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Summary

We introduce a Monte Carlo approach to combined segregation and linkage analysis of a quantitative trait
observed in an extended pedigree. In conjunction with the Monte Carlo method of likelihood-ratio evalua-
tion proposed by Thompson and Guo, the method provides for estimation and hypothesis testing. The greatest
attraction of this approach is its ability to handle complex genetic models and large pedigrees. Two examples
illustrate the practicality of the method. One is of simulated data on a large pedigree; the other is a reanalysis
of published data previously analyzed by other methods.

Introduction

The past decade has seen enormous success in map-
ping discrete traits. Notable successes are the localiza-
tion of genes for Huntington disease, cystic fibrosis,
and Duchenne muscular dystrophy. In contrast, prog-
ress in mapping quantitative traits has been very slow,
despite the fact that many relevant measures of dis-
eases are clinical, physiological, and biological traits
that vary continuously among individuals. There is no
shortage of data. Advances in biology and molecular
genetics have generated so much data that the avail-
ability of statistical techniques has become a bottle-
neck in the process of the mapping of quantitative
traits.
The current available techniques for mapping quan-

titative traits can be grouped into four categories: (1)
sib-pair methods (Haseman and Elston 1972), (2) dis-
crete-type linkage analysis (Ott 1991; Thomas and
Cortessis 1991), (3) mixed models (Hasstedt 1982),
and (4) regressive models (Bonney 1984; Bonney et al.
1988). Although sib-pair methods are fairly robust
and have the advantage of no need to make ascertain-
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ment corrections, their statistical power is very low,
especially when linkage is loose. In addition, they ig-
nore the interdependency among sib pairs from the
same nuclear family or same pedigree, resulting in a
loss of information inherent in the pedigrees. At best,
they can only tell whether there is a linkage and are
thus primarily a screening device (Elston 1984).
One commonly used approach to mapping a quanti-

tative trait is to dichotomize the trait and continue the
linkage analysis as if the trait were discrete (Ott 1991;
Thomas and Cortessis 1991). This approach is not
only arbitrary in the choice of the cutoff point but also
suffers loss of information. In addition, penetrances
must be estimated with respect to this arbitrary cutoff.
An alternative method is to assume normal densities
as the penetrance functions for a quantitative trait,
given the gene frequency and the mean and variance
for each genotype (Ott 1974). Since quantitative traits
are probably typically controlled by a number of loci
acting in concert with environmental effects, the ade-
quacy of these models is questionable.
The regressive models proposed by Bonney (1984;

also see Bonney et al. 1988) represent a new develop-
ment. The model handles the residual variation unac-
counted for by the major-gene effects as if it were
noise, without specifying its origin. Furthermore, the
model assumes a Markovian dependence structure
with regard to the residuals among first-degree rela-
tives. By doing so, the model provides both flexibility
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in incorporation of covariates and efficiency in compu-
tation. However, while simple Markovian depen-
dence may be adequate for modeling nuclear-family
data, the dependence structure on an extended pedi-
gree is more complex, and there can be strong correla-
tions even among distant relatives, such as are the
result of mitochondrial effects. In addition, the regres-
sive model has difficulty in modeling the data where
there are multiple marriages or missing data, both of
which are common, and in allowing for ascertainment
correction. In a simulation study, Konigsberg et al.
(1989) show that, for data generated under a mixed
model, the regressive model does not perform as well
as the mixed model, in segregation analysis.
Methods for analysis of the mixed model (Morton

and MacLean 1974) have been a valuable advance in
human quantitative genetic analysis (Ott 1979; La-
louel and Morton 1981; Hasstedt 1982). The model
partitions the variation in a quantitative trait into
three main sources: (1) major-gene effects, (2) addi-
tive polygenic and/or other heritable/nonheritable
effects, and (3) the independent random effects of the
environment. Although the model is biologically more
realistic, computational difficulties have limited its use
mainly to segregation analysis, rather than in conjunc-
tion with linkage analysis, and primarily to data on
nuclear families or small pedigrees (Ott 1979; Has-
stedt 1982).

Traditionally, segregation and linkage analyses
have been performed separately (Ott 1991). Histori-
cally, with limited genetic marker data and computing
power, most linkage analyses were carried out only
after sufficient information had been gathered to infer
a mode of inheritance for the trait. However, segrega-
tion analysis can only, at best, demonstrate the pres-
ence of major gene(s). It cannot localize them, and
it often lacks power to estimate genetic parameters
correctly in the presence of multiallelic trait loci or
genetic heterogeneity (Risch 1984; Ott 1990). Viola-
tion of the distributional assumptions of the mixed
model can lead to spurious support for a major gene
(MacLean et al. 1975; Go et al. 1978; Eaves 1983).
Incorporation of linked markers might potentially im-
prove the robustness of the mixed model. Moreover,
linkage of a trait to a genetic marker not only provides
unequivocal evidence of the existence of a gene locus
controlling the trait but also specifies the region where
the gene is located. However, linkage analysis alone
cannot elucidate the mode of inheritance (Risch
1984). With the increasing availability of highly poly-

morphic DNA markers, it is a logical step to combine
linkage and segregation analyses (Elston et al. 1989).
When the underlying genetic mechanism is com-

plex, genetic heterogeneity and misspecification of
models create difficulties for both segregation and
linkage analysis. It is useful to be able to analyze data
on large pedigrees, which, in general, are more homo-
geneous than a pooled sample of many nuclear fami-
lies. It is also useful to consider more realistic yet more
complicated genetic models that can incorporate vari-
ous heritable/nonheritable random and fixed effects
and to develop practical computational methods to
accomplish the computation.

In this paper, we propose a Monte Carlo approach
to combined segregation and linkage analysis for
quantitative traits, which extends our previous work
on the Monte Carlo estimation of variance-com-
ponent models and mixed models (Guo and Thomp-
son 1991, and submitted). The greatest attraction of
the approach is that it can handle complex genetic
models and data on large pedigrees. In the next sec-
tion, we describe the method and computational algo-
rithm. The practicality of the approach is then illus-
trated by two examples. Finally, we discuss the
proposed method in relation to other recent work in
this area and indicate directions for future research.

