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Topology of Kinship in Micronesia

N. E. Morron! aND J. M. LarLougL!

All the information about kinship of # populations is encoded in a square,
symmetric matrix ® whose element ¢,; bears a simple relation to the probability
that a random gene in population ¢ be identical by descent with a random gene in
population j. When estimated from phenotype bioassay as conditional kinship, ¢;
is an estimate of the correlation between a random gamete in i and a random gamete
in j relative to the contemporary gene frequencies. Such a matrix is given in Morton
and Lalouel [1, table 4], who also presented corresponding estimates from anthro-
pometrics [1, table 5]. These biological indicators may be compared with data on
frequency of shared cognates [2, table 5]. The object of this paper is to analyze the
relationships implicit in these matrices by mapping them in a reduced dimension-
ality, using eigenvectorial and dendrogram representations, without making un-
necessary, untestable, or implausible phyletic assumptions.

GEOGRAPHY

Coordinates are usually given in degrees and minutes. Let
& = =% (x + m,/60),
y==*=(u+ m,/60),

where &’ is longitude in decimal notation, x is degrees of longitude, and m, is
minutes of longitude, the sign being positive for the Eastern Hemisphere. Similarly,
¥’ is decimal latitude, y is degree of latitude, and m, is minutes of latitude, the
sign being positive north of the equator. Of course, if s, s, are seconds, the
quantities s,/3,600 and s,/3,600 are added to x, ¥, respectively, but such precision
is rarely required. Denote the means over the array of # populations by 2’, y. Using
plane trigonometry on the Hayford spheroid, the coordinates in kilometers as
deviations from the means are

(1)

X = (¥ — %) (111.4175 cos B — 0.0940 cos 3B -} 0.0002 cos 5B) )
Y= (¥ — ) (111.1363 — 0.5623 cos 2B + 0.0011 cos 4B),

where the middle latitude is B = (¥ + ¥’)/2[3]. Spherical trigonometry gives
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great circle distances, but this refinement is unnecessary for the distances that are
important in population structure.

The geography of 14 Micronesian samples is shown in figure 1, indicating co-
ordinates as deviations in kilometers from the central point (153°40” E, 7°20’ N),

F16. 1.—Geography of 14 Micronesian samples

and assigning Carolinians on Saipan to the place of residence, not origin [1]. Only
the four samples in the Ponape district are sufficiently close for local migration
among defined populations to be appreciable. There is, of course, approximation in
assuming the Marshallese and Gilbertese panmictic, although all evidence testifies
to frequent internal migration in these archipelagoes [4, 5]. Because the space is a
narrow ellipse, we might expect any representation of population structure to
emphasize east-west differentiation. Kapingamarangi as a Polynesian outlier has a
special status not reflected by its geographic location.

EIGENVECTORS OF KINSHIP

To examine the phenetic relationships implied by a kinship matrix, we must
reduce the dimensionality of the space of observations. In practice we consider two-
dimensional representations, which are readily comprehended and correspond to the
geographic dimensionality.

A well-known procedure is called principal component extraction when applied
to a matrix of the type 4 = XX’, which is positive semi-definite (i.e., without
negative eigenvalues). For conditional kinship (relative to contemporary gene fre-
quencies), some of the smaller eigenvalues may be negative, and so we use another
theory which assures that the absolute value of the sum of squared distances
between points for any vector % is proportional to the absolute eigenvalue |\,
providing the matrix has been centroid adjusted, so that

i =a;—a.—aj+a (3)

where a;; is an element before adjustment and a;, @ j, and e . are the corresponding
row, column, and overall means, respectively [6]. Two coefficients are computed
that measure the effect of dimensionality reduction: a product-moment correlation
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R between the centroid-adjusted matrix and its two-dimensional approximation and
the fraction

) = (Al + el 7 D 1M
i=1

of the total absolute dispersion extracted by those two vectors.

In figure 2, these representations have been translated and rotated to maximum
congruence with geography [6], using the program MATFIT to solve by least squares,
B = AT + Jy’ + E, following [7]. The B and 4 are (n X 2) matrices of the
geographical coordinates and leading eigenvectors of the adjusted matrix, respec-
tively; T, a (2 )X 2) orthogonal matrix; J, an (# X 1) unit vector; ¥, a (2 X 1)
translation vector; and E, an (# X 2) matrix of residuals. This process leaves the
configuration invariant. The closed figures correspond to clustering levels such that
mean hybridity within clusters is less than .01 or .02.

