# Physics envy in psychology: A cautionary tale 

CCNY Physics Interdisciplinary Seminar
November 19, 2015

## Alan Sokal

New York University and University College London

Prologue: The "hard" and "soft" sciences?

## Prologue: The "hard" and "soft" sciences?

Paul Krugman tells this story ...

## Prologue: The "hard" and "soft" sciences?

Paul Krugman tells this story ... in which an Indian-born economist explains his personal theory of reincarnation:

## Prologue: The "hard" and "soft" sciences?

Paul Krugman tells this story ... in which an Indian-born economist explains his personal theory of reincarnation:

If you are a good economist, a virtuous economist, then you are reborn as a physicist. But if you are an evil, wicked economist, then you are reborn as a sociologist.

## Prologue: The "hard" and "soft" sciences?

Paul Krugman tells this story ... in which an Indian-born economist explains his personal theory of reincarnation:

> If you are a good economist, a virtuous economist, then you are reborn as a physicist. But if you are an evil, wicked economist, then you are reborn as a sociologist.

Krugman comments:
A sociologist might say that this quote shows what is wrong with economists: they want a subject that is fundamentally about human beings to have the mathematical certainty of the hard sciences...

## Prologue: The "hard" and "soft" sciences?

Paul Krugman tells this story ... in which an Indian-born economist explains his personal theory of reincarnation:

If you are a good economist, a virtuous economist, then you are reborn as a physicist. But if you are an evil, wicked economist, then you are reborn as a sociologist.

Krugman comments:
But good economists know that the speaker was talking about something else entirely: the sheer difficulty of the subject.

## Prologue: The "hard" and "soft" sciences?

Paul Krugman tells this story ... in which an Indian-born economist explains his personal theory of reincarnation:

If you are a good economist, a virtuous economist, then you are reborn as a physicist. But if you are an evil, wicked economist, then you are reborn as a sociologist.

Krugman comments:
But good economists know that the speaker was talking about something else entirely: the sheer difficulty of the subject.

Economics is harder than physics; luckily it is not quite as hard as sociology.

## November 2011: An e-mail out of the blue

From: Nick Brown [u1109621@uel.ac.uk](mailto:u1109621@uel.ac.uk)
Date: Wed, 30 Nov 2011 01:34:32 +0100
Subject: Possible "intellectual impostures" in a key paper
To: sokal@nyu.edu

Dear Professor Sokal,
Please excuse me writing to you spontaneously like this. My name is Nick Brown and I am a student on the Masters in Applied Positive Psychology (MAPP) course at the University of East London, in England.

## An e-mail out of the blue (2)

I am writing to you because I read your book "Intellectual Impostures" some years ago and I think that I may have found a related sort of case, although here the presumed abuse is in the field of psychology $\ldots$ and is in a peerreviewed journal.

The paper to which I am referring is "Positive Affect and the Complex Dynamics of Human Flourishing", by Barbara Fredrickson and Marcial Losada, American Psychologist 60 (2005) 678-686.

## An e-mail out of the blue (3)

This is the paper in which Fredrickson introduced the idea of an ideal positive-to-negative emotion ratio of 3:1, or more precisely, 2.9013:1. She went on to popularise it in a general-readership book, Positivity ... Fredrickson \& Losada (2005) is one of the most quoted papers in the new field of positive psychology.
[This paper] derives most of its legitimacy by copying ideas from "The complex dynamics of high performance teams", by M. Losada, Mathematical and Computer Modelling 30 (1999) 179-192. ... The 1999 paper seems to have a number of issues, even from my uninitiated standpoint.

## An e-mail out of the blue (4)

Two pages of detailed mathematical critique follow ... (from a self-proclaimed mathematical novice!)

## An e-mail out of the blue (4)

Two pages of detailed mathematical critique follow ... (from a self-proclaimed mathematical novice!)

Now, here's my problem. I am just this grad student with no qualifications or credentials, starting out in the field. I don't know how to express this kind of idea especially coherently in academic written form, and I suspect that even if I did, it would be unlikely to be published. ...

On the other hand, I don't think that I'm a crank, and this is starting to bug me. ... I would therefore very much appreciate it if you could give me some advice on how to proceed.

## Fredrickson \& Losada 2005

# Positive Affect and the Complex Dynamics of Human Flourishing 

Barbara L. Fredrickson<br>Marcial F. Losada

University of Michigan<br>Universidade Católica de Brasilia

Extending B. L. Fredrickson's (1998) broaden-and-build theory of positive emotions and M. Losada's (1999) nonlinear dynamics model of team performance, the authors predict that a ratio of positive to negative affect at or above 2.9 will characterize individuals in flourishing mental health. Participants ( $\mathrm{N}=188$ ) completed an initial survey to identify flourishing mental health and then provided daily reports of experienced positive and negative emotions over 28 days. Results showed that the mean ratio of positive to negative affect was above 2.9 for individuals classified as flourishing and below that threshold for those not flourishing. Together with other evidence, these findings suggest that a set of general mathematical principles may describe the relations between positive affect and human flourishing.

Keywords: nonlinear systems, emotions, broaden-andbuild theory, positive psychology, subjective well-being

To flourish means to live within an optimal range of human functioning, one that connotes goodness, generativity, growth, and resilience. This definition builds on path-breaking work that measures mental health in positive terms rather than by the absence of mental illness (Keyes, 2002). Flourishing contrasts not just with
expressing appreciation, liking) and negative affect and negativity representing the unpleasant end (e.g., feeling contemptuous, irritable; expressing disdain, disliking). The affective texture of a person's life-or of a given relationship or group-can be represented by its positivity ratio, the ratio of pleasant feelings and sentiments to unpleasant ones over time. Past research has shown that for individuals, this ratio predicts subjective well-being (Diener, 2000; Kahneman, 1999). Pushing further, we hypothesize thatfor individuals, relationships, and teams-positivity ratios that meet or exceed a certain threshold characterize human flourishing. Although both negative and positive affect can produce adaptive and maladaptive outcomes, a review of the benefits of positive affect provides a particularly useful backdrop for our theorizing.

