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Proteome-Scale Investigation of Protein
Allosteric Regulation Perturbed
by Somatic Mutations in 7,000 Cancer Genomes

Qiancheng Shen,1,8 Feixiong Cheng,2,3,6,7,8 Huili Song,1 Weiqiang Lu,4 Junfei Zhao,3 Xiaoli An,1

Mingyao Liu,4 Guoqiang Chen,1 Zhongming Zhao,5,* and Jian Zhang1,*

The allosteric regulation triggering the protein’s functional activity via conformational changes is an intrinsic function of protein

under many physiological and pathological conditions, including cancer. Identification of the biological effects of specific somatic

variants on allosteric proteins and the phenotypes that they alter during tumor initiation and progression is a central challenge for

cancer genomes in the post-genomic era. Here, we mapped more than 47,000 somatic missense mutations observed in approximately

7,000 tumor-normal matched samples across 33 cancer types into protein allosteric sites to prioritize the mutated allosteric proteins

and we tested our prediction in cancer cell lines. We found that the deleterious mutations identified in cancer genomes were more

significantly enriched at protein allosteric sites than tolerated mutations, suggesting a critical role for protein allosteric variants in

cancer. Next, we developed a statistical approach, namely AlloDriver, and further identified 15 potential mutated allosteric proteins

during pan-cancer and individual cancer-type analyses. More importantly, we experimentally confirmed that p.Pro360Ala on

PDE10A played a potential oncogenic role in mediating tumorigenesis in non-small cell lung cancer (NSCLC). In summary, these find-

ings shed light on the role of allosteric regulation during tumorigenesis and provide a useful tool for the timely development of targeted

cancer therapies.
Introduction

Cancer is a major public health problem and is currently

the second leading cause of death in the United States.1

Recently, next-generation sequencing (NGS) technology,

including whole-exome and whole-genome sequencing,

has helped investigators uncover massive amounts of so-

matic alterations in cancer genomes in several large-scale

projects, such as The Cancer Genome Atlas (TCGA)2 and

International Cancer Genome Consortium (ICGC).3

Furthermore, these studies demonstrated that most

cancers harbor only a few significantly mutated genes

(SMGs) in each cancer genome and that many cancer-asso-

ciated genes are mutated in a small number of individ-

uals.4 For instance, a recent study has suggested that a

typical tumor genome contains two to eight driver gene

mutations.4 Accordingly, the majority of the remaining

somatic alterations are called ‘‘passenger mutations,’’

which have no biologically relevant effects on tumor

fitness and progression.5 The systematic elucidation of

the functional consequences of somatic mutations in can-

cer is a big challenge in the era of the human post-genome

projects.6 Identifying the variants altering protein func-

tion is a promising strategy for deciphering the biological

consequences of somatic mutations during tumorigenesis
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and would provide novel targets for the development of

targeted cancer therapies.7

Receptors are a class of proteins with dual roles in the

recognition of a drug or environmental factors and the

transduction of these stimuli into cellular responses.

Although most studies on receptor function have focused

on how ligands modulate receptor signaling pathways by

binding to orthosteric sites, receptor conformation and

signal transduction can also be regulated by ligands acting

on unique allosteric sites.8 Topographically, an allosteric

site is an area of a protein distinct from the orthosteric

site that can regulate the protein’s functional activity via

conformational changes induced by the binding of allo-

steric ligands.9 Pathological orthosteric (at the substrate-

binding site) and allosteric (at the allosteric site) events

can deregulate a protein, trapping it in either its active or

inactive conformation.10 Furthermore, uncontrolled pro-

tein activity typically leads to disease.10 Additionally, cells

have various molecular structures that form complex,

dynamic, and plastic networks.11 Under the molecular

network framework, somatic mutations may alter network

architecture by affecting nodes (i.e., proteins), edges

(i.e., protein interactions), or both within a network or

by changing the biochemical properties of nodes.12–14

The large amount of NGS data generated from cancer
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genome projects, such as TCGA and ICGC, provide us with

an unprecedented opportunity to systematically examine

allosteric regulation related to tumor initiation and pro-

gression. So far, to the best knowledge of the authors, there

has been no systematic investigation of the large-scale allo-

steric regulation perturbed by somatic mutations in cancer.

In this study, we employed an integrative genomics

workflow to systematically investigate cancer allosteric

regulations perturbed by somatic variants at allosteric

sites. We manually constructed a catalog of allosteric pro-

teins curated from the literature based on our previous

studies.15,16 We found that the deleterious mutations iden-

tified in cancer genomes were more significantly enriched

at protein allosteric sites than toleratedmutations, suggest-

ing a critical role for protein allosteric variants in tumor

initiation and progression. Next, we developed a statistical

approach, namely AlloDriver, to prioritize potentially

functional mutations in cancer via altering protein allo-

steric regulation in both pan-cancer and individual cancer

types. In a case study, we tested the results predicted by the

model experimentally. Specifically, we mapped more than

47,000 somatic missense mutations generated from

approximately 7,000 tumor-normal matched samples to

protein allosteric sites derived from protein three-dimen-

sional (3D) structures and our large-scale, manually

curated experimental data. We identified 15 potential

significantly mutated proteins harboring enriched somatic

variants via altering protein allosteric regulation during

pan-cancer and individual cancer type analyses using Allo-

Driver. Then, we experimentally verified the functional

role of p.Pro360Ala on PDE10A using non-small cell

lung cancer (NSCLC) as a case study. In summary, this

study provides insights into cancer allosteric regulation

perturbations altered by somatic variants and provides a

powerful tool for the development of novel targeted cancer

therapies.
Material and Methods

Construction of a Catalog of Allosteric Proteins
The comprehensive allosteric protein catalog was obtained from

the AlloSteric Database (ASD) constructed by our group,16 which

provides a versatile resource of the well-established allosteric mac-

romolecules and ligands found since 1901. The version of the ASD

includes 1,286 allosteric proteins distributed across 181 different

species covering prokaryotes and eukaryotes and 22,008 allosteric

ligands. In our ASD curation, proteins with at least three cases of

experimental evidences in crystal structure complex or biochem-

istry (such as site-directed mutagenesis, cooperativity of kinetic

effect from two ligands, and uncompetitive binding assay with

chromatography, etc.) supporting their functional change elicited

by ligand binding at a site that was topographically distinct from

the orthosteric functional site were considered as allosteric pro-

teins and deposited into the ASD. Among these allosteric proteins,

574 proteins belong to human species (Table S1), including 74

experimentally validated allosteric proteins with well-annotated

allosteric sites from allosteric ligand-protein crystal complexes in

Protein Data Bank (PDB) (Table S2). For these 74 allosteric pro-
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teins, we collected 624 human protein-allosteric ligand complexes

from the PDB database.
Annotation of Allosteric Sites, Orthosteric Sites, and

Other Sites for Human Allosteric Proteins
Allosteric Sites

We built a collection of non-redundant, high-quality bench-

marking allosteric sites using 624 human allosteric complexes

via the following rules: (1) only crystal complexes with allosteric

ligands were included, (2) complexes bound to allosteric covalent

ligands were not included, and (3) allosteric ligands were ‘‘regular’’

organicmolecules. In addition, complexes bound to allosteric ions

and peptides were not included. As a result, 501 allosteric com-

plexes were selected. The structure coordinates for each allosteric

complex were downloaded from the PDB database,17 and the res-

idues constituting the allosteric site were automatically extracted

from the complex structure at 8 Å around the allosteric modulator

site using PyMOL (The PyMOLMolecular Graphics System, v.1.7.4

Schrödinger). Then, the residues of the allosteric sites were aligned

to the corresponding canonical UniProt18 protein sequence using

PDBSWS.19 If one allosteric protein had several complexes or mul-

tiple allosteric sites, the residues from different complexes or sites

weremerged, resulting in a list of 74 experimentally validated allo-

steric proteins withwell-annotated allosteric sites from the protein

3D structures.

