Addenda to "Canonical models for fragments of the Axiom of Choice"

Paul Larson *
Miami University
Jindřich Zapletal ${ }^{\dagger}$
University of Florida

July 6, 2017

Abstract

We continue [3], producing a model with a Hamel basis but no injection from ω_{1} into \mathbb{R}, and showing that all sets of reals are Lebesgue measurable in the generic model with an improved MAD family.

1 Introduction

In [3], we introduced technology for obtaining a certain type of consistency result in Choice-less set theory, showing that various consequences of the Axiom of Choice are independent of each other. We briefly review the terminology introduced there.

Definition 1.1. A Σ_{1}^{2} sentence Φ is tame if it is of the form

$$
\exists A \subseteq \omega^{\omega}\left(\left(\forall \vec{x} \in\left(\omega^{\omega}\right)^{<\omega} \exists \vec{y} \in A^{<\omega} \phi(\vec{x}, \vec{y})\right) \wedge\left(\forall \vec{x} \in A^{<\omega} \psi(\vec{x})\right)\right),
$$

where ϕ, ψ are formulas which contain only numerical quantifiers and do not refer to A, but may refer to a fixed analytic subset of ω^{ω} as a predicate. The formula ψ is called the resolvent of the sentence Φ. A resolvent is a formula which is the resolvent of some tame sentence. A witness to a tame sentence of the above form is a set $A \subseteq \omega^{\omega}$ for which

$$
\left(\forall \vec{x} \in\left(\omega^{\omega}\right)^{<\omega} \exists \vec{y} \in A^{<\omega} \phi(\vec{x}, \vec{y})\right) \wedge\left(\forall \vec{x} \in A^{<\omega} \psi(\vec{x})\right)
$$

holds.
Example 1.2. The tame consequences of the Axiom of Choice considered in [3] included the following:

1. there is an infinite maximal almost disjoint family of subsets of ω. The resolvent formula is " $x_{0} \cap x_{1}$ is finite";

[^0]2. there is a Hamel basis for the space of real numbers;
3. there is an ω_{1} sequence of distinct reals;

In this paper we add the following example : there is a non-Lebesgue measurable set. Here the witnessing set A can be taken to code a set $A^{\prime} \subseteq 2 \times \omega^{\omega}$, with the resolvent saying that no set of the form $2 \times\{x\}$ is contained in A^{\prime} while the other subformula of the tame expression asserts that each set $2 \times\{x\}$ $\left(x \in \omega^{\omega}\right)$ intersects A^{\prime}, and that each attempt to witness Lebesgue measurability for the set $\left\{x \in \omega^{\omega}:(1, x) \in A^{\prime}\right\}$ fails. Although we have no use for it, one could similarly express the existence of a set of real without the Baire property as a tame Σ_{1}^{2} sentence with the same resolvent.

A tame Σ_{1}^{2} sentence with resolvent ψ is associated with a natural partial order P_{ψ} of countable approximations. Given a resolvent ψ, a ψ-set is a set $a \subseteq \omega^{\omega}$ such that $\forall \vec{x} \in a^{<\omega} \psi(\vec{x})$ holds. We let P_{ψ} be the partial order of countable ψ-sets, ordered by reverse inclusion. Then P_{ψ} is σ-closed and adds a ψ-set $A \subseteq \omega^{\omega}$ as a union of the generic filter. For many naturally arising tame sentences Φ it is the case that P_{ψ} forces the generic set A to be a witness for Φ. We say that $A \subseteq \omega^{\omega}$ is a generic witness for Φ if it is obtained from a filter on P_{ψ} which is generic over $L(\mathbb{R})$.

In [3], we proved a variety of consistency results regarding non-implications between tame consequences of the Axiom of Choice by considering models of the form $L(\mathbb{R})[A]$, where A was a generic witness for a tame Σ_{1}^{2} sentence. In this paper we consider one additional model (with a generic Hamel basis) and prove some additional facts about a model from [3] (with a generic improved MAD family). In the latter case, we use the fact that the existence of sets of reals without the standard regularity properties can be expressed as a tame Σ_{1}^{2} sentence.