## Benefits of Positive Affect: Empirical Evidence

A wide spectrum of empirical evidence documents the adaptive value of positive affect (for a review, see Lyubomirsky, King, \& Diener, in press). Beyond their pleasant subjective feel, positive emotions, positive moods, and positive sentiments carry multiple, interrelated benefits. First, these good feelings alter people's mindsets: Experi-

## Fredrickson \& Losada 2005

As of May/June 2015, this highly cited paper received enough citations to place it in the top $1 \%$ of its academic field based on a highly cited threshold for the field and publication year

Data from Essential Science Indicators ${ }^{\text {sm }}$

Research Domains
$\square$ SOCIAL SCIENCESSCIENCE TECHNOLOGY

|  | Refine |
| :---: | :---: |
| Research Areas | $\checkmark$ |
| PSYChologybehavioral sciences more options / values... |  |
|  | Refine |
| Document Types | 4 |
| Authors | 4 |
| Authors - Korean | 4 |

## Fredrickson \& Losada 2005: What do they claim?

- Broaden-and-build theory of positive emotions (Fredrickson 1998)


## Fredrickson \& Losada 2005: What do they claim?

- Broaden-and-build theory of positive emotions (Fredrickson 1998)
- Individual's degree of "flourishing" can be predicted by positivity ratio $=\frac{\# \text { positive emotions }}{\# \text { negative emotions }}$


## Fredrickson \& Losada 2005: What do they claim?

- Broaden-and-build theory of positive emotions (Fredrickson 1998)
- Individual's degree of "flourishing" can be predicted by

$$
\text { positivity ratio }=\frac{\# \text { positive emotions }}{\# \text { negative emotions }}
$$

- Mathematical model from nonlinear dynamics (Losada 1999) predicts critical positivity ratios:
- Positivity ratio between 2.9013 and $11.6346 \Longrightarrow$ flourish
- Positivity ratio $<2.9013$ or $>11.6346 \Longrightarrow$ languish


## Fredrickson \& Losada 2005: What do they claim?

- Broaden-and-build theory of positive emotions (Fredrickson 1998)
- Individual's degree of "flourishing" can be predicted by

$$
\text { positivity ratio }=\frac{\# \text { positive emotions }}{\# \text { negative emotions }}
$$

- Mathematical model from nonlinear dynamics (Losada 1999) predicts critical positivity ratios:
- Positivity ratio between 2.9013 and $11.6346 \Longrightarrow$ flourish
- Positivity ratio $<2.9013$ or $>11.6346 \Longrightarrow$ languish
- The same critical positivity ratios hold for individuals, couples, and groups of arbitrary size.


## Fredrickson \& Losada 2005: What do they claim? (2)

and testing. Uniting existing theory on positive emotion (Fredrickson, 1998, 2001) with the mathematics of nonlinear dynamics (Hirsch et al., 2004; Lai \& Ye, 2003; Losada, 1999), we make the following seven predictions:

1. Human flourishing and languishing can be represented by a set of mathematical equations drawn from the Lorenz system.
2. The positivity ratio that bifurcates phase space between the limit cycle of languishing and the complex dynamics of flourishing is 2.9 .
3. Positivity ratios at or above 2.9 are associated with human flourishing. Flourishing is associated with dynamics that are nonrepetitive, innovative, highly flexible, and dynamically stable; that is, they represent the complex order of chaos, not the rigidity of limit cycles and point attractors.
4. Human flourishing at larger scales (e.g., groups) shows a similar structure and process to human flourishing at smaller scales (e.g., individuals).

## Fredrickson \& Losada 2005: What do they claim? (2)

and testing. Uniting existing theory on positive emotion (Fredrickson, 1998, 2001) with the mathematics of nonlinear dynamics (Hirsch et al., 2004; Lai \& Ye, 2003; Losada, 1999), we make the following seven predictions:

1. Human flourishing and languishing can be represented by a set of mathematical equations drawn from the Lorenz system.
2. The positivity ratio that bifurcates phase space between the limit cycle of languishing and the complex dynamics of flourishing is 2.9 .
3. Positivity ratios at or above 2.9 are associated with human flourishing. Flourishing is associated with dynamics that are nonrepetitive, innovative, highly flexible, and dynamicallv stahle. that is thev renresent the comnlex order
"Our discovery of the critical 2.9 positivity ratio may represent a breakthrough."

## Fredrickson 2009

"Positively wonderful!... Offers surefire methods for
transforming our lives from so-so to joyous."
-DANIEL GOLEMAN, author of Emotional Intelligence


Top-Notch Research
Reveals the 3-to-1 Ratio
That Will Change Your Life
"Read one or two
chapters daily as needed
or until grumpiness subsides."
-DANIEL GILBERT,
bestselling author of
Stumbling on Happiness
barbara L. Fredrickson, Ph.D.
KENAN DISTINGUISHED PROFESSOR, UNC-CHAPEL HILL,

## Fredrickson 2009

## CMAPTER 7

## The Positivity Ratio

People think angels fly because they have wings. Angels fly because they take themselves lightly.
-Anonymous
n chapter I , when I introduced the positivity ratio, I said it had a "tipping point." What exactly does this mean? What's a tipping point?
The best way to explain it might be to remind you of a tipping point you know well already. Consider ice and water. Look at these familiar and indispensable substances of life with fresh eyes. At one level they seem dramatically different. Ice is solid, rigid, and immobile. Water is liquid, flowing, flexible, and dynamic. Yet here's the marvel: to change one into the other simply requires a change in temperature. If you raise the ambient temperature above zero degrees Celsius, rigid ice melts into flowing water.

It's hardly magic, at least to most grown-ups. We know ice and water are chemically the same. Both are $\mathrm{H}_{2} \mathrm{O}$; two parts hydrogen and one part oxygen. But this common chemical compound is subject to a simple tipping point. You can change it from one state to anotherfrom solid to liquid-by changing its temperature.

The differences between languishing and flourishing seem to show similar properties. If we "warm up" the emotional climate of your life by increasing your positivity ratio above the critical tipping point, you'll begin to flourish. Just as zero degrees Celsius is a special number in thermodynamics, the 3-to-1 positivity ratio may well be a magic number in human psychology.

Of course, there's nothing supernatural here, no real "magic." Even so, I do see reason for awe. The world obeys universal natural laws, and sometimes these laws are shockingly simple. Human psy-chology-complex as it is-may be no different. Perhaps we too are subject to universal laws that have never before been articulated. These laws may map out an escape from the rigid and confining ice block of languishing. They may equip us to find our way to the more flowing, flexible, and dynamic life of flourishing.

I'm not asking you to accept my claim on faith. Instead, I'd like you to appreciate it based on the supporting scientific evidence. In this chapter, I describe how that evidence came together for me.

## Match Made

The origin of the positivity ratio begins with my good friend and University of Michigan colleague, Jane Dutton, an endowed professor at Michigan's Ross School of Business. Jane, a cutting-edge scholar of relationships in the workplace, ${ }^{1}$ is also a self-described matchmaker, but she doesn't connect lonely hearts; she connects people with promising, interrelated ideas. She'd connected me to soon-to-be collaborators in the past, so I'd come to trust her intuition.