Orthosteric Sites

We retrieved and downloaded the orthosteric complex structures

for the above-mentioned 74 allosteric proteins from the PDB data-

base17 if they fulfilled the following two criteria: (1) the resolution

of crystal structure was better than 3.0 Å and (2) the orthosteric

ligands were regular small molecules. The residues constituting

the orthosteric site were automatically extracted as described pre-

viously. The residues of the orthosteric sites were aligned to

the corresponding canonical UniProt protein using PDBSWS.19

Finally, we obtained a list of 48 proteins with the well-annotated

orthosteric sites from protein 3D structures.

Other Sites

All cavities on the protein surface of each allosteric complex were

detected and extracted by Fpocket20 package, which can identify

different types of cavities, including very small pockets, ligand

binding sites, and even tunnels.21 The ‘‘other sites’’ workflow

with the criteria and parameters used in Fpocket is described in

the following five steps. (1) All allosteric complex files in pdb

format of a given protein were collected from the PDB database.

(2) Cavities on each pdb file were detected and extracted into

‘‘Cavity residues’’ by Fpocket with the default parameters

including 3 Å (�m) for the minimum radius of alpha sphere,

6 Å (�M) for the maximum radius of alpha sphere, 35 (�i) for

the minimum number of alpha spheres in a pocket, 3 (�A) for

the minimum number of contacting apolar atoms for an apolar

sphere, 1.73 Å (�D) for the maximum distance between two

alpha spheres by a Voronoi edge, 4.5 Å (�r) for the maximum

cluster distance, 2 (�n) for the number of alpha spheres in a pocket

that have close to alpha spheres of another pocket, 2.5 Å (�s)

for the maximum distance from alpha spheres of another

pocket, 0.0 (�p) for the maximum ratio of apolar alpha spheres

and the number of alpha spheres in a pocket, and 2,500 (�v) for

the number of iteration in Monte-Carlo algorithm. (3) Cavity res-

idues from each pdb file of the protein were merged. (4) Residues

belonging to the corresponding allosteric sites and orthosteric

sites of the protein were removed from cavity residues and the
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remaining residues were denoted as ‘‘other sites’’ of the protein.

(5) The same procedure (1) to (4) of other sites above was per-

formed on all 74 allosteric proteins. The residues of other sites

were aligned to the corresponding canonical UniProt protein

using PDBSWS.19

Collection and Preparation of Somatic Mutations
We collected and assembled somatic mutations from four re-

sources: (1) 3,281 pairwise tumor-normal matched samples across

12 cancer types from TCGA,4 (2) 4,938,362 mutations in 7,042

matched tumor-normal samples across 30 different cancer types/

subtypes from the Sanger website,22 (3) 1,195,223 somatic muta-

tions in 8,207 matched tumor-normal samples across 30 cancer

types/subtypes from the Elledge’s Laboratory website at Harvard

University,23 and (4) the COSMIC: Catalogue of Somatic Muta-

tions in Cancer (v.69).24 We used ANNOVAR25 to map these

somatic mutations onto the protein sequences to identify the

corresponding amino acid changes based on RefSeq ID. We calcu-

lated the functional impact score for the nonsynonymous SNVs

(single-nucleotide variants) using SIFT26 and PolyPhen-2 scores27

via ANNOVAR. Then, we converted the RefSeq ID (accessed on

September 2, 2014) to the UniProt ID (using UniProt release

September, 2014) using the UniProt ID mapping tool.

Collection and Annotation of Mendelian

Disease-Causing Mutations
We collected the Mendelian disease-causing mutations (missense

mutations) from two resources: (1) 29,097 disease-causing muta-

tions and 36,429 polymorphisms from the Online Mendelian

Inheritance in Man (OMIM) compendium (McKusick-Nathans

Institute of Genetic Medicine, Johns Hopkins University) and (2)

14,444 disease-causingmutations for 574 allosteric protein-encod-

ing genes from the Human Gene Mutation Database (professional

v.2014).28 We performed extensive informatics operations, as well

as a manual curation, to combine the two data sources and remove

duplicate records, resulting in a list of 12,346 disease-causing

mutations and 1,980 polymorphisms in 574 allosteric protein-

encoding genes.

Construction of the High-Quality Human Protein

Interactome
We constructed two different yet complementary human protein

interaction networks (PINs): (1) a large-scale physical PIN and

(2) a kinase-substrate interaction network (KSIN). Specifically, we

downloaded human physical PPIs from two resources, Protein

Interaction Network Analysis (PINA, May 1, 2013) platform29

and InnateDB,30 to construct the physical PIN. In the KSIN, a

node denotes a kinase or its substrate protein and an edge

denotes a phosphorylation reaction between a kinase and its sub-

strate protein. We collected the high-resolution kinase-substrate

interaction (KSI) pairs from four databases: Phospho.ELM,31 Hu-

man Protein Resource Database,32 PhosphoNetworks,33,34 and

PhosphoSitePlus.35 We implemented two data-cleaning steps.

First, we defined the high-quality interactions as those that were

experimentally validated in humanmodels through awell-defined

experimental protocol. Second, we annotated all protein-coding

genes using the Entrez gene ID, the chromosome location, and

the gene official symbols from the National Center for Biotech-

nology Information (NCBI) database. The detailed protocols for

the construction of the PIN and KSIN are provided in our previous

studies.36,37
The
Preparation of Microarray Gene Expression Data and

the Co-expression Analysis
We collected microarray gene expression data across 126 normal

tissues in a previous study38 and normalized the expression values

at the probe level using quantile normalization. We then

computed the Pearson correlation coefficient (PCC) value using

the normalized values andmapped it onto the above KSIN to build

co-expressed kinase-substrate interaction network (CeKSIN), as

described in two previous studies.36,37

Categories of Different Disease Gene Sets
Cancer-Related Genes

Here, we collected three overlapping yet complementary cancer-

related gene sets, as shown below: (1) 693 significantly mutated

genes (SMGs) in cancer were collected from more than 20 large-

scale cancer genomic analysis projects as described in our previous

study;39 (2) 563 experimentally validated cancer genes were down-

loaded on February 21, 2016 from the Cancer Gene Census26 and

denoted as the CGC genes; and (3) 4,050 cancer genes were assem-

bled in a previous study,36 referred to here as the cancer gene atlas,

namely CGA.

