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We have typed 275 men from five populations in Algeria, Tunisia, and Egypt with a set of 119 binary markers
and 15 microsatellites from the Y chromosome, and we have analyzed the results together with published data
from Moroccan populations. North African Y-chromosomal diversity is geographically structured and fits the pattern
expected under an isolation-by-distance model. Autocorrelation analyses reveal an east-west cline of genetic variation
that extends into the Middle East and is compatible with a hypothesis of demic expansion. This expansion must
have involved relatively small numbers of Y chromosomes to account for the reduction in gene diversity towards
the West that accompanied the frequency increase of Y haplogroup E3b2, but gene flow must have been maintained
to explain the observed pattern of isolation-by-distance. Since the estimates of the times to the most recent common
ancestor (TMRCAs) of the most common haplogroups are quite recent, we suggest that the North African pattern
of Y-chromosomal variation is largely of Neolithic origin. Thus, we propose that the Neolithic transition in this
part of the world was accompanied by demic diffusion of Afro-Asiatic–speaking pastoralists from the Middle East.

Many studies of African genetic diversity have concen-
trated on sub-Saharan and northeastern Africa, the most
likely source region and corridor to the rest of the world
(Tishkoff and Williams 2002). North Africa, however,
may have followed a distinct evolutionary direction and
requires further investigation. Genetic studies of this
area, performed using classical markers, have revealed
an agreement between genetic and geographic distances
(Cavalli-Sforza et al. 1994) and a predominantly east-
west structure to the genetic variation (Bosch et al.
1997). A compilation of 185 mtDNAs sampled across
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North Africa showed (1) that about half of the lineages
belonged to the L haplogroups otherwise observed
mainly in sub-Saharan Africa and (2) that most of the
rest fell into haplogroup U6 (Salas et al. 2002), which
perhaps originated in the Near East and spread into
North Africa ∼30 thousand years (KY) ago (KYA)
(Maca-Meyer et al. 2003). Y-chromosomal studies are
potentially highly informative about the origin of male-
specific lineages, because of the detailed haplotypes that
can be obtained and their high geographical specificity
(Jobling and Tyler-Smith 2003), but previous studies
have been restricted to limited regions of North Africa
(Bosch et al. 1999, 2001; Flores et al. 2001; Manni et
al. 2002; Luis et al. 2004). Together, these genetic anal-
yses highlighted the similarity between northeastern
Africa and the Middle East and the clear genetic dif-
ferentiation between northwestern Africa and both sub-
Saharan Africa and Europe, including Iberia. The Sahara
and Mediterranean, despite the narrow width of the
Strait of Gibraltar, seem to have acted as effective long-
term barriers to Y-chromosomal gene flow.

To provide a more complete description of the North
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Table 1

Populations Studied

Population Code Origina Language
Sample

Size k(SNP)b k(STR)c

Algerian Arabs Al-Ara Alger Arabic 35 10 27
Algerian Berbers Al-Ber Tizi Ouzu Berber-Tamazigh 19 5 15
North Egyptians N-Eg Mansoura Arabic 44 14 37
South Egyptians S-Eg Luxor Arabic 29 9 27
Tunisians Tun Tunis Arabic 148 15 107

a Main city in the sampling area.
b Number of haplogroups defined by the SNPs.
c Number of haplotypes defined by 15 STRs.

African pattern of Y-chromosomal variation, we have
analyzed five additional populations: Algerian Arabs,
Algerian Berbers, Tunisians, and North and South Egyp-
tians (table 1). Binary polymorphisms (Underhill et al.
2000), including 12f2 (Casanova et al. 1985), were
typed in the hierarchical fashion described elsewhere
(Rosser et al. 2000; Paracchini et al. 2002), allowing the
allelic states at 119 markers defining 117 haplogroups
to be measured or inferred from the Y phylogeny (fig.
1A). In the North African sample, 30 binary markers
were found to be polymorphic, identifying 23 different
haplogroups (fig. 1A) (table A1 [online only]). Phylo-
genetically related haplogroups were classified into clus-
ters, the frequencies of which are shown schematically
in fig. 1B. With the existing data from Morocco (Bosch
et al. 2001), the combined set now spans the northern
part of the continent. In addition, samples from southern
Europe, the Middle East, and sub-Saharan Africa were
included in some analyses (Semino et al. 2000; Underhill
et al. 2000; Cruciani et al. 2002). Our results reveal four
main conclusions about the male-lineage variation in
North Africa.