Early in 2003 I received an e-mail from Marcial Losada. He said he'd developed a mathematical model-based on nonlinear dynam-ics-of my broaden-and-build theory and that we should talk. It turned out that Jane, having seen several possible points of connection

## Fredrickson 2009

- The transition from languishing to flourishing is a discontinuous phase transition ("tipping point"), like ice to liquid water.


## Fredrickson 2009

- The transition from languishing to flourishing is a discontinuous phase transition ("tipping point"), like ice to liquid water.
- This prediction comes from a nonlinear-dynamics model (Losada 1999) based on the Lorenz equations.


## Fredrickson 2009

- The transition from languishing to flourishing is a discontinuous phase transition ("tipping point"), like ice to liquid water.
- This prediction comes from a nonlinear-dynamics model (Losada 1999) based on the Lorenz equations.
- "According to Losada's math, the magic positivity ratio is 2.9013 to $1 . "$


## Fredrickson 2009

- The transition from languishing to flourishing is a discontinuous phase transition ("tipping point"), like ice to liquid water.
- This prediction comes from a nonlinear-dynamics model (Losada 1999) based on the Lorenz equations.
- "According to Losada's math, the magic positivity ratio is 2.9013 to $1 . "$
- But because of "impurities" and measurement imprecision, "I prefer to say 3 to 1. "


## Fredrickson 2009

- The transition from languishing to flourishing is a discontinuous phase transition ("tipping point"), like ice to liquid water.
- This prediction comes from a nonlinear-dynamics model (Losada 1999) based on the Lorenz equations.
- "According to Losada's math, the magic positivity ratio is 2.9013 to $1 . "$
- But because of "impurities" and measurement imprecision, "I prefer to say 3 to $1 . "$
- The same critical positivity ratio applies to individuals, couples, and groups of arbitrary size.


## 1963: The Lorenz equations

# Deterministic Nonperiodic Flow ${ }^{1}$ 

Edward N. Lorenz<br>Massachusetts Institute of Technology<br>(Manuscript received 18 November 1962, in revised form 7 January 1963)


#### Abstract

Finite systems of deterministic ordinary nonlinear differential equations may be designed to represent forced dissipative hydrodynamic flow. Solutions of these equations can be identified with trajectories in phase space. For those systems with bounded solutions, it is found that nonperiodic solutions are ordinarily unstable with respect to small modifications, so that slightly differing initial states can evolve into considerably different states. Systems with bounded solutions are shown to possess bounded numerical solutions. A simple system representing cellular convection is solved numerically. All of the solutions are found to be unstable, and almost all of them are nonperiodic. The feasibility of very-long-range weather prediction is examined in the light of these results.


## 1. Introduction

Certain hydrodynamical systems exhibit steady-state flow patterns, while others oscillate in a regular periodic fashion. Still others vary in an irregular, seemingly haphazard manner, and, even when observed for long periods of time, do not appear to repeat their previous history.
These modes of behavior may all be observed in the familiar rotating-basin experiments, described by Fultz, et al. (1959) and Hide (1958). In these experiments, a

Thus there are occasions when more than the statistics of irregular flow are of very real concern.
In this study we shall work with systems of deterministic equations which are idealizations of hydrodynamical systems. We shall be interested principally in nonperiodic solutions, i.e., solutions which never repeat their past history exactly, and where all approximate repetitions are of finite duration. Thus we shall be involved with the ultimate behavior of the solutions, as opposed to the transient behavior associated with arbitrary initial conditions.

## The Lorenz equations (2)

## Rayleigh-Bénard convection

Fluid cools by losing heat through the surface


## The Lorenz equations (2)

Rayleigh-Bénard convection


- Henri Bénard (1901 PhD thesis): "Les tourbillons cellulaires dans une nappe liquide propageant de la chaleur par convection en régime permanent"


## The Lorenz equations (2)

Rayleigh-Bénard convection

Fluid cools by losing heat through the surface


- Henri Bénard (1901 PhD thesis): "Cellular vortices in a liquid layer propagating heat by convection in steady state"


## The Lorenz equations (2)

Rayleigh-Bénard convection


- Henri Bénard (1901 PhD thesis): "Cellular vortices in a liquid layer propagating heat by convection in steady state"
- John William Strutt, aka the 3rd Baron Rayleigh (1916):
"On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side"


## The Lorenz equations (3)

Rayleigh-Bénard convection



## The Lorenz equations (3)

Rayleigh-Bénard convection


- Rayleigh (1916) wrote the partial differential equations governing the (two-dimensional) flow and temperature gradients.


## The Lorenz equations (3)

Rayleigh-Bénard convection


- Rayleigh (1916) wrote the partial differential equations governing the (two-dimensional) flow and temperature gradients.
- There is a steady-state solution in which there is no flow, and temperature varies linearly with depth.


## The Lorenz equations (3)

Rayleigh-Bénard convection


- Rayleigh (1916) wrote the partial differential equations governing the (two-dimensional) flow and temperature gradients.
- There is a steady-state solution in which there is no flow, and temperature varies linearly with depth.
- But this solution is unstable if $\Delta T$ exceeds a certain critical value. Then convection occurs.


## The Lorenz equations (4)

Rayleigh-Bénard convection


- Saltzman (1962) expanded the spatial $(x, z)$ dependence in Fourier modes.


## The Lorenz equations (4)

Rayleigh-Bénard convection


- Saltzman (1962) expanded the spatial $(x, z)$ dependence in Fourier modes.
- The partial differential equations now become an infinite system of coupled ordinary differential equations.


## The Lorenz equations (4)

Rayleigh-Bénard convection


- Saltzman (1962) expanded the spatial $(x, z)$ dependence in Fourier modes.
- The partial differential equations now become an infinite system of coupled ordinary differential equations.
- Numerical experiments showed that in some situations, all but three of the dependent variables tend eventually to zero.


## The Lorenz equations (4)

Rayleigh-Bénard convection


- Saltzman (1962) expanded the spatial $(x, z)$ dependence in Fourier modes.
- The partial differential equations now become an infinite system of coupled ordinary differential equations.
- Numerical experiments showed that in some situations, all but three of the dependent variables tend eventually to zero.
- These three variables undergo highly irregular fluctuations (which appear to be non-periodic).