Other Disease Gene Sets

We collected two commonly used inherited disease gene sets:

(1) 2,713 Mendelian disease genes (MDGs) were compiled from

the Online Mendelian Inheritance in Man (OMIM) database40 in

December 2012 and (2) 2,123 orphan disease mutant genes

(ODMGs) were collected from a previous study.41

Essential Genes

Essential genes, whose knockout result in lethality or infertility,

are important for studying the robustness of a biological sys-

tem.42 Here, 2,719 essential genes were compiled from the OGEE

database.42

Computing Selective Pressure and Evolutionary Rates
We calculated dN/dS ratios43 to examine selective pressures on

genes. Here, we used the human-mouse orthologous gene prod-

ucts to compute dN and dS substitution rates using the human-

mouse sequence data for 16,854 gene products available in

the Ensemble BioMart database. In addition, we performed an

evolutionary rate ratio analysis, as described in a previous

study.44 Details of data and analyses were provided in our previous

study.36

Inferring Protein Evolutionary Origins
Phylogenetic analysis was used to infer the evolutionary origin

of a protein, referring to the approximate date that the pro-

tein originated. Here, we calculated the protein origin using

ProteinHistorian.45 Specifically, protein origin (age) was estimated

by considering three factors: a species tree, a protein family data-

base, and an ancestral family reconstruction algorithm. Further-

more, we performed an evolutionary distance analysis by

comparing human sequences with orthologous sequences from

other animals, as described previously.44

Kaplan-Meier Survival Analysis
To validate our results, we downloaded the mRNA expression pro-

files and the clinical data for lung adenocarcinoma46 from TCGA

website. The RNA-Seq by Expectation Maximization (RSEM)

values of the mRNA47 were used as a measure of the expression

level of genes. All p values for survival analysis were calculated

using the log-rank test.
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Mapping of Disease-Causing Variants and Somatic

Variants at the Allosteric Sites, Orthosteric Sites, and

Other Sites in Allosteric Proteins
The mapping pipeline used the following steps: (1) only missense

variants on the allosteric proteins with released crystal structures

were kept, resulting in a list of 4,451 missense somatic variants,

2,123 disease-causing variants, and 238 polymorphisms; (2) all

of the 4,451 missense somatic variants were aligned to protein se-

quences (using UniProt release September, 2014) using NW-align;

and (3) SIFT26 and PolyPhen-227 scores were calculated for each

nonsynonymous somatic variant. Herein, a variant with a SIFT

score < 0.05 and a PolyPhen-2 score > 0.909 was defined as dele-

terious (D), as described in previous studies.26,27 Otherwise, it was

defined as tolerated (T).
Description of AlloDriver
We calculated the normalized variant rate for each allosteric pro-

tein as follows:

�
VA

PA

���
VT

PT

�

VA is the number of variants at the allosteric sites and VT is the

total number of variants in the corresponding protein. PA is the

number of residues at the allosteric sites and PT is the total number

of residues in the entire allosteric protein. Then, we proposed a

method, named AlloDriver, to calculate the statistical significance

of the variants enriched at the allosteric sites. The null hypothesis

posits that somatic missense variants equally distribute at protein

allosteric sites against other regions. The alternative hypothesis as-

serts that somatic missense variants are more likely enriched at

protein allosteric sites than other sites. We performed the permu-

tation test in AlloDriver as below:

P ¼ #fZmðpÞ > Zmg
#ftotal permutationsg

A nominal P was computed for each allosteric protein by count-

ing the number of observed missense somatic variants in a specific

cancer type or pan-cancer greater than the permutations. Herein,

we performed 100,000 permutations by randomly selecting the

same number of at the allosteric sites on a specific protein from

its total number of variants in a specific cancer type for individual

analysis or in pan-cancer for pan-cancer analysis. Then, the result-

ing p values generated from the permutation tests were corrected

as adjusted p values (q) by using Benjamini-Hochberg multiple

test correction method48 that has been implemented in the R

package (v.3.1.2).49
Statistical Analysis
The Wilcoxon test, Kolmogorov-Smirnov tests, and Fisher’s exact

test were performed using the R platform (v.3.1.2).
Experimental Validation Protocols
Cell Culture

Two human lung adenocarcinoma cell lines (NCI-H23 and A549)

and human embryonic kidney 293T cell line were obtained from

the American Type Culture Collection (ATCC). NCI-H23 and

A549 cells were cultured in Roswell Park Memorial Institute

(RPMI) 1640 medium, and 293T cells were cultured in Dulbecco’s

modified Eagle’s medium (DMEM). Cell lines were maintained in

culture medium supplemented with 10% fetal bovine serum
8 The American Journal of Human Genetics 100, 5–20, January 5, 201
(FBS), 100 U/mL penicillin, and 100 mg/mL streptomycin at

37�C in a humidified atmosphere containing 5% CO2.

Plasmid Construction

The human PDE10A2 expression construct pCMV-PDE10A2

(GenBank: NM_006661.3) was purchased from Biogot Technol-

ogy. Then, the full-length and mutant (QuikChange Site-Directed

Mutagenesis Kit from Agilent) cDNAs were amplified using the

2 3 Pfu (PCR) Master Mix (Lifefeng) and sub-cloned into the

XbaI and BamHI sites on a lentiviral vector pCDH-CMV-MCS-

EF1-copGFP (System Biosciences). All plasmids were verified by

sequencing. The gene sequence used for the construction of

pCMV-PDE10A2 is provided in Table S3.

Production of the Lentivirus and the Infection of NCI-H23

293T cells in 10 cm diameter dishes were transfected with a com-

bination of the expression vectors of the human wild-type or

mutant PDE10A2 and the lentiviral packaging vectors psPAX2

(addgene, plasmid #12260) and pMD2.G (addgene, plasmid

#12259) using the X-tremeGENE 9 DNA Transfection Reagent

(Roche). The supernatant of the cultured cells was replaced with

fresh medium 4–6 hr after transfection. After incubation for 48–

72 hr, the supernatants of the transfected cells containing viruses

were harvested and filtered through a 0.45 mm syringe filter, and

the viruses were used to infect the NCI-H23 cells immediately or

frozen at �80�C. If required, viruses were concentrated by ultra-

centrifugation at 28,000 rpm for 2 hr at 4�C. The pellets were re-

suspended in PBS containing 2% FBS and aliquoted for storage

at �80�C. NCI-H23 cells were seeded into 6 cm diameter dishes

and infected with the concentrated lentivirus the next day, and

the polybrene with a final concentration of 8 mg/mL was added

to the infected cells to enhance the infection efficiency. To obtain

higher infection efficiencies, the infected NCI-H23 cells were

sorted using a flow cytometry sorter (Beckman). Finally, the GFP-

positive rate of these stable NCI-H23 cell lines was found to be

greater than 95%.

Reagents and Antibodies

Two compounds, PF-2545920 and dipyridamole, were purchased

from Selleckchem. The antibody of PDE10A2 (88 KD) was pur-

chased from Abcam. The corresponding secondary antibody and

ACTIN-HRP were purchased from Cell Signaling Technology.

