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The Affected-Pedigree-Member Method of Linkage Analysis'
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Summary

This paper describes a generalization of the affected-sib-pair method of linkage analysis to pedigrees. By
substituting identity-by-state relations for identity-by-descent relations, we develop a test statistic for detect-
ing departures from independent segregation of disease and marker phenotypes. The statistic is based on
the marker phenotypes of affected pedigree members only. Since it is more striking for distantly affected
relatives to share a rare marker allele than a common marker allele, the statistic also includes a weighting
factor based on allele frequency. The distributional properties of the statistic are investigated theoretically
and by simulation. Part of the theoretical treatment entails generalizing Karigl’s multiple-person kinship
coefficients. When the test statistic is applied to pedigree data on Huntington disease, the null hypothesis of
independent segregation between the marker locus and the disease locus is firmly rejected. In this case, as
expected, there is a loss of power when compared with standard lod-score analysis. However, our statistic
possesses the advantage of requiring no explicit assumptions about the mode of inheritance of the disease.
This point is illustrated by application of the test statistic to data on rheumatoid arthritis.

Introduction

The affected-sib-pair method of linkage analysis is
designed to detect departures from independent
segregation of disease and marker phenotypes (Pen-
rose 1935; Haseman and Elston 1972; Day and Si-
mons 1976; de Vries et al. 1976; Green and Wood-
row 1977; Thomson and Bodmer 1977; Fishman et
al. 1978; Suarez et al. 1978; Suarez and Hodge
1979). Although it has the advantage of requiring no
a priori information about the mode of inheritance of
the disease, the method is limited to sibship pairs and
usually relies on unambiguous determination of sib
identity-by-descent (ibd) relations at the marker lo-
cus. Both of these restrictions can be relaxed. We
have recently extended the method to multiple af-
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fected sibs and have shown how substituting identity-
by-state relations circumvents the problem of unam-
biguous determination of sib-pair ibd relations
(Lange 19864, 1986b).

In the present paper we generalize the affected-sib-
pair method to pedigrees. Because the issue of deter-
mining ibd relations between distantly affected rela-
tives is now exacerbated, we retain the substitution of
identity-by-state relations. We also modify our previ-
ously defined affected-sib-set statistic in two further
ways (Lange 1986b). The first of these modifications
permits computation of the theoretical mean and
variance of our new test statistic for each pedigree by
taking advantage of the theory of multiple-person ibd
relations (Thompson 1974; Karigl 1981, 1982). (Al-
though we can avoid ibd in practice, we cannot in
theory.) Our second change is motivated by the sim-
ple observation that it is more striking for distantly
affected relatives to share a rare marker allele than a
common marker allele. Thus we introduce a weight-
ing factor based on allele frequency.

With these modifications we investigate theoreti-
cally and by simulation the distributional properties
of our proposed new linkage test. The section im-
mediately following defines the test statistic for a sin-
gle pedigree. To compute its theoretical mean and
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variance then requires a detour into the combinator-
ics of generalized kinship coefficients. Once this mat-
ter is dispatched, we show how to combine test statis-
tics from different pedigrees by means of the Central
Limit Theorem. Finally, we apply the test to pedigree
data on rheumatoid arthritis and Huntington disease.

Definition of the Test Statistic for a Single
Pedigree

We first define the test statistic for a fixed pedigree.
Only those pedigree members who are both affected
and typed at the marker locus enter in the definition.
Consider two affected individuals numbered 7 and j
and define a random variable Z;; to measure the
marker similarity between 7 and j. For the sake of
simplicity, we require the various marker alleles to be
codominant. Now let i have maternal marker allele
Gix and paternal marker allele G,,. Likewise, let j
have maternal marker allele G;, and paternal marker
allele G;,. A possible definition of Z;; is

Z,‘,’ = 1/4 S(Gixxcix) + 1/46(Gix,G,'y)

(1)
+ Vs S(G,’y,G,‘x) + 1/48(Giy’Gjy) ’

where the Kronecker delta is defined as

1 G and G’ match in state
0 G and G’ do not match in state.

8(G.G') = { (2)

A pair (G,G') need not be ibd—i.e., derive from the
same ancestral gene—to contribute to Z,;. Notice
also that definition (1) corresponds to comparing one
gene drawn at random from i to one gene drawn at
random from j. Z;; is the expected probability of a
match in state conditional on the observed marker
genotypes of i and j. Table 1 gives the possible values
of Z,‘j.