2 Independence

We briefly review the theorem from which all of our independence results derive.
Definition 2.1. Let Φ_{0}, Φ_{1} be tame Σ_{1}^{2} sentences with respective resolvents ψ_{0}, ψ_{1}. Let A_{0} and A_{1} be subsets of ω^{ω}. We say that A_{1} is $\left(\Phi_{0}, \Phi_{1}\right)$-independent of A_{0} if there exists an infinite cardinal κ such that for every poset Q collapsing κ to \aleph_{0}, and for all Q-names τ_{0}, τ_{1} for witnesses to Φ_{0} and Φ_{1} respectively extending A_{0} and A_{1} (that is, agreeing on $\left(\omega^{\omega}\right)^{V}$ with A_{0} and A_{1} respectively) there exist $n \in \omega$ and (in some generic extension) V-filters $G_{i} \subseteq Q(i \in n)$ such that

$$
\forall \vec{x} \in \bigcup_{i} \tau_{0} / G_{i} \psi_{0}(\vec{x})
$$

holds and

$$
\forall \vec{x} \in \bigcup_{i \in n} \tau_{1} / G_{i} \psi_{1}(\vec{x})
$$

fails.

We say that witnesses for Φ_{1} are Φ_{0}-independent of A_{0} if every witness A_{1} for Φ_{1} is $\left(\Phi_{0}, \Phi_{1}\right)$-independent of A_{0}. Similarly, we say that witnesses for Φ_{1} are independent of witnesses for Φ_{0} if every witness A_{1} for Φ_{1} is $\left(\Phi_{0}, \Phi_{1}\right)$ independent of every witness A_{0} for Φ_{0}.

We write LC for the hypothesis that there exist proper class many Woodin cardinals.

Theorem 2.2. ($\mathrm{ZFC}+\mathrm{LC})$ Suppose that Φ_{0}, Φ_{1} are tame Σ_{1}^{2} sentences with respective resolvents ψ_{0}, ψ_{1}. Let $A_{0} \subseteq \omega^{\omega}$ be a $P_{\psi_{0}}$-generic witness to Φ_{0}. If, in $V\left[A_{0}\right]$, witnesses for Φ_{1} are Φ_{0}-independent of A_{0}, then $L(\mathbb{R})\left[A_{0}\right] \models \neg \Phi_{1}$.

3 Hamel bases

In this section we consider the model produced by adding a generic Hamel basis. In this case a ψ-set is a set of irrational numbers which is linearly independent over \mathbb{Q}. The following answers a question raised by Schindler, Wu and Yu , and later answered by them in [5].

Theorem 3.1. ($\mathrm{ZFC}+\mathrm{LC)}$ Let A be a generic Hamel basis. In the model $L(\mathbb{R})[A]$, there is no injection from ω_{1} into $\mathcal{P}(\omega)$, and no infinite MAD family.

Theorem 3.1 is a straightforward application of Theorem 2.2, in the special (easy) case of mutual genericity. One has to check that injections from ω_{1} into $\mathcal{P}(\omega)$ and infinite MAD families are independent of Hamel bases. This follows from the following lemmas, the first two of which are Claim 3.4 and 3.5 of [3].

Lemma 3.2. If $A \subseteq \mathcal{P}(\omega)$ is an infinite $M A D$ family, Q is any poset collapsing $2^{\mathfrak{c}}$, τ is a Q-name for a MAD family extending A, and $G_{i} \subseteq Q$ for $i \in 2$ are mutually generic filters over V, the set $\tau / G_{0} \cup \tau / G_{1}$ is not an $A D$ family.

Lemma 3.3. If Q_{0}, Q_{1} are posets collapsing $2^{\mathfrak{c}}$ and τ_{0}, τ_{1} are Q_{0}, Q_{1}-names for injections from ω_{1} to 2^{ω}, then there are conditions $q_{0} \in Q_{0}$ and $q_{1} \in Q_{1}$ such that for any pair $G_{0} \subseteq Q_{0}, G_{1} \subseteq Q_{1}$ of filters separately generic over V and containing the conditions q_{0}, q_{1} respectively, the set $\tau / G_{0} \cup \tau / G_{1}$ is not a function.

