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Evaluation of Candidate Genes in Case-Control Studies: A Statistical
Method to Account for Related Subjects
S. L. Slager and D. J. Schaid
Department of Health Sciences Research, Mayo Clinic, Rochester, MN

Traditional case-control studies provide a powerful and efficient method for evaluation of association between
candidate genes and disease. The sampling of cases from multiplex pedigrees, rather than from a catchment area,
can increase the likelihood that genetic cases are selected. However, use of all the related cases without accounting
for their biological relationship can increase the type I error rate of the statistical test. To overcome this problem,
we present an analysis method that is used to compare genotype frequencies between cases and controls, according
to a trend in proportions as the dosage of the risk allele increases. This method uses the appropriate variance to
account for the correlated family data, thus maintaining the correct type I error rate. The magnitude of the association
is estimated by the odds ratio, with the variance of the odds ratio also accounting for the correlated data. Our
method makes efficient use of data collected from multiplex families and should prove useful for the analysis of
candidate genes among families sampled for linkage studies. An application of our method, to family data from a
prostate cancer study, is presented to illustrate the method’s utility.

Introduction

There is a strong need for analytic methods that can be
used to compare candidate-gene frequencies in biologi-
cally related cases versus those in unrelated controls. The
main reason for this need is the efficiency gain that is
obtained when case-control methods are chosen over
other association designs, such as family-based associ-
ation studies. At times, this gain can be substantial, pro-
viding a two- to sixfold increase in efficiency (Risch and
Teng 1998; Teng and Risch 1999; Risch 2000). Most of
the explanation for this gain comes from an increased
allele-frequency difference between related cases and un-
related controls. When the number of affected relatives
sampled increases, the expected frequency of the high-
risk allele increases but the expected frequency remains
constant for the unrelated controls (Risch and Teng
1998), thus resulting in a larger difference in allele fre-
quencies. In contrast, when family-based related controls
are used, the frequency of the high-risk allele also in-
creases among these controls, thereby decreasing the ex-
pected allele-frequency difference between cases and re-
lated controls. The factors that influence this gain in
efficiency include the use of unrelated controls versus
related controls (i.e., family-based controls) (Khoury and
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Yang 1998; Morton and Collins 1998; Risch and Teng
1998; Teng and Risch 1999; Risch 2000), the sampling
of cases from multiplex families versus cases from sim-
plex families, and the sampling, in multiplex families, of
all affected relatives versus only one affected relative
(Risch and Teng 1998; Teng and Risch 1999; Risch
2000).

Other reasons for the need to develop methods for
case-control studies with sampled relatives have to do
with the capability to analyze data that are readily avail-
able, either from linkage studies or from other resources.
For example, candidate-gene studies often follow up on
promising linkage findings. The ability to use the same
multiplex-family data for association analyses would be
economical; all that will then be required of the research-
er is the sampling of unrelated controls, who are less
expensive to ascertain than are cases. Furthermore, na-
tionwide registries of families at high risk for particular
traits currently exist, providing researchers with access
to lists of individuals and/or families that otherwise are
not currently available; for example, the National Can-
cer Institute has developed the Cancer Genetics Net-
work, the Cancer Family Registries for Breast and Co-
lorectal Cancer Studies, and the Chronic Lymphocytic
Leukemia Family Registry.

Although there are many advantages to using all the
cases from multiplex families, the correlations among
relatives must be accounted for in the statistical analysis,
to avoid an increase in the type I error rate of the sta-
tistical test. Previous work by Teng and Risch (1999)
introduced, for family-based study designs, a trans-
mission/disequilibrium-test–like statistic, TDS, that com-
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Table 1

Notation for Genotype Counts and Conditional Probabilities, for
Cases and Controls

SAMPLE

GENOTYPE COUNT (CONDITIONAL

PROBABILITY) FOR GENOTYPE

TOTALa/a a/A A/A

Cases r0 (p )0F1 r1 (p )1F1 r2 (p )2F1 R

Controls s0 (p )0F2 s1 (p )1F2 s2 (p )2F2 S

Total n0 n1 n2 N

pares the allele frequency in the affected child (or chil-
dren) with that in the parents. In situations in which
parental data are absent, unaffected sibs or unrelated
controls can provide an estimate of the allele frequency
in the parents. The TDS statistic, however, can only be
applied to nuclear-family data, which is too restrictive
for studies of late-onset diseases such as prostate cancer,
for which many of the sampled pedigrees contain cousin
data in addition to sibling data.

