
LETTERS TO THE EDITOR
Estimation of SNP
Heritability from
Dense Genotype Data

To the Editor: Recently, Speed et al.1 undertook a compre-

hensive and elegant evaluation of five key assumptions

underlying the linear mixed model implemented in the

program GCTA2 for estimation of SNP heritability.3–6

They concluded that the method is robust to violations

of four of the assumptions. However, they found that

SNP-heritability estimates were sensitive to uneven linkage

disequilibrium (LD) between SNPs (implying uneven

tagging of causal variants) and suggested an approach to

improving the robustness of estimates in this context.

Speed et al.1 tested their method on relatively sparse geno-

typing data (~300,000 SNPs) and showed that a weighted

genomic-relationship matrix (GRM) performed better

than the standard GRM when there was substantial un-

evenness in LD between SNPs in regions in which causal

variants lie. They showed that biased estimates can result

whenever the underlying genetic architecture of the traits

differs from the genetic architecture assumed in the GRM

definition (whether standard or weighted). However, it is

unclear whether the method proposed by Speed et al.1

will perform similarly on both dense and sparse genotyp-

ing data.

Here, we show that in the context of dense genotyping

(e.g., imputation to the 1000 Genomes Project reference

sample), the weighted GRM proposed by Speed et al.1

might not be an optimal approach. We show that a minor

allele frequency (MAF)-stratified approach gives SNP-

heritability estimates that are robust to genotyping density

and underlying genetic architecture of the traits. The

MAF-stratified approach has been used for dissecting

differences in genetic architecture by MAF.7

The linear mixed model for estimation of SNP heritabil-

ity8 fits the realized GRM estimated from whole-genome

SNP data. The variance components are estimated by

residual-maximum-likelihood analysis.2,9 The realized

relationship between individuals i and j can be estimated

from L SNPs as

bAij ¼ 1

L

XL

l¼1

�
xl½i� � 2pl

�
,
�
xl½j� � 2pl

�
,varðxlÞs; (Equation 1)

where xl[i] represents the genotype of individual i at locus

l (xl ¼ 0, 1, or 2 depending on the number of reference

alleles), p is the allele frequency of the reference allele

(and q is the frequency of the other allele, q ¼ 1 � p),

and 2p and var(xl) are the mean and variance of xl,

respectively. The scale parameter s was introduced in

Speed et al.1 Most commonly, s ¼ �1 (in Yang et al.,8
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Leutenegger et al.,10 Amin et al.,11 and VanRaden12 and

by default in GCTA) and scales by the heterozygosity for

all SNPs across the genome,8 but Speed et al. also consid-

ered varying s (e.g., s ¼ 0, effect size independent of MAF).

Speed et al.1 showed that if unbiased estimates of

SNP heritability are to be achieved, the scale parameter

s should be concordant with the variance of SNP allele

effects—var(allele effect) f [pq]s—i.e., that the underlying

genetic architecture (which is unknown) is the same as the

genetic architecture used in the construction of the GRM.

They also noted that uneven tagging of causal variants by

genotyped SNPs generated biased estimates of h2
SNP under

some genetic architectures. They proposed that SNP contri-

butions should be weighted by the LD (r2) between SNPs.

However, we found that the weighted GRM can generate

upwardly biased estimates of h2
SNP in the context of dense

genotyping because the density distribution ofMAF, which

is different from that in sparse genotyping, causes a subop-

timal weighting strategy and thus attributes too much

weight to the low-MAF SNPs. Here, we investigated an

approach that breaks down the implicit relationship be-

tween SNP allele effects and heterozygozity by estimating

h2
SNP in a MAF-stratified approach that is more robust to a

range of underlying genetic architectures, different MAF-

density distributions, and hence unequal tagging of causal

SNPs. We have previously7 considered analyses in which

SNP heritability is partitioned by MAF in order to provide

insight into genetic architecture. In those analyses, a

genomic relationship matrix was constructed from SNPs

in MAF bin k via Equation 1 with s ¼ �1. We used n ¼ 5

for bins with MAF boundaries 0.1, 0.2, 0.3, 0.4, and 0.5.