Phenotype bioassay gives a topology emphasizing east-west differentiation.
Kapingamarangi is clearly differentiated from the rest. Pingelap and the Marshalls
are displaced toward the west in curious association with Palau and Yap, whereas
most of eastern Micronesia forms one cluster. Anthropometrics also separate
Kapingamarangi and emphasize east-west differentiation. Cognate frequencies differ-
entiate the Heonesian subfamily of central and eastern Micronesia from the three
western populations, which themselves show little affinity.

DENDROLOGY

In eigenvectorial topology, phenotypically similar populations tend to be located
close together in a plane. There is another type of graph, called a “tree,” in which
dissimilarity is indicated by distance along one axis, the orthogonal axis serving
merely to space the populations uniformly, so that the logical form of the tree is
unchanged by rotation of any branch, as (4B)(C) = (BA)(C) = (C)(4B) =
(C)(BA). A phenetic tree, or ‘“dendrogram,” is based entirely on phenotypic
dissimilarity. An appropriate parameter with a range from zero to one is hybridity
[8], defined as the excess of heterozygosity in an F; generation compared with an
F» between the pair of populations, or

Put Py —2 ¢4
0y = . (4)
4 — @i — i — 2 @ij
No phylogeny is implied by a dendrogram, although if the number of loci on which
it is based is sufficiently large, the major branches (and less reliably, the minor
branches) may have phylogenetic significance.

A phyletic tree, or “cladogram,” is an interpretation of a dendrogram in phylo-
genetic terms, and its meaningful axis represents time in years or generations. The
time scale may be inferred from paleontological evidence or, less accurately, by a
transformation of hybridity, assuming a uniform divergence rate; a more realistic
model founders on our ignorance of evolutionary sizes and systematic pressures
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Fic. 2.—Eigenvectorial representations rotated to maximum congruence with geography

during differentiation. We suppose initially with glottochronology that contemporary
kinship is

Py = ae" P hD), (5)
where @ is the Malécot intercept for the first branch, ¢* is the duration of the array

as the time since the first split, #;; is the time from the origin of the array to differ-
entiation of populations 7 and j, and a,B > 0. Assume ¢ and #* known. Then ¢* is
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associated with a minimum kinship ¢* and a maximum hybridity 6*. If we set ¢y
= ¢j; = a in equation (4) and let ¢;; approach zero, we see that 6* = a/2. Sub-
stituting @ = 2 6* and rearranging,

_20%(14-65) — 26y
- 1—6; ’

(6)

Pij

and the time from the present back to differentiation of populations ¢ and j is

B n@0%/e0
t*—tij—t* { ln[(l _0*)/0*] bp, (7)

where “b.p.” signifies “before present.”

The roughly exponential decline of cognate frequencies with time may be an
artifact of an increasing proportion of cognates with high retention rate, combined
with an accelerating pressure toward diversification. The latter also seems likely for
genes, since increasing time implies increasing distance and greater exposure to drift
and disruptive selection. As an approximation, we might assume that under diversi-
fying pressure equation (5) becomes [17]:

¢‘!= aG_B(t"'tii)’, (8)
in which case equation (7) is replaced by

In(2 0*/¢i;)

The value of 6* is determined in constructing the dendrogram. One method seeks
to maximize 6* by considering all nested partitions of the » populations, which is
enormously expensive of computer time. This kind of cluster analysis was developed
to minimize the cost of communication systems; its relevance to evolution is un-
clear, although it is often combined with the pretension that the dendrogram is in
every detail a cladogram of populations evolving at a constant rate [9]. Without
this assumption, the method has not been shown to have any desirable properties.
An alternative procedure [10, 11] clusters populations with the smallest value of
hybridity and thus proceeds from the smallest to the largest branches without
testing all nested partitions and without assuming that the dendrogram is a
cladogram. Since trees permit branching but not anastomosis, and every human
population undergoes “fusion” (i.e., hybridization), it cannot be argued that a
dendrogram of subspecific differentiation is in every branch a cladogram, even if
the number of bioassays were sufficiently large that sampling error of 6 could be
neglected. It is worth noting that the arbitrary but reasonable standard of numerical
taxonomists that at least 100 characters be assayed is never approached by geneti-
cists, and appreciable sampling errors must be assumed and have in fact been
simulated [12]. Therefore, we prefer the phenetic approach, which makes fewer
assumptions, requires fewer calculations, and is almost universally employed in
numerical taxonomy, which has always insisted that its trees are not cladograms
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[10]. Not all geneticists have appreciated this sophistication. Parenthetically, it is
improper to call a tree a network, since the latter permits anastomosis as well as
branching. It is precisely this restriction on trees, together with the effect of
sampling errors on tree form, that makes the interpretation of a dendrogram as a
cladogram generally unconvincing. However, even when the tree form is incorrect,
a cladogram yields estimates of divergence times of local populations that may
sometimes be interesting.