In the present article we propose statistical meth-
ods that account for the sampling of biologically related
subjects (e.g., siblings, cousins, aunts, etc.) when can-
didate-gene association analyses are performed. Our
statistical test is based on the Armitage (1955) test for
trend in proportions and includes a variance that ap-
propriately accounts for family relationships. The Ar-
mitage test for trend has two advantages over other
statistical tests of association. First, the test does not
require that the genotype frequencies comply with
Hardy-Weinberg proportions (HWP). Earlier work by
Sasieni (1997) demonstrated that statistical tests based
on the comparison of allele frequencies—rather than
genotype frequencies—between unrelated cases and
controls can have an increased rate of false-positive con-
clusions when genotype frequencies do not fit HWP.
Second, the Armitage test for trend provides a flexible
analysis method, because different scores can be used
to test the dosage of the high-risk allele, depending on
whether there is prior knowledge of the disease. The
parameter-estimation part of our method uses the tra-
ditional odds ratio as an estimate of the relative risk,
but the variance of the odds ratio accounts for the cor-
related data. At the end of this article, we illustrate the
utility of our statistic by applying it to a prostate cancer
study.

Methods

Setup

Suppose that S controls and R cases are sampled, for
a total of N subjects, where the subjects may or may
not be sampled from the same family. For simplicity,
each person is genotyped for a candidate gene that com-
prises two alleles: all high-risk alleles, A, and all other
alleles, a. Below, we discuss how to extend the analysis
to more than two alleles. The data can be summarized
in a 2 # 3 contingency table, as shown in table 1, ac-
cording to each person’s genotype and disease status.
Note that the subscripts in table 1 denote the number
of high-risk alleles, A, in a genotype.

Statistical Test

When there is no association between genotype and
disease, the genotype frequencies will be similar in cases
and controls. Although a general test to detect any dif-
ference in genotype frequencies can be derived, a trend
test that is sensitive to monotonic differences may be the
most powerful for genotypic data. We use Armitage’s
(1955) test for trend, which measures a trend in pro-
portions according to a general measure of genetic dos-
age, xi. The values of x0, x1, and x2 are used to weight
the counts of genotypes a/a, A/a, and A/A, respectively.
We assume that —that is, we assume that xi is thex p ii

number of high-risk alleles that a person has—although
other values of x can be used, such as (0,1,1), which are
powerful for a dominant effect, or (0,0,1), which are
powerful for a recessive effect. The x2 test statistic has
the form , where U is a sum of weighted dif-2U / Var (U)
ferences, of genotype counts, between cases and controls,

, where ri and si are, re-2U p � x [(S/N)r � (R/N)s ]ip0 i i i

spectively, the number of cases and controls with i high-
risk alleles, as defined in table 1.

Since subjects may be biologically related, we need to
account for their correlations when we compute the var-
iance of U, or . To do so, we represent the ge-Var (U)
notype counts, ri and si, as sums of indicator values,
because it is straightforward to determine the variances
and covariances of the elements of summations. Let

denote a vector of genotype indicatorsy p (y , y , y )i i0 i1 i2

for the ith case, with elements if the ith case hasy p 1ij

the jth genotype; otherwise, . A similar indicatory p 0ij

vector for the ith control is denoted as “zi.” The sums
of these vectors for cases and controls, respectively, are

and , where andR Sr p � y s p � z r p (r , r , r ) s pi i i i 0 1 2

. The numerator of our test statistic, U, can(s , s , s )0 1 2

then be written in vector notation, as

′U p x [(1 � f)r � fs] , (1)

where , the proportion of subjects that aref p R/N
cases. The general formula for is derived by theVar (U)
following sequence of steps:
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2 ′j p Var x [(1 � f)r � fs]{ }
′ ′p Var (1 � f)x y � fx z[ � � ]i i