## The Lorenz equations (5)

- Lorenz (1963) truncated Saltzman's system by retaining only the three most relevant Fourier modes:


## The Lorenz equations (5)

- Lorenz (1963) truncated Saltzman's system by retaining only the three most relevant Fourier modes:

$$
\begin{aligned}
\frac{d X}{d \tau} & =-\sigma X+\sigma Y \\
\frac{d Y}{d \tau} & =r X-Y-X Z \\
\frac{d Z}{d \tau} & =-b Z+X Y
\end{aligned}
$$

## The Lorenz equations (5)

- Lorenz (1963) truncated Saltzman's system by retaining only the three most relevant Fourier modes:

$$
\begin{aligned}
\frac{d X}{d \tau} & =-\sigma X+\sigma Y \\
\frac{d Y}{d \tau} & =r X-Y-X Z \\
\frac{d Z}{d \tau} & =-b Z+X Y
\end{aligned}
$$

- $\tau$ is dimensionless and is proportional to time $t$.


## The Lorenz equations (5)

- Lorenz (1963) truncated Saltzman's system by retaining only the three most relevant Fourier modes:

$$
\begin{aligned}
\frac{d X}{d \tau} & =-\sigma X+\sigma Y \\
\frac{d Y}{d \tau} & =r X-Y-X Z \\
\frac{d Z}{d \tau} & =-b Z+X Y
\end{aligned}
$$

- $\tau$ is dimensionless and is proportional to time $t$.
- $X, Y, Z$ are also dimensionless, and represent various aspects of the fluid's motion and its temperature gradients.


## The Lorenz equations (5)

- Lorenz (1963) truncated Saltzman's system by retaining only the three most relevant Fourier modes:

$$
\begin{aligned}
\frac{d X}{d \tau} & =-\sigma X+\sigma Y \\
\frac{d Y}{d \tau} & =r X-Y-X Z \\
\frac{d Z}{d \tau} & =-b Z+X Y
\end{aligned}
$$

- $\tau$ is dimensionless and is proportional to time $t$.
- $X, Y, Z$ are also dimensionless, and represent various aspects of the fluid's motion and its temperature gradients.
- $\sigma, b, r$ are dimensionless parameters. In particular, $r \propto \Delta T$ measures the strength of the tendency to develop convection.

What on earth does this have to do with psychology?

## What on earth does this have to do with psychology?

Nothing, if you ask me...

## What on earth does this have to do with psychology?

But let's analyze Fredrickson \& Losada with an open mind ...

## What on earth does this have to do with psychology?

But let's analyze Fredrickson \& Losada with an open mind ...

First problem:
Their paper in American Psychologist makes essential use of differential equations and concepts from nonlinear dynamics

## What on earth does this have to do with psychology?

But let's analyze Fredrickson \& Losada with an open mind ...

First problem:
Their paper in American Psychologist makes essential use of differential equations and concepts from nonlinear dynamics
... but without explaining these concepts at all to their psychologist readers.

## What on earth does this have to do with psychology?

But let's analyze Fredrickson \& Losada with an open mind ...

First problem:
Their paper in American Psychologist makes essential use of differential equations and concepts from nonlinear dynamics
... but without explaining these concepts at all to their psychologist readers.

Solution:

## What on earth does this have to do with psychology?

But let's analyze Fredrickson \& Losada with an open mind ...

First problem:
Their paper in American Psychologist makes essential use of differential equations and concepts from nonlinear dynamics
... but without explaining these concepts at all to their psychologist readers.

Solution:
$I$ will do my best to explain these concepts (briefly) to you.

## A crash course in differential equations for non-experts

What are differential equations, and how are they used?

## A crash course in differential equations for non-experts

What are differential equations, and how are they used?

- Used in the natural and social sciences
- Model phenomena in which...


## A crash course in differential equations for non-experts

What are differential equations, and how are they used?

- Used in the natural and social sciences
- Model phenomena in which ...
- One or more dependent variables $x_{1}, x_{2}, \ldots, x_{n}$
- Evolve deterministically as a function of time $(t)$
- The rate of change of each variable at each moment of time is a known function of the values of the variables at that same moment of time.

A crash course in differential equations (2)

Simplest case: One dependent variable $x$

## A crash course in differential equations (2)

Simplest case: One dependent variable $x$

- Independent variable $t$ ("time") and dependent variable $x$ are treated as continuous quantities
- $x$ is assumed to vary smoothly as a function of $t$
- Calculus defines the rate of change of $x$, written $d x / d t$


## A crash course in differential equations (2)

Simplest case: One dependent variable $x$

- Independent variable $t$ ("time") and dependent variable $x$ are treated as continuous quantities
- $x$ is assumed to vary smoothly as a function of $t$
- Calculus defines the rate of change of $x$, written $d x / d t$
- A (first-order) differential equation for the function $x(t)$ is an equation

$$
\frac{d x}{d t}=F(x)
$$

where $F$ is a known (i.e. explicitly specified) function

A crash course in differential equations (3)

In summary:

A crash course in differential equations (3)

In summary:
(DE1) Both time $(t)$ and dependent variable $(x)$ can be treated as continuous quantities.

## A crash course in differential equations (3)

In summary:
(DE1) Both time $(t)$ and dependent variable $(x)$ can be treated as continuous quantities.
(DE2) $x$ changes smoothly over time (i.e. no jumps).

## A crash course in differential equations (3)

In summary:
(DE1) Both time $(t)$ and dependent variable $(x)$ can be treated as continuous quantities.
(DE2) $x$ changes smoothly over time (i.e. no jumps).
(DE3) $x$ evolves deterministically (i.e. no randomness).

## A crash course in differential equations (3)

In summary:
(DE1) Both time ( $t$ ) and dependent variable ( $x$ ) can be treated as continuous quantities.
(DE2) $x$ changes smoothly over time (i.e. no jumps).
(DE3) $x$ evolves deterministically (i.e. no randomness).
(DE4) The rate of change of $x$ at any given moment of time depends only on the value of $x$ itself (i.e. not some additional variables), and only on the value of $x$ at that same moment of time (i.e. not values in the past).

## A crash course in differential equations (3)

In summary:
(DE1) Both time $(t)$ and dependent variable ( $x$ ) can be treated as continuous quantities.
(DE2) $x$ changes smoothly over time (i.e. no jumps).
(DE3) $x$ evolves deterministically (i.e. no randomness).
(DE4) The rate of change of $x$ at any given moment of time depends only on the value of $x$ itself (i.e. not some additional variables), and only on the value of $x$ at that same moment of time (i.e. not values in the past).
(DE5) The rate of change of $x$ at time $t$ is exactly $F(x(t))$, where $F$ is an explicitly specified function.

