various other major decisions
of the program rate special messages: goal rejected,
operator rejected (E27)> goal selected (E69), object too
complex, and so on.

Printing Formats

The printing of all the expressions and statements
is handled in a uniform way. There is a print format
consisting of a list of information to be printed across
the page. This format is interpreted by ESO, which reads
each symbol of the format and loads the print line. The
rules ESO follows are: if the symbol in the format list
is an alphabetic data term, It is entered as the next

chunk of information to be printed; if the symbol is not
an alphabetic data term, it is assumed to be a "format
routine" and it is executed. The format routines take
their inputs in HO. The main one, E57, is used to re-
cord the external name of (0) in the print line: if (0)

*See Sec. 11, "A Tour Through a Simple Problem

88

is a data term, the data term is printed; if (o) has a
value at Al9 this is taken as the name; if it has a value
(integer) at A2then this Is used for the name; finally,
if none of these hold, the symbol Itself is taken as the
name. Besides E57 there are several others: E54 and

E55 for advancing the column number; E56 if (0) is a
format; E6l If (0) is a list of names, E63 if (0) is a
location program (which might involve substituting a
special expression); and E64 if (0) is a difference
(which might involve substituting a special expression).
ESO uses several subroutines (Esl, E52, E53) and some
standard cells (ZSO, Zsl) to perform its task.

Besides E5O there are a few additional print

routines: E5B to print a simple list, and E59 to print

a "linear" list. The latter is a special form that comes
from the execution of E6O on a list structure. E6O
creates a linear parenthesized form of a structure,
consisting of nothing but alphabetic data terms.

Debugging Facilities

Besides the ability to trace any routine selectively,
as provided for in the IPL manual, a few additional de-
bugging facilities are provided. The most useful is a
collection of "monitor points" that are built Into
various routines where experience has shown it is desir-
able to be able to execute an arbitrary monitoring

routine. These are the Z9x cells, each of which gives

in its title the routine in which it is executed (e.g.,
1Z95 executed in E25). The IPL Post-Mortem on the 7090
executes the routine in Wl4 after it has executed the
rest of the Post-Mortem (a GPS patch). 512 is the stand-
ard routine used to give the contents of various cells
plus the prints of a few lists. The final debugging aid
consists of two routines which will trace a routine if

89

and only If it occurs in certain goal contexts (i.e.,
the number at A2of IY2). Ell specifies the goal; ElB
specifies an interval of goals.

SET UP FOR RUNNING

Assemblies and Modifications

In general,runs are made from an assembled version
on tape. A typical run consists of reading the total
system In from the tape; loading some additional perma-
nent routines and data, either new ones or modifications
of old ones (J165); saving the updated system on tape

(J166); loading some additional routines and data that
are unique to this run and temporary; and then kicking

off with E2.

Spec Sheet

There is always at least a page of assembled Infor-

mation unique to the run to specify the various parameters

and lists. This is called the spec sheet and is shown

as the first page of the run in Appendix A. Most of the

individual cells are self-explanatory. Z9O holds the TE;

Z9l holds the task; i.e., the top goal. The rest of the
Z9x cells hold the monitor routines. This is followed
by some Y-cells (Y9O - YlOl) which hold the names of
various important routines in GPS-Core. All the various
lists for tracing and modifying (Ll, L3, etc.) also occur
here. Finally there are a few data terms, such as Z7, the

available space limit for reading goals to auxiliary stor-
age; K32, the time limit in cycles (H3); and K34, the
limit on goal depth.

90

1

AUXILIARY STORAGE

There is automatic storage of goals onto auxiliary
storage when space becomes scarce. Every time a new
goal is created (Ql6) routine E7 (file goals if avail-
able space is less than Z7) is executed. If it is
necessary to get more space, E7 starts at the top goal
(lYlll) and attempts to file each goal. Certain excep-
tions are made: if the goal is closely related to the
current context (in Y2, Y7, Y9, YlO, YB7, YBB, Z28); if
the goal Is already on auxiliary (A8); or if the goal

has been marked to stay in core (A7). A goal to be
filed is split into two parts: all those attributes
named on list L29 are kept in core with the goal; all
the rest are moved to a separate structure, which is

then filed (J107). The head cell of this structure
(which is now the auxiliary control word) is kept on the
goal at AB. After E7 has filed all the goals it can,
available space is rechecked; if space is still shy, the
signal 5139 is recorded and the run is terminated.

Whenever it is necessary to work with a goal (Q80),
E8 is executed to bring the goal back into core if it
was on auxiliary. This action simply undoes what E7 did:
the structure at A8is moved in (J105) and it is merged

with the goal structure that was left In main storage.
Besides the transitions from one goal context to another,
there are also occasions to examine a few features of a
great number of goals, such as In the process of selec-
ting which subgoal to try next (Q109). Thus, every time
a goal attribute (Gx) is executed and its value not
found, it is necessary to determine if that goal is on
auxiliary and, if so, to bring It in. This is automati-
cally handled by the goal attribute routines (from form
El5).

91

VI. TASK ENVIRONMENTS

SYMBOLIC LOGIC TE (K7Q

Types of Information

This TE gives the necessary information to do the
(15)

kind of problems used by 0. K. Moore . v -" It consists
of a set of operators (Bl to 825), given as forms (e.g.,
AVB = BVA); a set of objects (850 to 899) , which are
logic expressions (e.g., (-P.Q)V(P.-P)); various lists
of objects and constants (CI to C9); the table of con-
nections (C2); a set of differences (Dl to D39); the
ordering of the differences by difficulty or importance
(ClO, Cll); and a collection of routines for various

functions (Fl through F32). All of these items of in-
formation are obtained either directly or indirectly

through K7O.

Differences and Associated Structures

The differences have no information associated with

them directly. They function purely as selective inter-

mediates: they are produced by the comparison routines

during the match (Fl, F24, F26), and are used to select
lists of operators on the table of connections (C2).
The relations between them are given by the ordering of
differences (ClO, Cll). These latter consist of a list

whose items are either difference symbols or lists of
difference symbols. There is a routine (P4B) to test if
a difference is on the ordering (some, such as Dl9and
D2O, are not). There is also a routine (P7) to compare

two differences. This outputs a signal: S4 if (o)
occurs before (l) in the list; S5 if (o) and (l) are the

same difference or occur in the same sublist of differences;

and S6 if (o) occurs after (l) in the list.

92

Several TE routines implement the comparison of two
EX's in Yll and Yl2. Recall that the match is divided
into two parts: the putting of two structures into cor-
respondence, done by GPS-core; and the comparison of two
such pieces , done by the TE routine . The latter is the

one that detects and assigns the differences. These
comparisons are discussed in detail In the section on
matching and will not be repeated here. There are
several comparison routines (Fl for R2O; F2O, F24, F26
for R2l) reflecting attempts to fit GPS to different
protocols. Several of the tests for specific differences
have been centralized into routines (F3O, F3l, F32),
just to make modifications easier.

Multiple Negation Signs

Several of the TE routines (F4, F5, F6, F7) deal
with the manipulation of multiple negative signs. Ac-

cording to the rules of logic used in these problems, a

positive sign may be freely replaced with a double nega-

tion and vice versa. This is actually expressed in the
rules by talking of "sign changes," but is realized in

GPS-2-2 by doing sign manipulation by means of immediate

operators (see C3). The problem of signs is also re-
flected In handling substitutions. Thus, in the system
of logic used here if -A is opposite PVP (where A is a
variable), then it is possible to substitute A = -(PVP)
to produce identity. This requires an adjustment in the
substitution routines (F25 and F27, which use some ele-
mentary operations; F2B and F29) .

Double negations occur mostly through the act of
substitution. The format of expressions makes lt dif-
ficult to become aware of a double negation when it is
formed. Hence the philosophy has been to carry them
along until they are spotted as a difference (D6or D7)

93

during some later match. At this time, an immediate
operator (F6 or F7) would get rid of them. It has also
proved convenient, mostly for output purposes, to go
over the TEX and remove all multiple negation signs at

once (F9).

Filters and Similarity Tests

The final part of the routines provides the various

operator conditions, filters, and similarity tests which
cannot be expressed by forms (F2, F3, FB, F2l, F22, F23)

MISSIONARIES AND CANNIBALS TE (Ml

This TE gives the necessary information to enable
GPS to work on the Missionaries and Cannibals puzzle.

There are three missionaries and three cannibals on one
side of a river, with a boat that holds two people.

All six can row the boat. The problem is to get all six

people to the other side of the river without ever

letting more cannibals than missionaries exist on either
side of the river, in which case the missionaries would
be eaten. The cannibals are sufficiently reliable,

however, to be trusted to row the boat by themselves or

stay on one side of the river by themselves.

Types of Information

The TE consists of a set of operators (M3O to M39);
a set of differences (M4O to M59); a set of objects

(M7O and M7l); a single problem (M80); a set of lists of

various items (Ml to M9); a table of connections (M2);
an ordering of differences (MIO); a set of routines (M2O
to M28); and a set of symbols for handling the side
condition about more missionaries than cannibals (Mil,
M6O to M63, M9O to M93).

94

)!

Most of these entities are strictly analogous to
those in the symbolic logic TE (K70): the table of con-
nections, the difference ordering, the identity test,
the filters, etc. The differences reside in the way of
handling the operators (M22), the admissibility test
(M27, etc.), and a special executive used for some runs
(R2 involving M2B) . The basic format for objects has
already been discussed in the section on TEX's. Like-
wise, M22 and the format for operators was illustrated
in detail in the section on Operators. Neither of these
will be discussed further here.

Admissibility Test

The admissibility test (M27) is built to take as
Input a symbol (M9O - M93) which designates which side
is to be checked. It checks the indicated side by putting

the missionaries and cannibals in one-to-one correspondence

and emits either "satisfied" (Si) or an "unsatisfied" (S2),
along with an indication of the failure (M6O to M63 in
Yl8). There are four ways of specifying the side to be
checked: the left side, which initially holds all the
men (M90); the right side, which must hold all the men
at the end (M9l); the side from which the men are moving
on this boatload (M92); and the side to which the boat-
load Is moving (M93). The reason for the different ways
of designating sides comes from attempts to simulate human
subjects, who have a tendency to check, say, left side
and "to" side. Since these sometimes designate only a
single side between them, they can lead to failure to
observe the admissibility constraint. There is a list
(Mil) which gives the set of admissibility tests to be
applied.

95

External Task Space: Top Executive Rl

In running GPS on the M&C problem and comparing it
with human performance, it was observed that the humans
often did not remember any of the intervening positions.
They knew the initial position, they knew the position

they were at, and they knew the position they had just
come from. This contrasted with the situation in logic

where intermediate positions were known and often used.
Part of this difference rests in the different external
arrangements of the tasks. In logic (K7O) the "official"
results of applying operators were kept on the black-
board in plain view. (There could, of course, be other
results which the subject though of but never made
explicit.)