Having rejected the phylogenetic assumption as a principle for constructing trees
of subspecific differentiation, we have one further decision to make: how are popu-
lations to be weighted in forming averages? The greatest statistical reliability is
obtained by weighting each population independently of the way in which popula-
tions are grouped into branches. These a priori population weights contrast with a
posteriori stem weights, in which every branch is weighted equally, independently
of the number of populations that comprise it [10]. We can see no justification
for stem weights in constructing a dendrogram.

The algorithm used by us for our computer program ARBOR is the so-called un-
weighted pair-group method [10]. A dendrogram is constructed by successively
reducing the rank of the hybridity matrix, at each stage averaging the rows and
columns corresponding to the smallest value of 6, and deleting the row and column
with the higher index. The weights are simultaneously summed. At the end, when
the hybridity matrix contains only 6*, a dendrogram and (if ¢£* was specified) the
derived cladogram are graphed.

The formula analogous to equation (7) for cognates is

In Cq
t* — tij = t* InC* bp, (10)

where Cj; is the cognate frequency between populations i and j and C* is the
cognate frequency for populations that diverge at t*. If we take § — 1 — C, then
C* is the complement of 6*, the last value left in the reduced matrix. Glottochro-
nology traditionally assumes that #*/In C* = —2,300, based on large continental
populations, but the generality of this constant is doubtful [13].

The cognate formula analogous to equation (9) is

[ InCy

t*—tﬁ:t* m‘;—

(11)

In place of cognates we may use similarity, which codes a consistent-trait pair
(44 or ——) as one and an inconsistent pair (—- or +—) as zero. The com-
plement, dissimilarity, may be treated as hybridity in constructing a dendrogram.
Thus, the same algorithm can be applied to cultural traits, cognates, phenotypes,
and anthropometrics.

Dendrograms with equal weights are given in figure 3. Both phenotypes and
anthropometrics indicate a primary division between the Polynesian outlier,
Kapingamarangi, and the Micronesian populations, within which Pingelap is most
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Fi16. 3.—Dendrograms of hybridity in Micronesia

divergent. Other Eastern Caroline populations form a rather homogeneous group.
There is an appreciable east-west divergence within Micronesia, in agreement with
the cognate matrix.

Recent archeological evidence from Tonga gives radiocarbon dates of 3,000 years,
which we take as #* on the assumption that divergence of Polynesians and Micro-
nesians occurred at about that time [14]. Equation (7) is not compatible with this
assumption, which gives ridiculously small estimates of divergence times. For ex-
ample, phenotypes yield 50 years for the separation of Yap and Palau. Quadratic
differentiation [eq. (9)] leads to much more plausible results (fig. 4). The separa-
tion time for Yap and Palau based on phenotypes becomes 386 years. Divergence of
Pingelap from the rest of eastern Micronesia is estimated to have occurred 1,711
years ago from phenotypes and 1,323 years ago from anthropometrics. However,
divergence time for Mokil is given as only 692 years from phenotypes and 398
years from anthropometrics. It is unlikely that Mokil was occupied less than half
as long as Pingelap. In a cladogram a population that is unusually differentiated
because of small evolutionary size or systematic pressure tends to be assigned a
spuriously high estimate of divergence time. If it is assumed that Pingelap and
Mokil were settled at about the same time, we take the mean of these four numbers,
which is 1,031 years, in reasonable agreement with estimates of occupancy from
kinship [1].

The results for cognates are not strictly comparable since data on Kapinga-
marangi and Pingelap were not included. If we retain the traditional assumption of
linear divergence [eq. (10)] and #* — 1,500, the separation of Trukese from
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Fic. 4—Cladograms of hybridity in Micronesia

Ponapean is dated as 734 b.p. compared with 1,049 b.p. for quadratic differentia-
tion, which gives 811 b.p. from phenotypes and 810 b.p. from anthropometrics.
Although linear differentiation is usually assumed for cognates, quadratic differ-
entiation is at least as plausible, since migration rates are likely to decrease with
distance, and therefore time. More experience is needed with dating from cladogram
models before any validity may be claimed for them.