First, as shown in fig. 1B, the lineages that are most
prevalent in North Africa are distinct from those in the
regions to the immediate north and south: Europe and
sub-Saharan Africa. This is illustrated by even a cursory
examination of the commonest haplogroups: E3b2 is
the most common haplogroup in North Africa, forming
42% of the combined sample. In contrast, R1b made
up 55% of a mixed European sample (Underhill et al.
2000) and was even higher (77%) in the Iberian sample
examined by Bosch et al. (2001), whereas E3a predom-
inates in many sub-Saharan areas, being present at 64%
in a pooled sample (Underhill et al. 2000; Cruciani et
al. 2002). Such a finding is not surprising, in the light
of the earlier genetic studies, but has an important im-
plication: despite haplogroups shared at low frequency,
suggesting limited gene flow, North African populations
have a genetic history largely distinct from both Europe
and sub-Saharan Africa over the timescales needed for
the Y-chromosomal differentiation to develop.

Second, just two haplogroups predominate within

North Africa, together making up almost two-thirds of
the male lineages: E3b2 and J* (42% and 20%, respec-
tively). E3b2 is rare outside North Africa (Cruciani et
al. 2004; Semino et al. 2004 and references therein), and
is otherwise known only from Mali, Niger, and Sudan
to the immediate south, and the Near East and Southern
Europe at very low frequencies. Haplogroup J reaches
its highest frequencies in the Middle East (Semino et al.
2004 and references therein), whereas the J-276 lineage
(equivalent to J* here) is most frequent in Palestinian
Arabs and Bedouins. Lineages can rise to high frequency
because of biological selection, social selection, and/or
neutral drift. There is a suggestion that weak negative
selection due to partial deletion of genes needed for sper-
matogenesis could act on both E3b2 and J (Repping et
al. 2003), but this would tend to decrease their fre-
quency, and there is no evidence for positive selection.
It therefore seems likely that their increase was due to
drift despite any negative selection, implying that male
effective population size has been small. Indeed, gene
diversity values increase along a latitudinal axis from
west to east (fig. 2), and much of this variation is ac-
counted for by haplogroup E3b2, which decreases in
frequency in a corresponding fashion from ∼76% in the
Saharawis in Morocco to ∼10% in Egypt (fig. 2). The
same haplogroup has increased in frequency in many
different populations within North Africa, so there must
have been gene flow between them.

Third, there is strong geographical structure to the Y-
chromosomal variation within the region. There is a high
and significant correlation observed between genetic and
geographical distances ( , ). Multidi-r p 0.55 P ! .0005
mensional scaling (MDS) analysis of genetic distances
(Slatkin 1995) based on pairwise FST estimates (calcu-
lated using the program Arlequin) between 17 of the
samples in fig. 1B showed a close correspondence with
their relative geographical locations (fig. 3). Indeed, the
positions of the samples in the MDS plot describe a
latitudinal axis, from North Africa and the Middle East
in the upper part to Central and southern Africa in the
lower part. Furthermore, the pattern of genetic affinities
among the North African samples parallels the west-east