In M&C the subjects worked with a graphical repre-

sentation of the river, using physical objects for
missionaries and cannibals and physically moving them
from one side to the other. As a consequence, they had

no external memory of any position but the current one.
Top executive Rl is an attempt to simulate this latter

situation. A list of external TEX's (Ll3) is kept, which
simulates the external graphical device. For recording
purposes this contains all the TEX's ever obtained in

order, but for GPS the only TEX that counts is the last
one on the list, which represents the current situation.
GPS must command the experimenter to apply an operator

to this current position (done by executing M2B rather
than by a communication). M2B applies the operator to
be the last TEX on Ll3, if it is feasible, and adds a

new TEX to the end of Ll3. It then applies a complete

set of admissibility tests and if the move is not admis-
sible another move is made that undoes the move (thus
leaving a graphical record of the failure to satisfy the
rules). Two new signals are used in the problem-solving

96

executive: 544 (final problem solved) which occurs if

the final state is ever obtained by the TEX on Ll3, and

545 (external progress made) which occurs whenever a new
TEX is generated on Ll3 (excluding the returns to previous

TEX). When 544 occurs RIO is able to quit. Whenever
545 occurs, Rl sets up a new transform goal to get from

the new TEX to the final result . Rl is written in a

reasonably general fashion; however, it has never been
tried with any task except M&C.

ADDING NEW TASK ENVIRONMENTS

The addition of a new TE still requires an intimate
knowledge of the way GPS works and of its internal con-
ventions . To install a new TE, the best course is to

take one of the existing TE's and ask what the relevance
of each part is to the new task. To illustrate, suppose

we wanted GPS to work on trigonometric identities--a task
(5)

that has been hand simulated in detail, w ' but not run
yet on GPS. We consider K7O, the TE list for symbolic
logic, as providing the most appropriate check list.

70, '0
KBl
ClO
KB2
C 6
KB4
Cl9
zBo
FlO
ZBl
E26
Y5l
CI

Difference ordering

List of variables

Difference print list

Convert TEX

Print TEX

List of operators

Y52
C 2
Y53
C 3
Y54
C 4
Y6o

Table of connectives

List of immediate operator

List of objects

Identity comparison

97

Many of the considerations below are obvious and parallel
to information already given. Nevertheless, it is useful
to have It all in one place, oriented toward introducing
a new TE. To be simple-minded, we will take up the items

as they occur on K7O.

The set of difference symbols (Dx) are not yet se-

lected, but will be later. A look at ClO shows that we
can assign differences to indifference subclasses if we
wish. In any event we will undoubtedly need a special

list for Trig (call it T10). The function of the ordering
is to permit the evaluation of goals.

List of Variables : KB2

For simple problems in trigonometry, we will only

need variables in the algebraic operators (like A -B
(A+B). (A-B)). We might as well use A, B, C, D, which
are used in Logic; hence C6can be used directly.

Difference Ordering: KBl

Y62
F2l
Y63
Fl
Y64

Similarity test for objects sets

Compare objects

Compare operators
Fl
Y65
F22
Y69
F9

Search filter on operator condition

Standardization

Y7O Similarity test for operator sets
F23
Y72
F25
Y73
F27.0

Adjustment for EXI (Qsl)

Adjustment for EX2 (Q52)

98

Difference Print List: KB4
This structure is used to make the output pretty.

When a difference symbol is going to be printed in a
format, this list is consulted and if format information
exists for the difference symbol, it is used. Thus,
"REDUCE D9ON Ll TO LO" becomes, "CHANGE POSITION ON Ll
TO LO." There is no need to develop such a list for a

new TE at the outset, so we will just leave it out.

Convert TEX: ZBO

For most new TE's the input format is quite idio-
syncratic to the task area and an entirely new routine
has to be thought through. For Trig, however, we can
work quite close to Logic, since they both use parenthet-
ical notations. An examination of FlO shows that there
is an interpretation of the various symbols in the input

line, each calling forth its own conversion subroutine.
Thus V, �1 are treated as binary operators. Trig de-

mands a symbol for equality, addition, subtraction,
multiplication, division, and exponentiation. Suppose

we use =, +, -, *, /, and ** for these. We incur a few

additional problems in the minus sign, which must be
admitted as a unary operator when it occurs initially;

and in the exponentiation sign, which has a double symbol,

so that the decision on whether * or ** has occurred re-
quires some memory or a forward and backward look. Since
equality is part of the object expression connectives,
we need another symbol, say E, for the operator connective
In any event, a routine (U10) can be written using FlO
as a model that will convert an expression in standard
external notation into the accepted internal structure.

99

Multiple Operands

A much more difficult problem will be encountered
if it is desired to use addition and multiplication as
operations with an indefinite number of operands; e.g.,

2sinx + cosx + sin x+ 1. It is easy enough to code the
conversion routine to give a list with + as the head and
all the operands in the list cells. The problems arise
in getting operators to work on expressions with indefi-
nite operands. The kind of form GPS knows about—e.g.,
A*(B+C) = A*B+A*C — assumes fixed structure. To get GPS
to work with A*(B+...+D) = A*B+...+A*D requires some ad-
ditional ingenuity. Even to apply a binary operator

anywhere within a set of operands of indefinite length
requires ingenuity. Since the purpose here is to illus-
trate, rather than solve new problems, let us agree to
stick with operations with fixed operands. (This is
what was done in the hand simulation.)

Print TEX: ZBl

A look at E26, the Logic print, shows it depends on
E6O, which produces a linear string of characters from
a tree structure. Examination of E6O shows that it, like

FlO, examines each of the important symbols in the input

structure to select a specific subroutine to build the

linear list . A routine is needed for Trig that can
easily be modeled on E6O (say U6o). However, E6O is not
directly named in the TE list. Either a variant of E26
must be written using U6O, or perhaps a new TE cell can
be created (say Y79) such that E26 uses the routine In
Y79 and the TE list specifies what routine it should be.
(The TE cell for printing cannot be eliminated, since
not all TE's can use E26.)

100

I

1

I

List of Operators : Y5l

Most of the operators for Trig can be written down

right away. The algebraic ones are clear; so are the
2 2trigonometric identities—e.g., sin x + cos x = 1. This

may be expressed as two rules, one running in each di-

rection; GPS does not yet recognize rules as two sided.
(However, the second rule can be expressed simply as the

reverse of the first.)
However, one operator—the combine operation— cannot

be expressed as a form. It simplifies expressions by
recursively applying to them a whole series of rules:
o+o=o, l*n = n, x 1 = x, x° = 1, x/x = 1, x + x =
2*x, etc. This operator should be coded as a direct
operator (Al = 563) —that is, as an IPL program. This
will be a rather extensive piece of code; it was coded
once for GPS-1 in IPL-IV and ran about 200 instructions.
In coding this operator, it can be assumed that the
operand is in Yll-Yl3-Yl5. Alternatively, of course, the
component laws could be expressed as separate forms,
letting the simplification emerge from the general at-
tempts at a solution. Some sort of general trend toward
simplicity, as expressed by additional differences, might

be required.

Numerical Calculation

A subsidiary problem, but one that is quite impor-

tant for mathematical manipulation in general, is how to
represent numbers and get numerical calculations carried

out. Some form of rational arithmetic is required, such
that 2/2 = 1 and 4/2 =2, but 3/2 = 3/2. In Trig this
only shows up in the combine operator; still it requires
an agreement on representation, on when operations will

be performed, etc.

101

Table of Connections: Y52
The form of the table of connections can be seen

from C2. For each of the differences there must be a
list of what operators are considered relevant and In
what order. Clearly a new structure T2 is needed for
Trig.

List of Immediate Operators : Y53
Again the form of the list can be seen from C3. For

Logic it consists of ways of handling the double negation,
and a response to two different constant terms (e.g., P
versus Q) that the difference is impossible to reduce
(set Sl3). The immediate operators for Dl4and Dl5that
accomplish substitution are associated with GPS-core,
since they are part of the general apparatus to apply

form operators. For Trig, according to the way we were
proceeding above, the sign Is to be a binary operation
(with some unresolved problems about the Initial sign).
This means we do not want the D6, D7, Dl2, Dl3immediate
operators, and their function will be taken over by the
combine operator. On the other hand, lt may be easier
to still think of '-' as an unary operator. This would
change the conversion routines so that x-y becomes
x + (-y); then these immediate operators of Logic would
perhaps be appropriate. One can see from this that
basic decisions about representation can affect everything
else.

In a similar vein, if we handle the trigonometric
functions as constants (since we are Ignoring their
arguments completely for simple problems), then there
exist ways of transforming one term into another via
trigonometric identities. Hence we do not want the DlB
immediate operator. On the other hand, if we continue
to represent "slnx" as an expression with sin as the

102

operation and x as the operand, then the DlB Immediate
operator is still reasonable.

There is probably little point in trying to think

of additional immediate operators until some runs show

where something is needed. If we take the right options

above, we don't need any immediate operators at all, and

can just leave Y53 off the list.

For Logic, C4is an empty list, since the only ob-
jects used are those defined in the top goal and objects

derived from them. Y54 could just as well have been
left out. The same Is true of Trig. However, any ob-

jects put on the object list will be converted.

Identity Comparison: Y6o

This test is used when a new object has been created
to find if an Identical TEX already exists. P2O is a
general comparison of two list structures, Ignoring the
description lists. It should be perfectly suitable for

Trig.

Similarity Test for Object Sets: Y62
This routine is directed toward selecting out the

one member of a set of objects that is most similar to
an external object. It occurs in Q54, the direct operator

that is evoked by Dl9. For example, If the initial prob-

lem is given as getting from a set of objects to a
specified one, then matching produces Dl9, which ends up

by selecting the most similar one of the set as the
starting point. The similarity test used for logic, F2l,
demands that the main connective (read operation, for
Trig) is the same and that the two objects have at least
one term In common. If used In Trig, it would tend to

List of Objects: Y54

103

classify sums with sums, products with products, etc.,
and would call expressions dissimilar if they didn't
both contain the sin, or the cos, etc. This probably
Isn't exactly the right shape for Trig, but it is a good

start .

Compare Objects: Y6
This is the part of the match routine that is task

independent. The two expressions are put into corres-
pondence on their structure and the routine in Y63 is

executed at each pair of subexpressions. The output of
the comparison routine is one of the signals : SlO (the
entire subexpressions headed at this point are identical);
Sll (no differences at this point, but the subparts of

the subexpressions need investigation); Sl2 (a difference
exists at this point); or Sl3 (it is impossible to make

these two expressions the same). In the latter two
cases the difference symbol (Dx) is placed in YlB.

This IPL routine provides half the operational defi-
nition of the differences, the rest being provided by
the table of connections. The routine for Logic, Fl, is
diagrammed in Fig. 7- Many of the same differences will
be appropriate; in fact, perhaps Fl could be used to get

started for Trig. New differences can be introduced by
expanding the compare routine to output a new symbol when

It detects some new feature, and associating some oper-
ators with the symbol on the table of connections.

Compare Operators : Y64

Conceivably a difference comparison should be used
when trying to satisfy the condition form of an operator

rather than comparing two objects. This has not proved

to be the case for Logic, and initially there is no
reason to suppose it true for Trig.

104

il

Search Filter on Operator Conditions: Y65
In selecting an operator to reduce a difference, a

preliminary selection is made on the feasibility of the
operator. GPS will run perfectly well without any

filter; and one can be added later. Again however, the
ones for Logic (F22 or F8) are good candidates for use-
ful ones for Trig.

Standardization: Y69
This routine was introduced into Logic to remove

all the double negation signs prior to printing the ob-
ject. There is no reason to consider such a routine for
Trig until the need becomes manifest.