Western Blotting Analysis

Cells were lysed in 23 SDS lysis buffer (100 mM Tris HCl [pH 6.8],

200 mM DTT, 4% SDS, 0.2% bromophenol blue, and 20% glyc-

erin). Proteins in the samples were separated by sodium dodecyl

sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and trans-

ferred by electroblotting onto PVDF membranes (Millipore). The

PVDF membranes were blocked with 5% non-fat milk at room

temperature for 1 hr and then incubated with the appropriate pri-

mary antibody at 4�C overnight. After additional TBSTwashes, the

membranes were incubated with the corresponding horseradish

peroxidase-conjugated secondary antibodies for 1 hr at room tem-

perature and detected using the enhanced chemiluminescence

method (Millipore).

Cell Growth Detection

Cells were seeded in 96-well plates at a density of 4,000 cells and

incubated for 24 hr. Then, the cells were treated with the specified

compound or the vehicle control and incubated for another 72 hr.

The inhibition of cell growth caused by the treatments was deter-

mined using the CellTiter 96 Aqueous One Solution Cell Prolifer-

ation Assay (MTS) (Promega). To validate the impact of themutant

on lung adenocarcinoma cancer cell growth, the stable cell line

NCI-H23 and corresponding control cells were seeded into 96-

well plates at a density of 600 cells cultured in medium containing
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1% FBS to minimize the interference of serum. Then, cell growth

was detected at the indicated time using the CellTiter 96 Aqueous

One Solution Cell Proliferation Assay (MTS). The assays were con-

ducted according to the manufacturer’s instructions, and the

absorbance value (optical density) of each well was measured at

490 nm using a microplate reader. The absorbance at 630 nm

was subtracted from this number, as the basic value. All experi-

ments were performed at least three times.

Colony Formation Assay

Cells were plated in 6-well culture plates at 600 cells/well, and each

cell group had three wells. After incubation for another 12 days at

37�C, the cells were washed twice with cold phosphate buffer

saline, fixed using ice-cold 100% methanol, and stained with a

0.5% crystal violet solution. Then, the stained colonies were

washed with double-distilled water and photographed. The num-

ber of the colonies containing >50 cells was counted. All assays

were independently performed in triplicate.

Experimental Design and Data Analysis

With regard to the effects of the drugs on cell growth, the IC50

values, which were the concentrations of the compounds when

cell viability was 50%, were determined. All experiments were

repeated a minimum of three times to determine the reproduc-

ibility of the results. All error bars represent the SEM. Statistical

analysis was performed using Student’s t test. A p value < 0.05

was considered to be statistically significant.
Results

An Integrative Genomic Workflow to Elucidate

Cancer-Associated Protein Allosteric Dysregulation

We constructed a global human allosteric protein catalog

based on the Allosteric Database (ASD) developed by our

group.16 We carefully curated records from the ASD to pro-

duce a high-quality allosteric protein catalog. It included

574 human gene products (proteins), in which 74 proteins

have experimentally validated allosteric sites according

to their allosteric ligand-protein complex structures in

the PDB database (see Material and Methods). The func-

tional classes for the human allosteric proteins annotated

from UniProt18 are shown in Figure 1A. The most abun-

dant allosteric proteins were transferases (21%) and hydro-

lases (17%). Then, we collected somatic mutations from

TCGA, the Catalogue of Somatic Mutations in Cancer

(COSMIC) database, and other public domains (see Mate-

rial and Methods). In total, we obtained 47,364 somatic

missense mutations from 6,958 pairwise tumor-normal

matched pairs across 33 cancer types on 574 allosteric pro-

tein-coding genes. Figure 1B shows the somatic missense

variant load for the allosteric proteins across 12 common

cancer types or subtypes with unique sample IDs. To

further explore the relationship between these variants

and their associated cancer types, we designed a pipeline

to annotate the variants at the allosteric sites, orthosteric

sites, and other sites in the allosteric proteins (Figure 1C,

see Material andMethods). Next, we developed a statistical

model to identify the functional somatic variants that allo-

sterically alter protein activity in pan-cancer as well as each

individual cancer type (Figure 1D). Finally, we tested our
The
model predictions both computationally (Figure 1E) and

experimentally (Figure 1F) using NSCLC as a case study.

Network Characteristics of Allosteric Proteins in the

Human Protein Interaction Network

To examine the biological functions of the allosteric pro-

tein catalog, we investigated the topological network fea-

tures (e.g., the connectivity) of allosteric proteins in the

human PIN. Considering that the current publicly avail-

able human PIN has data bias and is incomplete, well-

studied human kinome data may provide more valuable

features by local ecosystem. We constructed two comple-

mentary human PINs, a global physical PIN and a KSIN,

based on our two previous studies (see Material and

Methods).36,37 Figure 2A shows that the connectivity of

allosteric proteins is significantly stronger than that

of non-allosteric proteins in both the KSIN (p ¼ 1.9 3

10�10, Wilcoxon test) and the physical PIN (p ¼ 6.3 3

10�43). A previous study has suggested that the kinome

network plays important biological roles in cancer and

16% of the allosteric proteins are well-known kinases

(Figure 1A).36 To further examine the functional roles of

allosteric proteins at the network level, we examined the

gene co-expression distribution for the allosteric protein-

protein pairs using the human kinome data.36 We calcu-

lated the PCC for the gene-gene pairs using microarray

gene expression data from 126 normal tissues, as described

in our previous study.36 We mapped the PCC value onto

the KSIN to build a CeKSIN. Here, we defined an allosteric

kinase-substrate interaction (KSI) pair as either one or two

proteins in a pair that is/are allosteric protein(s) in CeKSIN.

Figure 2E indicates that the allosteric CeKSI pairs are more

likely to be the highly co-expressed KSI pairs (p ¼ 1.3 3

10�4, Fisher’s exact test). Thus, allosteric protein-coding

genes tend to be highly co-expressed in CeKSIN, suggest-

ing their critical biological roles in network perturbations.

Evolutionary Trajectories of Allosteric Proteins

We further examined the selective pressure and evolu-

tionary rates of allosteric proteins. We calculated the non-

synonymous and synonymous substitution rate ratio (the

dN/dS ratio) using human-mouse orthologous gene prod-

ucts (see Material andMethods). A dN/dS ratio of 1 signifies

neutral evolution, whereas a ratio < 1 indicates purifying

selection, and a ratio > 1 indicates positive Darwinian se-

lection. Figures 2C and 2D show that allosteric proteins

have a lower dN/dS ratio and a lower evolutionary rate ratio

than non-allosteric proteins, suggesting that allosteric pro-

teins tend to undergo strong purifying selection (meaning

that the dN/dS ratio is < 0.1). The evolutionary history of a

protein sequence often reflects its functionally evolu-

tionary trajectory. Next, we examined the evolutionary

origin of allosteric proteins. Here, phylogenetic analysis

was used to infer the evolutionary origin of a protein, refer-

ring to the approximate date that the protein originated.