i i

′ ′p Var (1 � f)x y �Var fx z[ � ] ( � )i i
i i

′ ′�2Cov (1 � f)x y ,fx z[ � � ]i i
i i

2 ′ 2 ′p (1 � f) x Var y x � f x Var z x(� ) (� )i i
i i

′�2f(1 � f)x Cov y , z x(� � )i i
i i

2 ′p (1 � f) x Var (y ) � 2 Cov (y ,y ) x �[� �� ]i i j
!i i j

2 ′f x Var (z ) � 2 Cov (z ,z ) x[� �� ]i i j
!i i j

′�2f(1 � f)x Cov(y ,z ) x .[�� ]i j
i j

(2)

Note that the three covariance terms in the last step
account for the biological relationships among the sub-
jects: , for correlation between the ith and jthCov (y , y )i j

cases; , for correlation between the ith and jthCov (z , z )i j

controls; and , for correlation between the ithCov (y , z )i j

case and the jth control.
Under the null hypothesis—that is, when there is

no association of genotype with disease—Var (y ) pi

, which is equal to the multinomial covarianceVar (z )i
matrix with elements , where andj j p p (1 � p )ij ii i i

, where pi denotes the probability for the ithj p �p pij i j

genotype gi. In addition, the covariance matrix for the
indicator vectors of any two subjects—say, and ,w wi j

where i and j can be cases, controls, or one of each—is

′ ′Cov (w ,w ) p E(w w ) � E(w )E(w )i j i j i j

′p P(g ,g ) � pp , (3)i j

where P(gi, gj) is the matrix of the joint genotype prob-
abilities for subjects i and j and where pp′ is the cross-
product of the marginal genotype probabilities ′p p

, for genotypes a/a, A/a, and A/A. The joint(p , p , p )0 1 2

genotype-probability matrix is a function of the identical
by descent (IBD) probabilities (for details, see the Ap-
pendix), which can be estimated by GENEHUNTER
(Kruglyak et al. 1996). These IBD-probability calcula-
tions are conditional on the marker genotypes of the
subjects and typically assume that the distribution of
genotypes in the population follows HWP.

We have so far assumed a biallelic marker, although
this need not be the case. There are several general ways
to extend our statistic to markers with more than two
alleles. One approach is to create a vector of trend sta-

tistics, where an arbitrary allele is chosen as a baseline
and where the “dosage” of each of the other alleles is
contrasted between the cases and the controls. To con-
struct such a statistic for K alleles, with the Kth allele
as the baseline, we create a matrix X such that (a) the
jth column in X corresponds to the jth allele, (j p

) and (b) an element in the jth column is1, 2, … , K � 1
the number of alleles of type j. This matrix X has

rows, the total number of possible genotypes.K(K � 1)/2
The vector of trend statistics is ,′U p X [(1 � f)r � fs]
where the vectors r and s are defined as before but with
length equal to the number of distinct genotypes (i.e.,

). The is easily derived by replacingK(K � 1)/2 Var (U)
the vector x by the matrix X in equation (2). It follows,
then, that the statistic has an approxi-′ �1U [Var (U)] U
mate x2 distribution with df. Another way to ac-K � 1
count for multiple alleles is to emphasize homozygotes,
by scoring them as 1 and by scoring heterozygotes as 0,
and then, with these scores placed in a vector x, to com-
pute U and according to equations (1) and (2),Var (U)
respectively.

Parameter Estimation

The odds ratio w is used as a measure of association
between the candidate gene and the disease. It approx-
imates the relative risk of disease for a genotype with i
high-risk alleles, relative to a genotype with 0 high-risk
alleles. This measure, however, is not a measure of the
odds ratio in the general population, since, as shown
below, it does not account for the oversampling of cases
from multiplex families. However, it is an estimate of
the association in families similar to the sampled fami-
lies. Note, however, that, to measure the effect in the
general population, the ascertainment criteria would
need to be modeled or corrected. The odds ratio, deter-
mined by rows 1 and 2 and columns i and 0, is defined
to be , where is the conditionalw p (p p )/(p p ) pi iF1 0F2 0F1 iF2 iFj