Similarity Test for Operator Sets: 0

This routine is analogous to the similarity

test for objects, Y62. It occurs in connection with Q56
and D2O, which is related to the two-line rules. Since
there are no two-line rules In the operator set for Trig,
there is no need for this .
Adjustment for EXI (Q5l 2

This routine permits GPS to see a negative variable
as a variable — that is, if -A is opposite PVQ, then
-(PVQ) Is substituted for A. The Immediate operators

take care of whatever double negations occur. Whether
something like this is needed for Trig depends intimately
on the issues mentioned earlier about how to handle
signs .
Adjustment for EX2 (Q52

This routine is analogous to the one for Y72, but
concerns variables in EX2 rather than variables in EXI.

105

Summary

We have now covered the range of items in the Logic
TE list. We have raised some representational Issues
plus the question of how to get arithmetic done. These
may require a good bit of thought before they can be
satisfactorily settled. There are several substantial
routines to code: the conversion, the print, and (at
some time) the compare. However, the Logic routines
provide good models. There may be entirely new TE de-
pendent elements, but none of these are apparent yet.
Hence, if we assume the analysis above, we can build a
new list for Trig, say K7l:

K7l/0KBl

Besides K7l and the structures that are named on it,
we must write down all the operators and code up the
combine operator. Also, we must write down a few objects
and put their names on goals. Finally, we are ready to
assemble all the new routines, put K7l In Z9O and the
goal name In Z9l, and GPS will attempt a problem In the

TlO
KB2
C 6
zBo

New difference ordering

UIO
ZBl
U26
Y5l
Tl
Y52
T2
Y6O
P2O
Y62
F2l
Y63
Fl
Y64
Fl
Y65
F22.0

New conversion

New print, like E26, but using U6O in
place of E6O

New list of operators

New table of connections, but with Logl
difference

Use Logic compare to get started

Use Logic filter to get started

106

ij
ij

ii

I!¥-

Trlg task environment . In fact , over and above the bugs

in the new programs and structures, there are sure to be

a few conceptual errors that will require modification
of the TE, including perhaps the addition of new routines.

The chosen example, trigonometry, was almost guar-

anteed to be easy, since it is so similar to Logic. If
we had picked a quite different task, say chess or various
puzzles, we would have been faced with a much more intri-
cate problem of how to represent the essentials of the
task so that they fit GPS's way of doing thing.

107

IA «-
O am— -J -J -J

t-
_

X < << X <A o z
X Z CO «~

_
O Z_

»_J «no - oa v. v. 3 z to —U. -J O LL 00 O I- I—
o-J iv < _j vi — "■« a: < —t-UJ< 30<j__*-^-0 O X I-

zxOi--_oO(_:z<u. —i >-> z— _<_>Z<_r«KUJO LL _J >-
I- Ot Dm >3_tKJx VI "-

_
Z

_
O 3 C 3 LU 3 UJ < U. LU O 1- UJQ.

JJ
_

Zl»-J_iZi/)_.Z>— t-Z O _XQ._ o »— —" ia < O — (- i/» "— X O *- >- t/>
Z t- 3 > — ~■a_U.l_._Z — ►- LL 0. ►- l/>
vi— a-iLuaouozoaai -i_ lv ll lv lv
OCZZOZ OLUQO r- UJ O LU

_— O am IA lAr-ZZamZ'mujat 3 0.
> x ujqcooooi— oujo _

uj uj ja
Z at 3Z *- *l ill Z) ~> <- 0. *m *- U. < U. O (->-<_
UJ-J OIU <>X_hhNt-<o_o UL 3 3 > </>< >--JX3IUt-00_i_>3t- -I -J_ _ _

H.rjJUJ VI-UJUUJJI- h 1- 00-Ja.
(/) l/l O ZOI-<_aZ J JO J<r/tOVI I/) IA IA < X
<<—" o_<><OOUJ__iJJ>— M— —"

_
CD O OJ

>—"—<✓> xa.uzi-u^viio'iiujaj -i <<vi-
m
OSI

o o
O CM
©ooo 00000000000 000 o o oo

.
OS
c

o
c> in o .* o —

OOO— 00.*.* -OOOO— O o«- O — O — CM *> mm Jf — o— NS — <MS — >"i> -' -' — — CMCMWIIOKIPO >0 — >© — — O
ouj — T__oa_£OOoaoc»oooi_o._oci_:af_r_ro>-u.>-a. _:->

8
I o o

♦ + ♦♦ + + + ♦♦♦♦*♦♦♦♦♦♦♦

25
o oo — cm -000 — (Niroa-inof-cooo i*- cm _r -o f-

o o e> t> — oo»c>oc>c>c>t>c> — — fis — wi n 00 cm
r-J NJ rSJ .sJI»J>->->.>->.>.>->->>->__l_l _1 X!

_
Ul

jj- n«i*i/i oo
> >ooooooo©oooocm
j*, minin-ninm-o-00-O'O-oo
C\j CMCMCMCMCMCMCMCMCMCMCSJCMO

oo — 0000000000000000— — — — — — — — o — — — — oo ooo
CO CO — oo

.* LOin_fj»ooco-oo ,,oc>_f^co *ifl*mai/i.s c- oo in in
CM O .* l~ CM CM — M'OOOSOOKO* — — CM CM "n "1 "1 "O -O -A -0 lO ul CM
ONM'O-O'OOOIOUIOCOrXB'OOE 00000000 * N * h o>o— U-ll^h-CMCMCMCM — — CM — — — — — — OOOCMCMCMCMCMCMCMCMOCMf»CMr>- — CM

00000000000000000-*-».*©0O©OO00_|-00O0 — — oo
0000000000000000000000000000000000000__ "out-or-cooo- cMxn_rm
JUlor>OJJlfl'Olv-COe-0-(\ll'l*inN-l>»C>o'l>t>oo'-0000 f>-
OOOlfl'-'-r>r>l>r>r>i>OOOOOKl*l4 IflJli/llflUMfl'e'Oin'o'o 0«'00'0-
-is-i- I>-cMf~N.j*j'*_r_, _rinLnLninin- — — cmcmcmcmcmcmcmcm — cmcmcmcmcocooo
CMCMCM — CMCMCMCMCMCMCMCMCMCMCMCMCM — — — — ———— — — — — — — — f- — O O —

108

i!

CM■o
io

co
■oro

co
oo
<c
00no

o

o
XI

o
in
JT

o
00

o
00ooo ono —f- Q

CM

00

co»o
CM
u-l

"0uoo
_"
uo

Oroo-o

o
00
O

ooo
CM UOo —ro O

CM
"—00

ooo
"o
00
"o

o
CM
00o

CM

O
tm.

o
"—00
o
oo

at
00 Ul
Ul —ao or-

CM
oo

J*
00

O
am
IA

O am

CM NO
IO CM
■O 00co

Nl
CM
00

nococo

at

a.
>o
o
-J

CM
COca

amm
ex.
I
fl

at

-I

amo«no

UJzoz
v.a
_j

<o_
ao
3
IA

O
_J

o
Z

-I
X_
ov.
VI
Z<

_J
<oo

r-
-00
ta.
_J

zo
►-<>—LUo

-I

CO
CM

oo
*■«
-I

zo—
>«»I_
LU
Q

o
-J

»
CM

CO
IA

O
_■
I/)

CM
IA

>o
CM
IA

Oo
CM
l/>

CM
IA

O
CM

t- IA
IA
i- o
-J —IAzo "— o
r~ CM
< _
> w—"at o
uj —Q IA.o_
OC o

vi
oooro ".—

—
o
in
IA
o
in
IA

to
o_

"1
rO
"Oro

00
LL IA
O

O
-I J*
< 00oo —cc —3 oO
i/l

on

</>
CM

O IA
-J

O oo
o— «o

-J 00

z "O CM
fO

f> _
0 —UJ o
(_i m
3 oo
O
01 "_ —CM at
-jo
< oo vi
O oo

CM O
Ul
00

"O
mm—

CM

00

O
CM
00

O

00

"O
CM_
©
00

O
00

m
o
CM
00

«*CM
00— O— CM— oo

l>-
IO —— 00

©
CM CM

00
v.
O »
_l 00
<O "O ©
0. CM
3-00 —e>

mm

oo— O
O —— 00 00

_i

" o— — —r- rO 00—
OC IO

O CM
>- vi uo
-J ooa. »oa. "cm< — oo
ro _ o

■— CM
_J VI
< oo m ioo 00 CMooro ©

in o
oo —oo

"o "— oac cm— at

CO
OO

o
_"
00

oo
00
_r
oo
o
fOoo—-— _l

■© <o o
f- o
IO— o

IO
00

o
W1
00

.*
af oo

COa _"— oo_
t o

IO
CM 00
-I

CM
_J
<oo
o»o
oo

o
IO
00

oo
o
.*
IA

mm
CM—"00

u-l
O
CM

00

ina
© CMo —r~ oo
io_

CM
00

©
LL CM
O 00
_J —at —a ooo
IS o
3 CM
00 00
" O

oo

"o
© CM
-j ac
a
to
z —l— 00

CM "_J oro
X

_
OJ —O
LL Ooo in
Z oo
OC "0- —jt at
_j

< ©o m_
00

CM O
Ul
00

"O

ac

o
CM
Oro_

00
LL 00o

©
-J J*
< OOo<_> —CD —3 oooo

oo

oo

CM
O 00
-J
O ooa.

CM
O oO
r-

CM 00
-Jo

> -oa oo
z "O CMrouo aca —LU O
O uo
3 oo
3
UJ "at —in ac
_i
< oo ino oo
rO Ouo

00

o
I—
ac

CM

00
o
CM
00
O
00

"o
CMac

o
00

o
oo
uo
O

CM

00

CM

O 00

O O
Jt CM— 00

«■« i—

m oo
LL O
O CM

00
-J
< e>o —O oo
ao
3 "00 o— CM

at

o
IA

CM
_l — O

■O —> oo OOa
" oo — —r- IO O0ac

"o — —at ro
O CM

>" Ul 00
_1 00a. roa. "cm< f 00

0.0— CM
_l 00
< Oo in ro
O 00 CM

00_ O
Ul o
oo —OO

"o "— oac cm— ac

CO
00
o_r
oo

.»
00

CO

IA
O
rO
00

-J— <» o
O (J

_f —— o
wro

00

o
Nl
00

ooac
" 00

-I-a oo
>a o«o
"o 00
-j

ul

-J<O
O

o
IO
00

o
fO
OO

"o
oO

O-oo

CM
00

Oa
CM
00

Oa
O CMro —— oo
j*— CM

00
J* o
LL CM
O 00
_J —< —O oo
o
CO o
3 CMoo oo
" o

oO

©
O CM
-i ac
a
i- oz —— IA

IO "_J o
IO

X acac —ov. o
_o m
Z oo<a. "i— —r- ac
_jo
< o
O ul
O OO

<o o
Ul
00

"o
3C

_r
am
CM
Jf
r-

LLo
-J
<oo
03
3

03oo

O
J»
00o

_) —O LO
a
O oo
i—

ro oo
_J

Oo >o
a. oo
z "O CMro
> aC
O —UJ O
O Ul
3 00o
LU "ac —
co _
_i
< o
O m
O 00

J* ©
Ul
00

"o—-re

CM

00

o
CMoo
o
oo

"o
CMac

o
00

o
00

Ul
o
CM

00
am
CM

Ul 00
Oro o
_■ CM— 00
.—» f."
00 00

LL ©
O CM

00
-I
< ©-a —O 00
co
3 "IA O— CM

at

>
oo

ro
_l — ©

■o —O oO oo
a.