Methods

Notation and Assumptions

Consider an n-member pedigree on which a contin-
uous trait y and marker phenotype M are observed.
Not all pedigree members need be observed, and
marker and trait data need not be available for the
same individuals. Suppose trait data are available for
k of the pedigree members. For clarity of exposition,
we will consider an additive mixed model with a major
autosomal locus with two alleles, a polygenic effect,
and an independent individual-specific residual effect,
without fixed or covariate effects. Extension to include
fixed covariate effects and dominance or other herita-
ble or nonheritable random effects is straightforward
(Guo and Thompson 1991, and submitted), but in this
paper we focus on the inclusion of marker data rather
than on complexities of the trait model.

For technical reasons (see Discussion), we consider
only a diallelic marker locus. To fix notation, let the
two alleles of the major-gene trait locus be D and d,
with gene frequencies p and 1 - p, respectively. Let
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the two alleles at the marker locus be B and b, with
gene frequencies q and 1 - q. Let Gj denote the jth
individual's combined genotype at trait and marker
loci. It is assumed that each of the three genotypes
DD, Dd, and dd, denoted as 1, 2, and 3, respectively,
makes a specific contribution pi (i = 1, 2, 3) to the
phenotype. It is also assumed that the trait and marker
loci are in linkage equilibrium, with each locus in Har-
dy-Weinberg equilibrium. For a given genotypic con-
figuration G on the pedigree, let 1i be an indicator
vector, with the jth entry equal to 1 or 0, depending
on whether the jth individual has genotype i at the
quantitative trait locus (i = 1, 2, 3). Similarly, we let
lF be an indicator vector with entry j equal to 1 or 0,
depending on whether the jth individual is a founder.
For a given major-genotype configuration, the pheno-
typic model for the quantitative trait y is

y = i1l11 + J1212 + i313 + a + e, (1)

where a is a vector of additive genetic (polygenic)
effects, and e is a vector of individual environmental
effects. Each of the vectors a and e is assumed to be
normally distributed with mean 0, e having variance-
covariance matrix oI, and a having variance r2A,
where A is the numerator relationship matrix (Hen-
derson 1976). The marker phenotype configuration
on the observed individuals of the pedigree will be
denoted M.

The EM Framework

There are a total of eight parameters to be esti-
mated: the allele frequencies p and q, the recombina-
tion fraction r, major-gene effects pi, i = 1, 2, 3, and
the polygenic and residual variances a2 and i,. How-
ever, estimation of q within the pedigree analysis is
often of secondary interest, as considerable informa-
tion on the marker may have accumulated. Besides, if
the marker is codominant, as is usually the case, q can
be easily estimated from observed marker phenotypes.
Therefore, we assume that q is known and let 0 = [p,
I), I2, J3, i,, i,, r} denote the vector of parameters to
be estimated. The likelihood for model (1) is

L(0) = Po(y,M) = JJfo(yla,G)P(MJG)Po(G)dPo(a)
G

= >fo(yIG)P(MIG)PA(G), (2)
G

where G is the combined two-locus genotypic config-
uration on the pedigree, and the sum is over all possi-
ble genotypic configurations on the pedigree. The
marker penetrance probability, P(MIG), is either 1
or 0, depending on whether the combined genotype
conforms with the marker data. Given any genotypic
configuration G, fo(yIG) is the likelihood for an addi-
tive polygenic model (Ott 1979). Also,

Po(G) = II P0(G,) H Po(GjIGmj,Gf) X
founders I nonfoundersj

where mj andfj are the parents of j, P(G1) is the geno-
typic frequency and is a function of p and q, and P(G11
Gmj, G1j) is the two-locus transmission probability
and is, in general, a function of the recombination
fraction r.
A framework for estimation of model (1) is as a

"missing data problem," with a and G missing. Thus,
formulation of an EM algorithm is appropriate. The
form of the EM equations for p, o2, e2, and pi (i =
1, 2, 3) are analogous to those given by Guo and
Thompson (submitted):

Eo(21FI1i + 1Fi12yM)
21F1

A*I = Eei3E(y-a) yM] (i = 1,2,3)
EO(ElAIyM)

o2==1E(a'A-'alyM)n

*2

1

=e--Ee(e'ely,M).
n

The added feature here is the inclusion of the linked
marker, with marker phenotypes M, and the estima-
tion of the recombination fraction r.

To obtain the EM equation for r, suppose that (a,
G) were observed for all n individuals of the pedigree.
Given G, estimation of rwould be a matter of counting
recombinants. We could restrict attention to those
parent pairs in which at least one parent is doubly
heterozygous; only these are informative for linkage
(e.g., see Ott 1991). Let Hi (Hi = O 1, 2) be the
number of doubly heterozygous parents in the ith par-
ent-offspring trio, and let Ri be the expected number
(given G) of recombinant events in segregation from
the doubly heterozygous parents to the offspring (Ri
= O 1, 2, Ri < Hi). The values of Hi and Ri for all

(3)
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possible informative matings are easily determined
(Thomas and Cortessis 1991). For example, for a mat-
ing db/dB x db/DB, Hi = 1, and only the second
parent is informative. From this parent, Ri is 0 for a
db/db offspring and is 1 for a dB/dB offspring, while
for a db/dB offspring the recombination count is not
determined, but the expectation is r. For a mating
db/DB x dB/Db, H, = 2 and Ri = 1 for doubly
homozygous or doubly heterozygous offspring (e.g.,
db/db or db/DB), while for the remainder, such as
db/dB, Ri = 2r2/[r2 + (1 - r)2]. Given the genetic
configuration G on the pedigree, H = EiHi and R =
EiRi are the two sufficient statistics for the recombina-
tion fraction r (Thomas and Cortessis 1991), and, if
G were observed, the maximum-likelihood estimate
(MLE) of r would be R/H. Hence, the EM equation
for r is

r* Eo(Rly,M) (4)
Ee(Hly,M)

Sex-specific recombination fractions can be estimated
with minor modification, by counting segregation in
males and in females separately.