probability of the ith genotype, given the jth disease
category, as defined in table 1. The estimate of , whenwi

the cell counts found in table 1 are used, is ŵ pi

.r s /r si 0 0 i

For convenience, we will work with logarithms to cal-
culate the variance of . Replacing the r’s and s’sˆlog (w )i
in by the sums of indicator vectors yi and zi, respec-ŵi

tively, we have

′ ′c � y c � zi i i i i iˆVar [log (w )] p Var log � log ,i ′ ′[ ( ) ( )]c � y c � z0 i i 0 i i

where ci and c0 are indicator vectors indicating geno-
types i and 0, respectively. Through use of Taylor se-
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Table 2

Distribution for the LHb Genotype

SAMPLE

NO. OF SUBJECTS

WITH GENOTYPEa

TOTALa/a a/A A/A

Cases 362 83 0 445
Controls 434 66 3 503

Total 796 149 3 948

a A is the high-risk allele.

ries approximation (Rao 1973), an approximation of
can be shown to beˆVar [log (w )]i

′ ′
∧ c Var (� y )c c Var (� y )ci i i i 0 i i 0ˆVar[log (w )] p � �i 2 2r ri 0

′ ′c Var (� y )c c Var (� z )ci i i 0 i i i i
2 � �

2r r si 0 i

′ ′c Var (� z )c c Var (� z )c0 i i 0 i i i 0
� 2 �

2s s s0 i 0

′ ′c Cov (� y ,� z )c c Cov (� y ,� z )ci i i i i i i i i i i 0
2 � 2 �

r s r si i i 0

′ ′c Cov (� y ,� z )c c Cov (� y ,� z )c0 i i i i i 0 i i i i 0
2 � 2 .

r s r s0 i 0 0

(4)

Similar to what has been seen in the calculations
for , in equation (4) is equivalent toVar (U) Var (� y )i i

where is the mul-� Var (y ) � 2� � Cov (y , y ) Var (y )!i i i j i j i

tinomial covariance matrix and where is theCov (y ,y )i j

correlation matrix between the ith and jth cases and
is calculated as in equation (3). The calculation of

among the controls and ofVar (� z ) Cov (� y ,� z )i i i i i i

among the cases and controls follows analogously. Note,
however, that the variance and covariance terms in equa-
tion (4) are calculated under the alternative hypothesis,
implying that the genotype frequencies differ between
the cases and controls. We estimate these frequencies by

and , for the cases and controls, respectively, forr /R s /Si i

, 1, or 2. Furthermore, for the situation in whichi p 0
the subjects are independent (i.e., unrelated), all of the
covariance terms equal 0, and the variance approxi-
mation in equation (4) reduces to the standard vari-
ance estimate of the log-odds ratio—that is, the variance
approximation for the log-odds ratio becomes 1/r �i

.1/r � 1/s � 1/s0 i 0

A confidence interval for the log-odds ratio is found
as follows: Let za/2 denote the quantile, from the standard
normal distribution, with a right-tail probability of

. An approximate % confidence intervala/2 100(1 � a)
(CI) for is thenˆlog (w )i

∧ˆ ˆ�log (w ) � z Var [log (w )] .i a/2 i

Taking the antilogs of the endpoints gives an approxi-
mate % CI for .ˆ100(1 � a) wi

Data Application

To illustrate the use of our trend test, we applied it to
a prostate cancer study of 948 white men, of whom 445

had prostate cancer and 503 were population controls.
The 445 cases were enrolled in a genomewide linkage
study of prostate cancer. To be eligible for the linkage
study, a pedigree was required to have at least three
closely related men with prostate cancer, at least two of
whom were required to give a blood sample. A total of
163 pedigrees were ascertained. In addition, 18 “single-
ton” pedigrees were provided, in which there were at
least three affected relatives but in which only one af-
fected man provided a blood sample. Controls were ran-
domly sampled from Olmsted County in southeastern
Minnesota. Each man was genotyped for the variant of
the luteinizing hormone b (LHb) gene that exists on
chromosome 19. The genotype distribution for the data
is summarized in table 2, with the variant allele denoted
as “A.”