" oo — —i— rO 00
oc_ ro
© CM

>- Ul 00
-J 00a. ioa. "CM
< — 00

mm

o ac o— CM
_l oO
< ©o vi to_

oO CM
00

Ul o
Ul o
oo —00

"© t— ©ac cm— oc

CO
oo
o_r
00

IA

00
_roo

o
IO
oo

s-
-J— at

J* oo o
J*
._" —— o— IO

00

o
IO
00

.*
ooac

" 00
.*a oo

>a o
ro

Jt 00
_J

CO
-J
<3o

o
IO
00

oro
00

o
CM
OO
IO
CM
00

O
00

O
CM
oo
O
CM
OO
ro
CM
00
O
00

o
CM
00

O

© 00
COro O
J» CM— 00

r-- oo
v. o
O CMoo
-J
< —o —13 oo
co
3 O
LO CM— oo

o
oo

f
O o
_l CM

ato —r-z o
mm F—

O0
Jt
-J "o
X roac aco —"LL
00 oz in
<t oo
ct
L- t

© —— at
—i
< o
O Ul
O 00

J* o
Ul
oo

"o
at

©
fO
oO

o
Nl
00

Jt
00

CO
.*oo
o
Ml
00

-J
<oo
o
ro
oo
.—"O
"o
oo

Jt
00

CO
Jt
oo
©
IO
00

-I
<a
CJ

oro
00

o
<o
IA

r—
J*
00

00
.*
00

o
NO
00

_J
<oo
oro
oo

©
iOoo

109

Appendix B

GPS-2-2 VOCABULARY (ROUTINES)

GENERAL ATTRIBUTES
COMPONENT ATTRIBUTES

Al TYPE OF COMPONENT
A 2 ORDER OF GENERATION (NAME)
A3 GOAL THAT PRODUCED COMPONENT
A 4 LIST OF GOALS USING COMPONENTS
A 5 LIST OF EQUIVALENT COMPONENTS
A 7 MARK TO KEEP IN CORE
A 8 CONTROL WORD FOR AUK STORAGE
A 9 LOCATION PROGRAM, IF EXTERNAL
AlO TEST FOR OPERATOR CONDITIONS
All DIRECT PROGRAM FOR OPERATOR
Al2 TE OF OBJECT
Al3 LIST OF VARIABLES FOR TEX
Al4 RESULT LIST (EQUIVALENT GOALS LIST)
Al5 COMPLEXITY OF TEX (0) (INTEGER)
Al6 MAX DEPTH OF TEX (0) (INTEGER)
Al7 DIRECT PROGRAM FOR COMPARISON
Al9 CHARACTER TO BE PRINTED

GOAL TYPE ATTRIBUTES
A2O GOAL FORM

METHOD ATTRIBUTES
A3O METHOD TYPE

RESULT ATTRIBUTES
AAO ATTEMPT STATUS
AAI LOCATION OF METHOD USED
A42 STATUS OF METHOD
A«t3 START OF SUBGOAL ATTEMPT
A4«V FINAL SUBGOAL

GENERAL ATTRIBUTES
A5l CONTENT TYPE

LOCATION PROGRAM TREES
A6O LOCATION PROGRAM
A6l LEVEL

110

'»■

i

i

MISCELLANEOUS ATTRIBUTES
A7O LIST OF COMPONENTS USED (MULT. OPR)

DIFFERENCE EXPRESSION ATTRIBUTES
ABO STATUS
ABl NBR 1 SUB DE
AB2 NBR 2 SUB DE
AB3 EVALUATION TYPE- KIOX
AB4 LEVEL (ABSOLUTE)
AB5 MAX - LEVEL (ABSOLUTE)
AB7 NBR 2 LIST OF OCCURRENCES
ABB RELATIVE LOC PROGRAM
AB9 DIFFERENCE TYPE
A9O LIST OF DIFFERENCE TYPES
AlO9 HIGHEST DEFINED REGIONAL

EXPERIMENTER ROUTINES
EXECUTIVES

E2 TOP EXECUTIVE FOR SINGLE TASK
E7 FILE GOALS IF SPACE LESS THAN 11
E8 MOVE GOAL (0) IN FROM AUK

MISCELLANEOUS
ElO OEFINE ONE WORD ROUTINES
El 2 POST MORTEM PRINT
El 3 INITIAL SET UP OF TRIVIA
El 4 FORM FOR SIGNAL
El 5 FORM FOR ATTRIBUTE
El 6 SET PRINT NAMES (Al9) A/C LIST (0)
£19 SET SUBR (0) FOR SIGNAL-LINE TRACE

INPUT - OUTPUT ROUTINES
E2l CONVERT TEX (1), CONTENT TYPE (0)
E22 CONVERT GOAL (0) TO INTERNAL FORM
E23 CONVERT TE (0) TO INTERNAL FORM
E24 PRINT GOAL EXPRESSION
E25 PRINT GOAL NAME AND DEPTH
E26 PRINT TEX (0)
E27 PRINT OPERATOR REJECTED
E2B PRINT GOAL NAME
E29 PRINT GOAL STRUCTURE

111

BASIC CONVERSION ROUTINES
E3O SET UP FOR CONVERSION
E3l INTERPRET CURRENT SYMBOL
E32 LOCATE NEXT INPUT SYMBOL
E33 CREATE SUBLIST (NOT CONNECTED)
E3A CREATE NEXT CELL
E35 RETURN TO LOC IN PRIOR SUBLIST
E36 FIND LOC PROG, PUT IN Z47 (SAFE)
E37 CREATE NEXT UNIT, SYMBOL OR ()
E3B CREATE NEXT EXTENDED UNIT
E39 CLEAN UP CONVERSION (H5 SAFE)
EAO FOLLOW INTERPRETATION LIST
E4l CONVERT () TO LIST STRUCTURE
E49 ASSIGN A PRINT NAME TO (0)

OUTPUT ROUTINES
E5O PRINT STANDARD FORMAT (0)
E5l SET UP FOR PRINTING
E52 CLEAN UP PRINTING
E53 LOCATE NEXT CELL IN FORMAT
ESA ADVANCE COL NUMBER 1 SPACE
E55 ADVANCE COL A/C DEPTH (0)
E56 PRINT SUBFORMAT (0)
E57 ENTER NAME (0)
E5B ENTER SIMPLE LIST OF SYMBOLS (0)

E59 ENTER LINEAR LIST (0)

E6O CREATE LINEAR LIST FOR EX(O)
E6l ENTER LIST OF NAMES (0)

E62 ENTER DIFFERENCE EXPRESSION
E63 ENTER LOCATION PROGRAM
E6A ENTER DIFFERENCE (0)

E6B PRINT EQUIVALENCE LIST (0)
E69 PRINT GOAL SELECTED
E7O ENTER SIGNAL (0) IN PRINT LINE
E7l TEST IF XO IN HO
ElO9 HIGHEST DEFINED REGIONAL

LOGIC TE
PROCESSES

Fl DIFFERENCE NET
F2 OPR APPL TEST, EX 1 MAIN, POSITIVE
F3 OPR APPL TEST, EX 1 MAIN
FA ADD A DOUBLE NOT TO EX 1 (KNOWN ♦)

F5 ADD A DOUBLE NOT TO EX 2 (KNOWN +)

F6 REDUCE MULTIPLE NOTS ON EX 1
F7 REDUCE MULTIPLE NOTS ON EX 2
F8 OPERATOR FILTER
F9 STANARDIZE EXCO) (OOUBLE NOTS)
FlO CONVERT TEX (0) TO INTERNAL
F2O DIFFERENCE NET, LOCAL
F2l SIMILARITY TEST ON TEXS (0), (I)
F22 OPR FILTER, NBR 2
F23 SIMILARITY TEST FOR OPR SETS
F2A DIFF NET, TEST IF EX2 - TERM (D3)

112

j

F25 ADJUST EX 1, VAR 2 FOR SUBS
F26 DIFF NET, TEST IF EX2 - TERM (09)
F27 ADJUST EX 2, VAR I FOR SUBS
F2B ADD A DOUBLE NOT
F29 ADD A DOUBLE NOT
F3O TEST IF CONNECTIVE DIFF (D 5)
F3l TEST IF POSITION DIFF (09)
F32 TEST IF LOWER SIGN DIFFS EXIST (D8)

F39 HIGHEST DEFINED REGIONAL

GOAL ATTRIBUTES
COMPONENTS

Gl TEX I
G2 TEX 2
G3 LIST OF RESULTS
GA DIFFERENCE
G5 OPERATOR

ADDITIONAL COMPONENT SPECS
Gil LOC PROGRAM FOR EX 1
Gl2 LOC PROGRAM FOR EX 2
Gl3 LIST OF LOC PROGRAMS FOR RESULTS
Gl5 LOC PROGRAM FOR OPERATOR

MISCELLANEOUS
G2O GOAL STATUS
G2l GOAL TYPE
G22 CURRENT VALUE
G23 SUPERGOAL
G2A LIST OF SUBGOALS
G25 LIST OF SUBGOAL TRIES
G26 HISTORY OF ATTEMPTS
G27 METHOD LIST
G2B METHOD USED TO GET THIS GOAL
G29 LOC OF SEG USED TO GET THIS GOAL
G3O LIST OF OPERATORS TRIED
G3l TE FOR THIS GOAL
G32 ACTION FOR SEGMENT
G33 GOAL NET (TOP GOAL ONLY)
G3A LIST OF VARIABLES USED
G35 ANTECEDENT GOAL
G36 RESULT STATUS
G37 LIST OF ATTEMPTS THE GOAL PART OF
G3B LIST OF EQUIVALENT GOALS
G39 LIST OF UNTRIED LOWER GOALS

113

MEASURES
GAO ABSOLUTE DEPTH

MISCELLANEOUS
G5O Gl-EXPANDED GOAL
G5l PERMANENT LIST, S5O-S5l SUBGOALS
G52 GOAL NBR AT LAST TRY IFOR G5O GOAL)
G53 COMPOUND DIFFERENCE EXPRESSION
GSA MOST RECENT ATTEMPT STATUS
GlO9 HIGHEST DEFINED REGIONAL

ADDITIONAL SYSTEM ROUTINES
INTERPRETATION ROUTINES

11 INTERPRET SIGNAL IN Yl (S9 IF NONE)
12 INTERPRET DIFFERENCE IN VlB
13 INTERPRET GOAL TYPE IN Y3
IA INTERPRET CONTENT TYPE IN YB5
18 LOAD SIGNAL FROM HO
19 FIND SIGNAL LIST, PLUG HI.
11l II WITHOUT MONITOR
112 12 WITHOUT MONITOR
113 13 WITHOUT MONITOR
IIA IA WITHOUT MONITOR
118 1Z92 118
119 FIND SIGNAL INTERPRETATION,

MISCELLANEOUS
120 SAVE FOR RESTART
121 SAVE ON SYSBRI
129 HIGHEST DEFINED REGIONAL

MISSIONARIES AND CANNIBALS TE
PROGRAM

M2O CONVERT TEX (0) TO INTERNAL
M2l PRINT TEX (0)
M22 GENERAL OPERATOR ROUTINE
M23 DIFFERENCE NET
M2A IDENTITY TEST (0), (1) (LOC MAIN)

M25 FILTER OPR ON CONDITION
M26 FILTER OPR ON CONDITION
M27 TEST ADMISSIBILITY OF EX(O) (LOC)
M2B COMMAND TEX IYBO
MlO9 HIGHEST DEFINED REGIONAL