Lemma 3.4. Suppose that A is a Hamel basis, P is a partial order, (G, H) is V-generic for $P \times P, B$ is a Hamel basis in $V[G]$ extending A and C is a Hamel basis in $V[H]$ extending A. Then $B \cup C$ is linearly independent.

Proof. If not, then (implicitly using the fact that $\mathbb{R} \cap V[G] \cap V[H]=\mathbb{R} \cap V$) there exist a_{1}, \ldots, a_{n} in A, b_{1}, \ldots, b_{m} in $B-A, c_{1}, \ldots, c_{p}$ in $C-A$ and rationals $r_{1}, \ldots, r_{n}, s_{1}, \ldots, s_{m}, t_{1}, \ldots, t_{p}$ such that

$$
a_{1} \cdot r_{1}+\cdots+a_{n} \cdot r_{n}+b_{1} \cdot s_{1}+\cdots+b_{m} \cdot s_{m}+c_{1} \cdot t_{1}+\cdots+c_{p} \cdot t_{p}=0
$$

This means that $c_{1} \cdot t_{1}+\cdots+c_{p} \cdot t_{p}$ is in V, which contradicts the assumption that A is a Hamel basis and C is linearly independent.

4 Improved MAD families again

In [3] we considered the following type of MAD family.
Definition 4.1. An improved $A D$ family is a pair $\langle A, B\rangle$ such that

1. A is an infinite AD family in $\mathcal{P}(\omega)$;
2. B is a set consisting of pairs $\langle s, a\rangle$ such that s is a partition of ω into finite sets and $a \subseteq A$ is a countable set;
3. for every pair $\langle s, a\rangle \in B$ and every finite set $b \subseteq A \backslash a$, there are infinitely many sets $c \in s$ such that $\bigcup b \cap c=0$.

An improved AD family $\langle A, B\rangle$ is maximal if A is a MAD family and for every partition s there is a with $\langle s, a\rangle \in B$.

Improved MAD families are naturally added by a poset of countable improved AD families ordered by coordinatewise inclusion. The following is a combination of Corollaries 5.6 and 5.8 of [3], where E_{0} is the relation of modfinite equivalence on $\mathcal{P}(\omega)$.

Theorem 4.2. ($\mathrm{ZFC}+\mathrm{LC})$ Let A be a generic improved maximal almost disjoint family. In the model $L(\mathbb{R})[A]$,

1. there are no ω_{1} sequences of reals;
2. there are no nonatomic measures on ω;
3. the quotient space of E_{0} cannot be linearly ordered;
4. there are no total selectors for E_{0}.

The following theorem is a weak variant of the main theorem from [2], whose large cardinal hypothesis is a single strongly inaccessible cardinal (as in their paper, our result extends to Q-measurability for bounded forcings Q). The model produced in that paper seems to be very similar to ours : roughly, their model is to $L(\mathbb{R})[A]$ below as a Solovay model $([6])$ is to the inner model $L(\mathbb{R})$ in the presence of a proper class of Woodin cardinals.

Theorem 4.3. (ZFC+LC) Let A be a generic improved maximal almost disjoint family. In the model $L(\mathbb{R})[A]$, every set of reals is Lebesgue measurable.

Again, the proof of Theorem 4.3 is an application of Theorem 2.2. One has to check that nonmeasurable sets of reals are independent of improved MAD families. This follows from the following facts, the first of which is Theorem 3.5 of [3]. Instead of taking mutual generics as above, we pass to a random forcing extension before building a suitable pair of generic filters.

An extension V^{\prime} of V is bounding if each element of $\omega^{\omega} \cap V^{\prime}$ is dominated by an element of $\omega^{\omega} \cap V$. A forcing extension via random forcing bounding (see [1]).

Theorem 4.4 ([3]). Suppose that

- $\langle A, B\rangle$ is an improved MAD family,
- $n \in \omega$,
- $V\left[G_{i}\right](i \in n)$ are bounded forcing extensions of V contained in some common extension $V[G]$,
- $P_{i} \in V\left[G_{i}\right](i \in n)$ are posets
- for each $i \in n,\left\langle\dot{A}_{i}, \dot{B}_{i}\right\rangle \in V\left[G_{i}\right]$ is a P_{i}-name for an improved $M A D$ family extending $\langle A, B\rangle$.