In our sample, only the cases were biologically re-
lated, resulting in 409 affected relative pairs. We used
GENEHUNTER to estimate the IBD-sharing probabil-
ities, and we programmed an S plus function (Statisti-
cal Sciences) to calculate our trend test. If weights are
assumed to be equal to the number of high-risk alleles
a person possesses, the value of our trend statistic is

( ). If family relationships are ig-2x p 2.61 P p .111

nored, the naive Armitage trend test is 2x p 3.101

( ), which is biased and therefore illustratesP p .08
the importance of accounting for related subjects.
Segregation analyses of prostate cancer have suggested
the presence of an autosomal dominant susceptibility
gene. If we use a weighting scheme in which a person
is scored as 1 if they have one or two variant alleles
and as 0 otherwise, corresponding to a dominant scor-
ing scheme, our test that accounts for family relation-
ships is ( ), in contrast to the naive2x p 3.61 P p .061

Armitage trend test ( ). If the a/a ge-2x p 4.27 P p .041

notype is used as the baseline genotype, the odds ratio
for a person with one high-risk allele is , withŵ p 1.511

a 95% CI of 1.03–2.20, whereas the 95% CI that ig-
nores the familial relationships is 1.06–2.14. The odds
ratio for one or more high-risk alleles versus no high-
risk alleles is found to be 1.44, with a correct 95% CI
of 0.99–2.10 and an incorrect naive 95% CI of
1.02–2.04. The odds ratio for the homozygous A/A ge-
notype, , is 0, because none of the cases were ho-ŵ2
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mozygous for the variant allele. Although both methods
of analysis result in nonsignificant associations, our test
correctly accounts for the correlation among the cases,
resulting in larger variances—and, hence, smaller x2 sta-
tistics and wider confidence intervals—than those re-
sulting from the incorrect, naive method.

Discussion

Similar to traditional association methods, the analysis
method that we have presented is used to compare the
genotype frequencies in cases versus those in controls.
However, unlike the traditional methods, our test allows
for the sampling of biologically related individuals, such
as related cases from multiplex pedigrees, because it ac-
counts for the correlation among family members. Ig-
noring the biological relationships will inflate the type
I error rate. Randomly sampling one case from a mul-
tiplex family circumvents the correlation among cases
but will lead to a loss of information. Our method over-
comes this loss by using all subjects. Furthermore, the
more distant the sampled related cases are, the less they
are correlated, thereby potentially increasing the power
of our trend test. If no related subjects are ascertained,
then our method reduces to the usual Armitage test for
trend.

Although unaffected family members (i.e., familial
controls) can be used in our method, the optimal study
design is one that uses unrelated controls. Advantages
to the use of unrelated controls versus the use of family-
based controls include the ease with which it is possible
to match subjects according to important confounders,
such as age and gender, and the larger pool of available
controls. A disadvantage of using unrelated controls,
however, is the possible increase in false positives that
is due to population stratification or admixture. This
potential problem can be circumvented through use of
family-based controls, although the robustness against
the effect of population stratification depends on the
choice of familial controls; parental and sibling controls
provide unbiased estimates of the genetic association,
whereas cousin controls may bias the estimates if the
cousins are not from the same gene pool as the cases
(Witte et al. 1999). Nevertheless, research has shown
that traditional case-control studies are more powerful
and efficient than are their family-based counterparts
(Khoury and Yang 1998; Morton and Collins 1998;
Teng and Risch 1999; Risch 2000) and that the greater
power of case-control studies may outweigh the poten-
tial increase in false positives that is caused by popu-
lation stratification. Furthermore, the extent of the bias
caused by population stratification is arguable. Work
presented by Bacanu et al. (2000) and Wacholder et al.
(2000) and in figure 1 of Witte et al. (1999) demon-
strates that only with extreme differences in both allele

frequency and disease prevalence does the effect of pop-
ulation stratification reach unacceptable levels. Rather
than population stratification, a more likely explanation
for the spurious results from case-control studies is the
lack of a stringent significance criterion (Risch 2000),
since many markers are tested, each with a small prior
probability of association. In any case, a well designed
case-control study that either samples cases and controls
from homogeneous populations or matches subjects ac-
cording to major confounding factors, including ethnic
background, is an absolute necessity, as are appropriate
statistical analyses. Both should minimize the effects of
population stratification, if it is present.