114

■p

P - ROUTINES
MISCELLANEOUS

PI TALLY 1 AND RESTORE
P2 SET (0) TO 0 AND RESTORE
P3 SET EFFORT BASE INTO (0)
P5 SUBTRACT 1 FROM (0), RESTORE
P6 COMPARE (0) AND (I) (NUMBERS)
P7 COMPARE (0) AND (1) ON ORDERING (2)
P8 LOCATE MAIN EX, LOCATE NEXT EX
P9 LOCATE FIRST SUBEXPRESSION

EXPRESSIONS (INPUTS ARE LOCS OF EX)

PlO LOC PROG FOR FIRST SUBEX (IN K9B)

Pll LOC PROG FOR SECOND SUBEX (IN K9B)

Pl 2 EXECUTE EX(O). OUTPUT IS INPUT (0)

Pl 3 COPY TEX (0)
PIA MAKE VARS OF (0) AND (1) DISJOINT
Pl 5 GENERATE LOC OF TERMS OF EXll)
Pl 6 GENERATE LOC OF VARIABLES OF EX(1)
Pl 7 GENERATE LOC OF CONSTANTS OF EX(1)
PlB GENERATE LOC OF SUBEX OF EXll)

Pl 9 CREATE A NEW VARIABLE
P2O COMPARE LIST STRUCTURES LOC (0),(l)
P2l TEST IF (0) IS A VARIABLE
P22 TEST IF CO) IS A SET
P23 TEST IF (0) IS TEX
P2A TEST IF TERMS OF EX(1) ARE ON EX(O)

P25 TEST IF ALL CONSTANT TERMS OF EX(l)
P26 TEST IF EX<O), II) HAVE SAME TERMS
P27 TEST IF (0) FIRST LEVEL EX OR TERM
P2B TEST EXIO) HAS MORE TERMS THAN EX 1
P29 TEST IF EXIO), (1) HAVE COMMON TERM

PAO FIND LEVEL OF ABS LOC PROG (0)

PAI LOC IST ITEM LISTI2) THAT PASS COMP
PA2 DELETE ITEMS LIST(2) THAT FAIL COMP
PA3 IF OPR(O)*, MAKE OPERANDS INTO TEXS
PAA MARK COMMON TERMS OF LISTS (0),(1>
PAS DESCRIBE MARKED LISTS IN VlB
PA6 COMPARE LEVEL OF LOC PROGS (0), (1)

PA7 FIND LOCPRG OF JOIN LOCPRGS (0>,(1)
PAB TEST IF (0) ON ORDERING (1)
PA9 COMPARE VALUES <0), (1) (KlOl)
P5O ASSIGN NAME TO TEX (0)
P5l MAKE VARS OF (0) AND (I) DISJOINT
P52 CREATE VAR LIST FOR TEX (0) (Al3)
P53 COMPUTE COMPLEXITY OF TEX(O) (Al5)
PSA COMPUTE MAX DEPTH OF TEX (0) (Al6)
P55 COMPUTE MAX DEPTH OF EXIO)

OPERATOR ROUTINES
P3O PRODUCE REVERSED OPR

MISCELLANEOUS

115

P56 GENERALIZED COMPARE (0), (I)

P57 COMPARE VALUES {0), (1) (K102)
P5B FINO(CREATE) EQUIV LIST FOR TEX (0)

P59 COMPARE VALUES (0), (!) (K103)

BASIC HOUSEKEEPING
P6O COPY AND PAKE LOCAL
P6l DELETE ALL SYMBOLS
P62 IF LOCAL COPY LOCALLY, IF NOT NO-OP
P63 GENERATE LOCATION OF LIST (0)

P6A GEN LOCATIONS OF LIST (I), (2)
P66 MOVE ATR-VALUE 10) FROM (I) TO (2)
P6B POP HO TWICE
P69 JO/0

LOCATION PROGRAMS (IN K97, K9B)

P7O LOC 2ND SUBEX I LEVEL DOWN (K97)
P7l ABS LOC PROG. LEFT OF LEFT (K9B)
P72 ABS LOC PROG. RIGHT OF LEFT (K9B)
P73 RELATIVE NEXT
P7A RELATIVE FIRST SUBEX, 1 LEVEL DOWN

EXPRESSIONS
PBO LOC FIRST NON-UNARY EX IN EX(1)
PBl FIND MAIN EX OF (0)

PB2 LOC MAIN GIVEN (0) » LOC OF TEX/EX

MISCELLANEOUS
P9O OESCRIBE MARKED LISTS, NBR 2
P9l FIND LEVEL OF REL LOC PROG (0)

P92 LIST HIGHEST VALUED DE-S IN DE(O)

P93 TEMP FOR K7O ON SA C32
PlO9 HIGHEST DEFINED REGIONAL

Q ROUTINES
EXECUTIVE SEGMENTS

Ql WHAT LIMIT IS EXCEEDED
Q2 LOCATE NEXT UNTRIED METHOD
Q3 LOC NEXT SEGMENT AND EXECUTE
QA EVALUATE GOAL
Q5 TEST IF AT TOP LEVEL
Q6 RECORD ATTEMPT (LEAVE SIGNAL)

Q7 REPEAT CURRENT METHOD IF REPEATABLE
Q8 SELECT BEST UNTRIED LOWER GOAL
Q9 RETRY ANTECDENT GOAL

116

MISCELLANEOUS
QlO FIND NEW LOC PROG»(0) ♦ Yl9 RECORD
Qll COPY YU-Yl3-Yl5-YAS IF NEEDED
Gl2 COPY Yl2-YIA-Yl6-YA6 IF NEEDED
Ql3 ASSIGN (1) TO BE ATR (0) OF GOAL
QIA ASSIGN (1) TO BE ATR (0) OF GOAL
Cl 5 ADO (I) TO ATR LIST (0) OF GOAL
Ql6 COMMON FRONT PART OF GOAL CREATION
Ql7 COMMON END PART OF GOAL CREATION
QlB FIND REL LOC PROG FOR Yl9 LIST
Ci 9 ASSIGN LIST ATRS (0) FROM GOAL (1)

METHOD
Q2O
Q2l
Q22
Q23
Q2A
Q25
Q26
Q27
Q2B
Q29
Q3O
Q3l
Q32
Q33
Q3A
Q35
Q36
Q37
Q3B
Q39
QAO
QAI
CA2
QA3
QAA
QAS
QA6
QA7
QAB
QA9

SEGMENTS AND SUBSEGMENTS
COMPARE NBR 1 AND NBR 2 A/C IYI7
FIND FIRST PAIR, I LEVEL DOWN
FIND NEXT PAIR, THIS LEVEL
RETURN ONE LEVEL UP
CLEAN UP YII-Y2O
SET UP MATCH FOR Gl TO G2
FIND IMMEDIATE TE OPR
CREATE DIFFERENCE GOAL
CREATE MODIFIED TRANSFORM GOAL
USE RESULT OF SBGL AS RESLT OF GOAL
SET UP TO FIND RELEVANT OPERATOR
FIND NEXT UNTRIED OPfcRATOR
FILTER OPERATOR ON CONDITIONS
FILTER OPERATOR ON PRODUCT
CREATE APPLY OPERATOR GOAL
TEST OPR COND FOR APPLICABILITY
SET UP OPR FOR MATCH (Q39 DONE)

CREATE PRODUCT FROM FORM
CREATE .MODIFIED APPLY GOAL
FIND OPERATOR TYPE AND SET UP
CREATE DIFF GOAL FOR DIRECT TEST
FIND OPR GIVEN BY EXP, SET UP
TRY DIRECT OPERATOR
TEST IF NEW TEX ON EQUIV LIST
SET VALUES ON Y3X LIMITS
CREATE EQUIVALENCE LISTS
TEST IF GOAL ALREADY EXISTS ON 1Y25
FIND GPS DIFFERENCES
RECORDS FOR NEW TEX
RECORDS FOR SELECTED TEX

117

IMMEDIATE OPERATORS
Q5O COMMUTE SET EX I
Q5l SUBS EX I FOR EX 2 (VAR) IN TEX 2
Q52 SUBS EX 2 FOR EX I (VAR) IN TEX I
Q53 IMPOSSIBLE IF NOT PROVISIONAL
QSA SELECT FROM Yll SET
Q56 SELECT FROM Yl2 SET

METHOD SEGMENTS AND SUBSEGMENTS
Q7O TRANSFER A RESULT FROM EQUIV GOALS
Q7l TEST IF GOALS EQUIV, AND SET UP
Q72 CREATE ATTEMPT RECORD
Q73 SELECT BEST SUBGOAL ON LIST (0)

Q7A EVALUATE GOAL I NBR 2)

Q75 OBJECT VARIATION METHOD FOR XI
Q76 CREATE GOAL VALUt (K101)
Q77 CREATE GOAL VALUE (K102)

Q7B CREATE GOAL VALUE (K103)
Q79 SET NEW TE (0)

GOAL SETTING ROUTINES
QBO GOAL SET ROUTINE, (0) = GOAL
QBl SET UP NEW SUBGOAL (IN YB7)

QB2 SET UP SUPER-GOAL FOR RETURN
QB3 SET UP GOAL FOR RETRY
QBA SET UP PRIOR GOAL FOR RETURN
QB5 SET UP SUPERGOAL OF IYBB FOR RETRY
QB6 SET UP SUBGOAL FOR RETRY
QB7 SET UP SUPER-GOAL FOR RETRY
QB9 RESET MTH-SEG CONTEXT FROM GOAL (0)

MATCH ROUTINES
Q9O CREATE DIFF-EXP AND PUT ON IYBA
Q92 COMBINE LIST YBA OF DES (NBR 2)

METHOD SEGMENTS AND SUBSEGMENTS
QlOO RE-EXECUTE CURRENT SEGMENT
QlOl SET METHOD ACTION SIGNAL
QlO2 PREPARE OUTPUT IF NOT DETERMINED
QlO3 CREATE NEXT OPR GOAL FROM SET
QIOA GOAL REJECTED
QlO5 SELECT BEST GOAL FROM LIST (0)

QlO6 EVALUATE GOAL (NBR 3)
QlO7 SET COMPLEXITY LIMITS
QlOB TRY Gl-EXPANDED GOAL
QlO9 SELECT BEST S5O, S5l LOWER GOAL
QUO SELECT NEXT DIFF FROM IYBA
QUI SET YIX CONTEXT FOR DE (0)
Qll2 TEST IF MATCH ALREADY DONE
Qll3 RECORD STATUS OF DE
QUA ERASE DE AND SETUP FOR REMATCH
Qll5 RECORD METHOD ATTEMPT

118

h

Qll6 SET OUTPUT FOR KAO METHOD
QllB ADO P8 TO Yl9
Qll9 ADD P9 TO Yl9
Q209 HIGHEST DEFINED REGIONAL

R - ROUTINES (NO PREFIXES, NO YS)
EXECUTIVES

Rl KEEP WORKING FROM EXTERNAL
R2 TOP EXECUTIVE FOR NEW PROBLEM

PROBLEM EXECUTIVES
RIO PROBLEM SOLVING EXECUTIVE
Rll EXECUTE METHOD UNTIL FAIL

MATCHES
R2O MATCH DEPTH FIRST
R2l MATCH, SINGLE PASS (Q9O-Q92)