Specifically, we calculated the protein origin by consid-

ering three factors: a species tree, a protein family database,
American Journal of Human Genetics 100, 5–20, January 5, 2017 9



Figure 1. Integrative Genomic Workflow and Data Analysis
(A) The functional groups of the allosteric proteins. There are 574 human allosteric proteins from the allosteric database (ASD), each of
which has been experimentally validated by at least three cases of evidences in crystal structure complex or biochemistry (such as site-
directed mutagenesis, cooperativity of kinetic effect from two ligands, and uncompetitive binding assay with chromatography, etc.).
Only 74 of these 574 proteins demonstrated the exact location of allosteric sites by the crystal structures of allosteric ligand-protein com-
plex in the PDB database.
(B) The number of variants in the allosteric proteins and corresponding samples in 12 common cancer types Abbreviations are as follows:
COAD, colon adenocarcinoma; SKCM, skin cutaneous melanoma; LUAD, lung adenocarcinoma; UCEC, uterine corpus endometrial car-
cinoma; STAD, stomach adenocarcinoma; BRCA, breast invasive carcinoma; HNSC, head and neck squamous cell carcinoma; LUSC, lung
squamous cell carcinoma; GBM, glioblastoma multiforme; KIRC, kidney renal clear cell carcinoma; OV, ovarian serous cystadenocarci-
noma; and BLCA, bladder urothelial carcinoma. For each cancer type, the upper bar denotes the number of variants or samples in the 574
allosteric proteins and the bottom bar denotes the number of variants or samples in the 74 allosteric proteins with released allosteric
sites.
(C) The mapping of the mutations detected in the DNA sequences onto orthosteric, allosteric, or other sites in allosteric proteins.
(D) The identification of significantly mutated allosteric proteins in cancer.
(E) The computational validation of the predicted cancer-associated variants.
(F) The experimental validation of the predicted cancer-associated genes as well as the variants.
and an ancestral family reconstruction algorithm, using

ProteinHistorian.45 Figure 2B shows that most of the allo-

steric proteins had a divergence time from 910 million

years ago (Mya) to 4,200 Mya with average time of diver-

gence at 1,648.6 Mya, which was significantly older than

that of non-allosteric proteins (1,178.4 Mya, p ¼ 2.1 3

10�8, Kolmogorov-Smirnov test). Interestingly, a threshold

age of 1,600 Mya happens to be the transition time be-

tween Paleoproterozoic and Mesoproterozic, when aerobic

respiration began to emerge.36,50 Thus, our evolutionary

trajectories analysis suggested that the transition between

anaerobic respiration and aerobic respiration may have
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led to the emergence of protein allostery. Altogether, these

results suggest that allosteric regulation is functionally

inherent and under strong purifying selection during pro-

tein sequence evolution.

Perturbations of Allosteric Proteins at Allosteric Sites

Reflects Disease Etiology

The aforementioned network topology and protein evolu-

tionary analyses indicated a critical biological role for allo-

steric proteins. The dysfunction of allosteric proteins may

have important effects on mediating human diseases such

as cancer. To investigate their effect, we performed a
17



Figure 2. Network Characteristics and Evolutionary Trajectories of Allosteric Proteins
(A) The connectivity distribution for allosteric proteins versus non-allosteric proteins in the kinase-substrate interaction network (KSIN)
and the protein interaction network (PIN).
(B) Distribution of taxon of origin (million years ago [Mya]) for allosteric proteins versus non-allosteric proteins.
(C) Distribution of the dN/dS ratio for allosteric proteins versus non-allosteric proteins.
(D) Evolutionary rate ratio for allosteric proteins versus non-allosteric proteins.
(E) Distribution of gene co-expression correlation coefficients for allosteric proteins versus non-allosteric proteins in the co-expressed
kinase-substrate interaction network. Allosteric proteins (red) denote either protein that is allosteric protein in a pair. Non-allosteric pro-
teins (blue) denote two proteins that are non-allosteric proteins in a pair.
p values in (A), (C), and (D) were calculated via Wilcoxon rank-sum test. p values in (E) were calculated by Fisher’s exact test.
diseasome analysis focusing on allosteric proteins. Among

the genes encoding 574 allosteric proteins (in short allo-

steric genes below), we found that 340 allosteric genes

were known cancer-associated genes (p ¼ 3.0 3 10�89,

Fisher’s test, including 76 cancer driver genes [p ¼ 4.2 3

10�24]) and that 230 genes were Mendelian or orphan dis-

ease-causing genes (p ¼ 4.9 3 10�53). Hence, allosteric reg-

ulations are significantly involved in cancer (Figures 3A

and 3B). Meanwhile, 47,364 somatic missense mutations,

12,346 disease-causing mutations, and 1,980 polymor-

phisms were collected for the 574 allosteric genes (see

Material and Methods), and 4,451 somatic missense vari-

ants, 2,123 disease-causing variants, and 238 polymor-

phisms were mapped onto 74 allosteric protein sites in

the released 3D structures. First, we classified the 4,451

somatic variants into two categories: 1,990 deleterious var-

iants (SIFT scores < 0.05 and PolyPhen-2 score > 0.909)

and 2,461 tolerated variants. In addition, we further classi-

fied all potential sites throughout the protein structures
The A
into three groups: allosteric sites, orthosteric sites, and

other sites (see Material and Methods). Figure 3C revealed

that deleterious variants (683 of 1,990) were significantly

enriched in allosteric sites (p ¼ 4.2 3 10�4, Wilcoxon

test) compared to tolerated variants (252 of 2,461). The

high enrichment of deleterious variants was also found at

orthosteric sites (p ¼ 2.0 3 10�5, Figure 3C), whereas there

was no significant difference between deleterious and

tolerated variants at the other sites (p ¼ 0.76, Figure 3C).

In addition, we found a similar trend for disease-causing

variants: they were significantly enriched at allosteric sites

(p ¼ 1.2 3 10�6, Wilcoxon test, Figure 3D) and orthosteric

sites (p ¼ 1.5 3 10�5, Figure 3D) compared with polymor-

phisms, while not at the other sites (p ¼ 0.48, Figure 3D).

Interestingly, we did not observe the statistical differ-

ence for the distribution of both deleterious somatic

missense variants (p ¼ 0.2441) and disease-causing vari-

ants (p ¼ 0.5176) at the allosteric sites from that at

the orthosteric sites. Altogether, allosteric sites seem to
merican Journal of Human Genetics 100, 5–20, January 5, 2017 11



Figure 3. Perturbations of the Signaling
Network of Allosteric Proteins Reflect Dis-
ease Etiology
(A) Overlaps among allosteric proteins,
cancer driver genes (Drivers), the Cancer
Gene Census (CGC), and the Cancer
Gene Atlas (CGA) were shown by Venn
diagram.
(B) Overlaps among allosteric proteins,
Mendelian disease genes (MDG), orphan
disease mutant genes (ODMG), and essen-
tial genes (Essential) were shown by Venn
diagram.
(C) Distributions of deleterious somatic
missense variants versus tolerated variants
were depicted by Bean plots at allosteric
sites, orthosteric sites, and other sites.
(D) Distributions of disease-causing vari-
ants versus polymorphisms were depicted
by Bean plots in allosteric sites, orthosteric
sites, and other sites, respectively.
(E) p.Lys359Gln located at the allosteric
site of NT5C2 mediates chemotherapy
resistance in relapsed acute lymphoblastic
leukemia (ALL).
(F) The disease-causing p.Cys176Trp
variant in individuals with dilated cardio-
myopathy was located at the allosteric
site of CHRM2.
p values in (C) and (D) were calculated via
Wilcoxon test.
produce crucial effects in protein function in mediating

disease pathology, like at orthosteric sites.51 Figures 3E

and 3F illustrate two examples of allosteric proteins

harboring somatic or disease-causing variants at their allo-

steric sites. Specifically, p.Lys359Gln at the allosteric site of

NT5C2 is an activating substitution that mediates chemo-

therapy resistance in relapsed acute lymphoblastic leuke-

mia (ALL), resulting in an increased NT5C2 activity by

mimicking the effect of positive allosteric regulators

(Figure 3E).52 A p.Cys176Trp alteration, located at the allo-

steric site of the M2-muscarinic acetylcholine receptor

(CHRM2), has been identified to be a disease-causing

variant in individuals with dilated cardiomyopathy

(MIM: 115200) (Figure 3F).53,54 Collectively, these observa-

tions suggest that allosteric proteins altered by somatic var-

iants or disease-causing variants at allosteric sites may

perform indispensable roles in human diseases.