If, however, one has reason to suspect that a given
sample is subject to population stratification, then one
can use the genomic control method as a possible cor-
rection (Devlin and Roeder 1999). This method uses
null genetic markers (i.e., markers that are believed to
be independent of the candidate gene and disease, as
well as of each other) to estimate the background as-
sociation due to population structure. A tendency for a
positive association of disease with the null markers is
indicative of population stratification, since each null
marker is presumed to be unrelated to the disease. This
tendency can be summarized over all null markers by
a parameter denoted as “l.” The candidate-gene–as-
sociation x2 statistic can then be adjusted for population
stratification, by dividing it by l. In the absence of pop-
ulation stratification, l is expected to be 1; otherwise,
l will tend to be 11 and therefore will reduce the nu-
merical value of the x2 test for association of the can-
didate gene.

Note that the conditional (or posterior) IBD-sharing
probabilities, which are used in the calculation of the
covariance terms for biologically related individuals,
were calculated by GENEHUNTER, which assumes
HWP. Although deviations from HWP may bias IBD-
sharing estimates, we expect this to have little impact
on the results of our trend statistic; however, further
work is necessary to verify this. An alternative approach
would be to use the prior IBD-sharing probabili-
ties—that is, the probabilities that ignore the genotype
information; however, this approach could result in a
loss of power.

Moreover, we note that the odds-ratio estimates will
be consistent estimators, even though these estimates do
not take into account the oversampling of subjects from
the same family. This is because the estimates, which
are of the form ad/bc, are from a model (i.e., the un-
conditional logistic-regression model) that is a special
case of the generalized linear models considered by
Liang and Zeger (1986), who showed the consistency
of the estimates for correlated longitudinal data. Our
work differs from the problem considered by Liang and
Zeger (1986), in that we present variances that are based
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on IBD-sharing probabilities rather than on the sand-
wich estimator, thereby producing more-efficient esti-
mators, although we plan to investigate this further in
future work.

In summary, the use of multiplex families in a case-
control setting provides a powerful approach to testing
for genetic association (Teng and Risch 1999; Risch
2000). Our trend statistic, which is an extension of the
Armitage (1955) test for trend, provides an analysis
method for these designs. It uses all the available bio-
logically related cases from multiplex families, as well
as unrelated population controls and even unaffected
family members. Furthermore, it offers flexibility in the
analysis, allowing the user to choose different ways to
score the genotype. Finally, the magnitude of the as-
sociation can be estimated by the usual odds ratio, but
with the variance of the odds ratio accounting for the
correlated data.
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Appendix

The joint genotype-probability matrix for theP(g ,g )i j

ith and jth subjects can be calculated by the ITO method
(Li 1955). The ITO method uses three stochastic ma-
trices: I, T, and O. Each row of each matrix corresponds
to the conditional probability of genotype m, given both
genotype l and IBD status for subjects i and j. Thus, the
rows of each matrix sum to unity. The matrix I, which
is the identity matrix, gives the conditional probabilities
when the relatives share two alleles IBD; matrix O gives
the conditional probabilities when the relatives share no
alleles IBD, in which the elements of each row of O are
the genotype probabilities p0, p1, and p2; and, finally, the
matrix T gives the conditional probabilities when the
relatives share one allele IBD, and has the form

yj

a/a A/a A/A

a/a q p 0
T p yi A/a q/2 1/2 p/2 .

A/A 0 q p

Thus, when Bayes’s theorem and the ITO method are
used, the matrix is given byP(g ,g )i j

P(g ,g ) p P(g )P(gFg )i j i j i

p P(g ) P(gFg , IBD p k)P(IBD p k)�i j i
k

p P(g ) p I � p T � p O ,( )i 2 1 0

where is the probability that the ith and jth subjectspk

share k alleles IBD and where is a matrix withP(g )i
genotype probabilities, , along the diagonal, and 0pi

elsewhere.
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