METHOD SEGMENTS
R3O MATCH Gl TO G2, CREATE SUBGOAL
R3l TRY OPERATOR, CREATE SUBGOAL
R32 FINO NEXT UNTRIED RELEVANT OPR
R33 SECOND STEP IN KAI METHOD
RlO9 HIGHEST DEFINED REGIONAL

SIGNALS (SX * 10SX/I8)
GENERAL

SI YES, ♦, POSITIVE, OK, FIND, ACCEPT
S2 NO, -, NEGATIVE, NOT FIND, REJECT
S3 MUCH WORSE
SA SOME WORSE, LESS
S5 THE SAME
S6 SOME BETTER, GREATER
S7 MUCH BETTER
S8 UNDEFINED
S9 NO INTERPRETATION

DIFFERENCE RESULTS
SIO IDENTICAL
511 NO DIFF SO FAR, MAY BE DEEPER
512 DIFFERENCE FOUND
Sl3 HOPELESS, TOO DIFFERENT
SIA OPERATORS DIFFER
Sl5 OPERANDS DIFFER
516 PROVISIONAL DIFFERENCE
517 SOMETHING HAS CHANGED
518 DIFFERENCE EXPRESSION EXISTS
519 START OF DIFFERENCE

119

CORRESPONDENCE RESULTS
520 BOTH IYU AND IYI2 FOUND
521 IYII FOUND, IYI2 NOT, DEEPER
522 lYll NOT, IYI2 FOUND, DEEPER
523 NEITHER lYll NOR IYI2 FOUND, DEEPER
S2A lYll FOUND, IYI2 NOT, MORE OPERANDS
525 lYll NOT, IYI2 FOUND, MORE OPERANDS
526 lYll, IYI2 HAVE SAME NBR OPERANDS

ATTEMPT STATUS
S3O SUCCESS, ONE RESULT
531 SUCCESS, SEVERAL RESULTS
532 TRIEO UNSUCCESSFULLY
533 UNTRIED
S3A INCOMPLETE
535 IMPOSSIBLE (METHOD EXHAUSTED)
536 IDENTICAL RESULT
537 BORROWED, ONE RESULT
538 BORROWED, SEVERAL RESULTS
539 BORROWED, UNSUCCESSFUL

SEGMENT RESULTS
SAO SUCCEED, NEW SUBGOAL GENERATED
SAI SUCCEED, MORE SEGMENTS
SA2 SUBGOAL GENERATED (=ONE EXISTING)
SA3 SUBGOAL REJECTED
SAA FINAL PROBLEM SOLVED
SAS EXTERNAL PROGRESS MADE
SA6 SUCCEED, REPEAT SEGMENT
SA7 SUBGOAL FAILS
SAB SUBGOAL SUCCEEDS

METHOD STATUS AND GOAL STATUS
550 UNTRIED
551 NOT THROUGH
552 THROUGH
553 BLOCKED
SSA DUPLICATION

COMPONENT TYPE
560 OPERATOR WITH INITIAL CONDITIONS
561 FORM OPERATOR
562 EXPRESSION FOR OPERATOR
563 DIRECT ACTION OPERATOR (KNOWS Y»S)

569 GENERAL OPERATOR

120

1

LIMITS
570 ABSOLUTE NUMBER OF GOALS
571 RELATIVE NUMBER OF GOALS
572 ABSOLUTE EFFORT
573 RELATIVE EFFORT
S7A ABSOLUTE DEPTH
575 RELATIVE DEPTH
576 ABSOLUTE NUMBER OF OBJECTS
577 RELATIVE NUMBER OF OBJECTS
578 ABSOLUTE NUMBER OF METHOD TRIES
579 RELATIVE NUMBER OF METHOD TRIES

METHOD AND GOAL TYPE PROPERTIES
SBO NOT REPEATABLE
SBl REPEATABLE

GENERAL
590 NONE
591 I
592 2
593 3
S9A A
595 SOME
596 TERM
597 UNARY
598 FIRST LEVEL
599 COMPLEX
5100 PERMANENT
5101 TEMPORARY

ATTEMPT STATUS
Sl3O SUCCESS, REJECT FOR COMPLEXITY
5131 SUCCESS, STILL INDETERMINENT
5132 SUCCESS, Sl3l, IDENTICAL
5139 OUT OF SPACE
5209 HIGHEST OEFINEO REGIONAL

121

l

f

Appendix C

GPS-2-2 VOCABULARY (DATA)

LOGIC TE OPERATORS AND OBJECTS
OPERATORS (OKMOORE), RX ARE HIS

Bl Rl AVB YIELDS BVA
B2 Rl A.B YIELDS B.A
B3 R2 AIB YIELDS -81-A

B7 R3 REVERSE 86, A = A. A

OBJECTS
850
851
852 P.(Q.R),-(RIT)I-(P.Q)

T.T853
BSA PV(QVR),-(QVR).S2-P

-QI-S855
856 PVQ,-RI-Q,S,RI-S

PVT857
858 (P.-P).(RIT)

QVS859
860 (PVQ)I-(-RVP) ,-(-(S.Q)VR)

-Q661
862 -PIQ,-RIQ,-PV-R

QVS863
B6A (PVP)I-Q,QVR,RIS,P

(S.R)VT865
866 (PVQ). (QIR)

PV(Q.R)867

NAMES

BA R3 AVA * A
B5 R3 REVERSE BA, A = AVA
B6 R3 A. A = A

B8 RA AV(BVC) = (AVB)VC
B9 RA REVERSE 88, (AVB)VC = AV(BVC)

810 RA A. (8.0 = (A.B).C
81l RA REVERSE 810, (A.B).C = A. (8.0
812 R5 AVB * -(-A.-B)
813 R5 REVERSE 812, -l-A.-B) = AVB
BIA R6 AIB « -AVB
815 R6 REVERSE BIA, -AVB = AIB
816 R7 A.(BVC) = (A.B)V(A.O
817 R7 REVERSE 816, (A. B) V (A.C)=A. (BVO
818 R7 AV(B.C) - (AVB).(AVO
819 R7 REVERSE 818, (AVB) . (AVO «AY(8.0
820 R8 A.B YIELDS A MAIN, POSITIVE
821 R8 A.B YIELDS B MAIN, POSITIVE
822 R9 A YIELDS AVB, MAIN
823 RIO A,B YIELDS A.B
B2A Rll AIB, A YIELDS B
825 Rl2 AIB, BIC YIELDS AIC

(-P.Q)V(P.-P)
Q

Al
Al
A2
A2
A3
A3
AA
AA
Bl
Bl
B2
B2
83
B3
BA
BA
CI
CI

122

J

:ii

t

868 (P.Q)V(P.T),TI(P.R)
869 QVR
870 -S,RVS,(PIQ)I-R
871 -Q
872 PIQ,-RHP.Q),QI-T,(P.Q)I-P
873 -PV(-T.R)
B7A (RI-T).(-RIQ)
875 -I-Q.P)
876 (PVQ)IR,RIS
877 -PVS
878 (PIQ) I-R,RVS,-S
879 -Q
880 (PVQ)I(RVS),P,-TI-(QVR),-T
881 S
882 R.(-PIQ)
883 (QVP).R
BBA -S.ISV-Q.
885 -Q
886 (P.Q)V(P.-P)
887 PIQ
890 P,Q
891 P.PIQ
892 PIQ, QIR
893 AV(BVP) » (AVB)VP
B9A -(PVP)IR.-R
895 P
896 -PVQ
897 PIQ
898 Q
899 P.Q
8109 HIGHEST DEFINED REGIONAL

C2
C2
C3
C3
CA
CA
Dl
Dl
D2
D2
D3
03
0A
DA

ALPHA i
ALPHA 1
ALPHA 2
ALPHA 2
ALPHA 3
ALPHA 3

(COPY B8)

LOGIC TASK ENVIRONMENT
CONSTANTS, LISTS, PROBLEMS

CI LIST OF OPERATORS
C 2 TABLE OF CONNECTIONS
C 3 LIST OF IMMEDIATE OPRS FOR DIFFS
CA LIST OF OBJECTS
C 5 LIST OF EQUIVALENCE LIST OF OBJECTS
C 6 LIST OF VARIABLES
C 7 LIST OF CONSTANT TERMS
C 8 LIST OF OPERATIONS
C 9 LIST OF DIFFERENCES
CiO ORDERING ON RELEVANT DIFFERENCES
Cll ORDERING ON REL DIFFS, S9 ON C36
Cl 9 FORMATS FOR DIFFERENCES

O.K. MOORE PROBLEMS
C2O PROBLEM OKMOORE Al
C2l PROBLEM OKMOORE A2
C22 PROBLEM OKMOORE A3
C23 PROBLEM OKMOORE AA
C2A PROBLEM OKMOORE Bl

123

f

C25 PROBLEM OKMOORE B2
C26 PROBLEM OKMOORE B3
C27 PROBLEM OKMOORE BA
C2B PROBLEM OKMOORE CI
C29 PROBLEM OKMOORE C 2
C3O PROBLEM OKMOORE C 3
C3l PROBLEM OKMOORE CA
C32 PROBLEM OKMOORE Ol
C33 PROBLEM OKMOORE D 2
C3A PROBLEM OKMOORE 03
C35 PROBLEM OKMOORE DA
C36 PROBLEM OKMOORE ALPHA I
C37 PROBLEM OKMOORE ALPHA 2
C3B PROBLEM OKMOORE ALPHA 3
C39 APPLY 819 TO B7A
C9O APPLY 823 TO 890
C9l APPLY B2A TO 891
C92 APPLY 825 TO 892
C93 TRANSFORM 893 INTO B8
C97 TRANSFORM B9A INTO 895
C9B TRANSFORM 897 INTO 896
C99 TRANSFORM 899 INTO 898
ClO9 HIGHEST DEFINED REGIONAL

DIFFERENCES nr>

Dl ADD TERMS (EXTRA TERMS IN NBR 2)

02 DELETE TERMS (EXTRA TERMS IN NBR 1)

03 INCREASE TERMS (MORE OFTEN IN NBR2)

DA DECREASE TERMS (MORE OFTEN IN NBRl)

D 5 CHANGE CONNECTIVES (NEITHER -)

06 CHANGE SIGN (NBR 1 -t NBR 2 ♦)

07 CHANGE SIGN (NBR I ♦. NBR 2 -)

08 CHANGE LOWER SIGN
09 CHANGE POSITION
DlO CHANGE GROUPING A(BO TO (AB)C

Dll CHANGE GROUPING (AB)C TO A(BO

012 NBR I HAS MULTIPLE NOTS
Dl 3 NBR 2 HAS MULTIPLE NOTS
DIA VAR NBR I VS EXP NBR 2
015 EXP NBR IVS VAR NBR 2
Dl 6 CONSTANT NBR IVS EXP NBR 2
Dl 7 EXP NBR IVS CONSTANT NBR 2
DlB CONSTANT VS CONSTANT
Dl 9 EXP NBR 1 HAS COMMA, EXP NBR 2 NOT
D2O EXP NBR 2 HAS COMMA, EXP NBR 1 NOT
D2l BOTH HAVE COMMA, EXP NBRI MORE OPER
022 BOTH HAVE COMMAA, EXP NBR2 MORE OPR
D23 BOTH HAVE COMMA, SAME NBR OPERANDS
D2A TEX NBR I VS. EX NBR 2
D25 EX NBR 1 VS TEX NBR 2