We now generalize the definition (1) to take into
account marker-allele frequencies. Suppose there are
n codominant alleles with population frequencies p,

. s Dn- Let f(p) be some function of these frequen-
cies. Then our final definition is

Zij =Y S(Gix,ij)f(pG,-x) + 1/48(Gix)Gjy)f(pG,-x) (3)
+ Y4 8(G,,, Gi)f (PG,»y) + Vad(G,y, G )f (PG,y) .
Again Z;; can be interpreted as a conditional expecta-

tion. However, the number of matches is no longer
simply counted. Each match is weighted by the func-
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Table |

Possible Values of the Similarity Statistics Z,,
for a Pair of Affecteds

MARKER GENOTYPE?

i I Zij
ala A/a i it 1
- )

a/b alb o 123
a/b alc o e Ya
ab d 0

22, b, ¢, and d represent different marker alleles.

tion f(p) of the frequency of the allele involved. In the
usual notation for conditional expectations,

_ observed marker genotypes
Zy = E[8(GsG)fipc) e genonpes),
where G; and G; are randomly selected marker genes
from i and j, respectively. Typical choices for f(p)
might be f(p) = 1, f(p) = 1/\/5, and f(p) = 1/p; f(p)
= 1 corresponds to our provisional definition (1).
From the various pair statistics Z; we form an
overall statistic

z= >z, (4)

i<j

for the pedigree, where i < j ranges over the set of
individuals who are both affected and typed at the
marker locus. If there are r such people, the expres-
sion (4) for Z has (5) = [r(r — 1)]/2 terms. As a
sample calculation of Z consider the pedigree in
figure 1, in which there are three affected people who
are typed at the second marker locus. If we take
fip) = 1/p, p, = Y2, and p, = Y4, the definition (3)
yields Z = Z¢r + Zgg + Zyg = {1/2[(1/2)_1]} +
({valva) =11} + {walva =11} + {el(v2) 1]} = 3%

Note that Z will often be larger for a recessive
disease than for a dominant disease. Indeed, for a
rare recessive disease closely linked to a marker,
many presenting pedigrees will be inbred, and most
affected individuals will have the same identical ho-
mozygous genotype. This will lead to most Z;; attain-
ing their maximum value of 1 when f(p) = 1.

Mean and Variance of Z

The mean of Z;; is a simple function of the kinship
coefficient ®;; of i and j (Crow and Kimura 1970;
Jacquard 1974). Recall that ®;; is the probability that



The Affected-Pedigree-Member Method

9/4
a/b

Figure | Sample pedigree with two markers. Affected indi-
viduals are denoted by dark squares or circles.

a gene taken at random from i is ibd with a gene at
the same locus taken at random from j. The mean
E(Z;;) is easily computed by conditioning on whether
the two genes drawn at random from i and j are ibd.
If they are, then the two genes necessarily match and
they coincide with allele k& with probability p,. If they
are not ibd, then they are simultaneously allele & with
probability pZ. These observations lead to the conclu-
sion

E(Zy) = ®; Y. pufpe) + (1 — @) kZ b2 ().
k=1 =1

The overall mean E(Z) can be recovered via
> EZy).
i<j

Finding the variance Var(Z) = E(Z2) — E(Z)* is
not so straightforward. Obviously,

E(Z) =

E(Z%) = > E(ZiZu)- (5)

i<j
k<l

To calculate a typical second moment E(Z;;Zy)) in
equation (5), we need to extend Karigl’s (1982) con-
cept of generalized kinship coefficients. The idea be-
hind our extension is to consider a finite sequence of
people with possible repetition of some of them. For
each person in this sequence draw at random either
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his maternally or paternally derived gene at a given
locus. If an individual is repeated in the sequence,
then sampling is always done with replacement. Once
drawn, these genes can be uniquely partitioned into
equivalence classes or blocks by assigning two genes
to the same block if and only if they are ibd. Our
generalized kinship coefficients give the probabilities
of the various partitions. Clearly, a generalized kin-
ship coefficient depends neither on the order of its
blocks nor on the order of the individuals within a
block.