Monte Carlo Estimation

Despite the simplicity of theEM framework, imple-
mentation is not immediate, since there is no way to
valuate explicitly the conditional expectations such
as those in equations (3) and (4). Instead, Guo and
Thompson (1991, and submitted) have proposed a
Monte Carlo EM algorithm, using the Gibbs sampler
to (a) obtain, at current parameter values 0, realiza-
tions of the major genotypes and polygenic values (a,
G) given the data (y, M) and hence (b) estimate the
required conditional expectations. The Gibbs sampler
(Geman and Geman 1984; Gelfand and Smith 1990) is
an iterative procedure for drawing multiple dependent
realizations from a distribution known only up to a
constant of proportionality. In our case, it provides
realizations from the global conditional distribution
PO(y,MIaG), as follows: Beginning from any realiza-
tion of polygenic values and combined major geno-
types, (a, G), that is consistent with phenotypic and
marker observations, the polygenic values and geno-
types are updated, for each individual in the pedigree
in turn (in random order), by sampling from the local
conditional distribution at parameter values 0, given
observed data (if any) and the polygenic values and
genotypes of all other members in the pedigree. This

completes one cycle; details will be given in the next
section.
The configuration (a(t), G(t)), t = 1, 2, . .. , ob-

tained at successive cycles is a sample from a Markov
chain with stationary distribution Po(a, Gly,M). The
chain is irreducible, since from any starting major ge-
notype and polygenotype configuration, any set of
states (a, G) that has positive probability can be hit in
a finite number of steps (Guo and Thompson, submit-
ted). Hence, averages over the Markov chain converge
to averages over the stationary distribution, by the
ergodic theorem (Breiman 1968, Corollary 6.23 and
theorem 7.16). That is, for any integrable function
F(a, G) of the genotypes and for any starting point for
the chain,

i N
lim - ZF(a(t),G(t))E(F).
N-_ N t=l

Thus the Monte Carlo EM algorithm proceeds as
follows:

1. First the pedigree and data are input, the pedigree
specification is transformed to facilitate Gibbs
sampling, the inverse A- ' of the numerator rela-
tionship matrix for all members of the pedigree
(whether observed or not) is found, and initial
estimates of the parameters are set.

2. An initial configuration (a, G) is found by the
method of "posterior gene dropping" described
below, and a number of cycles of the Gibbs sam-
pler are run. This "burn-in" period (Geyer 1991)
reduces the effect of the chosen starting configura-
tion and insures that subsequent realizations are
approximately from the required stationary distri-
bution.

3. Each Monte Carlo EM step then proceeds as fol-
lows:

3a. E-step: the Gibbs sampler is run at the current
parameter values. Every C cycles, a realization of
(a, G) for all n members of the pedigree is col-
lected, and the necessary statistics are stored (e.g.,
atA 'A, 1El and the other functions of a and G in
the EM eqq. [3] and [4]). (If there are computa-
tional costs in using and storing realizations, it
may not be computationally efficient to use the
realization after every cycle, especially if they are
highly dependent; in practice we used C = 20.)
After N realizations are obtained, the time aver-
ages of the statistics are used as Monte Carlo esti-
mates of the expectations in equations (3) and (4).
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3b. M-step: the parameter estimates are updated, ac-
cording to the EM equations (3) and (4).

3c. If desired, the parameter values are printed out,
and a likelihood and/or LOD score can be esti-
mated.

4. Step 3 is repeated until the parameter estimates
no longer show directional trends over the EM
iterations. In the final EM steps, larger Monte
Carlo samples can be used to reduce Monte Carlo
variation. The parameter estimates are taken as
averages over these final EM steps. As an addi-
tional check on these estimates, the likelihood sur-
face in the neighborhood of these final values can
be explored (Thompson and Guo 1991).

Gibbs Sampler Implementation
To implement the Gibbs sampler, we need, for each

individual j, (a) the conditional distribution of his
combined major genotype Gj given yj, Mj, aj, and the
major genotypes of other members in the pedigree and
(b) the conditional distribution of his polygenic value,
aj, given yj, his combined genotype Gj, and the poly-
genic values of other members in the pedigree. For
individual j, conditioning on the major genotypes of
all other pedigree members involves only his immedi-
ate neighbors: his parents, (if present in the pedigree),
his spouse(s) (if any), and his offspring (if any). The
genotypes of other pedigree members do not contrib-
ute further information. Hence, if we let GU') denote
the genotypes of all pedigree members except j, let
G11 and Gmi denote the genotypes of the parents of the
jth individual, let [GSJ} denote his spouse's genotype,
and let [Gs}l] denote his offspring's genotype, then

Pe(GjlGJ'),yj,ai,Mj) = Po(G1l[GSj} ,Gj11],G1,Gmfa yjaAMj)

a [UIP(GsyJl Gj, GS)IPo(G11 Gfj Gjy)Po(Mjl G,)f(yjl Gja1)
(5s)a [fPo(GsjiIGJ,Gsj)Pe(GIGPy ,GmJ)Po(MjJ Gj)

Jd(Y-JL9G,- a1)21

where Id = 1 or 0, as the trait is or is not observed.
If j is a founder, then the combined two-locus segre-
gation probability Po(Gjl Gf, Gmi) is defined as the po-
pulation genotypic frequency Po(Gj). If the marker
phenotype is unobserved, then Po(MjI Gj) = 1 for all
possible Gj.

Similarly, the polygenic value aj can be updated,
given an observed phenotype yj (if any), combined
genotype Gj, and polygenic values of neighborhood
members; details are given by Guo and Thompson
(submitted).

Quantitative traits are often affected by covariates
such as age and sex. The effects of these covariates
can be estimated by appropriate EM equations, as
described by Thompson and Shaw (1990). Alterna-
tively, one can, on the basis of current estimates of
covariate effects, sample major genotypes and poly-
genic effects and then use standard regression methods
to estimate covariate effects. The latter method is
based on the fact that, given major genotypes and
polygenic and other heritable random effects, observa-
tions on different individuals are independent. Hence,
for each realization of major genotypes and polygenic
and other heritable random effects, one can treat these
realizations as known covariates in a standard regres-
sion analysis.

Choice of Starting Realizations
An ergodic Markov chain with sufficient "burn in"

to allow convergence (Geyer 1991) will provide real-
izations from true joint distribution of genotypic
effects and genotypes, (a, G), given the phenotypic
data, (y, M). However, it is important to choose a
good starting genotypic configuration in order to
avoid unnecessarily prolonged iteration. The ob-
served data on each individual conditionally on his
parents provide partial information on the major-gene
effects and recombination fraction. This local infor-
mation can be used in a "posterior gene-dropping"
method to provide a sensible starting point, given the
current parameter estimates (Guo and Thompson,
submitted). Here the procedure is adapted for marker
data.