DISCUSSION

One of the problems in bioassay of kinship is whether to express the results as
¢y with respect to the contemporary array (random kinship of zero) or as ¢;f
relative to founders (positive random kinship), the two systems being related as
¢if = (@i — L)/(1 — L), where L is the initial estimate at large distances [1].
Malécot [15] calls ¢;; the “conditional kinship” and ¢, the “a priori kinship.”
We have used ¢;; as input for topology, so that our results do not depend on esti-
mation of L.

In this region of long-range voyages [16], it would be naive to consider that the
dendrogram is a cladogram. Predictions of kinship from a migration matrix can be
represented by a dendrogram, but the assumptions are incompatible with a clado-
gram. Migration theory assumes that populations have evolved under hybridization
from synchronous random samples of an infinite gene pool, while a cladogram
assumes random subdivision of a finite gene pool at different times without hy-
bridization: kinship increases monotonically under the first model and decreases
after fission under the second. These essentially different processes were not dis-
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tinguished by Cavalli-Sforza in his discussion of the evolution of kinship [17].
Hybridization, accidents of drift, and diversifying selection are powerful obstacles to
interpreting a dendrogram as a cladogram. The kinship matrix itself has errors, and
some of the information it contains must be lost in any graphical representation.

With this caveat, we can compare topologies on the basis of the cophenetic cor-
relation between observation and prediction [18]. This correlation has the merit of
being invariant with respect to scalar addition or multiplication and so is the same
for a priori and conditional kinship. For principal eigenvectors the predicted kinship
is E1Py + E,P,, where E,;, E, are the principal eigenvalues and P;, P, are the outer
squares of the vectors Vy, Vs, respectively. We have correlated hybridity rather than
kinship so as to compare with dendrology, which predicts hybridity as the mean
of a submatrix.

From table 1 it is apparent that principal eigenvectors have the higher cophenetic
correlation for phenotypes, and in this sense the dendrogram is a poorer two-
dimensional graph of kinship. It has been found that population weights tend to give

TABLE 1
RELIABILITY OF TOPOLOGIES

PrINCIPAL EIGENVECTORS DENDROLOGY
SoURCE o) r r
Phenotypes ......ecoveeveeinnn. 621 927 746
MetricS ......cccveiiiiiiinnn. .685 .906 944
Cognates ..........eeeevevennnn 341 834 948

NoTE.—# = cophenetic correlation; f(\) = proportion of absolute dispersion accounted for by two principal
eigenvectors.

higher cophenetic correlations than stem weights [19] and that dendrograms con-
structed by the minimum variance principle give lower cophenetic correlations and
suffer from other theoretical disadvantages [18-21] in addition to their heavier
computational load, which is inevitable in any minimization procedure on trees.
We are not convinced that this extra labor has either theoretical or practical
justification.

Taxonomic applications favor dendrograms in which each split divides populations
subequally, as opposed to chained dendrograms, which tend at each stage to
separate the most divergent population from the remainder. For genetics the goal is
to represent the kinship matrix in two dimensions, and so there is no objection to
chaining.

In Micronesia eigenvectorial representations and dendrograms both provide a
simple representation of kinship. We suggest that both representations be examined
when summarizing the information in a kinship matrix. If the investigator recog-
nizes these topologies as a convenient distortion, he will be less likely to indulge in
unwarranted phylogenetic speculation. However, since neither representation is iso-
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metric, the relations among populations are necessarily distorted. Only the original
kinship matrix contains all the information about differentiation.

SUMMARY

Bioassay of Micronesian kinship from phenotypes, anthropometrics, and cognates
has been represented in two dimensions by principal eigenvectors and dendrograms.
These methods sacrifice some of the information in a kinship matrix to achieve a
simple graph but conserve a large part of the information. Together they show the
Polynesian outlier Kapingamarangi to be highly differentiated from the Micronesian
populations, among which Pingelap is most divergent, as predicted from migration
and genealogy. There is marked east-west differentiation, but other details are not
consistent in the different representations. It is recommended that both topologies
be examined when analyzing a kinship matrix, to avoid unwarranted phylogenetic
speculation. An algorithm is introduced for transforming a dendrogram into a
cladogram, which gives fairly plausible estimates of divergence times. Difficulties in
interpreting a dendrogram as a cladogram are discussed.
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