## A crash course in differential equations (4)

Ex. 1: Bank account with continuously compounded interest

## A crash course in differential equations (4)

Ex. 1: Bank account with continuously compounded interest

- Amount of money in account $(x)$ increases with time $(t)$ according to

$$
\frac{d x}{d t}=r x
$$

where $r$ is the interest rate.

## A crash course in differential equations (4)

Ex. 1: Bank account with continuously compounded interest

- Amount of money in account $(x)$ increases with time $(t)$ according to

$$
\frac{d x}{d t}=r x
$$

where $r$ is the interest rate.

- Same equation describes cooling of coffee cup, decay of radioactive atoms, ...


## A crash course in differential equations (4)

Ex. 1: Bank account with continuously compounded interest

- Amount of money in account $(x)$ increases with time $(t)$ according to

$$
\frac{d x}{d t}=r x
$$

where $r$ is the interest rate.

- Same equation describes cooling of coffee cup, decay of radioactive atoms, ...
- This is a linear differential equation, since $F(x)=r x$ is a linear function.


## A crash course in differential equations (4)

Ex. 1: Bank account with continuously compounded interest

- Amount of money in account $(x)$ increases with time $(t)$ according to

$$
\frac{d x}{d t}=r x
$$

where $r$ is the interest rate.

- Same equation describes cooling of coffee cup, decay of radioactive atoms, ...
- This is a linear differential equation, since $F(x)=r x$ is a linear function.
- Has simple solution: $x(t)=x_{0} e^{r t}$ where $x_{0}=$ account balance at time 0


## A crash course in differential equations (4)

Ex. 1: Bank account with continuously compounded interest

- General principle: Solution $x(t)$ of differential equation is completely determined by the initial conditions
(i.e. values of dependent variables at time 0 )


## A crash course in differential equations (4)

Ex. 1: Bank account with continuously compounded interest

- General principle: Solution $x(t)$ of differential equation is completely determined by the initial conditions
(i.e. values of dependent variables at time 0 )
- Usually the solution cannot be written down explicitly
- But it can be studied numerically by computer

A crash course in differential equations (5)

Ex. 2: Population biology

## A crash course in differential equations (5)

Ex. 2: Population biology

- Population $x$ of some species living in a limited territory
- Maximum sustainable population $X_{\max }$


## A crash course in differential equations (5)

Ex. 2: Population biology

- Population $x$ of some species living in a limited territory
- Maximum sustainable population $X_{\max }$
- Plausible (though highly oversimplified) model is

$$
\frac{d x}{d t}=r x\left(1-\frac{x}{X_{\max }}\right)
$$

## A crash course in differential equations (5)

Ex. 2: Population biology

- Population $x$ of some species living in a limited territory
- Maximum sustainable population $X_{\max }$
- Plausible (though highly oversimplified) model is

$$
\frac{d x}{d t}=r x\left(1-\frac{x}{X_{\max }}\right)
$$

- This is a nonlinear differential equation


## A crash course in differential equations (5)

Ex. 2: Population biology

- Population $x$ of some species living in a limited territory
- Maximum sustainable population $X_{\max }$
- Plausible (though highly oversimplified) model is

$$
\frac{d x}{d t}=r x\left(1-\frac{x}{X_{\max }}\right)
$$

- This is a nonlinear differential equation
- Possible objection: Population is not a continuous variable.


## A crash course in differential equations (5)

Ex. 2: Population biology

- Population $x$ of some species living in a limited territory
- Maximum sustainable population $X_{\max }$
- Plausible (though highly oversimplified) model is

$$
\frac{d x}{d t}=r x\left(1-\frac{x}{X_{\max }}\right)
$$

- This is a nonlinear differential equation
- Possible objection: Population is not a continuous variable.
- Answer: DE is a valid approximation if (and only if) the population is large.


## A crash course in differential equations (6)

General case: Several dependent variables $x_{1}, \ldots, x_{n}$

## A crash course in differential equations (6)

General case: Several dependent variables $x_{1}, \ldots, x_{n}$

- Independent variable $t$ ("time") and dependent variables $x_{1}, \ldots, x_{n}$ are treated as continuous quantities
- $x_{1}, \ldots, x_{n}$ are assumed to vary smoothly as a function of $t$


## A crash course in differential equations (6)

General case: Several dependent variables $x_{1}, \ldots, x_{n}$

- Independent variable $t$ ("time") and dependent variables $x_{1}, \ldots, x_{n}$ are treated as continuous quantities
- $x_{1}, \ldots, x_{n}$ are assumed to vary smoothly as a function of $t$
- A system of (first-order) differential equations for the functions $x_{1}(t), \ldots, x_{n}(t)$ is a system of equations

$$
\begin{aligned}
\frac{d x_{1}}{d t} & =F_{1}\left(x_{1}, \ldots, x_{n}\right) \\
& \vdots \\
\frac{d x_{n}}{d t} & =F_{n}\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

where $F_{1}, \ldots, F_{n}$ are specified functions.

A crash course in differential equations (7)

Ex. 3: Lorenz equations for Rayleigh-Bénard convection

## A crash course in differential equations (7)

Ex. 3: Lorenz equations for Rayleigh-Bénard convection

$$
\begin{aligned}
\frac{d X}{d \tau} & =-\sigma X+\sigma Y \\
\frac{d Y}{d \tau} & =r X-Y-X Z \\
\frac{d Z}{d \tau} & =-b Z+X Y
\end{aligned}
$$

This is a system of differential equations with three dependent variables $X, Y, Z$.

Nonlinear dynamics and chaos

## Nonlinear dynamics and chaos

- Simple equations can (sometimes) have complicated solutions!


## Nonlinear dynamics and chaos

- Simple equations can (sometimes) have complicated solutions!
- Simple systems of nonlinear DEs can (sometimes) exhibit sensitive dependence to initial conditions:


## Nonlinear dynamics and chaos

- Simple equations can (sometimes) have complicated solutions!
- Simple systems of nonlinear DEs can (sometimes) exhibit sensitive dependence to initial conditions: small changes in initial conditions can lead to deviations in the subsequent trajectory that grow exponentially over time.


## Nonlinear dynamics and chaos

- Simple equations can (sometimes) have complicated solutions!
- Simple systems of nonlinear DEs can (sometimes) exhibit sensitive dependence to initial conditions: small changes in initial conditions can lead to deviations in the subsequent trajectory that grow exponentially over time.
- Deterministic in principle, but unpredictable in practice beyond a limited window of time.
- Behavior can appear random even though it is not.