First, the major genes are simulated, from the top
ofthe pedigree down to the bottom, using the informa-
tion of current estimates of gene frequency, recombi-
nation fraction, major-gene effects, and data. For each
founderj in the pedigree and each possible two-locus
genotype g, we calculate the probability

Po(Gj = gIy>, Mj) a Po(Gj = g)Po(MjIGj)fo(yjI Gj = g)

a Po(G, =g)Po(MuJGi)exp[ - _+2)_ '

normalizing (for each j) the sum over g to 1. Here
Po(Gj = g) is just the frequency of combined genotype,
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calculated on the assumption of linkage and Hardy-
Weinberg equilibria. If yj is missing, we let fo(yj 9G =
g) = 1, for all g. If Mj is missing, P(MjlGj) is set to
1 for all Mj. A genotype is then randomly selected
according to the calculated probability. Once all
founders are assigned combined genotypes, we can
drop the genes to nonfounders. For each nonfounderj,
a genotype is generated from the following probability
distribution:

Pe(Gj = g|yjGfjGm,,Mj)
a P(Gj = gI Gf, Gmj)Pe(MjI Gj)fo(yjI Gj = g)

a P(G) = g Gfi, Gmi)Po(MjIGj)exp[- Yi+G)2]

where fj and my are the parents of i, whose genotypes
Gm, and Gfj are already assigned. With linked markers,
however, this "posterior gene-dropping" procedure
may not be able to carry through, because it is possible
that Pe(Gj = gyIy, Gj, GmjMj) = 0 for all possible g.
This is because some combined genotypes assigned
to the parents of, say, the jth individual may not be
consistent with his marker phenotype Mp. In practice
this is not a problem; if it happens, we restart the
"posterior gene-dropping" until all the individuals are
assigned combined genotypes that are compatible with
their observed marker phenotypes.
Once the major genes at marker and trait loci have

been dropped down the pedigree, we drop the poly-
genic values similarly, conditioning on individual trait
values, major genotypes, and already assigned paren-
tal polygenic values (Guo and Thompson, submitted).

Estimation of Variance-Covariance Matrix

It is important to estimate the standard errors (SEs)
of estimated parameters or to construct confidence
intervals for parameter values. We now provide a
Monte Carlo estimate of the asymptotic variance-
covariance matrix. The method is based on results
of Sundberg (1974) and Louis (1982), relating to the
analysis of "missing" data. If the observed data are x
and the missing data are u, then

2logPe(x) = E (_ 2logP0(ux) ix)

- cove X) (6)

where Oi and O are components of 0. In our case, u =
(a, G) is the "missing data" vector, and the observed
data are x = (y, M). Each term in the right-hand side
of equation (6) can be estimated by the Monte Carlo
method, since each consists of conditional expecta-
tions of simple functions of u = (a, G) given x = (y,
M). For example, if N realizations u('),.(2)... , u(N)
are drawn from Po(ulx), then the first term on the
right-hand side can be estimated by

1 N a 2logPo(u('),x)
N1=1 80S80J

where the Gibbs sampling is run and where derivatives
are evaluated at the MLE values of the parameters 0.
The other terms are estimated similarly, using the
same realizations.
The first and second derivatives of the "complete

data" log likelihood, log Po(u, x) = logPo(aGy,M),
are easy to evaluate, since PO(a,G,y,M) = fo(yla,
G)fo(a)Po(MIG)Pe(G), and each term has a simple
structure, with typically only a subset of the parame-
ters involved in any one component of the model. For
example, for the given combined-genotype configura-
tion G, the recombination fraction r appears only in
PO(G) and

a logPo(G) = a logPo(GjI Gmj, G11)
a r nonfoundersj 8 r

(7)

These probabilities and derivatives are given in table
1. Similarly simple formulas can be obtained for the
second derivatives.
Thus an estimate of the information matrix is ob-

tained, and it can be inverted to provide an estimate
of the variance-covariance matrix of the parameter
estimators. As a guide to precision, a nominal 95%
confidence interval ( + 1.96 estimated SE) can be given
for each parameter.

Likelihood-Ratio Evaluation

A general method for Monte Carlo estimation of
likelihood ratios was given by Thompson and Guo
(1991). For the model (1), the likelihood (2) takes the
form

L(o) = Po(y,M) = Zfo(yIG)Pe(MIG)Po(G),
G

where the sum is over all possible combined-genotype
configurations in the pedigree. This summation is im-
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Table I

Example of Linkage Segregation Probabilities P
(GjGm,, G,) and the First-Order Derivatives of
the Logarithm of the Segregation
Probabilities

Offspring Segregation First-Order Derivative of
Genotype Probability Log Segregation Probability

db/db ....... d - r)/4 1/r - 1/(1 - r)
db/dB...... [r2 + (1 - r)2]/4 2(2r - 1)/[r + (1 - r)2]
dB/dB ...... r(1 - r)/4 1/r - 1/(1 - r)
db/Db ...... [r2 + (1 - r)2]/4 2(2r - 1)I[r2 + (1 - r)2]
dB/DB ...... [r + (1 - r)2] /4 2(2r - 1)/[rd + (1 - r)2]
DbIDb(..... d1 - r)/4 1/r - 1/(1 - r)
Db/DB ..... [r2 + (1 - r)2]/4 2(2r - 1)/[2 + (1 - r)2]
DB/DB ..... r(1 - r)/4 1/r - 1/(1 - r)
db/DB ...... r(1 - r)/2 1/r - 1/(1 - r)
dBIDb ...... r(1 - r)/4 1/r - 1/(1 - r)

NOTE. -The parental genotypes are db/DB x dB/Db. The de-
rivative does not exist at r = 0.

possible on a large pedigree, because of the prohibi-
tively large number of terms (Ott 1979). However,
note that

L(0o) = Poo(y,m) = Poo(y,M,G) _ foo(yIG)Peo(MjG)Poo(G)
Poo(Gly,M) Poo(GIy,M)

for all G. Hence the likelihood ratio between two pa-
rameter values 0 and Oo can be written in the form

L(0) = fo(ylG) Po(MIG) Po(G) Po(GjyM)
L(00) G foo(yIG) P0o(MIG) P0A(G)

- ~fo(yIG) Po(G)_Po(GI M)
G foo(yIG) Poo(G)

(Thompson and Guo 1991). Thus a Monte Carlo esti-
mate of L(O)/L(0o) is

!jfo(ylG') PN(G')
NG'foo(yIG') PA(GX')

obtained by sampling N realizations of G' from Poo
(Gly,M). This is true for any 0 and 0. For example,
if 0 is the MLE, we obtained likelihood ratios for
other 0 values relative to the maximized likelihood.
Note thatM does not appear explicitly in the estima-

tor (8); it is involved only through the Gibbs sampling
conditional on (y,M). In the preceding equation, the
term Pe(MIG) in the numerator cancels with P0o(MIG)

in the denominator, since this marker phenotype pene-
trance does not depend on the parameters. Nor is a
present, although of course realizations of a will be
generated alongside those of G. However, fo(yI G) is a
polygenic likelihood involving integration over unob-
served a values (eq. [2]). If necessary, this integration
may also be replaced by Monte Carlo sampling, but,
for a simple polygenic model on a simple pedigree,
exact evaluation is possible.