In this letter, we show that a robust estimate of h2
SNP given

a wide range of underlying genetic architectures is

achieved from h2
SNP ¼ Pn

k¼1Vgk=ð
Pn

k¼1Vgk þ VeÞ, where Vgk

is the genetic variance of the kth MAF bin and Ve is the re-

sidual variance.

Following Speed et al.,1 we conducted simulations to

check the robustness of the methods for estimating herita-

bility on the basis of dense genotyping. We used genotype

data13 imputed to the reference panel. After quality control

(imputation R2 > 0.6, MAF > 0.01, cutoff Aij > 0.05), there

were 8,243,316 SNPs and 7,301 individuals. In each

simulation replicate (50 replicates in total), 10,000 SNPs

were assigned effects of normal distribution such that

true h2 ¼ 0.5 for the simulated quantitative trait. In order

to vary genetic architecture of the trait, we used var(allele

effect) f [p(1 � p)]s with s ¼ �1 or 0. We also varied the

genetic architecture by selecting the 10,000 causal SNPs

at random (1) across the whole genome, (2) divided in

the ratio 7:3 for MAF < 0.1 and MAF > 0.1, or (3) restricted

to MAF < 0.1. Table 1 shows the proportion of causal SNPs

and the true genetic variances across MAF bins for the six

simulation strategies (architectures A–F). When s ¼ 0,

more variance is attributed to the higher MAF SNPs, i.e.,
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Table 1. Simulation Strategies for Generating Different Genetic Architectures: A–F

MAF

<0.1 0.1–0.2 0.2–0.3 0.3–0.4 0.4–0.5 Total

SNPs Selected at Random

% causal SNPs 39 20 15 13 13 100

% variance attributable to causal SNPs for
A: var(allele effect size) ~ [piqi]

�1
19 10 8 7 6 50

% variance attributable to causal SNPs for
B: var(allele effect size) ~ [piqi]

0
6 9 11 12 12 50

SNPs Selected at Random but Distributed 7:3 for MAF < 0.1: MAF > 0.1

% causal SNPs 70 10 7 7 6 100

% variance attributable to causal SNPs for
C: var(allele effect size) ~ [piqi]

�1
35 5 4 3 3 50

% variance attributable to causal SNPs for
D: var(allele effect size) ~ [piqi]

0
17 7 8 9 9 50

SNPs Selected at Random but Distributed for MAF < 0.1

% causal SNPs 100 0 0 0 0 100

% variance attributable to causal SNPs for
E: var(allele effect size) ~ [piqi]

�1
50 0 0 0 0 50

% variance attributable to causal SNPs for
F: var(allele effect size) ~ [piqi]

0
50 0 0 0 0 50
effect sizes of the causal variants are independent from

their MAFs so that common variants explain much more

variance than do rare variants. When s ¼ �1, more vari-

ance is attributed to lower-MAF SNPs, i.e., on average

the variance explained by a common SNP and a rare SNP

is equal (effect sizes for rare variants are larger), but there

is a greater proportion of rarer SNPs. For each replicate,

we estimated h2
SNP on the basis of the standard GRM

(s ¼ �1), an alternate GRM (s ¼ 0), the Speed et al.

weighted GRM, and the MAF-stratified approach. For the

weighted GRM, we obtained weighting scores for the

SNPs by using the LDAK software.1 We measured good-

ness of fit by the difference in the Akaike information

criterion (DAIC) between the null model (without the

genetic component) and the full model such that higher

DAIC indicated better fit. The AIC is defined as AIC ¼
2v � 2ln(likelihood), where v is the number of variance

components.