Figure 1 A, Phylogeny of Y-chromosomal haplogroups. The name of each haplogroup is shown at the tip of the lineage (1) according
to Underhill et al. (2000) and (2) according to the Y Chromosome Consortium (2002). The polymorphisms screened in this study are shown
along the branches. Lineage colors correspond to the haplogroup cluster colors of fig. 1B). Lineages shown by dashed lines were not observed
in any of the populations discussed. Haplogroups observed in our samples are shown in boldface. The § symbol denotes 12f2a. B, Frequency
distribution of Y haplogroup clusters in African, Middle Eastern, and European samples. Populations include the samples from table 1, as well
as Moroccan Arabs (M-Ara), North Central Moroccan Berbers (NM-Ber), Saharawis (Sah), South Moroccan Berbers (SM-Ber) (Bosch et al.
2001); Sudanese (Sud), Ethiopians (Eth), Europeans (Europe), Malians (Mali), Central Africans (C-Afr), South Africans (S-Afr), Khoisan (Khoi),
Middle Easterners (Mid-East) (Underhill et al. 2000); Ethiopian Jews (Eth-J), Mossi (Mossi), Rimaibe (Rim), Fali (Fali), Ouldeme (Ould),
Bamileke (Bamil), and Ewondo (Ewo) (Cruciani et al. 2002).
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Figure 2 Population gene diversity and haplogroup E3b2 fre-
quency in North Africa as a function of longitude. The linear regres-
sions of gene (i.e., haplogroup) diversity (grey line) and E3b2 frequency
(black line) onto longitude are shown. The population codes are re-
ported in table 1 and figure 1 (in italics for gene diversity and in roman
type for E3b2 frequency).

Figure 3 MDS analyses based on binary marker genetic dis-
tances among the North African, sub-Saharan African, European, and
Middle Eastern populations from fig. 1B, tested using 116 binary
markers (stress value 0.15). The population codes are reported in table
1 and figure 1.

orientation quite precisely, from Morocco on the left-
hand side to Egypt and the Middle East on the right.
Spatial autocorrelation analysis (by AIDA; Bertorelle
and Barbujani 1995) shows a clinal pattern of variation,
more marked when Middle Eastern samples are included
(fig. 4A and 4B). Haplogroup E3b2 itself shows a sig-
nificant correlogram in a SAAP analysis (Sokal and Oden
1978) (fig. 4C). Furthermore, diversity within this hap-
logroup, measured using 15 Y-STRs (Thomas et al.
1999; Ayub et al. 2000), declines substantially towards
the west (table A2 [online only]). These findings, to-
gether with the gene diversity pattern described above,
are consistent with the hypothesis of a demic expansion
from the Middle East.

Fourth, the time depth associated with the most com-
mon Y-chromosomal haplogroups in North Africa is
shallow. Y-STR data (15 loci) were obtained for 256 Y
chromosomes and revealed 201 different haplotypes (ta-
ble A3 [online only]). Of these, only 16 were observed
in more than one individual, but two were particularly
frequent: one was present in 24 chromosomes from the
Algerian Arab, Tunisian, and northern Egyptian popu-
lations, belonging, with one exception, to haplogroup
E3b2*(xE3b2a); the second haplotype (observed in nine
Tunisians) was associated with haplogroup J*. STR var-
iability was used to estimate the TMRCA of North Af-
rican chromosomes from individual haplogroups using
the program BATWING (Wilson and Balding 1998), us-
ing either 15 loci (table A4 [online only]) or, to incor-

porate the Moroccan data (Bosch et al. 2001), 8 loci
(table 2). The TMRCA of haplogroup E3b2 was esti-
mated to be ∼4.2 KY (95% CI 2.8–6.0 KY), using the
mutation rate measured in father-son pairs (Kayser et al.
2000) and assuming 30 years per generation, or 6.9
(5.9–8.2) KY using the deduced “effective” mutation
rate calibrated by historical events (Zhivotovsky et al.
2004) (table 2). The times for haplogroup J, the second-
most-common haplogroup observed in North Africa
(6.8 KY, 95% CI 4.4–11.1 KY; or 7.9 KY, 95% CI 6.6–
9.1 KY) were also quite recent (table 2), supporting the
idea of a recent demographic event. A network (Bandelt
et al. 1999) of the E3b2*(xE3b2a) chromosomes, cal-
culated using the program NETWORK, based on eight
loci, showed a widespread high-frequency central hap-
lotype (32%) and a starlike structure (fig. A1 [online
only]). The Moroccan samples display low variability,
and their chromosomes often occupy more-peripheral
positions in the network. These findings together sup-
port our second conclusion, that genetic drift must have
shaped the North African Y-chromosomal landscape.