Then, in some forcing extension, there are filters $H_{i} \subseteq P_{i}(i \in n)$, each generic over the respective $V\left[G_{i}\right]$, such that $\left\langle\bigcup_{i \in n} \dot{A}_{i} / H_{i}, \bigcup_{i \in n} \dot{B}_{i} / H_{i}\right\rangle$ is an improved AD family.

Remark 4.5. The proof of Theorem 4.4 in [3] constructs filters $H_{i}(i \in n)$ that for each pair $i<i^{\prime} \in n, \dot{A}_{i} / H_{i} \cap \dot{A}_{i^{\prime}} / H_{i^{\prime}}=A$.

The following observation completes the proof of Theorem 4.3, using Theorem 2.2. We let \mathbb{R} denote random forcing, and let \dot{r} denote the canonical name for the generic real added by \mathbb{R}, that is, the unique real number in the forcing extension which is in every (reinterpreted) ground model Borel set corresponding to a condition in the generic filter. More generally, in the statement of Proposition 4.6 , for any iteration of the form $\mathbb{R} * \dot{Q}$, we let \dot{r} the canonical name for random real added by the first step of the iteration. A real number r is random over V (i.e., is \dot{r}_{G} for some V-generic filter $G \subseteq \mathbb{R}$) if and only if r is not in any reinterpreted Borel null set from V (see [1]).

Partial orders P and Q are said to be forcing-equivalent if every forcing extension by either of P and Q is also a forcing extension by the other. When P and Q are forcing equivalent, a P-name τ for a generic filter for Q giving rise to the same extension induces a translation of each P-name σ to a Q-name σ^{\prime} such that, if $G \subseteq P$ is V-generic, then σ_{G} is the realization of σ^{\prime} by τ_{G}. In the statement of Proposition 4.6 we suppress the mention of τ and write σ^{0} and σ^{1} for the induced versions of σ^{\prime}.

Proposition 4.6. Suppose that P is a forcing which makes $\left(2^{\aleph_{0}}\right)^{V}$ countable, and that σ is a P-name for a non-Lebesgue measurable set of reals. Then P is forcing-equivalent to two iterations $\mathbb{R} * \dot{Q}_{0}$ and $\mathbb{R} * \dot{Q}_{1}$ such that for some $p \in \mathbb{R}$ and some conditions $\left(p, \dot{q}_{0}\right)$ in $\mathbb{R} * \dot{Q}_{0}$ and $\left(p, \dot{q}_{1}\right)$ in $\mathbb{R} * \dot{Q}_{1},\left(p, \dot{q}_{0}\right) \Vdash \dot{r} \in \sigma^{0}$ and $\left(p, \dot{q}_{1}\right) \Vdash \dot{r} \notin \sigma^{1}$.

Proof. Let $G \subseteq P$ be a V-generic filter. Since forcing with P makes $\left(2^{\aleph_{0}}\right)^{V}$ countable, in $V[G]$ the set of reals which are random over V is conull. Call this set X. Since $X \neq \emptyset, P$ is forcing-equivalent to an iteration of the form $\mathbb{R} * \dot{Q}$.

Suppose first that there exist

- an iteration $\mathbb{R} * \dot{Q}$ forcing-equivalent to P,
- a condition $p \in \mathbb{R}$ and
- conditions $\left(p, \dot{q}_{0}\right),\left(q, \dot{q}_{1}\right) \in \mathbb{R} * \dot{Q}$
such that, letting σ^{\prime} be a version of σ corresponding to $\mathbb{R} * \dot{Q},\left(p, \dot{q}_{0}\right) \Vdash \dot{r} \in \sigma^{\prime}$ and $\left(p, \dot{q}_{1}\right) \Vdash \dot{r} \notin \sigma^{\prime}$. Then of course we are done.