Allosteric Regulation Altered by Somatic Variants in

Pan-cancer

Wenextdevelopeda statistical approach,namedAlloDriver,

to prioritize significantly mutated allosteric proteins in
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cancer. The hypothesis of our sta-

tistical model was that a protein

that harbors the enriched somatic

missense variants at its allosteric

sites is more likely to be involved

in cancer (Figure 3C). We performed

a pan-cancer analysis based on
47,364 somatic missense variants collected from 6,958

tumor-normal matched samples on 74 allosteric pro-

teins with the experimentally validated allosteric sites.

We identified three proteins harboring significantly

enriched missense variants at their allosteric sites

during our pan-cancer analysis (q < 0.1) (Figure 4A).

These three proteins were BRAF55 (q < 10�6), HRAS56

(q ¼ 0.023), and AKT157,58 (q ¼ 0.048), which are well-

known cancer-associated proteins. To explore more allo-

steric proteins altered by somatic variants, we next

examined the allosteric proteins with p values < 0.05

as well as at least two variants at allosteric sites. In

addition, we found six potential proteins: SERPINC1

(p ¼ 0.013), CHRM2 (p ¼ 0.016), GCK (p ¼ 0.020),

MAPK8 (p ¼ 0.021), LTA4H (p ¼ 0.030), and AR

(p ¼ 0.045), as shown in Figure 4A. Among these six pro-

teins, four (CHRM2,59 MAPK8,60 LTA4H,61 and AR62)

have been reported to be involved in tumorigenesis

and tumor progression in vitro and in vivo. Remarkably,

two original proteins, SERPINC1 and GCK, were pre-

dicted to be significant by our pan-cancer model, which

could help to uncover the new functional roles of



Figure 4. Discovery of Mutated Allosteric Proteins in Pan-cancer and Individual Cancer Analyses
(A) Pan-cancer analysis of allosteric proteins using somaticmissensemutations observed in approximately 7,000matched tumor-normal
samples. The x axis is –log10(q) of variants and the y axis is the normalized variant rates at 74 allosteric proteins with experimentally
validated allosteric sites according to the crystal structures of allosteric ligand-protein complex. The gray dashed line represented the
adjusted p value (q) of 0.1. The size of the dots is proportional to the log10 (# of variants) value. Proteins with q < 0.1 are colored in
red, proteins with p < 0.05 are colored in blue, and the others are colored in gray.
(B) A heatmap depicting the frequency of variants at the allosteric sites of 74 allosteric proteins in each cancer type and pan-cancer. The
mutated allosteric proteins predicted by our approach in the pan-cancer and individual cancer analyses are marked with circles (mutated
proteins validated by previous literatures are colored in black and unreported ones are colored in white).
(C–F) Eight representatively mutated proteins harboring the enriched somatic missense variants at their allosteric sites. The squares in
color represent individual cancer types the same as those in (B).
the two proteins in cancer. Thus, our pan-cancer anal-

ysis suggests that protein allosteric dysregulation could

be a key factor during tumorigenesis and provides a
The A
potential strategy to identify mutated proteins with

the perturbed allosteric regulations caused by somatic

variants.
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Identification of Potential Mutated Allosteric Proteins

in 12 Individual Cancer Types

We further investigated the mutated allosteric proteins

that harbor enriched somatic missense variants at their

allosteric sites for individual cancer types/subtypes using

AlloDriver. As a result, we observed 35 mutated allosteric

proteins across 12 cancer types (Table S4). The predicted

mutated allosteric proteins are marked with a circle in

Figure 4B and the frequency and the number of variants

at allosteric sites for the allosteric proteins in each individ-

ual cancer type and pan-cancer are also shown. Of 35 pre-

dicted allosteric proteins, 20 proteins have been shown to

be associated with the initiation and progression of specific

individual cancer in previous reports (black circle in

Figure 4B, Table S4). For example, somatic variants in

AKT1 (q < 0.005), BRAF (q < 0.005), HRAS (q < 0.005),

PTK2 (p < 0.05), and AR (p < 0.05) were reported to signif-

icantly alter protein allosteric regulation inmultiple cancer

types, including colon (COAD), skin (SKCM), lung (LUAD

and LUSC), uterine (UCEC), stomach (STAD), breast

(BRCA), head and neck (HNSC), glioblastoma (GBM),

ovarian (OV), and bladder (BLCA). Figure 4C shows the

structure location of two well-known driver variants at

allosteric sites that induces allosteric dysregulation in mul-

tiple cancer types, p.Glu17Lys on AKT1 and p.Val600Glu

on BRAF. Although molecular mechanism remains to be

studied thoroughly, MAPK8 (p ¼ 0.0034) and HK1

(p ¼ 0.0062) in COAD, PPARG (p ¼ 0.0090) in SKCM,

CHRM2 (p ¼ 0.0002), MALT1 (p ¼ 0.0073), IGF1R

(p ¼ 0.0110), ESR2 (p ¼ 0.0171), ME2 (p ¼ 0.0198),

CHEK1 (p ¼ 0.0243), and ITGAL (p ¼ 0.0261) in LUAD,

CYP3A4 (p ¼ 0.0034) and CDK2 (q ¼ 0.0905) in UCEC,

SERPINE1 (p ¼ 0.0138) and MAPK14 (p ¼ 0.0276) in

BRCA, and ALB (p ¼ 0.0083) in OV were reported to

contribute to tumorigenesis (Table S4), which is in good

agreement with our prediction according to the model.

More interestingly, the evidences of connection between

somatic variants at allosteric sites and special cancer

phenotype suggest that pathological mechanism of these

mutated proteins could derive from perturbed allosteric

regulation.

We further explored the relationship between structure

and function of variants at an allosteric site in cancer.

More than 500 crystal structures of the allosteric proteins

were selected from the PDB database and 4,451 missense

somatic variants at 74 allosteric sites from 12 cancer types

were mapped into the structures in our analysis. We

observed four classical variant patterns at an allosteric

site (Figure S1): (1) the same variant on the same residue

contributes to multiple cancer types, e.g., AKT1 and

BRAF (Figure 4C); (2) the different variants on the same res-

idue contribute to different cancer types, e.g., MAPK14 and

ME2 (Figure 4D); (3) the variants on the different residues

contribute to the same cancer type, e.g., HK1 and MALT1

(Figure 4E); and (4) the variants on the different residues

contribute to different cancer types, e.g., IGF1R and

CYP3A4 (Figure 4F). These comprehensive patterns suggest
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that allosteric regulation of variant from allosteric site to

orthosteric site in a protein may be highly dependent of

the protein’s complex partners and network in various

cancer types.