Unbiased estimates of h2
SNP were achieved when the

scaling factor used for calculating the GRM matched the

scaling factor used for simulating effects sizes for both

s ¼ 0 and s ¼ �1 (Table 2). However, the GRM based on

s ¼ 0 generated downwardly biased estimates of h2
SNP

when causal effects were generated under a model with

s ¼ �1 and the GRM based on s ¼ �1 generated upwardly

biased estimates of h2
SNP when causal effects were generated

under a model with s ¼ 0 because of the relative emphasis

placed on the sharing of variants of different MAFs.

Moreover, we found that the Speed et al. weighted GRM

gave upwardly biased estimates under both simulation

architectures, a result not observed in their own simu-
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lations because they used a relatively sparse set of

~300,000 genotypes. We replicated their results when

only ~300,000 genotypes were used (data not shown). As

genotyping density increased, the percentage of SNPs

with low MAF increased (and the proportion based on

the effective number of independent SNPs was higher still;

Table S1, available online). We compared estimates of SNP

heritability when causal SNPs were excluded from con-

struction of the GRM and showed that exclusion of causal

SNPs generates underestimates of SNP heritability in the

context of sparse genome-wide genotypes, but not dense

genotyping (Table S2).

When a higher proportion of causal SNPs had low MAF

(architectures C and D), the standard GRM gave biased

estimates with either s ¼ �1 or 0, confirming the results

in Speed et al.1 However, the estimate from the weighted

GRM method was also biased. In contrast, the MAF-strati-

fied approach gave values near the true values under all

genetic architectures (Table 1). Only when all causal vari-

ants had MAF < 0.1 and effect sizes were independent of

frequency (architecture F) did the MAF-stratified (as well

as other) methods generate biased results; we were able

to remedy this by fitting an additional MAF bin in the

lowest frequency class (i.e., MAF < 0.05, 0.05 < MAF <

0.1) (Table S3). The estimates for each MAF bin in the

MAF-stratified approach showed excellent agreement

with the true simulated values in Table 1 (Table S4).

A higher DAIC implies a better fit of the analysis model

to the data, and when causal SNPs were equally dis-

tributed across different MAFs, the highest DAIC was

achieved for the GRM calculated from the equation that
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Table 2. Comparisons of GRM Methods when the Genetic Architecture of the Simulated Trait Varies and the True Simulated h2 Is 0.5

Var(Allele Effect Size) ~ [piqi]
�1 Var(Allele Effect Size) ~ [piqi]

0

h2
SNP (SD) DAICa (SD) h2

SNP (SD) DAICa (SD)

Causal Variants Randomly Assigned

Architectureb A Architectureb B

Standard GRM with s ¼ �1 0.51 (0.04) 117 (20) 0.57 (0.04) 149 (24)

Standard GRM with s ¼ 0 0.39 (0.04) 102 (19) 0.49 (0.03) 168 (24)

Speed et al. weighted GRM 0.56 (0.12) 31 (13) 0.59 (0.09) 35 (11)

MAF-stratified approach 0.51 (0.04) 113 (20) 0.51 (0.05) 164 (24)

Causal Variants Randomly Assigned in 7:3 Ratio for MAF < 0.1: MAF > 0.1

Architectureb C Architectureb D

Standard GRM with s ¼ �1 0.45 (0.05) 93 (23) 0.53 (0.05) 128 (26)

Standard GRM with s ¼ 0 0.29 (0.04) 58 (21) 0.42 (0.04) 123 (25)

Speed et al. weighted GRM 0.55 (0.10) 33 (18) 0.57 (0.10) 32 (11)

MAF-stratified approach 0.51 (0.05) 104 (19) 0.51 (0.05) 126 (26)

Causal Variants Randomly Assigned to MAF < 0.1

Architectureb E Architectureb F

Standard GRM with s ¼ �1 0.38 (0.05) 65 (19) 0.44 (0.04) 86 (18)