Moreover, any evaluation may in fact be unneces-
sary. If 0 and 0 differ only in the recombination frac-
tion r, then fo(yIG) = foo(yIG) for all G, and these
terms also cancel from the likelihood-ratio estimator
(8). For linkage analysis, one is often interested in
computing the LOD score-a log-likelihood ratio at
given values of the other genetic parameters. In this
case, a better alternative to running the Gibbs sampler
at the MLE is to take r = .5 in 0 and run the Gibbs
sampler at several different 0 values differing only in
the recombination parameter ro. Then the estimated
LOD score of r = ro is

LOD(ro) = -0log90-) = logioN - logioFZ P((G') 1
L(00) c.,GP'o(9)

(9)

with no evaluation of the polygenic likelihood being
required. The estimated LOD score curve can then be
plotted as a function of ro.

In the Monte Carlo EM algorithm described above,
given the current parameter estimate 0(k), realizations
are obtained from Po(k)(a,Gly,M) and are used to ob-
tain the next parameter estimates, 0(k + 1), say. The real-
ized major genotypes G are realizations from the mar-
ginal conditional distribution Po()(Gly,M). The same
realizations can thus be used to estimate interim LOD
scores and likelihood ratios; no additional realizations
are needed. However, when satisfactory estimates of
the other parameters are obtained, and when the EM
procedure is halted, much larger samples should be
run at the final estimate and at alternative r values, to
provide good estimates of the LOD score curve. These
large final samples can also be used to explore likeli-
hood ratios in the neighborhood of the final estimate,
to verify that, to within acceptable limits, the MLE
has in fact been found.

All the methods above can be used on more than
one pedigree; realizations of (a,G) conditional on
(y,M) are simply obtained for each, and the required
conditional expectations are combined in the EM
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Monte Carlo Method for Genetic Analysis

equations. For estimation of the information matrix,
since the pedigrees are unrelated, the total observed
information is simply the sum of the values for the
individual pedigrees. The inverse of the observed in-
formation matrix is then an estimate of the asymptotic
variance-covariance matrix on the total data set. Like-
wise, the overall LOD score is the sum of the LOD
scores on individual pedigrees.

Results

In this section we provide two examples to illustrate
the method proposed in the previous section. The pro-
grams implementing the method proposed in this pa-
per are written in C. All the computations were carried
out on a DECstation 3100. The random-number gen-
erator used was the library routine DRAND48. The
program PSDRAW (Geyer 1988) was used to draw
pedigrees.

Example 1: Simulated Data

We consider one simulated data set on a 230-
member, six-generation pedigree (fig. 1). There are

67 founders in the pedigree. Model (1) was used to
generate the data; the simulation values are shown in
table 2. For simplicity, phenotypic and marker data
are observed for each individual. The allele frequency
at the marker locus is .5. The same data set, without
the marker data, has been used by us elsewhere (Guo
and Thompson, submitted).
With starting values 32 = a2 = 0.5,j[A = 12 = 1.0,

3 = - 1.0, r = .25, and p = .2, we performed 200
iterations ofMonte Carlo EM. For each EM iteration,
200 Gibbs realizations (a,G) were sampled, with 20
cycles of updating of the entire pedigree between each

sampling. For the last 10 EM iterations, 1,000 Gibbs
realizations were sampled, with 20 cycles between
each sampling. Once the final estimates were ob-
tained, 8,000 realizations, with 30 cycles between two
consecutive realizations, were drawn and collected to
estimate the asymptotic variance-covariance matrix
and the LOD scores at various recombination frac-
tions.

Figure 2 shows the LOD score and the parameter
estimates against the EM iterations. The Monte Carlo
samples used in the EM iterations are not large; figure
2 reflects the continuing random variation in the con-

ditional expectations used for the EM procedure.
However, larger samples are unnecessary. Even for
this case where the data provide substantial informa-
tion, the statistical SEs (table 2) are much greater than
the SEs in the Monte Carlo sampling. The final esti-
mates, with their estimated SEs and nominal 95%
confidence intervals, are shown in table 2. Other start-
ing values for the parameter values led to practically
the same results. Table 3 gives the asymptotic vari-
ance-covariance matrix of the parameters. Figure 3
shows the final LOD score curve: the estimated maxi-
mum LOD score is 10.27. For this particular example,
although tight linkage is evident, the estimates of the
trait model parameters do not seem to be substantially
improved by incorporation of marker data (see Guo
and Thompson, submitted). However, both with and
without marker data, the strong major-gene effects are
correctly inferred. Although the variance-component
estimates have higher relative SEs, there is clear evi-
dence of the additive polygenic effect. The high LOD
score at small recombination frequencies correctly in-
dicates tight linkage with the marker. In addition, the
estimates agree well with the true parameters; in all
cases the nominal 95% confidence interval includes
the true simulation value.

Table 2

Estimated Parameters, with Their SEs and 95% Confidence Intervals, for
Simulated Data

True 95% Confidence
Parameter Value Estimate SE Interval

p.......... .3 .3430 .0471 (.2507,.4353)
Al ............... 2.0 2.3400 .2190 (1.9109, 2.7692)
[12 .......... .0 .1602 .1805 (-.1936,.5141)
113 .......... - 2.0 - 2.1133 .1832 (-2.4724, - 1.7541)
(7a ................ .6 .6280 .1557 (0.3227, .9332)
Oe ................. .2 .1535 .0694 (0.0174, .2895)
r ..... .... .1 .0385 .0325 (0.0000, .1021)
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Figure 2 Results for the combined segregation and linkage analysis of the simulated data, plotted against the EM iteration number.

The variables plotted are the estimated LOD score, the estimate of gene frequency, the estimate of recombination fraction, the estimate

of additive polygenic variance, the estimate of error variance, and the estimate of major-gene effects.