If this is not the case, then for every iteration of the form $\mathbb{R} * \dot{Q}$ which is forcing-equivalent to P, there is a Borel set $b \in V$ such that, letting p be the condition in \mathbb{R} corresponding to b, and p^{\prime} be the condition corresponding to the complement of b, and again letting σ^{\prime} be a corresponding version of σ, $\left(p, 1_{\dot{Q}}\right) \Vdash \dot{r} \in \sigma^{\prime}$ and $\left(p^{\prime}, 1_{\dot{Q}}\right) \Vdash \dot{r} \notin \sigma^{\prime}$ (that is, the statement $\dot{r} \in \sigma^{\prime}$ is decided by the generic for \mathbb{R}; for the sake of notational convenience we pretend that the "condition" corresponding to a null set forces every statement). For each $r \in X$, then, we may choose

- an iteration $\mathbb{R} * \dot{Q}_{r}$ which is forcing equivalent to P,
- a V-generic filter $\left(H_{r}, K_{r}\right)$ for $\mathbb{R} * \dot{Q}_{r}$ such that $\dot{r}_{H_{r}}=r$ and $V\left[H_{r}, K_{r}\right]=$ $V[G]$ and
- a Borel set $b_{r} \in V$ such that the \mathbb{R}-condition corresponding to b_{r} forces in $\mathbb{R} * \dot{Q}_{r}$ that \dot{r} is in a fixed set σ^{r} corresponding to σ, and the the \mathbb{R} condition corresponding to the complement of b_{r} forces in $\mathbb{R} * \dot{Q}_{r}$ that \dot{r} is not in σ^{r}.

For each $r \in X$, the conditions just listed imply that $r \in \sigma_{G}$ if and only if $r \in b_{r}$ (as reinterpreted in $V[G]$). If there exist $r, r^{\prime} \in X$ such that $b_{r} \triangle b_{r^{\prime}}$ is nonnull, then we can finish by taking p to be the condition in \mathbb{R} corresponding to any nonnull member of $\left\{b_{r} \backslash b_{r^{\prime}}, b_{r^{\prime}} \backslash b_{r}\right\}$, and using the iterations $\mathbb{R} * \dot{Q}_{r}$ and $\mathbb{R} * \dot{Q}_{r^{\prime}}$. If there do not exist such r, r^{\prime}, then for each $r \in X$ the symmetric difference of X (and therefore the symmetric difference of σ_{G}) with the reinterpretation of b_{r} is Lebesgue null, giving a contradiction.

We give two proofs that \mathbb{R} can't be injected into the generic improved MAD family A in the model $L(\mathbb{R})[A]$ above. This answers a question of Ali Enyat asked on Math Overflow. ${ }^{1}$ The first adapts the machinery from [3]. To do this, we have to generalize Definition 1.1, defining a weakly tame Σ_{1}^{2} formula to be a unary formula in a variable v with the syntactic form of a tame Σ_{1}^{2} sentence in which v is allowed to appear only in the non-resolvent clause ϕ from Definition 1.1. We generalize Definition 2.1 as follows.

Definition 4.7. Let Φ_{0} be a tame Σ_{1}^{2} sentence with resolvent ψ_{0}, and let Φ_{1} be weakly tame Σ_{1}^{2} formula with resolvent ψ_{1}. Let A_{0} and A_{1} be subsets of ω^{ω}. We say that A_{1} is $\left(\Phi_{0}, \Phi_{1}\right)$-independent of A_{0} if there exists an infinite cardinal κ such that for every poset Q collapsing κ to \aleph_{0}, and for all Q-names τ_{0}, τ_{1} such that

- τ_{0} is a Q-name for a witness to Φ_{0} extending A_{0} and

[^1]- τ_{1} is a Q-name for a witness to $\Phi_{1}\left(\tau_{0}\right)$ extending A_{1}
for witnesses to Φ_{0} and Φ_{1} respectively there exist $n \in \omega$ and (in some generic extension) V-filters $G_{i} \subseteq Q(i \in n)$ such that

$$
\forall \vec{x} \in \bigcup_{i} \tau_{0} / G_{i} \psi_{0}(\vec{x})
$$

holds and

$$
\forall \vec{x} \in \bigcup_{i \in n} \tau_{1} / G_{i} \psi_{1}(\vec{x})
$$

fails.
We say that witnesses for Φ_{1} are Φ_{0}-independent of A_{0} if every witness A_{1} for Φ_{1} is $\left(\Phi_{0}, \Phi_{1}\right)$-independent of A_{0}. Similarly, we say that witnesses for Φ_{1} are independent of witnesses for Φ_{0} if every witness A_{1} for Φ_{1} is $\left(\Phi_{0}, \Phi_{1}\right)$ independent of every witness A_{0} for Φ_{0}.