Standard GRM with s ¼ 0 0.18 (0.05) 21 (11) 0.23 (0.04) 36 (12)

Speed et al. weighted GRM 0.53 (0.09) 28 (10) 0.58 (0.12) 34 (14)

MAF-stratified approach 0.49 (0.06) 130 (42) 0.56 (0.05) 154 (28)

aAverage DAIC between the null model (no GRM fitted) and the full model. A high DAIC indicates a better fit.
bThe architecture letters match those in Table 1. The SD is over 50 replicates.
matched the simulation strategy (Table 2). The MAF-

stratified approach gave a DAIC almost as high as those

from the best model, despite the penalty from estimating

more variance components. However, the DAICs from the

weighted GRM method were consistently much lower,

implying that the weighted GRM could not generate a

good fit to the data and suggesting an inconsistency in

the weighting strategy and the underlying assumption

that allele effect sizes are drawn from the same distribu-

tion. The use of the Bayesian information criterion in

place of the AIC made little difference to the conclusions

drawn from the comparison between the MAF-stratified

approach and the weighted method (Table S5). Moreover,

the SD of estimates across replicates and SEs of estimates

from within replicates (Table S6) were consistently higher,

both undesirable properties. In contrast, the SD for the

MAF-stratified approach was not much higher than that

for standard GRM. We note that the difference between

the estimates from the MAF-stratified approach and the

Speed et al. method was significant given the values for

SD in Table 2 (i.e., empirical SE is SD scaled by a square

root of 50 [replicates]). When the majority of causal

SNPs had a MAF < 0.1, the MAF approach generated the

highest DAIC for var(allele effect size) ~ [piqi]
�1 (strategy

C). With var(allele effect size) ~ [piqi]
0 (strategy D), the
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standard GRM gave the largest DAIC; however, the esti-

mate was biased, demonstrating that the goodness-of-fit

measure is not an ultimate indicator of the unbiasedness

of the estimates and reflecting the penalty of estimating

multiple parameters (five for the MAF-stratified approach

versus one for the other methods) to goodness of fit. In

principle, fitting more MAF bins could represent genetic

architecture more accurately, but it brings the penalty of

estimating more parameters. However, as sample sizes

increase, it could become an increasingly appropriate

strategy. In our simulations, results based on ten

MAF bins were similar to those based on five MAF bins

(Table S3). Lastly, bivariate methods for estimating

SNP correlation between data from two independent

data sets14 have been proposed. Using simulated data,

we investigated estimation of SNP correlation and found

estimates to be robust to both genetic architecture and

the GRM method (Table S7).

In applications to genome-wide SNP data from a schizo-

phrenia case-control study,13 we found that the differences

between the estimates based on the GRM calculated with

s ¼ �1 or s ¼ 0 or the MAF-stratified approaches were

less extreme than those shown in the simulation scenarios,

as shown in Table 3 for SNP heritability estimated with the

real phenotype allocations (i.e., 2,928 schizophrenia cases
rnal of Human Genetics 93, 1151–1157, December 5, 2013 1153



Table 3. SNP-Heritability Estimates from Different GRM Methods
for 2,928 Schizophrenia Cases and 4,373 Controls from the Swedish
Genome-wide Association Study Imputed to 1000 Genomes

GRM Method

h2
CC (SE)

Observed
Scale

h2
SNP (SE)

Liability
Scalea DAICb

Standard GRM with s ¼ �1 0.57 (0.05) 0.33 (0.03) 143.88

Standard GRM with s ¼ 0 0.49 (0.04) 0.28 (0.02) 151.26

Speed et al. weighted GRM 0.79 (0.10) 0.45 (0.06) 61.32

Speed et al. weighted GRM
with bufferc ¼ 1,000

0.79 (0.10) 0.45 (0.06) 62.00

MAF-stratified approach 0.52 (0.05) 0.30 (0.03) 148.50

aAssumes a disease prevalence of 0.01.
bDAIC between the null model (no GRM fitted) and the full model. A high DAIC
indicates a better fit.
cIn the weighting method, windows of 3,000 SNPs plus buffers of 500 SNPs
were used by default in the LDAK software; in this example, the buffer size
was increased to 1,000 SNPs.
and 4,373 controls) versus the genotype data used in the

simulations. In this example, reflecting dense genotyping,

the weighted GRM provides a much poorer fit to the data

(smallest DAIC) and, according to our simulation results,

most likely provides an overestimate of SNP heritability.