Besides the 20 validated proteins mentioned above,

we found that 15 potential proteins were significantly

mutated in special individual cancer type (white circle in

Figure 4B, Table S4) such as PDE10A, GCK, SERPINC1,

etc. Among 15 proteins, PDE10A was predicted to

enrich missense somatic variants at allosteric site for up

to three individual cancer types, ranging from UCEC

(p ¼ 0.00378), HNSC (p ¼ 0.007), and LUAD (p ¼ 0.040)

(Figures 5A and 5B). Hence, we selected PDE10A as a candi-

date to experimentally examine its functional role in lung

cancer as a case study.

Pharmacological Inhibition of PDE10A Suppresses

Growth of Lung Cancer Cells

Cyclic nucleotide phosphodiesterases (PDEs) catalyze the

degradation of the important second messengers, namely

cyclic nucleotides cAMP and cGMP,63 and cAMP is able

to allosterically stimulate the catalysis of PDE10A by bind-

ing to an allosteric site in the GAF domain of PDE10A.64

Herein, we found that PDE10A may be involved in lung

cancer by altering allosteric regulation (Figure 5B). To

examine the clinical features of PDE10A in lung cancer,

we correlated the expression of PDE10A with the overall

survival of LUAD-affected individuals from TCGA.46 The

Kaplan-Meier survival analysis (see Material and Methods)

revealed that high PDE10A expression was significantly

correlated with poor prognosis in LUAD-affected individ-

uals (p ¼ 0.03, Figure 5C). Figure 5D shows the elevated

expression of PDE10A in two NSCLC cell lines represented

for LUAD: NCI-H23 and A549. Remarkably, the pharmaco-

logical inhibition of PDE10A by both a known PDE10A

selective inhibitor (PF-2545920) and a phosphodiesterase

inhibitor (dipyridamole) showed potential anti-prolifera-

tive effects, with IC50 values of 13.5 mM and 33.9 mM,

respectively (Figures 5E and 5F). Thus, PDE10A may play

a potential role in LUAD, and these known PDE10A inhib-

itors may provide a potential pharmacological strategy for

the targeted therapy in lung cancer.

Experimental Validation of a Potential Oncogenic

Role of p.Pro360Ala on PDE10A in NSCLC Cells

Among the 141 reported missense variants found in

PDE10A, p.Pro360Ala was identified as a deleterious

variant (SIFT ¼ 0.04 and PolyPhen-2 ¼ 0.998) in LUAD.

To investigate the functional role of p.Pro360Ala (Fig-

ure 6A), we first performed a molecular dynamic (MD)

simulation for the wild-type (WT) PDE10A versus the

mutated (p.Pro360Ala) PDE10A (Figure S2). For the two

systems, the time dependence of the root-mean-square de-

viation (RMSD) of the backbone atoms relative to the

initial structure and the root mean-square fluctuation

(RMSF) were calculated along the simulation trajectories.

Figure 6B revealed that the RMSD of PDE10A with
17



Figure 5. Experimental Validation of Functional Role to PDE10A in Lung Adenocarcinoma
(A) The top proteins of the individual analysis in uterine cancer (UCEC). ***q < 0.05, **q < 0.1, *p < 0.05.
(B) The top proteins of the individual analysis in lung adenocarcinoma (LUAD). ***q < 0.05, **q < 0.1, *p < 0.05.
(C) The Kaplan-Meier survival curves for PDE10A in LUAD. Individuals were separated into the high (red) and low (green) expression
groups, as measured by themedian gene expression level (RNA-seq). The p value in survival analysis was performed using a log-rank test.
(D) The PDE10A protein expression level in two human lung adenocarcinoma cell lines, NCI-H23 and A549, as determined by western
blotting.
(E) The chemical structures of two PDE10A inhibitors, dipyridamole and PF-2545920.
(F) Cell viability assays for dipyridamole and PF-2545920 using A549 cells. IC50 represents half maximal inhibitory concentration.
All error bars represent the SEM from three to six independent experiments.
p.Pro360Ala was more stable than that of WT PDE10A,

suggesting a positive effect on the maintenance of the

PDE10A conformation by p.Pro360Ala. Meanwhile, the

RMSF profile of PDE10A with p.Pro360Ala showed lower

atomic fluctuations at residues 190–260 and residues

280–320 (part of allosteric site, Figure S2). These results

suggest that at the allosteric site of PDE10A, p.Pro360Ala

stabilized the conformation of the entire protein by

reducing the flexibility of the key residues. In addition to

the conformational evidence, the energy landscapes of

WT versus p.Pro360Ala PDE10A were calculated and

compared using principal-component analysis (PCA) pro-

files (Figure 6C). In WT PDE10A, there were at least two

distinct energy wells in its conformational ensemble, and

the active conformation from the crystal structure was
The A
found to be unfavorable in terms of energy. For PDE10A

with p.Pro360Ala, there was only one energy deep well,

and the active conformation became an energy-favorable

state. Therefore, the computational simulations suggested

that p.Pro360Ala located at allosteric site may stabilize

the active conformation of PDE10A and retain a favorable

energy state, leading to its persistent activation in the

pathogenesis of LUAD.

Next, we experimentally tested the functional roles of

p.Pro360Ala in LUAD. Figure 6D shows the elevated

expression of PDE10A with p.Pro360Ala in NCI-H23 cell

lines compared with vector control cells. We observed a

67% increase in viable cell number in cells that stably over-

expressed PDE10Awith p.Pro360Ala compared with vector

control cells over 5 days (Figure 6E). In addition, in the
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Figure 6. The p.Pro360Ala in PDE10A Is Potentially Oncogenic in Lung Adenocarcinoma
(A) The location of p.Pro360Ala in three-dimensional crystal structure of PDE10A (PDB: 2ZMF).
(B) The distribution of the root-mean-square displacement (RMSD) values of the backbone atoms between the wild-type complex and
p.Pro360Ala mutant complex.
(C) Principal-component analysis (PCA) of the conformational changes on wild-type (left) and p.Pro360Ala mutant (right) PDE10A.
Symbol ‘‘X’’ in white represents the closest conformation compared to the crystal structure of PDE10A.
(D) The overexpression of PDE10A or PDE10A p.Pro360Ala in NCI-H23 cells.
(E) The relative growth curve of PDE10A or PDE10A p.Pro360Ala in the cells that overexpress each protein in low serum medium
(1% FBS, 600 cells/well). *p < 0.05; ***p < 0.001.
(F) Colony formation assays on both wild-type and p.Pro360Ala mutant PDE10A in NCI-H23 cells.
All error bars represent the SEM from three to six independent experiments.
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colony-formation assay, a significant increase in colony