## Nonlinear dynamics and chaos

- Simple equations can (sometimes) have complicated solutions!
- Simple systems of nonlinear DEs can (sometimes) exhibit sensitive dependence to initial conditions: small changes in initial conditions can lead to deviations in the subsequent trajectory that grow exponentially over time.
- Deterministic in principle, but unpredictable in practice beyond a limited window of time.
- Behavior can appear random even though it is not.

Example: Double pendulum

## The Lorenz equations, revisited

$$
\begin{aligned}
\frac{d X}{d \tau} & =-\sigma X+\sigma Y \\
\frac{d Y}{d \tau} & =r X-Y-X Z \\
\frac{d Z}{d \tau} & =-b Z+X Y
\end{aligned}
$$

We can use the Lorenz equations to illustrate some concepts from nonlinear dynamics.

## The Lorenz equations, revisited

$$
\begin{aligned}
\frac{d X}{d \tau} & =-\sigma X+\sigma Y \\
\frac{d Y}{d \tau} & =r X-Y-X Z \\
\frac{d Z}{d \tau} & =-b Z+X Y
\end{aligned}
$$

We can use the Lorenz equations to illustrate some concepts from nonlinear dynamics.

- There is a fixed point at $X=Y=Z=0$.
- Physical interpretation: Fluid at rest.
- It is stable if $r<1$, unstable if $r>1$.


## The Lorenz equations, revisited

$$
\begin{aligned}
\frac{d X}{d \tau} & =-\sigma X+\sigma Y \\
\frac{d Y}{d \tau} & =r X-Y-X Z \\
\frac{d Z}{d \tau} & =-b Z+X Y
\end{aligned}
$$

We can use the Lorenz equations to illustrate some concepts from nonlinear dynamics.

- For $r>1$ there is another pair of fixed points, at

$$
X=Y= \pm \sqrt{b(r-1)}, \quad Z=r-1
$$

- Physical interpretation: Steady-state convective flow.
- They are stable for $r<r_{\text {crit }}$ and unstable for $r>r_{\text {crit }}$, where $r_{\text {crit }}=\sigma(\sigma+b+3) /(\sigma-b-1)$
[here we assume $\sigma>b+1$ ].


## The Lorenz equations, revisited

$$
\begin{aligned}
\frac{d X}{d \tau} & =-\sigma X+\sigma Y \\
\frac{d Y}{d \tau} & =r X-Y-X Z \\
\frac{d Z}{d \tau} & =-b Z+X Y
\end{aligned}
$$

We can use the Lorenz equations to illustrate some concepts from nonlinear dynamics.

- What happens for $r>r_{\text {crit }}$ ? Lorenz (1963) investigated the trajectories numerically and found that they tend to a butterfly-shaped set now known as the Lorenz attractor.


## The Lorenz equations, revisited

$$
\begin{aligned}
\frac{d X}{d \tau} & =-\sigma X+\sigma Y \\
\frac{d Y}{d \tau} & =r X-Y-X Z \\
\frac{d Z}{d \tau} & =-b Z+X Y
\end{aligned}
$$

We can use the Lorenz equations to illustrate some concepts from nonlinear dynamics.

- What happens for $r>r_{\text {crit }}$ ? Lorenz (1963) investigated the trajectories numerically and found that they tend to a butterfly-shaped set now known as the Lorenz attractor.
- Lorenz attractor is a fractal: neither 2-dimensional (a surface) nor 3-dimensional (a volume) but something in-between.


## The Lorenz equations, revisited

$$
\begin{aligned}
\frac{d X}{d \tau} & =-\sigma X+\sigma Y \\
\frac{d Y}{d \tau} & =r X-Y-X Z \\
\frac{d Z}{d \tau} & =-b Z+X Y
\end{aligned}
$$

We can use the Lorenz equations to illustrate some concepts from nonlinear dynamics.

- What happens for $r>r_{\text {crit }}$ ? Lorenz (1963) investigated the trajectories numerically and found that they tend to a butterfly-shaped set now known as the Lorenz attractor.
- Lorenz attractor is a fractal: neither 2-dimensional (a surface) nor 3-dimensional (a volume) but something in-between.
- Trajectories near the Lorenz attractor exhibit


## When can differential equations validly be applied?

## When can differential equations validly be applied?

Prerequisites for valid modeling by differential equations:

## When can differential equations validly be applied?

Prerequisites for valid modeling by differential equations:
(VA1) Identify and define precisely the variables that specify the state of the system at a given moment of time.

## When can differential equations validly be applied?

Prerequisites for valid modeling by differential equations:
(VA1) Identify and define precisely the variables that specify the state of the system at a given moment of time.
(VA2) Give reasons why these variables can be assumed to evolve by themselves.

## When can differential equations validly be applied?

Prerequisites for valid modeling by differential equations:
(VA1) Identify and define precisely the variables that specify the state of the system at a given moment of time.
(VA2) Give reasons why these variables can be assumed to evolve by themselves.
(VA3) Give reasons why these variables can be assumed to evolve deterministically.

## When can differential equations validly be applied?

Prerequisites for valid modeling by differential equations:
(VA1) Identify and define precisely the variables that specify the state of the system at a given moment of time.
(VA2) Give reasons why these variables can be assumed to evolve by themselves.
(VA3) Give reasons why these variables can be assumed to evolve deterministically.
(VA4) Give reasons why these variables can be assumed to evolve according to a differential equation.

## When can differential equations validly be applied?

Prerequisites for valid modeling by differential equations:
(VA1) Identify and define precisely the variables that specify the state of the system at a given moment of time.
(VA2) Give reasons why these variables can be assumed to evolve by themselves.
(VA3) Give reasons why these variables can be assumed to evolve deterministically.
(VA4) Give reasons why these variables can be assumed to evolve according to a differential equation.
(VA5) Find the specific differential equation giving (at least approximately) that evolution.

## The trail leading to Fredrickson \& Losada 2005

## The trail leading to Fredrickson \& Losada 2005

1) Marcial Losada, "The complex dynamics of high performance teams", Mathematical and Computer Modelling 30, 179-192 (1999).
2) Marcial Losada and Emily Heaphy, "The role of positivity and connectivity in the performance of business teams: A nonlinear dynamics model", American Behavioral Scientist 47, 740-765 (2004).
3) Barbara Fredrickson and Marcial Losada, "Positive affect and the complex dynamics of human flourishing", American Psychologist 60, 678-686 (2005).

## The trail leading to Fredrickson \& Losada 2005

- Each article uses "results" from the preceding ones ...


## The trail leading to Fredrickson \& Losada 2005

- Each article uses "results" from the preceding ones ... but without explaining the logic by which they were derived.