As a concrete illustration of a generalized kinship
coefficient, take four individuals 4, j, k, and [ as in
equation (5) and call the genes randomly selected
from them G, G;, G, and G, respectively. One pos-
sible partition is (G;Gyg), (G;,G)); the corresponding
generalized kinship coefficient, ®[(G;Gr), (G;,G))], is
the probability that the four genes drawn fall into
two blocks with G; = G, # G; = G, where the
equals sign symbolizes ibd. This particular partition
is one of 15 different partitions possible for four
genes. These partitions are analogous to the 15 de-
tailed identity modes of Jacquard (1974) for two rela-
tives. However, we are here dealing with four ran-
domly drawn genes from four individuals rather than
with all four genes from two individuals.

Employing generalized kinship coefficients, one
can compute E(Z;;Z,)) by conditioning on the possi-
ble partitions for the four genes G;, G;, G, and G;. In
fact, because of the obvious conditional indepen-
dence,

observed marker genotypes
of i and j

Z,'iZk] = E[S(Gt,G/)f(pG.)

observed marker

genotypes ]
of kand /

observed marker

genotypes ],
of i, j, k, and |

x E[S(Gk,cof(pc)

= E[S(G,«,G,«>8(Gk,G,)f(pc)ﬂpc)

with the Kronecker deltas above defined as in equa-
tion (2) on the basis of identity by state. Taking ordi-
nary expectations now yields the result

E(ZZw) = E[3(GyG)3(GrGf(pc)f(Pc)] -

If o symbolizes a typical ibd partition of the four
genes G;, G;, Gy, and G, then conditioning on o gives

]
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E(Z;;Z)

= [Zpmf (0m)1P(G1, G Gr, G))]

+ [Pl (0m)* PG G)) (G G))]

+ [Ep fpm GvGI’Gk)(GI)]
G:’G;)Gl Gk)]
5GrGI)(G))]

»Gr,G1)(G))]

o G (G;,Gk)]
»G )]

»Gi

+ {Zp.2 (01D (D)1}

]

+d> MG Glz:GI)]

+ [Zpaf0.)? | PUGLGL)(G)(G))]
+®[(G,G)(G)(Gp)]

+(D[(Gi:Gl)(Gx (Gk)]
+®[(G;,Gp)(G)(G))]

+ Epafonm)]? PUGHG)G(G))] .

(6)

Let us explain in more detail the origin of a few
of the 15 terms in equation (6). Take as an exam-
ple the first term, [3p,,f(0,,)*1®[(G;Gj,GrG)). It
is derived by conditioning on the partition ¢ hav-
ing all four genes ibd. Since ibd implies identity by
state, in this case there is a single common ancestral
gene that turns out to be the mth allele with probabil-
ity p,.. As a second example consider the next to
the last summand in equation (6),

[Zpmf(0m)*12((G;, Ge)(G)(G)] -

In this instance G; and G, form the only ibd pair of
the four genes. Given G; = Gy, Z;;Z;; # 0 only when
G, Gj, Gg, and G, all agree in state. By independence,
all four genes coincide with the mth allele with prob-

ability p,3.

Recursive Method for Computing
Kinship Coefficients

For equation (6) to be an effective method of com-
puting E(Z?), we must provide an algorithm for com-
puting the generalized kinship coefficients. This can
be accomplished by extending Karigl’s (1981) recur-
sive algorithm to deal with an arbitrary number of
equivalence classes and an arbitrary number of indi-
viduals. Description of the algorithm splits into two
parts. The first part specifies boundary conditions,
and the second part specifies recurrence rules for

= > EI(G,G)8(GwGf(pe )f(pe,)lol®(a)
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moving upward through a pedigree by substituting
parents for their offspring. It is a convenient abuse of
terminology used below to identify an equivalence
class or block of genes with the individuals contribut-
ing the genes. A person is a founder if both his ances-
tors are absent from the pedigree. All founders of a
pedigree are assumed to be unrelated and noninbred.

Boundary Conditions

Boundary condition 1.—1If a person occurs in three
or more blocks, then the generalized kinship coef-
ficient ® = 0. For example, ®[(G,)(G;)(Gx)] = 0if i,
j, and k are the same person. Thls condltlon is obvi-
ous because each person has only two genes.