Example 2: Hypercholesterolemia and the LDL
Receptor Gene

We reanalyze the data on LDL cholesterol levels and
LDL receptor genotypes in a 60-member, five-gener-
ation pedigree (Leppert et al. 1986). The pedigree is
shown in figure 4. This data set has been extensively
studied by several workers; the following analysis is
presented to illustrate the methods of this paper, not

to draw conclusions about the genetic mechanisms of
the disease.

Using the Pedigree Analysis Package (PAP) (Has-
stedt 1982), Leppert et al. (1986) carried out a segre-

gation analysis under the assumption of a mixed
model. Then they performed a linkage analysis using
the parameters obtained from the segregation analy-

sis. They found a maximum LOD score of 7.52 at

r = 0. Using the published data, Bonney et al. (1988)
performed a combined segregation and linkage analy-
sis using a regressive model. For ease of computation,
they excluded individuals 50 and 59. To avoid bias in
the estimate of gene frequency, they assumed a fixed
frequency of .001 at the major locus. Also, they as-

sumed a dominant major gene leading to elevated lev-
els of LDL cholesterol. They found a maximum LOD
score of 5.9 at r = 0. Thomas and Cortessis (1991)
dichotomized the LDL cholesterol levels and used a

Bayesian method to perform a combined segregation
and linkage analysis, with no ascertainment correction
and assuming a dominant trait. Under various priors,
they found that the gene frequency range was .065-
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Table 3

Estimated Variance-Covariance Matrix for Simulated Data

2 2P A1 112 113 (Ga Ge r
2,216.5

-1,794.3 47,940
- 2,863.1 17,731 32,591
- 2,506.2 9,524.0 25,539 33,578
- 546.84 - 3,768.8 5,102.5 - 8,386.8 24,253

- 6.6661 2,442.7 - 846.45 - 1,834.6 - 8,173.0 4,817.4
5.8779 165.69 - 39.165 - 246.80 - 343.39 - 27.243 1,053.6

NOTE.-The actual value of each element in the matrix is the shown value times a factor of 10-6.

Table 4

Estimated Parameters, with Their SEs and 95% Confidence Intervals, for the
Hypercholesterolemia Data

95% Confidence
Parameter Estimate SEa Interval

p ....... .... .3266 .1066 (.118, .536)
A1l ........... 378.880 27.133 (325.700, 432.061)
12........... 157.220 21.851 (114.392,200.049)
13 ................... 94.980 21.106 (53.613, 136.348)
Oa ................... 862.150 847.456 (0, 2,523.163)

e .................. 2,933.538 1,122.495 (733.449, 5,133.627)
a Since the estimate of the recombination frequency r is 0, estimated SEs cannot be obtained from the

estimated information matrix.

.257 and that the range of the posterior mean of re-
combination fraction was .076-.318.
We performed a combined segregation and linkage

CD

a1)

0

C/)

0

0
iJ1 .-

0 .1 .2 .3 .4 .5
recombination fraction

Figure 3 Monte Carlo estimate of the LOD score curve for
the simulated data, at final estimates of other genetic parameters.

analysis using the methods ofthis paper. Since individ-
ual 7 is unobserved and does not have offspring-and
thus contributes no information- she was excluded
from the analysis. Also, it is evident that the genotypes
of individuals 8, 18, and 23 can be inferred from the
existing data. Following Leppert et al. (1986), we used
model (1) but made no ascertainment correction or
any assumption of dominance. Starting values p = .4,
o2 = 718.0, d2 = 3,797.0, ji = 375.6, J2 = 139.7,
and i3 = 95.3 were obtained by a Monte Carlo EM
of the mixed model without marker data. Then we
performed Monte Carlo EM for 200 iterations. At
each EM iteration a sample of 400 Gibbs realizations
were drawn, with 10 cycles between each sampling.
For the last 10 iterations, 1,000 Gibbs realizations
were sampled, with 20 cycles between each sampling.
On the basis of the final estimates, 12,000 realizations
were drawn, with 20 cycles between two consecutive
samplings. The final estimates, with their SEs and
95% confidence intervals, are listed in table 4. The
estimated maximum LOD score is 7.13 (fig. 5). The
parameter estimates against the iterations are shown
in figure 6.
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The estimate of gene frequency has two shortcom-
ings. First, since no ascertainment correction was
made, it cannot be viewed as representing the fre-
quency in the population at large. Second, because of
the small number of founders (nF = 16), the estimate
has low precision and a wide confidence interval. Gen-
erally, since the pedigree size is small (n = 59; with
12 individuals not observed, k = 47), the information
in these data is not great; the likelihood surface is
rather flat. Although the presence of the major gene is
clear, the magnitudes of the major-gene effects have
wide confidence intervals. As usual, the estimates of
additive and error variances are even less precise. In
fact, the wide confidence intervals for au means that
for these data there is no clear evidence of any poly-

.4 .5 genic effect (table 5).
The results of our analysis of these data are (not

surprisingly) consistent with those of previous au-
e curve for the thors. The current approach provides MLEs of all the
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Figure 6 Results for the combined segregation and linkage analysis of the LDL data plotted against EM iteration number. The
variables plotted are as in fig. 2.
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Table 5

Estimated Variance-Covariance Matrix for Hypercholesterolemia Data

2 2
p Al 12 I3 Ga (e

1.136 x 102
-6.159 x 101 7.362 x 102
-7.725 x 101 3.006 x 102 4.775 x 102
-9.013 x 102 4.157 x 101 6.232 x 101 4.455 x 102
7.067 x 100 -2.787 x 102 -4.352 x 103 -5.141 x 103 7.182 x 105

-1.234 x 101 1.740 x 103 6.062 x 103 7.084 x 103 -5.986 x 101 1.260 x 106

parameters in the model, together with SEs or other
measures of precision. The procedure for likelihood-
ratio evaluation provides a LOD score curve and also
permits exploration of the multiparameter likelihood
surface.

Discussion

Almost every function in human biology exhibits con-
tinuous variation. In human physiology, aspects such
as susceptibility or resistance to common diseases such
as diabetes and hypertension, predisposition to can-
cer, and drug and alcohol sensitivity can be measured
as quantitative traits. Most complex behavioral and
psychological traits are not simply present or absent
like many Mendelian characters. Rather, they very
continuously and are thus quantitative. On the other
hand, a qualitative trait could be made quantitative
by focusing both on the age at onset for affected indi-
viduals and on the right-censored age at last examina-
tion for unaffected individuals (Guo 1991). In light
of this, mapping of quantitative trait loci is of great
importance. Our approach provides a practical Monte
Carlo approach to combined segregation and linkage
analysis. The greatest attraction of this approach is its
ability to handle complex genetic models and large
pedigrees. It is also conceptually simple, numerically
stable, and computationally feasible. In a number of
examples, this approach works quite well. Using a
Monte Carlo EM approach, combined segregation
and linkage analysis does not substantially increase the
computing time, compared with segregation analysis
alone.