Since the variable in a weakly tame Σ_{1}^{2} formula does not appear in the resolvent, the corresponding version of Theorem 2.2 has the same proof.

Theorem 4.8. $(\mathrm{ZFC}+\mathrm{LC})$ Suppose that Φ_{0} is a tame Σ_{1}^{2} sentence with resolvent ψ_{0}, and Φ_{1} is a weakly tame Σ_{1}^{2} formula. Let $A_{0} \subseteq \omega^{\omega}$ be a $P_{\psi_{0}}$-generic witness to Φ_{0}. If, in $V\left[A_{0}\right]$, witnesses for Φ_{1} are Φ_{0}-independent of A_{0}, then $L(\mathbb{R})\left[A_{0}\right] \models \neg \Phi_{1}\left(A_{0}\right)$.

The existence of an injection from \mathbb{R} into a set of reals B can naturally be expressed as a weakly tame Σ_{1}^{2} assertion about B, where the resolvent says that the witnessing set A describes a partial function (it might be more natural to say that B contains the range of the function, but we avoid doing that so that we can reuse the proof of Theorem 2.2). Theorems 4.4 and 4.8, Proposition 4.6 and Remark 4.5 give the following theorem. The corresponding version of the theorem appears in [2], again from the assumption of a single strongly inaccessible cardinal.

Theorem 4.9. ($\mathrm{ZFC}+\mathrm{LC})$ Let $\langle A, B\rangle$ be a generic improved maximal almost disjoint family. In the model $L(\mathbb{R})[A, B]$, there is no injection from \mathbb{R} into A.

As always, the theorem is established once we show that injections from \mathbb{R} into A are independent of A, whenever A is a generic improved MAD family. The following lemma gives this.

Lemma 4.10. Suppose that

- $\langle A, B\rangle$ is an improved MAD family,
- P is a partial making \mathbb{R}^{V} countable,
- \dot{A} and \dot{B} are P-names such that $\langle\dot{A}, \dot{B}\rangle$ is forces to be an improved $M A D$ family extending A and
- \dot{f} is a P-name which is forces to be an injection from \mathbb{R} into \dot{A}.

Then P is forcing-equivalent to an iteration $\mathbb{R} * \dot{Q}$ such that in some forcing extension there exist V-generic filters $\left(G, H_{0}\right)$ for $\left(G, H_{1}\right)$ for $\mathbb{R} * \dot{Q}$ such that

$$
\left\langle\dot{A}_{G, H_{0}}^{\prime} \cup \dot{A}_{G, H_{1}}^{\prime}, \dot{B}_{G, H_{0}}^{\prime} \cup \dot{B}_{G, H_{1}}^{\prime}\right\rangle
$$

is an improved $A D$ family, but $\dot{f}_{G, H_{0}}^{\prime} \cup{\dot{f_{G, ~}^{\prime}}}_{\prime}$ is not a function, where $\dot{A}^{\prime}, \dot{B}^{\prime}$ and \dot{f}^{\prime} are induced versions of \dot{A}, \dot{B} and \dot{f}.

Proof. Since forcing with P makes \mathbb{R}^{V} countable, P is forcing-equivalent to an iteration of the form $\mathbb{R} * \dot{Q}$ for which there exists a condition (p, \dot{q}) forcing that $\dot{f}^{\prime}(\dot{r})$ will not be in A. Let $G \subseteq \mathbb{R}$ be a V-generic filter containing p. Applying Theorem 4.4 and Remark 4.5, we can find $V[G]$-generic filters H_{0}, H_{1} for \dot{Q}_{G} such that $\dot{A}_{G, H_{0}}^{\prime} \backslash A$ and $\dot{A}_{G, H_{1}}^{\prime} \backslash A$ are disjoint. Then the values of $\dot{f}_{G, H_{0}}^{\prime}$ and $\dot{f}_{G, H_{1}}^{\prime}$ at \dot{r}_{G} are distinct.

Our second proof is simply the proof of Theorem 2.2 adapted to the case under consideration.