## The trail leading to Fredrickson \& Losada 2005

- Each article uses "results" from the preceding ones ... but without explaining the logic by which they were derived.
- Our paper (Brown, Sokal \& Friedman 2013) critically analyzes the three articles, in chronological order.


## The trail leading to Fredrickson \& Losada 2005

- Each article uses "results" from the preceding ones ... but without explaining the logic by which they were derived.
- Our paper (Brown, Sokal \& Friedman 2013) critically analyzes the three articles, in chronological order.
- At each stage we invite the reader to assume for the sake of argument the correctness of the preceding articles (even though we have already refuted this!):


## The trail leading to Fredrickson \& Losada 2005

- Each article uses "results" from the preceding ones ... but without explaining the logic by which they were derived.
- Our paper (Brown, Sokal \& Friedman 2013) critically analyzes the three articles, in chronological order.
- At each stage we invite the reader to assume for the sake of argument the correctness of the preceding articles (even though we have already refuted this!):
in this way we can explain more clearly the independent flaws in each of the three articles.


## The trail leading to Fredrickson \& Losada 2005

- Each article uses "results" from the preceding ones ... but without explaining the logic by which they were derived.
- Our paper (Brown, Sokal \& Friedman 2013) critically analyzes the three articles, in chronological order.
- At each stage we invite the reader to assume for the sake of argument the correctness of the preceding articles (even though we have already refuted this!):
in this way we can explain more clearly the independent flaws in each of the three articles.
- Here I will have to be brief, and refer you to BSF 2013 for details.


## Losada 1999

PERGAMON
MATHEMATICAL
AND
COMPUTER
MODELLING

# The Complex Dynamics of High Performance Teams 

M. Losada<br>Meta Learning, 2280 Georgetown Blvd. Ann Arbor, MI 48105, U.S.A.<br>(Received and accepted November 1998)


#### Abstract

The connectivity of a team is highly correlated with its performance. Connectivity is measured by the strength and number of cross-correlations among time series of the coded speech acts of meeting participants. Connectivity is used as a control parameter in a nonlinear dynamical model derived from the observed time series. Different types of attractors occur in phase space depending on the team's connectivity and performance level: low performance teams show point attractors, medium performance teams show limit cycles, and high performance teams show low-dimensional chaotic attractors. (c) 1999 Elsevier Science Ltd. All rights reserved.


Keywords-Connectivity, Team performance, Nonlinear dynamics, Complexity, Team learning.

## 1. INTRODUCTION

For several years I had been the director of the Center for Advanced Research (CFAR), built by EDS in Ann Arbor and Cambridge, near the University of Michigan and MIT campuses. CFAR had a laboratory known as the Capture Lab. This lab had an observation room with a one-way mirror, computers, videotaping equipment, and other devices that allowed several observers to code speech acts of participants in a meeting using a specialized software $[1,2]$. As a speech act was coded, the computer put a time stamp indicating at what moment during the meeting the

## Losada 1999 (2)

## Losada's experiments

## Losada 1999 (2)

## Losada's experiments

- 60 business teams were studied in the Capture Lab.


## Losada 1999 (2)

Losada's experiments

- 60 business teams were studied in the Capture Lab.
- Teams were classified as "high", "medium" or "low" performance based on business indicators.


## Losada 1999 (2)

Losada's experiments

- 60 business teams were studied in the Capture Lab.
- Teams were classified as "high", "medium" or "low" performance based on business indicators.
- Observers behind one-way mirrors coded their "speech acts" as positive-negative, other-self, inquiry-advocacy.


## Losada 1999 (2)

Losada's experiments

- 60 business teams were studied in the Capture Lab.
- Teams were classified as "high", "medium" or "low" performance based on business indicators.
- Observers behind one-way mirrors coded their "speech acts" as positive-negative, other-self, inquiry-advocacy.
- From these time series, each team's "degree of connectivity" was determined by (unspecified) statistical tests.


## Losada 1999 (2)

Losada's experiments

- 60 business teams were studied in the Capture Lab.
- Teams were classified as "high", "medium" or "low" performance based on business indicators.
- Observers behind one-way mirrors coded their "speech acts" as positive-negative, other-self, inquiry-advocacy.
- From these time series, each team's "degree of connectivity" was determined by (unspecified) statistical tests.
- According to Losada, these time series are well modelled by the Lorenz equations.


## Losada 1999 (2)

Losada's experiments

- 60 business teams were studied in the Capture Lab.
- Teams were classified as "high", "medium" or "low" performance based on business indicators.
- Observers behind one-way mirrors coded their "speech acts" as positive-negative, other-self, inquiry-advocacy.
- From these time series, each team's "degree of connectivity" was determined by (unspecified) statistical tests.
- According to Losada, these time series are well modelled by the Lorenz equations. (Alas, no data were given ...)


## Losada 1999 (3)

## Are emotions in business teams governed by the Lorenz equations?

## Losada 1999 (3)

Are emotions in business teams governed by the Lorenz equations?
Recall the criteria (VA1)-(VA5), all of which need to be satisfied.

## Losada 1999 (3)

Are emotions in business teams governed by the Lorenz equations?
Recall the criteria (VA1)-(VA5), all of which need to be satisfied.
(VA1) Identify and define precisely the variables that specify the state of the system at a given moment of time.

## Losada 1999 (3)

Are emotions in business teams governed by the Lorenz equations?
Recall the criteria (VA1)-(VA5), all of which need to be satisfied.
(VA1) Inquiry-advocacy and other-self: Ratios or differences?
How to convert discrete "speech acts" to continuous variables?

## Losada 1999 (3)

Are emotions in business teams governed by the Lorenz equations?
Recall the criteria (VA1)-(VA5), all of which need to be satisfied.
(VA1) Failed.

## Losada 1999 (3)

Are emotions in business teams governed by the Lorenz equations?
Recall the criteria (VA1)-(VA5), all of which need to be satisfied.
(VA1) Failed.
(VA2) Give reasons why these variables can be assumed to evolve by themselves.

## Losada 1999 (3)

Are emotions in business teams governed by the Lorenz equations?
Recall the criteria (VA1)-(VA5), all of which need to be satisfied.
(VA1) Failed.
(VA2) Not addressed by Losada; no arguments given.
A priori it seems implausible.

## Losada 1999 (3)

Are emotions in business teams governed by the Lorenz equations?
Recall the criteria (VA1)-(VA5), all of which need to be satisfied.
(VA1) Failed.
(VA2) Failed.

## Losada 1999 (3)

Are emotions in business teams governed by the Lorenz equations?
Recall the criteria (VA1)-(VA5), all of which need to be satisfied.
(VA1) Failed.
(VA2) Failed.
(VA3) Give reasons why these variables can be assumed to evolve deterministically.