numbers was observed in cells stably overexpressing

PDE10A with p.Pro360Ala compared with WT cells

(p < 0.001, Figure 6F). Overall, our preliminary experi-

mental data indicated that p.Pro360Ala on PDE10A would

be potentially oncogenic in LUAD. Further study is war-

ranted to determine the roles of p.Pro360Ala on PDE10A

in multiple lung cancer cell lines and in vivo.
Discussion

The allosteric regulation is an intrinsic function of protein

under many physiological and pathological conditions,

including cancer. However, there is lack of systematic

investigation of protein allosteric regulation perturbations

caused by somatic mutations in cancer. In this study, we

performed comprehensive analyses to explore the dysregu-

lation of allosteric protein function altered by somatic mu-

tations in approximately 7,000 cancer genomes across 33

cancer types. We found that allosteric proteins tended to

have stronger connectivity in the constructed human

PIN and KSIN, with high selectivity pressure, and in their

ancient evolutionary histories. Specifically, allosteric pro-

teins are more likely to be highly co-expressed in the

gene co-expressed KSIN, suggesting their critical roles in

mediating cellular function. In addition, we showed that

somatic deleterious variants and germline disease-causing

variants were significantly enriched for protein allosteric

sites compared with tolerated ones and polymorphisms,

further suggesting the important biological role of allo-

steric regulation in the etiology of human diseases such

as cancer.

Several previous studies have suggested that somatic

missense variants often change protein functional regions

on protein three-dimensional structures, such as ligand-

protein binding sites7,65 and protein-protein interfaces.66

Our observations on protein allosteric dysregulation by so-

matic variants (Figure 3) are consistent with those previous

studies.7,65,66 In addition, we further developed a permuta-

tion statistical model AlloDriver to focus on identifying

disease-associated cancer mutated allosteric proteins at

particular function regions, allosteric sites, when analyzing

more than 47,000 somatic missense mutations. We identi-

fied a series of mutated allosteric proteins that harbor en-

riched somatic variants at their allosteric sites during our

pan-cancer and individual cancer-type analyses. Several

well-known cancer gene-encoding proteins, such as

BRAF, HRAS, and AKT1, often harbor somatic hotspots at

their allosteric sites. In addition, we also found allosteric

regulation-specific variants and 15 potential mutated pro-

teins with altered allosteric function in multiple cancer

types. Taken together, this study systematically examines

allosteric perturbations caused by somatic mutations in

large-scale cancer genomes, and we not only detected

mutated proteins for further experimental investigation

but also facilitated the understanding of important orig-
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inal biological consequences for somatic mutations medi-

ating tumor initiation and progression.

More importantly, we experimentally validated that

PDE10A may mediate NSCLC cell growth. In addition,

high expression of PDE10A is significantly associated

with poor survival in LUAD-affected individuals.46 More-

over, the pharmacological inhibition of PDE10A by exist-

ing PDE10A small molecule inhibitors shows potential

anticancer effects in LUAD cell lines, demonstrating the

potential for the development potential pharmacological

therapeutics for lung cancer by targeting PDE10A. Finally,

we further identified that p.Pro360Ala on PDE10A may

promote tumor cell growth. For instance, a colony forma-

tion assay showed that p.Pro360Ala on PDE10A signifi-

cantly increased lung cancer cell growth compared with

the wild-type and control groups, a finding suggestive of

a potential oncogenic role. Since p.Pro360Ala is located

at PDE10A allosteric binding site with druggability, it

may represent an original targeted strategy in future

pre/clinical studies by inhibiting the allosteric disregula-

tion to PDE10A in lung cancer.

In this study, we revealed that the deleterious mutations

identified in cancer genomes were more significantly en-

riched at known allosteric sites derived from protein

X-ray structure data than tolerated mutations in proteins.

Furthermore, the enrichment of deleterious variants could

be of equal significance in potential allosteric sites pre-

dicted by the effect of ligand binding on protein dynamics,

which will improve the identification of new allosteric

sites. To validate the view, a widely used server in the allo-

steric field, SPACER,67,68 was used to predict the most po-

tential allosteric sites via binding leverage parameter. As a

result, 40 allosteric sites from the server were carefully

selected and then used to analyze the normalized delete-

rious/tolerated variant rate using AlloDriver. The analysis

showed that deleterious variants of proteins were enriched

at these potential allosteric sites in comparison with toler-

ated ones (p¼ 0.0225, Wilcoxon test), suggesting the same

conclusion as we found in known allosteric sites.

Inspired by such discoveries, AlloDriver may not only

shed light on the innovative molecular mechanisms of

tumorigenesis by perturbing protein allosteric regulation

but also enable the identification of novel allosteric sites

based on somatic hotspot regions. We found that the dele-

terious mutations identified in cancer genomes were more

significantly enriched at protein allosteric sites than toler-

ated mutations in the study, supporting a potential to

identify allosteric sites from somatic hotspots. It should

also be noted that deleterious mutations identified in can-

cer genomes can be significantly enriched at protein or-

thosteric sites when compared to tolerated mutations,

and there is no statistical difference (p ¼ 0.24) for delete-

rious variants at allosteric sites against orthosteric sites.

Thus, our method is suitable to identify potential allo-

steric sites when protein orthosteric sites are well known.

Otherwise, it is challenge to distinguish allosteric sites

from orthosteric sites in the prediction based on directly
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examining somatic hotspots. Machine learning-based

model by constructing gold-standard negative and positive

allosteric sites quantified by functional impact scores (e.g.,

SIFT and PolyPhen-2 scores) as descriptors may provide an

alternative way to infer allosteric sites from somatic hot-

spots. This can be expanded in our future studies.

AlloDriver focused only onmissensemutations that alter

allosteric sites by single amino acid substitution by

excluding other types of important mutations, such as

nonsense mutations (stop codons), insertions/deletions

(indels), or gene fusion. To reveal the effect of early stop co-

dons, we systematically investigated nonsense mutations

(stop codons) collected from approximately 7,000matched

tumor-normal samples at the experimentally validated allo-

steric sites for 74 allosteric proteins. In total, we found that

among 74 allosteric proteins, 61 proteins had 474nonsense

variants and 40 of them located at allosteric sites. Themuta-

tional load for the nonsense variants (8.44% ¼ 40/474) at

the protein allosteric sites was significantly lower than

that for the missense variants (21.0% ¼ 935/4,451,

p ¼ 1.8 3 10�12, Fisher’s exact test). The low distribution

of stop codons at allosteric sites may result from the

inherent feature of allosteric regulation. Allosteric regula-

tion occurs through binding of a modulator at allosteric

site to engender a conformational change that affects func-

tion at orthosteric site, and the coupling between allosteric

site and orthosteric site are dependent heavily on protein

dynamics supported by the scaffold of functional pro-

tein.10 Nonsense variants of early stop codons result in

various truncated proteins devoid of structure integrity,

leading to the break of scaffold basis for most of allosteric

function. For example, the truncated Abelson tyrosine ki-

nasewithout SH2andSH3domainsdisabled theglobal allo-

steric regulation triggered by inhibitor GNF-5 at the allo-

steric site of kinase domain.69 Therefore, the location of

nonsense variants in allosteric proteins may evolutionarily

occur everywhere instead of preferring to allosteric sites.
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