Boundary condition 2.—If two founders occur in
the same block, then ® = 0. This follows because
founders are by definition unrelated.

Boundary condition 3.—If each block contains
only founders and neither boundary condition 1 nor
boundary condition 2 holds, then

o = (1/2)m1—mz s

where m; is the total number of people over all
blocks and m, is the total number of different people.
For instance, ®[(G;,G;)(Ge)(G))] = (Va)*~2 = Vs if i
= jand k = [ are two distinct founders. To verify
this boundary condition imagine choosing one initial
gene for each founder. Subsequent gene choices for
the same founder must coincide with the initial
choice if the genes chosen contribute to the same
block. If they contribute to a second block, the genes
chosen must differ from the initial choice. Each
choice is independent, and the maternally and pater-
nally derived genes are equally likely to be chosen.

Recurrence Rules

These rules operate by substituting the parents j
and k for a person i who is currently a member of
one or more blocks of ®. The person i must be a non-
founder as well as a nonancestor of everyone else in-
volved in ®. Such a nonancestor exists among the
nonfounders; otherwise, someone is his own ances-
tor. In practice, the members of a pedigree, whether
affected or unaffected, can be numbered so that chil-
dren come after their parents. The current highest-
numbered person involved must then be a nonances-
tor. Also note that application of the three recurrence
rules below always preserves or diminishes the num-
ber of people involved in the calculation of a general-
ized kinship coefficient. The number of people is
never increased.
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Recurrence rule 1.—Suppose that i occurs in only
one block and in only one copy. To simplify notation

suppose that this is the first position of the first block.
Then

PGy .. ) ) (N =ARUG, .. ) ()]

+®((Gp, ) ) (Db

where only the position corresponding to G; under-
goes a replacement. For instance,

D[(G:G)] = VAP((G;,G)] + PUGrG)]}

is the usual recurrence rule for computing ordinary
kinship coefficients (Jacquard 1974). In general, re-
currence rule 1 follows because the gene drawn at
random from i is equally likely to be a gene drawn
at random from either parent j or parent k.
Recurrence rule 1 also illustrates why 7 cannot be
an ancestor of someone else involved in ® (Karigl
1981). For example, if we use the pedigree in figure
1, then ‘D[(GG,Gg)] = 1/4, ¢[(G3,Gg)] = Vg, and
®[(G4,Gg)] = ¥s. However, we cannot use recurrence
rule 1 to replace person 6 by his parents 3 and
4, since Va = ®[(G¢,Gg)] # VL{P[(G;5,Gs)] +
D[(G4,Gg)]} = Ya(¥8 + ¥8) = Y. The problem here
is that if, for instance, the paternal gene of 6 is se-
lected, it is not a random gene from 3 but rather the
one actually passed to 6. Only this gene of 3’s two
possible genes can in turn be passed to 8. The two
random experiments of choosing a gene from 3 to
pass to 6 and choosing a gene from 3 for kinship
comparison are not one and the same. We can avoid
this paradox by always operating on a nonancestor i.
Recurrence rule 2.—Suppose that i occurs in only
one block but in s > 1 copies. Then, assuming that
these occupy the first part of the first block, we have

PUG;yGip o - -G o) ) ()]
= (V2PO[Gj ... ) ) ... ()]
+ (V) PGey - - (). ()]

+ (1 = 2(%PRPUGLGe - - ) ) - (]}
Here iy = i, = ... = i, all represent the same individ-
ual, i. The genes G; ,G;,, . . ., G; are replaced, respec-
tively, by a single gene of j, by a single gene of &, or by
single genes from each of j and k. The proof of this
rule is just an application of the binomial distribu-
tion. As an illustration,
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Vad[(G))(G)] + Va®[(Ge)(G))]
+ 1®[(G;,Gp)(G)] .

P((Gi,G:,)(G))] =

Recurrence rule 3.—Suppose that i occurs in two
blocks with s copies in one block and ¢ in the other
block. Again to simplify notation, suppose that i oc-
cupies the first s positions of block 1 and the first ¢
positions of block 2. Then

q)[(Gi,aGiZ, s ,GiS, .. ')(GiH,,Giﬁp L 9Gi

= (2 TGy . NG - ) ()]
+(Y) T D[(G, . . )Gy .. () -

For instance,

QG )G, G )G
= Y®[(G,)(G)(G)] + YP[(GL)(G))(G))]
= Va®((G))(Ge)(G))] -

This rule follows because the maternally (equiva-
lently paternally) derived gene of i cannot be present
in both blocks. Again the binomial distribution de-
termines the coefficient (12)°**. There is no nontrivial
extension of recurrence rule 3 to three or more blocks
because of boundary condition 1.