124

!
is

EX I VS. EX 2, UNMATCHED TERMS
D3O NONE, NONE
D3l NONE, SOME
D32 SOME, NONE
D33 SOME, SOME
D3A ALL, ALL
D39 UNION OF INDEPENDENT SUB DIFFS
D69 HIGHEST DEFINED REGIONAL

CONSTANTS, GOAL TYPES, FORMS, ETC.
GOAL TYPES

XI TRANSFORM OBJECTS GOAL TYPE
K2 APPLY OPERATOR GOAL TYPE
K3 REDUCE DIFFERENCE GOAL TYPE

GOAL FORMS
KU TRANSFORM GOAL FORM
Kl2 APPLY OPERATOR GOAL FORM
Kl3 REDUCE DIFFERENCE GOAL FORM

ATTRIBUTE TRANSFER LISTS
K2O TRANSFER LIST G2 l , Gil, G2, Gl2
K2l TRANSFER LIST Gl, Gil, G2, Gl2
K22 TRANSFER LIST Gil, G2, Gl2
K23 TRANSFER LIST FOR ALL COMPONENTS
K29 TRANSFER LIST FOR COPYING TEX

CRITERIA FOR LIMITS
K3O CRITERIA FOR ABSOLUTE NBR OF GOALS
K3l CRITERIA FOR RELATIVE NBR OF GOALS
K32 CRITERIA FOR ABSOLUTE EFFORT
K33 CRITERIA FOR RELATIVE EFFORT
K3A CRITERIA FOR ABSOLUTE DEPTH
K35 CRITERIA FOR RELATIVE DEPTH
K36 CRITERIA FOR ABSOLUTE NBR OF OBJECT
K37 CRITERIA FOR RELATIVE NBR OF OBJECT
K3B CRITERIA FOR ABSOLUTE NBR MTH TRIES
K39 CRITERIA FOR RELATIVE NBR MTH TRIES

125

METHODS
KAO MATCH METHOD FOR TRANSFORM GOAL
KAI TRY OPR METHOD FOR APPLY OPR GOAL
KA2 RELEVANT OPR METHOD FOR REDUCE GOAL
KA3 TRANSFER RESULTS METHOD

MISCELLANEOUS
K5O BLANK LIST
K5l TEMPORARY STORAGE
K52 TEMPORARY STORAGE
K53 TEMPORARY STORAGE
KSA TEMPORARY STORAGE
K56 LIST OF GPS VAR
K59 GPS TABLE OF CONNECTIONS

OPERATOR EXPRESSION OPERATIONS
K6O REVERSE (OPR EXP OPERATION)

TASK ENVIRONMENTS
K7O TE FOR O.K. MOORE LOGIC

TE GENERAL REFERENCE
KBO REMOTE INFORMATION ABOUT TE
KBl DIFFERENCE ORDERING
KB2 LIST OF VARIABLES
KB3 GOAL VALUE TYPE
KBA DSC LIST OF DIFFERENCE FORMATS

MISCELLANEOUS
K9O NONEXISTANT GOAL SYMBOL
K9l NONEXISTANT ATTEMPT RECORD
K92 NONEXISTENT TE
K97 FORM FOR A7O LIST FOR BINARY OPR
K9B REFERENCE TREE FOR ABSOLUTE
K99 REFERENCE TREE FOR INCREMENTAL

VALUES
KlOl GOAL VALUE, LEVEL, DIFF
KlO2 GOAL VALUE, MAX - LEVEL, DIFF
KlO3 GOAL VALUE, DIFF, LEVEL

126

I

IMMEDIATE OPERATORS
KllO GPS IMMEDIATE OPERATOR LISTSKill GPS IMMEDIATE OPRS FOR R3l

CONTENT TYPES
Kl6l OBJECT TEX
K162 OPERATOR
K163 EQUIVALENCE LIST
K179 HIGHEST DEFINED REGIONAL

EXPERIMENTER LISTS
SET UP LISTS

Ll LIST OF IDENTIFICATIONS
L 2 LIST FOR OFF TRACE
L 3 TRACE LIST FOR Q=3
LA TRACE LIST FOR Q=A
L 5 LIST OF SIGNALS
L 6 LIST OF ATTRIBUTES
L 7 LIST OF ROUTINES FOR SIGNAL TRACEL 8 A 2MONITOR LIST

LIO LIST OF GOALS FOR A PROBLEM
Lll LIST OF TEX'S FOR A PROBLEM
Ll2 LIST OF LISTS OF EQUIVALENT GOALS
Ll3 LIST OF EXTERNAL TEXS
Ll7 LIST FOR TE MODIFICATION
LlB LIST OF NAMES
Ll9 POPUP LIST OF OBJECT NAMES
L29 GOAL ATTRIBUTES TO KEEP IN CORE

PRINTING FORMATS
L3O FORMAT FOR
L3l FORMAT FOR
L32 FORMAT FOR
L33 FORMAT FOR
LAO FORMAT FOR
LAI FORMAT FOR
LA2 FORMAT FOR
LA3 FORMAT FOR
LAA FORMAT FOR
LAS FORMAT FOR
LA6 FORMAT FOR
LA7 FORMAT FOR
LAB FORMAT FOR

PRINTING GOAL NAME
TRANSFORM GOAL PRINT
APPLY GOAL PRINT
DIFFERENCE GOAL PRINT
SELECTED TEX
TEX
PRINTING OPERATOR
SAME OBJECT
TOO COMPLEX
GOAL SOLVED
GOAL FAILED
NO GOOD
GOAL SELECTEDLA9 PRINT DERIVATION LIST

L5O NBR 2 L3O ALTERNATIVEL5l NBR 2 L3l ALTERNATIVE (XI)
L52 NBR 2 L32 ALTERNATIVE (K2)
L53 NBR 2 L33 ALTERNATIVE (K3)
LlO9 HIGHEST DEFINED REGIONAL

L 9 H3 MONITOR LIST

1

127

I

MISSIONARIES AND CANNIBLES TE
Ml LIST OF OPERATORS
M 2 TABLE OF CONNECTIONS
M 3 IMMEDIATE OPERATOR
M 6 LIST OF VARIABLES
M 7 LIST OF CONSTANTS
M 9 LIST OF DIFFERENCES
MIO OROERING OF DIFFERENCES
Mil LIST OF ADMISSIBILITY TESTS
Ml 9 TE FOR MISSIONARIES AND CANNIBALS

OPERATORS
M3O LM
M3l LC
M32 LMC
M33 LMM
M3A LCC
M35 RM
M36 RC
M37 RMC
M3B RMM
M39 RCC

DIFFERENCES
MAO -B ON L
MAI -B ON R
MA2 -M ON L
MA3 -M ON R
MAA -C ON L
MAS -C ON R
MA6 -MC ON L
MA7 -MC ON R
MAB -MM ON L
MA9 -MM ON R
M5O -CC ON L
M5l -CC ON R
M52 3 MC ON R
M53 3M ON R
MSA 3C ON R
M57 A ON R
M5B 5 ON R
M59 6 ON R

INADMISSIBILITY SIGNALS
M6O 1 EXTRA C ON L
M6l I EXTRA C ON R
M62 2 EXTRA C ON L
M63 2 EXTRA C ON R

128

OBJECTS

PROBLEM
MBO TRANSFORM M7O INTO M7l
MlO9 HIGHEST DEFINED REGIONAL

INTEGERS 0 THRU 99
NO
Nl
N2
N3

f. NA
N5
N6
N7
N8
N9
NIO
Nil
Nl2
Nl3
NIA
Nl5
Nl6
Nl7
NlB
Nl9
N2O
N2l
N22
N23
N2A
N25
N26
N27
N2B
N29
N3O
N3l
N32
N33
N3A
N35

f

N37
N3B
N39
NAO

M7O L = BMMMCCC, R = -
M7l L = -, R = BMMMCCC

N36

129

NAI
NA2
NA3
NAA
NAS
NA6
NA7
NAB
NA9
N5O
N5l
N52
N53
NSA
N55
N56
N57
N5B
N59
N6O
N6l
N62
N63
N6A
N65
N66
N67
N6B
N69
N7O
N7l
N72
N73
N7A
N75
N76
N77
N7B
N79
NBO
NBl
NB2
NB3
NBA
NB5
NB6
NB7
NBB
NB9
N9O
N9l
N92
N93

130

l
i
I

I ;

1

N9A
N95
N96
N97
N9B
N99
N209 HIGHEST DEFINED REGIONAL

LOCAL CONTEXT CELLS
Yl SIGNAL
Y2 CURRENT GOAL
Y3 GOAL TYPE
YA TASK ENVIRONMENT
Y5 CURRENT METHOD
Y6 LOCATION OF CURRENT SEGMENT
Y7 SUPER GOAL
Y9 MOST RECENT SUBGOAL
YIO EQUAL GOAL, IF EXISTS
Yll EX I (LOC)
Yl2 EX 2 (LOC)
Yl3 TEX 1
VIA TEX 2
Yl5 LOC PROGRAM FOR EX 1
Yl6 LOC PROGRAM FOR EX 2
Yl7 DIFFERENCE NET
VlB DIFFERENCE TYPE
Yl9 ADDITIONAL LOC PROGRAM (INVERTED)
Y2O OPERATOR
Y2l LOC IN LIST OF RELEVANT OPERATOR
Y22 LIST OF OPERATORS TRIED
Y23 TEST FOR OPERATOR CONDITION
Y2A TEST FOR OPERATOR PRODUCT
Y25 NET OF GOALS
Y26 FINAL TEX
Y27 LOC PROGRAM OF FINAL TEX
Y2B PRIOR SIGNAL IN Yl
Y29 LIST OF LIMIT CRITERIA TO BE USED

LIMITS
Y3O ABSOLUTE NUMBER OF GOALS
Y3l RELATIVE NUMBER OF GOALS
Y32 ABSOLUTE EFFORT (BASE)
Y33 RELATIVE EFFORT (BASE)
Y3A ABSOLUTE DEPTH
Y35 RELATIVE DEPTH
Y36 ABSOLUTE NUMBER OF OBJECTS
Y37 RELATIVE NUMBER OF OBJECTS
Y3B ABSOLUTE NUMBER OF METHOO TRIES
Y39 RELATIVE NUMBER OF METHOD TRIES

131

YAO TEMPORARY WORKING CELL
YAI TEMPORARY WORKING CELL
YA2 TEMPORARY WORKING CELL
YA3 TEMPORARY WORKING CELL
YAA TEMPORARY WORKING CELL
YAS SIGNAL FOR Yll COPIED
YA6 SIGNAL FOR Yl2 COPIED
YA7 SIGNAL FOR Y2O COPIED
YAB SIGNAL FOR YBA

TASK ENVIRONMENT CELLS
Y5l LIST OF OPERATORS
Y52 TABLE OF CONNECTIONS
Y53 LIST OF IMMEDIATE OPERATORS
YSA LIST OF OBJECTS
Y55 LIST OF EQUIVALENCE LISTS
Y6O IDENTITY COMPARISON
Y6l COMMAND
Y62 SIMILARITY TEST, OBJECT SETS
Y63 COMPARE OBJECTS
Y6A COMPARE OPERATORS
Y65 SEARCH FILTER ON OPR CONDITIONS
Y66 SEARCH FILTER ON OPR PRODUCT
Y67 TEX ADMISSIBILITY TEST
Y6B ADMISSIBILITY TESTS TO BE DONE
Y69 STANDARDIZATION
Y7O SIMILARITY TEST, OPERATORS SET
Y72 ADJUSTMENT FOR EXI (Q5l)
Y73 ADJUSTMENT FOR EX2 (Q52)