Because of the formidable computational problems
of complex segregation analysis and increasing com-
puting power, there is greatly increased interest in em-
ploying Monte Carlo methods in pedigree analysis.
Ott (1989), Ploughman and Boehnke (1989), and

Kong et al. (1991) have independently proposed
Monte Carlo methods for sampling from the pedigree
genotype distribution conditioned on the trait pheno-
types observed in the pedigree. Unlike the current ap-
proach, those methods require exact probability com-
putations at the trait locus in order to simulate data
at a linked marker. Thus they are not feasible for com-
plex models or complex pedigrees. Closer to the pres-
ent paper is the work of Lange and Matthysse (1989)
and Lange and Sobel (1991), who proposed using a
Metropolis algorithm to calculate LOD scores and lo-
cation scores. Similarly, Thomas and Cortessis (1991)
propose a Monte Carlo method for two-point linkage
analysis that combines a Bayesian perspective and the
Gibbs sampler. Thomas and Cortessis' Bayesian
method has its appeal in that it builds the prior infor-
mation on parameters into the analysis. However,
there is no consensus on choice of the prior for a com-
plex trait; we prefer exploring the likelihood surface
by estimating the likelihood ratios via the Gibbs sam-
pler. The methods of Lange and Matthysse (1989) and
Lange and Sobel (1991) are only useful when pene-
trance functions are known and when LOD or loca-
tion scores are desired. More generally, all previous
methods have been restricted to relatively simple ge-
netic models for the trait. By contrast, the Monte
Carlo EM approach permits both estimation of the
parameters of complex models, in conjunction with
linkage analysis, and exploration of a multiparameter
likelihood surface.
EM algorithms have a tendency to converge slowly,

and a definitive stopping rule for Monte Carlo EM is
no less problematic than it is for deterministic EM.
Although larger Monte Carlo samples can be taken
as parameter values stabilize, to reduce Monte Carlo
error in the estimation of conditional expectations,
there are obvious limits to the practicality of this.
Overall, we have found that Monte Carlo EM, even
with fairly small Monte Carlo samples such as are
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described in the Results section, is no slower than a
deterministic EM algorithm, in terms of the number
of EM iterations required, and is as robust and effec-
tive at finding a ballpark estimate. In the examples in
the previous section, retrospective examination shows
that estimates that are just as good could have been
obtained with only 30 or 50 EM iterations; the choice
of 200 was designed partly to verify that fact. The
procedure for likelihood-ratio evaluation can always
be used both to explore the likelihood in the neighbor-
hood of any final estimates and, if it proves necessary,
to adjust the final MLEs of parameter values. Also,
unlike many cases where deterministicEM is used, the
Monte Carlo EM procedures always permit estima-
tion of first and second derivatives of the likelihood
surface at any putative final estimates.
The efficiency and validity of alternative methods of

the Markov-chain Monte Carlo method is currently
an active research area in the statistical literature (Gel-
fand and Smith 1990; Tierney 1991). For validity, the
technical requirement is that of irreducibility (hence
ergodicity) of the Markov chain. For the Gibbs sam-
pler employed in the present paper, as also in Thomas
and Cortessis (1991), irreducibility is only assured for
a diallelic marker locus. Lange and Sobel (1991) point
to the same requirement for their Metropolis algo-
rithm. However, irreducibility is not the main barrier
in practice. Depending on the marker phenotypes ob-
served in the pedigree, it may in fact obtain for multial-
lelic markers. Further, it can always be assured by
modification of the sampling procedure; one such
modification is the rejection sampling method pro-
posed by Sheehan and Thomas (in press).
The greater practical problem is computational

efficiency of alternative ergodic sampling schemes
(Geyer 1991). If the likelihood has several local max-
ima that are separated by deep valleys, such as arise in
the analysis of location scores, the Metropolis Markov
chain can be very slowly mixing or "sticky" (Lange
and Sobel 1991). The same is true ofthe Gibbs sampler
when it is used to analyze ancestry of lethal rare reces-
sives in a large complex pedigree (Thompson 1991),
for a similar reason. For a quantitative trait, the coun-
terpart "penetrance functions" are normal densities
and are thus always positive. This more flexible geno-
type-phenotype correspondence results in faster mix-
ing for the Markov chain of trait genotypic configura-
tions. However, marker information, with not all
individuals observed and/or with tight linkage, is
likely to create problems of slow mixing. The occur-
rence of multiple alleles at marker loci- and the conse-

quent necessity of using rejection sampling or some
other method to ensure ergodicity-can only increase
these problems. Computational efficiency is an im-
portant issue that warrants further investigation.

Finally, it should be pointed out that the approach
of the present paper is not limited to the mapping of
the single quantitative trait in the framework of mixed
models. The same approach can be applied to a variety
of gene-mapping problems, such as (a) power calcula-
tion for linkage analysis and (b) combined segregation
and linkage analysis for multivariate traits. It can be
developed to incorporate genetic heterogeneity among
different pedigrees and to handle multiple trait and
marker loci. It opens up new ways to tackle compli-
cated genetic models for which analytical methods are
often lacking.

Acknowledgments
The authors wish to thank Dr. Charles Geyer for fruitful

discussions and for sharing his expert knowledge of comput-
ing, Dr. Ellen Wijsman for helpful discussions and com-
ments, Dr. Nuala Sheehan for providing her pedigree neigh-
borhood programs, and two referees for many helpful
suggestions and detailed comments. This paper is based on
research completed while S.W.G. was a student in the De-
partment of Biostatistics, University of Washington. The
research was supported in part by NIH grants NHLBI HL3
0086 (S.W.G.) and P30-HG00209 (S.W.G.) and GM-
46255 (E.A.T.).