The above boundary conditions and recurrence
rules suffice to compute generalized kinship coeffi-
cients for any partition of individuals in any pedigree.
For our purposes the only partitions of interest are
those involving affected pedigree members who are
typed at the marker locus. Because of the nature of
the recurrence rules, other individuals usually must
be included in the pedigree. These individuals serve to
specify the correct genetic relationships between the
affecteds.

As a sample computation, consider the pedigree in
figure 1. To calculate Var(Z) for the first marker
locus, it is necessary to evaluate the generalized kin-
ship coefficient ®[(G4,Gg)(G4)(G>)]. This is done in
steps a) through i) below.

a) By recurrence rule 1, ®[(Gg,G3)(G4)(G1)]
VAP[(Ge,Ge)(Ga) (G2)] + P(Ge,G5)(Ga)(GI}

b) By recurrence rule 2, ®[(Gg,Ge)(G4)(G2)]
(V2)HPU(G3)(Ga)(Ga)]  +  D(Ga)(Ga) (G}
{1 = [2(%2)*]} @[(G3,G4)(Ga)(G2)].

¢) By boundary condition 3, ®[(G3)(G,4)(G,)]
(2)° 7% = 1and ®[(G4)(G4)(Go)] = (V)P = 1,

—+
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d) By boundary condition 2, ®[(G3,G4)(G4)(G>)]
= 0.

e¢) Now substitute the values from ¢) and d)
into b): ®[(Ge,Ge)(Ga)(G2)] = (V2)*(1 + Y2) +
{1 = 2[(*2)’1} (0) = %.

f) By recurrence rule 1, ®[(G¢,Gs)!G4)(G))]
= Y{®[(G3,G5)(Ga)(G2)] + @[(G4,G5)(Ga) (G}

g) By recurrence rule 1 and boundary condition 2,
D[(G3,G5)(Ga)(Ga)] = Y2{P[(G3,G1)(Ga)(Ga)] +
P[(G3,G2)(G4)(G2)]} = 0 and [(G4,G5)(Ga)(G)] =
Vo{P[(G4,G1)(G4)(G2)] + P[(G4,G2)(G4)(G2)]} = 0.

h) Hence, from f) and g) one infers
D[(G6,G5)(G4)(G2)] = 0.

i) Finally, substitution of ) and /) into a) yields
D[(Ge,Gs)(Ga)(Ga)] = Yo{P[(G6,Ge)(Ga)(Ga)] +
P[(Ge,Gs)(Ga) (G} = 2(¥% + 0) = Y.

Combining Z Statistics from Different Families

Let Z,,, denote the Z statistic for the mth pedigree
of a finite collection of pedigrees. Then an appropri-
ate test statistic for detecting departures from inde-
pendent segregation of disease and marker pheno-

types is
> wlZy — E(Z,)]

> w?, Var(Z,)

m

T ) 7)

where the w,, are positive weights. If 7,,, is the number
of affected and typed individuals in the mth pedigree,
then a plausible choice for w,,, is

\4 (rm - 1)
VVar(Z,)

Ww,, =

(8)

In this case the square of the denominator in equation
(7) is the total number of affecteds minus the number
of pedigrees. This choice of w,, is motivated by
Hodge’s (1984) result that the information content in
an affected sib set of size r is ~(r — 1) times the
information content in an affected sib pair. The
choice in equation (8) also seems to represent a good
compromise between giving all pedigrees equal
weight and overweighting large pedigrees because of
the multiple comparisons in definition (4).