Which historical or prehistorical demographic pro-
cesses could explain the characteristics of the variation
of Y-chromosomal lineages in North Africa? The current
physical barriers, the Mediterranean Sea to the north
and Sahara Desert to the south, could have provided
genetic barriers leading to the separate evolutionary
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Figure 4 Spatial autocorrelation analyses. A, Correlogram of
the AIDA II indices calculated for North Africa. B, Correlogram of
the AIDA II indices for North Africa and the Middle East (Syrian,
Turkish, and Lebanese samples of Semino et al. [2000]). C, Correlo-
gram of the Moran’s I index for the haplogroup E3b2* (overall cor-
relogram significance ). ***, ; ns, not significant.P p .001 P ! .001

paths of the regions, although for the Sahara, episodes
of more favorable climatic conditions could have relaxed
this barrier at times, particularly during some intervals
between ∼10 KYA and ∼5 KYA (Muzzolini 1993). There
is no evident reason why it should have acted as a strong
genetic barrier at such times, so, if there was substantial
gene flow, the genetic differentiation between North and
sub-Saharan Africa may postdate this period. A clinal
pattern of haplogroup variation like the one we observe
can be expected from an east-to-west population ex-
pansion, and the finding of lower E3b2 STR variation
in the west than in central North Africa (table A2 [online
only]), accompanied by a substantial increase in fre-
quency of this haplogroup, is most readily explained by
expansion into virtually uninhabited terrain by popu-
lations experiencing increasing drift (Barbujani et al.
1994).

The current distributions of the haplogroups can sug-
gest geographical origins, and their TMRCAs provide
some constraints on the times of their spread. The M35
lineage (see the phylogeny in fig. 1A for marker loca-

tions) is thought to have arisen in East Africa, on the
basis of its high frequency and diversity there (Cruciani
et al. 2004; Semino et al. 2004), and to have given rise
to M81 in North Africa. The TMRCAs for E3b (8.3
KY, 95% CI 5.2–12.4 KY; or 14.4 KY, 95% CI 9.3–
19.3 KY; table 2) and E3b2 (2.8–8.2 KY) should thus
bracket the spread of E3b2 in North Africa. These times
contrast sharply with estimates of 53 � 21 KYA for the
M35 lineage and 32 � 11 KYA for the M81 lineage,
by use of a constant-sized population model, or 30 �
6 and 19 � 4 KYA, respectively, by use of an expanding
population model (Bosch et al. 2001). They are, how-
ever, more in accordance with times of 26.5 KYA (with-
out a useful CI) for the M215 mutation (intermediate
between M35 and M96 in the phylogeny; see fig. 1A)
and 5.6 KYA for M81 (Cruciani et al. 2004) or of 29.2
� 4.1 KYA for M35 and 8.6 � 2.3 KYA for M81
(Semino et al. 2004). An origin for haplogroup J in the
Middle East has been proposed (Semino et al. 2004 and
references therein); the TMRCA of the J-M267 branch,
found in both the Middle East and North Africa (and
including our J* chromosomes), was estimated at 24.1
� 9.4 KY and must predate its spread. This is consistent
with our 95% TMRCA estimate of 4.4–11.1 KY for the
North African chromosomes. Thus, although Moroccan
Y lineages were interpreted as having a predominantly
Upper Paleolithic origin from East Africa (Bosch et al.
2001), according to our TMRCA estimates, no popu-
lations within the North African samples analyzed here
have a substantial Paleolithic contribution.