References
Bonney GE (1984) On the statistical determination of major

gene mechanisms in continuous human traits: regressive
models. Am J Med Genet 18:731-749

Bonney GE, Lathrop GM, Lalouel J-M (1988) Combined
linkage and segregation analysis using regressive models.
Am J Hum Genet 43:29-37

Breiman L (1968) Probability. Addison-Wesley, Reading,
MA

Eaves LJ (1983) Errors of inference in the detection of major
gene effects on psychological test scores. Am J Hum Genet
35:1179-1189

Elston RC (1984) Genetic Analysis Workshop II: sib pair
screening tests for linkage. Genet Epidemiol 1:175-178

Elston RC, MacCluerJW, Hodge SE, Spence MA, King RH
(1989) Genetic Analysis Workshop 6: linkage analysis
based on affected pedigree members. In: Elston RC,
Spence MA, Hodge SE, MacCluer JW (eds) Multipoint
mapping and linkage based on affected pedigree members.
Alan R Liss, New York, pp 93-103

Gelfand AE, SmithAFM (1990) Sampling based approaches



1126 Guo and Thompson

to calculating marginal densities. J Am Stat Assoc 85:
398-409

Geman S, Geman D (1984) Stochastic relaxation, Gibbs
distributions, and the Bayesian restoration of images.
IEEE Trans Pattern Anal Machine Intelligence 6:721-
741

Geyer CJ (1988) Software for calculating gene survival and
multigene descent probabilities and for pedigree manipu-
lation and drawing. Tech rep 153, Department of Statis-
tics, University of Washington, Seattle

(1991) Markov chain Monte Carlo maximum likeli-
hood. In: Keramidas EM (ed) Computer science and sta-
tistics: proceedings of the 23d Symposium on the Inter-
face. Interface Foundation of North America, Fairfax
Station, VA, pp 156-163

Go RCP, Elston RC, Kaplan EB (1978) Efficiency and ro-
bustness of pedigree segregation analysis. Am J Hum
Genet 30:28-37

Guo SW (1991) Monte Carlo methods in quantitative genet-
ics. Ph.D. diss. Department of Biostatistics, University of
Washington, Seattle

Guo SW, Thompson EA (1991) Monte Carlo estimation of
variance component models. IMA J Math Appl Med Biol
8:171-189

. Monte Carlo estimation of mixed models for large
complex pedigrees (submitted)

HasemanJK, Elston RC (1972) The investigation of linkage
between a quantitative trait and a marker locus. Behav
Genet 2:3-19

Hasstedt SJ (1982) A mixed-model likelihood approxima-
tion on large pedigrees. Comput Biomed Res 15:295-307

Henderson CR (1976) A simple method for computing the
inverse of a numerator relationship matrix used in predic-
tion of breeding values. Biometrics 32:69-83

Kong A, Frigge M, Cox N, WongWH (1991) Linkage analy-
sis with adjustment for covariates: a method combining
peeling with Gibbs sampling. In: MacCluer JW, Chakra-
varti A, Cox D, Bishop DT, Bale SJ, Skolnick MH (eds)
Genetic Analysis Workshop 7: Issues in Gene Mapping
and Detection of Major Genes. Cytogenetics and Cell Ge-
netics Supplement. Karger, Basel

Konigsberg LW, Kammerer CM, MacCluerJW (1989) Seg-
regation analysis of quantitative traits in nuclear families:
comparison of three program packages. Genet Epidemiol
6:713-726

Lalouel J-M, Morton NE (1981) Complex segregation anal-
ysis with pointers. Hum Hered 31:312-321

Lange K, Matthysse S (1989) Simulation of pedigree geno-
types by random walks. Am J Hum Genet 45:959-970

Lange K, Sobel E (1991) A random walk method for com-
puting genetic location scores. AmJHum Genet 49:1320-
1334

Leppert MF, Hasstedt SJ, Holm T. O'Connell P, Wu L, Ash
0, Williams RR, et al (1986) A DNA probe for the LDL

receptor gene is tightly linked to hypercholesterolemia in
a pedigree with early coronary disease. Am J Hum Genet
39:300-306

Louis TA (1982) Finding the observed information matrix
using the EM algorithm. J R Stat Soc [B] 44:226-233

MacLean CJ, Morton NE, Lew R (1975) Analysis of family
resemblance. IV. Operational characteristics of segrega-
tion analysis. Hum Genet 27:365-384

Morton NE, MacLean CJ (1974) Analysis of family resem-
blance. III. Complex segregation analysis of quantitative
traits. Am J Hum Genet 26:489-503

Ott J (1974) Estimation of the recombination fraction in
human pedigrees: efficient computation of the likelihood
for human linkage studies. AmJ Hum Genet 26:588-597

(1979) Maximum likelihood estimation by counting
methods under polygenic and mixed models in human
pedigrees. Am J Hum Genet 31:161-175

(1989) Computer simulation methods in human
linkage analysis. Proc Natl Acad Sci USA 86:4175-4178

(1990) Cutting a Gordian knot in the linkage analysis
of complex human traits. Am J Hum Genet 46:219-221

(1991) Analysis of human genetics linkage, rev ed.
The Johns Hopkins University Press, Baltimore

Ploughman LM, Boehnke M (1989) Estimating the power
of a proposed linkage study for a complex genetic trait.
Am J Hum Genet 44:543-551

Risch N (1984) Segregation analysis incorporating linkage
markers. I. Single-locus models with an application to
type I diabetes. Am J Hum Genet 36:363-386

Sheehan NA, Thomas AW. On the irreducibility of a Mar-
kov chain defined on a space of genotype configurations
by a sampling scheme. Biometrics (in press)

Sundberg R (1974) Maximum likelihood theory for incom-
plete data from an exponential family. Scand J Stat 1:49-
58

Thomas DC, Cortessis V (1991) A Monte Carlo Bayesian
approach to genetic linkage analysis. Tech rep 13, Depart-
ment of Preventive Medicine, University of Southern Cali-
fornia, Los Angeles

Thompson EA (1991) Probabilities on complex pedigrees:
the Gibbs sampler approach. In: Keramidas EM (ed)
Computer science and statistics: proceedings of the 23d
Symposium on the Interface. Interface Foundation of
North America, Fairfax Station, VA, pp 321-328

Thompson EA, Guo SW (1991) Evaluation of likelihood
ratios for complex genetic models. IMA J of Math Appl
Med Biol 8:149-169

Thompson EA, Shaw RG (1990) Pedigree analysis for quan-
titative traits: variance components without matrix inver-
sion. Biometrics 46:399-413

Tierney L (1991) Markov chains for exploring posterior
distributions. Tech rep 560, School of Statistics, Univer-
sity of Minnesota at Minneapolis St Paul, Minneapolis