Theorem 4.11. (ZFC) Assume that there exist proper class many Woodin cardinals. Suppose that Φ is the tame Σ_{1}^{2} sentence asserting the existence of an improved MAD family, with respective resolvent ψ. Let $(A, B) \subseteq \omega^{\omega}$ be a $P_{\psi^{-}}$ generic witness to Φ. Then in $L(\mathbb{R})[A, B]$, there is no injection from \mathbb{R} into A.

Proof. Work in the model $V[A, B]$. Suppose towards a contradiction that the model $L(\mathbb{R})[A, B]$ does contain an injection f from \mathbb{R} into A. In such a case, there must be a name $\dot{f} \in L(\mathbb{R})$ such that $f=\dot{f}_{(A, B)}$. The name \dot{f} is coded by a set $C \subseteq \omega^{\omega}$ in $L(\mathbb{R})$, and some P_{ψ}-condition contained coordinatewise in (A, B) forces that \dot{f} is an injection from \mathbb{R} into the first coordinate of the generic improved MAD family.

Let δ be a Woodin cardinal and let $\mathbb{Q}_{<\delta}$ be the countably based stationary tower at δ which, collapses κ to \aleph_{0} (see [4], for instance). Let τ_{A}, τ_{B} and τ_{f} be $\mathbb{Q}<\delta$-names for $j(A), j(B)$ and $j(f)$ respectively, where j is the generic elementary embedding derived from forcing with $\mathbb{Q}_{<\delta}$. By Lemma 4.10, in some generic extension $V[A, B][G]$, there exist $V[A, B]$-generic filters $H_{i} \subseteq \mathbb{Q}<\delta$ ($i \in 2$) such that

$$
\left\langle\tau_{A, H_{0}} \cup \tau_{A, H_{1}}, \tau_{B, H_{0}} \cup \tau_{B, H_{1}}\right\rangle
$$

is an improved AD family, but $\tau_{f, H_{0}} \cup \tau_{f, H_{1}}$ is not a function.
By results (due to Woodin) in Chapter 3 of [4] (especially Exercise 3.3.18), there exists in $V[A, B]$ a tree T on $\omega \times \gamma$, for some ordinal γ, such that

- $\mathrm{p}[T]=C$;
- $j(T)=T$ whenever j is an elementary embedding derived from forcing with $\mathbb{Q}_{<\delta}$;
- the model $\langle L(\mathbb{R}), \in \mathrm{p}[T]\rangle$ of $V[A, B]$ is elementarily equivalent to the same structure computed in $V[A, B][G]$.

It follows that, in $V[A, B][G]$,

$$
\left\langle\tau_{A, H_{0}} \cup \tau_{A, H_{1}}, \tau_{B, H_{0}} \cup \tau_{B, H_{1}}\right\rangle
$$

is a ψ-set forcing in P_{ψ} that, for each $i \in 2, \tau_{f, H_{i}}$ is a subset of the realization of the P_{ψ}-name coded by $\mathrm{p}[T]$. However, this contradicts the choice of the filters $H_{i}(i \in 2)$.

References

[1] Tomek Bartoszynski and Haim Judah. Set Theory. On the structure of the real line. A K Peters, Wellesley, MA, 1995.
[2] Haim Horowitz and Saharon Shelah. Madness and regularity properties.
[3] Paul Larson and Jindřich Zapletal. Canonical models for fragments of the axiom of choice. J. Symbolic Logic, 2017. to appear.
[4] Paul B. Larson. The stationary tower. University Lecture Series 32. American Mathematical Society, Providence, RI, 2004. Notes on a course by W. Hugh Woodin.
[5] Ralf Schindler, Luizhen Wu, and Liang Yu. Hamel basis and the principle of dependent choice.
[6] Robert M. Solovay. A model of set-theory in which every set of reals is Lebesgue measurable. Ann. of Math. (2), 92:1-56, 1970.

[^0]: *Partially supported by NSF grant DMS-1201494.
 ${ }^{\dagger}$ Partially supported by NSF grant DMS-1161078.

[^1]: ${ }^{1}$ https://mathoverflow.net/questions/72047/lebesgue-measurability-and-weak-ch