The DAIC suggests that the GRM with s ¼ 0 is the best fit

to the data, implying relative importance of variance

attributable to common SNPs.

The weightingmethod can be optimized by several alter-

native strategies. Taking into account the SNP density

across MAF could improve the overcorrecting problem

for rare variants (e.g., Table S1). The length and buffer

size of the genomic segments (segments considered simul-

taneously within each window across the genome) in

LDAK1 should be optimized for the context of dense

genotyping, although we did not observe a significant

improvement when the number of buffers increased

(from 500 to 1,000, which was suggested for dense geno-

typing with LDAK, Table 3). Moreover, these kinds of

optimizations could be time consuming, computationally

demanding, and sensitive to different data structure.

Our results should be considered in the context of some

limitations of our study. First, we note that our simulations

assumed that dense genotypes are known without error. In

real data sets, there is uncertainty associated with imputed

genotypes, but investigating the impact of imputation

error on SNP heritability is beyond the scope of this study

and merits further investigation. Second, we assumed only

polygenic models in the simulations. Although this is a

reasonable assumption for themajority of human complex

traits or common diseases, consideration of major gene

models could be relevant to some diseases, particularly

autoimmune diseases. We note that Speed et al.1 investi-

gated a scenario of uneven LD in regions harboring major

genes, a scenario not specifically considered here given

that our focus was sparse versus dense genotype data.

In conclusion, Speed et al.1 elegantly demonstrated the

general robustness of the estimation of h2
SNP but showed
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that both standard and weighted GRM could generate

biased results when the underlying genetic architecture

of the trait deviates from genetic architecture implicitly

assumed in its calculation. The weighted GRM performed

better than the standard GRM under the strategies they

tested; however, we have shown that this conclusion

does not always hold. Moreover, the weighted GRM

has undesirable properties of poor goodness of fit and

high variability of estimates. We have shown that the

MAF-stratified approach generates estimates with little

bias and high goodness of fit across a range of underly-

ing genetic architectures. Because high LD is only

possible between SNPs with similar MAFs, the use of

multiple GRMs based on SNPs in different MAF bins

provides better ‘‘matching’’ of contributions from SNPs

given the LD between them and does not assume that

the effect-size distribution is constant across the allelic

frequency spectrum. In applications using the standard

GRM method with s ¼ �1 (the default setting in

GCTA), we commonly found that the h2
SNP estimates

from the standard GRM and the MAF-stratified approach

were similar,7,13,15 implying that the underlying genetic

architecture for these traits does not differ substantially

from that implicitly assumed in the calculation of the

GRM. The MAF-stratified approach can be carried out

with the GCTA2 command ‘‘–mgrm’’ to fit multiple

GRMs estimated on the basis of the sets of SNPs in

MAF bins.
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Response to Lee et al.:
SNP-Based Heritability
Analysis with Dense Data
To the Editor: In Speed et al.,1 we identified two potential

issues when performing SNP-based heritability estimation:
(1) estimates of h2 can be biased when the tagging of causal

variants differs from that of the SNPs used for calculating

the genomic-relationship matrix (GRM), and (2) the accu-

racy of h2 estimates depends on how closely the assumed

relationship between a causal variant’s minor allele fre-

quency (MAF) and effect size matches the true relationship

(this relationship can be modeled with a scale parameter s,

where the standard assumption is s ¼ �1). To resolve the
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