As long as the weights are any reasonable function
of the r,, and the number of pedigrees is large, then
Liapunov’s Central Limit Theorem (Renyi 1970) im-
plies that T follows approximately a standard normal
distr:bution. A one-sided test based on T is appropri-
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Table 2

Application of the Test Statistic to Real Data

Function Statistic P-Value

A. Combined Statistic for 20 Rheumatoid Arthritis Families:
Marker Locus HLA-D

[ I 0.365 .359
fO)=1UVD oo 2.621 .004
fO)=Up o, 1.908 .029

B. Combined Statistic for 15 Huntington Disease Families:
Marker Locus D4S10 (HindIIl Polymorphism)

) I 2.195 .014
fO)=1VD oo, 3.035 .001
fO)=1p oo, 1.325 .093

ate because the Z,, should tend to be inflated when
the disease and marker phenotypes do not segregate
independently.

Two Sample Applications

Strom and Moller (1981), Michalski et al. (1982),
Rossen et al. (1982), and Grennan et al. (1983) ex-
amined the cosegregation of HLA haplotypes and
rheumatoid arthritis in a combined total of 20
families. Fourteen of these families contain only af-
fected sibs, five contain affected members typed for
HLA in 2 generations, and one (Rossen et al. 1982)
contains affected members typed for HLA in 3 gener-
ations. For this application we will only use the
HLA-D genotypes, making the conservative assump-
tion for our test statistic that any unidentified allele is
the null allele. The results of our calculations are
shown in table 2, where we see that ignoring allele
frequencies (i.e., f(p) = 1) results in the test statistic
(7) being nonsignificant. The dramatic increase in the
value of the statistic when allele frequency is taken
into account is due to the fact that rheumatoid ar-
thritis is associated with the HLA-DR4 allele, which
has a relatively low frequency of .096. These results
indicate that our test is sensitive to the function f(p)
used and that association and linkage cannot be fully
distinguished.

Our second application uses 15 families affected
with Huntington disease (Youngman et al. 1986).
The marker is the HindlIll polymorphism detected by
the DNA sequence G8 (locus D4510). These families
are large, with nine of them containing affected rela-
tives at least as distantly related as second cousins.
Calculation of the generalized kinship coefficients for
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Table 3

Simulation Results for the Test Statistic

A. Distribution of 1,000 Simulated Test Statistics T for Rheumatoid Arthritis Families:

Marker Locus HLA-D

321

Skewness® Kurtosis?
Function Mean Variance Skewness V/(6/N) Kurtosis V(24/N)
foy=1........ -0.021 0.985 0.42 5.485 0.36 2.331
fo) =1Vp .... —0.055 1.064 0.60 7.707 1.24 7.981
foy=1p ...... 0.025 1.026 1.23 15.869 2.54 16.416
Empirical Upper Empirical Upper
Fifth Percentile® First Percentile®
fo)=1........ 1.745 2.664
fo) =1Vp ... 1.716 2.799
fo)=1p ...... 1.906 3.423

B. Distribution of 1,000 Simulated Test Statistics T for Huntington disease families:
Marker Locus D4S10 (HindIll Polymorphism)

Skewness® Kurtosis?
Function Mean Variance Skewness V(6/N) Kurtosis V(24/N)
fo)=1........ 0.052 0.957 0.15 1.996 —-0.08 -0.547
fip) = UNVp ... 0.010 0.983 0.29 3.695 0.24 1.544
fo)=1p ...... -0.053 0.953 1.37 17.708 3.10 19.993
Empirical Upper Empirical Upper
Fifth Percentile® First Percentile®
foy=1........ 1.729 2.358
fo) =1Vp ... 1.655 2.682
foy=1p ...... 1.773 3.301

* N = 1,000; in theory these values are standard normal variates.
® For a standard normal variate, the theoretical upper fifth and first percentiles are 1.645 and 2.326.

some of these families involves recursive stepping
through as many as 5 generations. As seen in table 2,
the test statistics firmly reject the null hypothesis of
independent segregation between the HindlIll poly-
morphism and the Huntington disease locus. As an
informal check on how much power is lost compared
with the usual lod-score method, we computed a
maximum lod score of 3.88 at a recombination frac-
tion of .016 (Lange et al. 1987) for the affected pedi-
gree members, ignoring the marker phenotypes of the
unaffecteds. Converting the maximum lod score to a
likelihood-ratio test statistic gives x*; = 2 X log,10
x 3.88 = 17.85. This x> with 1 df is highly sig-
nificant (P = .00002).

