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But let us not adopt a decision rule for genetic screening, as Nelson et al. seem to do,
simply because we can easily collect the numbers. The technical and ethical issues
inherent in population screening are just too subtle and the need for a continued
searching debate too critical for me to accept the Nelson benefit-cost decision model as
a helpful guide to a sound public policy towards genetic illness.

ROBERT P. INMAN
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University ofPennsylvania
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LATERAL ASYMMETRY OF HUMAN CHROMOSOMES

In this issue of the Journal, the papers of Angell and Jacobs [1] and Emanuel [2 ] on
lateral asymmetry at various sites on human chromosomes have a number of interesting
implications.
The use of electron microscopy or computerized microdensitometry has often been

advocated as a means of increasing the resolution of chromosome banding or the speed
of karyotyping. However, once again simple techniques available in all cytogenetic
laboratories have kept a jump ahead of the expensive machines. Just as the
computerized karyotyping has begun to standardize Giemsa stained chromosomes,
chromosome banding threw them into disarray because of the high frequency of
touching chromosomes and greater complexity of banded preparations. Just as these
problems began to be partially solved, the increased resolution provided by prometa-
phase chromosomes [3] found use in more and more laboratories. If computers had
trouble with touching chromosomes, the tangle of prometaphase preparations will
drive them into the machine-land version of the looney house. The report of Angell and
Jacobs [1], showing the high degree of polymorphism in the C-band region of



chromosome 1 due to variations in lateral asymmetry, further illustrates the great
sensitivity available with straightforward light microscope techniques. Densitometry
scans of C-banded no. 1 chromosomes give about five subclasses, while the technique
of lateral asymmetry utilizing chromosomes exposed to BrdU for one S period has the
potential of dividing each of these into nine subclasses for a theoretical possibility of
35-45 types of no. 1 C-bands.
The virtue of this increased range of variability of the no. 1 C-band in linkage is

obvious. Of 44 unrelated individuals tested, 20 were clearly heterozygotes for the no. 1
C-band [1]. This degree of heterozygosity could also be useful in amniocentesis,
where comparison of the C-bands in XX amniotic cells with those in maternal
lymphocytes should rule out accidental culturing of maternal cells in most cases.

Uniform satellite polarity has been observed in organisms with a single satellite
DNA, such as the mouse [4-6]. Here lateral asymmetry in relation to the centromere is
the same in all chromosome arms. This satellite polarity is also preserved in interstitial
C-bands [5, 6]. The results of Angell and Jacobs could mean that (1) satellite polarity is
not always preserved, or (2) more likely, that switches in lateral asymmetry are
reflections of the presence of two or more different satellites in the C-bands of
chromosome no. 1 and no. 9. If the latter is correct, why do only chromosomes 1 and 9
show such switches when in situ hybridization suggests that many C-bands contain
several different satellites [7]? By combining the methods of growing cells in Hoechst
33258 that greatly extend C-band regions with staining for lateral asymmetry and
high resolution in situ hybridization with human satellites purified to 100% by cloning
techniques, a team of molecular cytogeneticists could be kept busy for years with the
fine mapping of the distribution of human satellites.
The polymorphism in lateral asymmetry in chromosome no. 1 is probably due to

unequal crossing over in repetitious DNA. Smith [9] has proposed that satellite DNA
evolved through a long series of unequal crossing over events. This raises the question
of the extent to which this process is still going on. Given the frequency with which
such events must occur for the evolution of satellites and the implied frequency
necessary to produce the degree of variability in chromosome no. 1, it was a little
surprising that there were no de novo events observed in the 10 families examined [1].
More extensive family studies should provide information on this interesting question.
The observation of Emanuel of lateral asymmetry in the 6q12 C-band negative

region also has a number of interesting implications. Since the initial observation of
Arrighi and Hsu [10], C-bands have often been thought of as synonymous with sites of
repetitious DNA. However, studies of the Chinese hamster have shown that some
C-band regions do not contain satellite DNA [11, 12]. Thus most C-bands are
repetitious DNA + C +, while some are repetitious DNA - C +. Since lateral
asymmetry is most likely to be observed only in regions containing repetitious DNA,
the observation of Emanuel seems to add the category of repetitious DNA + C-. It has
been clear for sometime that C-banding is not due to its content of repetitious DNA; the
association of repetitious DNA with proteins has been implicated [13, 14]. When and if
the mapping of human chromosomes with antibodies against nonhistone proteins
approaches that possible with Drosophila polytene chromosomes [15, 16], it will be
interesting to see if 6q12 is complexed with different proteins than C-band + regions.
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Two conditions are necessary to produce lateral asymmetry: (1) a segment of DNA
which has a disproportionate number of adenines in the Watson strand and a
corresponding deficiency in the Crick strand; and (2) this occurrence in a sufficiently
long stretch to be cytologically usable. Since these would never occur by pure chance,
a segment of repetitious DNA must be involved. It does not have to be AT-rich as long
as those that are present are asymmetrically distributed in the two strands. Although
the presence of lateral asymmetry implies the presence of some repetitious DNA, it is
interesting that the 6q12 region not only does not hybridize to any of the four major
human satellite DNAs [7], it also shows no hybridization to whole unfractionated
highly repetitious sequences [17], making it unlikely that this site simply contains an
unstudied minor satellite.

Excluding an unexpected trivial explanation of the results of Emanuel, we should
keep an open mind to the possibility that the sensitivity of some of the BrdU techniques
may be great enough to detect the location of long segments of moderately repetitious
DNA that have been missed by the in situ hybridization done to date.

DAVID E. COMINGS
City ofHope National Medical Center
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