YBO NEW TEX
YBl LOC PROGRAM OF NEW TEX
YB2 IDENTICAL TEX
YBA LIST OF DIFFERENCE EXPRESSIONS
YB5 CONTENT TYPE OF NEW OBJECT
YB6 METHOD LIST
YB7 PROPOSED GOAL
YBB TEMPORARY FOR PRIOR GOAL
YB9 ATTEMPT RECORD

132

I

INDIRECT ROUTINES
Y9O EXECUTIVE
Y9l MATCH
Y92 EVALUATE NEW SUBGOAL
Y93 MAKE VARIABLES OISJOINT
Y9A TOP EXECUTIVE
Y95 CONSTRUCT GOAL VALUE
Y96 SELECTION OF NEW GOAL IN RIO
Y97 SELECTION OF SUBGOAL
Y9B DESCRIBE MARKED LIST
Y99 SELECT NEXT DIFFERENCE
YlOO EVALUATE EQUIVALENT SUBGOAL
YllO CURRENT DIFFERENCE EXPRESSION
Ylll TOP GOAL
Yl3O COMPLEXITY LIMIT
Y209 HIGHEST DEFINED REGIONAL

EXPERIMENTER CELLS
Z7 AVAILABLE SPACE LIMIT
Z9 ALPHABETIC BLANK
Z2O BLANK CELL
Z2l TEMPORARY WORKING CELL
122 TEMPORARY WORKING CELL
Z23 TEMPORARY WORKING CELL
Z2A TEMPORARY WORKING CELL
Z29 CELL FOR SIGNAL INTERPRETER
Z3O CRITERION FOR SPACE LEFT

WORKING CELLS FOR CONVERSION
ZAO HOLDS INTERPRETATION LIST
ZAI HOLDS ORIGINAL HEAD
ZA2 HOLDS HEAD OF CURRENT SUBLIST
ZA3 LAST LIST CELL OF CURRENT SUBLIST
ZAA HOLDS CURRENT CELL OF INPUT LIST
ZAS HOLDS INPUT WORKING LIST
ZA6 PUSHOOWN LIST OF LOC PROGRAM OF ZA3
ZA7 HOLDS LOC PROGRAM

WORKING CELLS FOR PRINT
Z5O HOLDS REFERENCE COL NBR
Z5l HOLDS LOC IN FORMAT LIST
Z52 HOLDS SIGNAL IF ANY SIGNALS

133

L

COMMON WORDS
Z6O GOAL
Z6l 0 (SUBG
Z62 OAL 0
Z63 F
Z6A)

Z65 (
Z66 REJEC
Z67 TED

EXPERIMENTER TE CELLS
ZBO CONVERT TEX
ZBl PRINT TEX

INITIAL SET UP AND MONITORING
Z9O PROGRAM FOR THIS RUN
Z9l TASK FOR THIS RUN
Z92 MONITOR SIGNAL
Z9A MONITOR GOAL EXP PRINT (E2A)
Z95 MONITOR GOAL NAME PRINT (E25)
Z96 MONITOR IN E2 PRIOR TO R2
Z97 MONITOR NEW TEX (QAB)
Z9B MONITOR RECORD ATTEMPT (Q6)
Z99 MONITOR LIMITS (Ql)
Z129 HIGHEST DEFINED REGIONAL

CHARACTER SYMBOLS
A
B
C
0
E
F
G
I
X
L
M
P
Q
R
S
T
U
V
X
V
z

134

135

Goal solved
S3O

(not part of method)

S3O modified object A 1 produced

Done by Rll
(not part of method)

Qll6
Set output for K4O method.

Pig. 1 Rough Flow Diagram for K4O Method.

Attempt subgoal Done by Rll

Attempt subgoal

S3O success
y

136

I

H

lit

Reduce D from A to B

Method K42

Fig. 2 Rough Flow Diagram for K42 Method.

137

Apply R to A

Method K4l

Done by Rll
(not part of method)

Attempt subgoal

Attempt subgoal Done by Rll
|S3O modified object A" produced <not Part of method)
or modified operator R" produced

Fig. 3 Rough Flow Diagram for K4l Method.

. ± r
R33
If A'", make it the result of goal.
If R'", create subgoal:

Apply R 1 " to derivation list of A
Set to repeat R33

138

Test for limits,
record attempt

Repeat method

Find next method

Try antecedent goal

Test if goal is at top

Try Gl-expanded goal

Select subgoal for re-
try

Try subgoal

Try method

Fig. 4 RIO: Problem-Solving Executive

532,533,534,539,543,547,513Q
"S*l ___n Tf\ Ai

139

I

Obtain next method-segment
(includes first)

Repeat current method-seg-
ment

Find segment to take next
(S4l or 546)

Evaluate new subgoal

Subgoal rejected (exits 543)

Evaluate equivalent subgoal

Attempt subgoal

Fig. 5 Rll: Executive Method until Fall.

"f

Test if DE already exists

Compare

Go down one level

Advance down list

Return one level

Identical

Fig. 6 R2O: Match Element by Element, Depth First.

't

I

I
If

GPS Compare for top level

141

"

double negative
var variable
-var negative variable
L left subEX
R right subEX

similar

Fig. 7 Fl: Compare EXI and EX2.

I

Test if DE already exists

Construct difference ex-
pression

If difference, set to be
provisional

Go down one level

Advance down list

Ascend one level

Combine list of difference
expressions

Fig. 8 R2l: Match with Single Pass
Getting List of Difference Expressions.

:i

!

if

Compare

If beginning, do GPS match

143

i

i

(

I

i

EXI

[RI(T.R)].Q
EX2

(TVR).R

I

Ox
T

R

R

YB4/ 3725.
3725/ 0

9-1
9-2

9-1/ 9-10.9-10/ 0
AB9
D32
ABB
PlO

9-2/ 9-20
9-20/ 0

AB9
D34
ABB
Pll

Q

AB7
9-11 9-H/O 9-12/0AB6 R T
9-12. SI SI

T R
SI SI
R.

AB7 _ .
9-21 9-21/0. 9/22/0
AB6 Q. R.

Fig. 9

R/
RT

Cell holding list

List of difference expressions
(DE's)

DE for lefthand side

D32 = delete from EXI

PlO = location program "left"
Lists of terms

DE for righthand side

Pll = location program "right"

Lists of terms

Two Matched Expressions .

D34 = disjoint terms

144

I
!!

jt

j

Set up and clean up

In all other cases method
fails

If identical, method sue-
ceeds

If something has changed,
rematch

If have DE's, select one

If difference, try GPS
immediate operator

If difference, try TE immedi-
ate operator

Match

Fig. 10 R3O: Match Gl to G2,
If Not Match Produce K3 (Reduce) SuK3 (Reduce) Subgoal.

If difference, set up subgoal

145

In all other cases method falls

Find operator given by expression

Test for operator applicability

Try immediate operators

If still difference, set up subgoal

Try direct operator

Try

If

Immediate operators

still difference, set up subgoal

If form operator, set up for matcha

In all other cases method fails

If match, prepare output if product undetermined

Produce product

If something has changed, rematch

If have DE's, select one

difference, try Immediate operatorsIf

Try GPS immediate operators
9-900 Kill

S9 /tSI2(t
0113

If difference, try TE immediate Operators

Record result

Not Work Produce K3 (Reduce) Subgoal.Fig. 11 R3l: Try Operator, If

If still difference, set up subgoal

Match

146

I
I

il

Q3o—► 9-100 » Q24 Set up and clean up

In all other cases Impossible

Find next untried operator
(direct)

Execute direct operator

Find next untried operator

Filter on condition

Filter on product

Create operator goal

Fig. 12 R32 Find Next Untried Relevant Operator
and Produce K2 Goal.

147

REPERENCES

Newell, Allen, and H. A. Simon, The Logic Theory Machine :
A Complex Information Processing System, The RAND
Corporation, P-868, published also in IRE Transaction
on Information Theory, Vol. IT-2, No. 3, September 1956,
pp. 61-79.

1.

2. Newell, Allen, H. A. Simon, and J.C. Shaw, Empirical
Explorations of the Logic Theory Machine: "A Case Study
In Heuristics, The RAND Corporation, P-951, published
also in Proceedings of the 1957 Western Joint Computer
Conference, February 1957, PP. 218-23

Newell, Allen, and J. C. Shaw, Programming the Logic
Theory Machine, The RAND Corporation, P-954, published
also in Proceedings of the 1957 Western Joint Computer
Conference, February 1957 , pp. 230-240.

3.

Newell, Allen, J. C. Shaw, and H. A. Simon, "Preliminary
Description of General Problem-Solving Program—I
(GPS-1)," CIP Working Paper No. 7, December 1957-

4.

Newell, Allen, J. C. Shaw, and H. A. Simon, Report on a
General Problem-Solving Program for a Computer, The RAND
Corporation, P-1584, also published In Information
Processing: Proceedings of the International Conference
on Information Processing, UNESCO, June 1959, Paris,
1960, pp. 256-264, and In Computers and Automation, July
1959.

5.

6. Newell, Allen, Some Problems of Basic Organization in
Problem-So lying Programs, The RAND Corporation, RM-3283 ,
December 1962.

7. Newell, Allen, J. C. Shaw, and H. A. Simon, The Process
of Creative Thinking, The RAND Corporation, P-1320,
September 1958.

8. Newell, Allen, and H. A. Simon, The Simulation of Human
Thought , The RAND Corporation, P-1734 and RM-2506, also
published in Current Trends in Psychological Theory,
University of Pittsburgh, 1961, pp. 152-179-

9. Newell, Allen, and H. A. Simon, GPS, A Program that
Simulates Human Thought, The RAND Corporation, P-2257,
also published In Lernende Automaten, H. Billings (cd.),
(Proceedings of a Conference at Karlsruhe, Germany,
April 1961;, Oldenbourg, Munich, 1961, pp. 109-124.

10. Newell, Allen, and H. A. Simon, Computer Simulation of
Human Thought, The RAND Corporation, P-2276, also pub-
lished In Science, Vol. 134, No. 3495, December 1961,
pp. 2011-2017.

1

148

i

i

11. Newell, Allen, and H. A. Simon, Computer Simulation and
Human Thinking and Problem-Solving, The RAND Corporation,
p-p^ip. also published In Management and the Computer
Future , M. Greenburger (edj, Wiley, 1962, pp. 95-131-

12. Newell, Allen, J. C. Shaw, and H. A. Simon, A Variety of
Intelligent Learning In a General Problem-Solver, The
taAWr, p.nVipnT.ahinn. T>-174P. also published in Self-Organ-
Izlng Systems, M. C. Yovits, and S. Cameron (eds.;,
Pergamon, l_}6o, pp. 153-189.

13. Simon, H. A., Experiment with the Heuristic Compiler, The
RAND Corporation, P-2349, June 1961.

14. Newell, Allen (cd.), Information Processing Language V
Manual, The RAND Corporation, P-1897 and P-1918, also
published by Prentice-Hall, 1961.

15. Moore, 0. X., and S. B. Anderson, "Modern Logic and Tasks
for Experiments on Problem-Solving, Journal of
Psychology, Vol. 38, 1954, pp. 151-160.