It is noteworthy that the function f(p) = 1/Vp
maximizes the test statistic in both data sets. This
choice represents a compromise between ignoring al-
lele frequency (i.e., f(p) = 1) and strongly weighting
by allele frequency (i.e., f(p) = 1/p). All test statistics

were computed on an IBM AT microcomputer, with
the more challenging Huntington disease data set
taking ~75 min. Since most of this time was spent
computing the generalized kinship coefficients, it
would have taken little additional time to compute
the statistic for additional markers.

Simulation

Since the Central Limit Theorem does not indicate
how fast the distribution of the test statistic T of
equation (7) will converge to the standard normal
distribution N(0,1), it is of interest to use a simula-
tion approach to examine the validity of our normal-
ity approximation. For each of the two data sets ex-
amined above, we kept the family structures and the
affecteds fixed while simulating the segregation of the
appropriate marker locus through the pedigrees inde-
pendently of the disease phenotypes. The test statistic
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Figure 2  Histograms of 1,000 simulated test statistics T: rheumatoid arthritis families at the HLA-D locus. A, f(p) = 1; B, f(p) =
UVp; C, fip) = 1lp.



The Affected-Pedigree-Member Method

323

120

100 ¢

Frequency

Continued

Figure 2

was calculated on 1,000 different simulated data sets;
the mean, variance, and other pertinent statistics of
these simulations are displayed in table 3. Histo-
grams of the simulated T statistics appear in figures 2
and 3. Note that the mean and variance are close to
their theoretical values of 0.0 and 1.0 in each case.
But the skewness, the kurtosis, and the thickness of
the tails of the T distributions all become progres-
sively larger as the influence of allele frequency in-
creases. This effect is sufficiently pronounced for
these two data sets that we might be inclined to use
the function f(p) = 1/Vp instead of the function f(p)
= 1/p, even ignoring the apparently superior power
of the f(p) = 1/Vp choice. Our tentative conclusion
is that f(p) = 1/Vp represents a good compromise
between generating a normally distributed test and
incorporating important information about allele fre-
quencies. From our point of view, it is important to
retain a near-normal distribution of the test statistic.
Although simulating for the purpose of estimating a
small P-value is indeed possible, one cannot achieve
much accuracy without considerably more trials than
the 1,000 used above.

Discussion

The test statistic developed here shares the main
virtue of the affected-sib-pair method for linkage
analysis; namely, it does not rely on questionable as-
sumptions about the mode of inheritance of the dis-
ease. The only assumption made under the null hy-
pothesis is independent segregation of disease and
marker phenotypes. Furthermore, the test depends
only on the marker phenotypes of the affecteds
within a pedigree. Other pedigree members need not
be typed.

Even when the mode of inheritance is well charac-
terized, our test statistic may prove to be useful. For
example, the statistic could serve as a preliminary
screen to determine the order in which to type a large
number of markers. Instead of typing all available
pedigree members at every marker, we could initially
type only the affected members at every marker, us-
ing our statistic to test for nonindependent segrega-
tion of the marker genotypes and the disease pheno-
types. If a possible linkage is indicated at any one of
the markers, we could then type the remaining unaf-
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fected members at this marker locus and use the more
powerful lod-score method. It is relevant to point out
here that computing a lod score by using only af-
fected pedigree members can be very difficult, if not
impossible, owing to the large number of unknown
marker genotypes in unaffecteds that must be consid-
ered in the calculations. This computational burden
is particularly onerous when the marker is highly
polymorphic. In contrast, a highly polymorphic
marker presents no difficulty in computing our statis-
tic. The biggest barrier to computing our statistic is
the number r of affecteds in a pedigree, since equa-
tion (5) has (5)? terms.

As pointed out above, our test statistic is undoubt-
edly less powerful than the standard lod-score
method when a disease is determined by a well-
characterized single locus. There may be less loss of
power for recessive diseases if highly inbred pedigrees
form a substantial fraction of the data. It would be
interesting to know whether fine-tuning the allele-
frequency function f(p) or the pedigree weights w,,
could increase the power of the statistic. It is clear
that the degree of polymorphism at the marker locus

critically affects power. In the presence of a highly
polymorphic locus, identity-by-state relations closely
approximate ibd relations. The test statistic provides
no estimate of a recombination fraction, and, like the
lod-score method, it can confound linkage and asso-
ciation.
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