Early Neolithic sites are documented in the eastern
part of North Africa and later ones in the west, which
would be compatible with an east-to-west movement at
this time, and this is also the case for the Arab expansion.
Historical records of the Arab conquest, however, sug-
gest that its demographic impact must have been limited
(McEvedy 1980). In addition, genetic evidence shows
that E3b2 is rare in the Middle East (Semino et al. 2004),
making the Arabs an unlikely source for this frequent
North African lineage. Parallel analyses between North
Africa and Southern Europe have revealed strikingly
similar patterns of Y chromosome variation which
would support a scenario in which the Neolithic expan-
sion, originating in the Middle East branched into two
flows separated by the geographical barrier of the Med-
iterranean Sea. Indeed, as in North Africa, Y-chromo-
some variability in Southern Europe is clinal, gene di-
versity decreases from east to west, and genetic distances
between North Africa and Southern Europe increase in
a regular fashion from the Middle East toward the west
(results not shown). Under the hypothesis of a Neolithic
demic expansion from the Middle East, the likely origin
of E3b in East Africa could indicate either a local con-
tribution to the North African Neolithic transition (Bar-



Reports 343

Table 2

TMRCA Estimates and 95% CIs of Y-Chromosomal Lineages in North Africa

SAMPLED

LINEAGES MUTATION

NO. OF

CHROMOSOMES

TMRCA [IN KY] (95% CI)

30 Years/
Generation)a

25 Years/
Generation)b

All 390 13.95 (8.08–24.67) 25.87 (20.47–30.99
E M145 237 9.70 (5.98–14.33) 19.66 (15.31–21.12)
E3a M2 8 2.96 (1.83–4.25) 5.06 (3.01–7.61)
E1 M33 3 3.38 (2.11–5.25) 5.6 (2.79–9.38)
E3b1 M78 38 4.48 (3.01–6.16) 8.10 (5.42–10.71)
E3b M35 226 8.26 (5.18–12.37) 14.33 (9.32–19.19)
E3b2 M81 165 4.15 (2.84–5.97) 6.90 (5.91–8.19)
F M89 152 9.77 (6.47–14..84) 19.05 (15.30–22.61)
J 12f2 93 6.78 (4.38–11.10) 7.86 (6.63–9.13)
J2 M172 14 3.67 (2.50–5.25) 4.98 (4.10–6.06)
R M173 27 4.44 (3.04–6.62) 10.24 (8.54–12.94)
I M170 2 2.83 (1.68–4.32) 5.29 (3.19–9.16)
K M9 38 7.10 (4.38–11.1) 15.09 (11.56–18.16)

NOTE.—TMRCA estimates based on 8 STRs (DYS19, DYS388, DYS389b, DYS389I,
DYS390, DYS391, DYS392, and DYS393) in nine North African populations (those from
the present study and the Moroccan samples of Bosch et al. 2001). In these calculations,
we incorporated the information from binary markers.

a The two parameters describing the population growth (alpha and beta) have been set
as alpha prior uniform (0.03, 0.05) and beta prior uniform (0.10, 0.20), the microsatellite
mutation rates used were from Weale et al. (2001) or gamma (2,1000) for the loci for which
published estimates of mutation rates were not available.

b The two parameters describing the population growth (alpha and beta) have been set
as in footnote a, the microsatellite mutation rate used was from Zhivotovsky et al. (2004).

ker 2003) or an earlier migration into the Fertile Cres-
cent, preceding the expansion back into Africa.

In conclusion, we propose that the Y-chromosomal
genetic structure observed in North Africa is mainly the
result of an expansion of early food-producing societies.
Moreover, following Arioti and Oxby (1997), we spec-
ulate that the economy of those societies relied initially
more on herding than on agriculture, because pastoral
economies probably supported lower numbers of indi-
viduals, thus favoring genetic drift, and showed more
mobility than agriculturalists, thus allowing gene flow.
Some authors believe that languages families are unlikely
to be 110 KY old and that their diffusion was associated
with the diffusion of agriculture (Diamond and Bell-
wood 2003). Since most of the languages spoken in
North Africa and in nearby parts of Asia belong to the
Afro-Asiatic family (Ruhlen 1991), this expansion could
have involved people speaking a proto–Afro-Asiatic lan-
guage. These people could have carried, among others,
the E3b and J lineages, after which the M81 mutation
arose within North Africa and expanded along with the
Neolithic population into an environment containing
few humans.
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