## Losada 1999 (3)

Are emotions in business teams governed by the Lorenz equations?
Recall the criteria (VA1)-(VA5), all of which need to be satisfied.
(VA1) Failed.
(VA2) Failed.
(VA3) Not addressed by Losada; no arguments given. This seems even more implausible than VA2.

## Losada 1999 (3)

Are emotions in business teams governed by the Lorenz equations?
Recall the criteria (VA1)-(VA5), all of which need to be satisfied.
(VA1) Failed.
(VA2) Failed.
(VA3) Failed.

## Losada 1999 (3)

Are emotions in business teams governed by the Lorenz equations?
Recall the criteria (VA1)-(VA5), all of which need to be satisfied.
(VA1) Failed.
(VA2) Failed.
(VA3) Failed.
(VA4) Give reasons why these variables can be assumed to evolve according to a differential equation.

## Losada 1999 (3)

Are emotions in business teams governed by the Lorenz equations?
Recall the criteria (VA1)-(VA5), all of which need to be satisfied.
(VA1) Failed.
(VA2) Failed.
(VA3) Failed.
(VA4) Not addressed by Losada; no arguments given.
Tantamount to assuming that participants have no memory.

## Losada 1999 (3)

Are emotions in business teams governed by the Lorenz equations?
Recall the criteria (VA1)-(VA5), all of which need to be satisfied.
(VA1) Failed.
(VA2) Failed.
(VA3) Failed.
(VA4) Failed.

## Losada 1999 (3)

Are emotions in business teams governed by the Lorenz equations?
Recall the criteria (VA1)-(VA5), all of which need to be satisfied.
(VA1) Failed.
(VA2) Failed.
(VA3) Failed.
(VA4) Failed.
(VA5) Find the specific differential equation giving (at least approximately) that evolution.

## Losada 1999 (3)

Are emotions in business teams governed by the Lorenz equations?
Recall the criteria (VA1)-(VA5), all of which need to be satisfied.
(VA1) Failed.
(VA2) Failed.
(VA3) Failed.
(VA4) Failed.
(VA5) Let's examine Losada's "derivation" of his equations ...

## Losada 1999 (3)

Thinking about the model that would generate time series that would match the general characteristics of the actual time series observed at the Capture Lab, it was clear that it had to include nonlinear terms representing the dynamical interaction among the observed behaviors. One such interaction is that between inquiry-advocacy and other-self. If I call the first $X$ and the sccond $Y$, their intcraction should be represented by the product $X Y$, which is a nonlinear term. I also knew from my observations at the lab, that this interaction should be a factor in the rate of change driving emotional space (which I will call $Z$ ). In addition, I would need a scaling parameter for $Z$. Consequently, the rate of change of $Z$ should be written as

$$
\frac{d Z}{d t}=X Y-a Z
$$

where $a$ is a scaling parameter that would be held constant.
From my observations at the lab, I also knew that connectivity had a critical incidence on the level of inquiry-advocacy and, consequently, it should interact with $X$ and the product of this interaction should be part of the rate of change of $Y$, according to the characteristics of the time series observed, where there was a lead-lag relationship between $Y$ and $X$. I also needed to discount the interaction between $X$ and $Z$ (which would be represented by the nonlinear term $X Z$ ) and $Y$ with itself, so that the rate of change of $Y$ should be written as

$$
\frac{d Y}{d t}=c X-X Z-Y,
$$

where $c$ is the control parameter representing connectivity, as measured by the nexi index, and should be varied according to the nexi number for each team performance category.
Finally, and in accordance with the characteristics of the time series generated at the lab, the rate of change of $X$ should be a function of $Y$, discounting the level of $X$; so that with the inclusion of a scaling parameter, the rate of change of $X$ should be written as

$$
\frac{d X}{d t}=b(Y-X),
$$

where is $b$ is a scaling parameter to be held constant.
I realized that, except for some differences in the arrangement of the terms and the letters chosen to designate the parameters, these were the same set of coupled nonlinear differential equations that Lorenz had chosen for his model and published in one of the most often cited papers in science [15]. Lorenz obtaincd his cquations from an idcalized mathematical model of

## Losada 1999 (3)

Are emotions in business teams governed by the Lorenz equations?
Recall the criteria (VA1)-(VA5), all of which need to be satisfied.
(VA1) Failed.
(VA2) Failed.
(VA3) Failed.
(VA4) Failed.
(VA5) Failed.

## Losada 1999 (3)

Are emotions in business teams governed by the Lorenz equations?
Recall the criteria (VA1)-(VA5), all of which need to be satisfied.
(VA1) Failed.
(VA2) Failed.
(VA3) Failed.
(VA4) Failed.
(VA5) Failed.
Losada 1999 has many further flaws; see BSF 2013 for details.

## Losada 1999 (4)

## In summary:

## Losada 1999 (4)

## In summary:

- Losada provides no data from his time series.


## Losada 1999 (4)

## In summary:

- Losada provides no data from his time series.
- His theoretical "derivation" of the Lorenz equations is laughable.


## Losada 1999 (4)

## In summary:

- Losada provides no data from his time series.
- His theoretical "derivation" of the Lorenz equations is laughable.
- He claims that the Lorenz equations match the "general characteristics" of his data, but he provides no evidence. (A priori it seems implausible.)


## Losada 1999 (4)

In summary:

- Losada provides no data from his time series.
- His theoretical "derivation" of the Lorenz equations is laughable.
- He claims that the Lorenz equations match the "general characteristics" of his data, but he provides no evidence. (A priori it seems implausible.)

Conclusion:

- Losada gives no evidence that the Lorenz equations have any relevance to modelling the time evolution of human emotions.


## Losada 1999 (4)

In summary:

- Losada provides no data from his time series.
- His theoretical "derivation" of the Lorenz equations is laughable.
- He claims that the Lorenz equations match the "general characteristics" of his data, but he provides no evidence. (A priori it seems implausible.)

Conclusion:

- Losada gives no evidence that the Lorenz equations have any relevance to modelling the time evolution of human emotions.

No surprise. Why should they?

## Losada \& Heaphy 2004

# The Role of Positivity and Connectivity in the Performance of Business Teams 

A Nonlinear Dynamics Model<br>MARCIAL LOSADA<br>Meta Learning<br>EMILY HEAPHY<br>University of Michigan Business School

Connectivity, the control parameter in a nonlinear dynamics model of team performance is mathematically linked to the ratio of positivity to negativity $(P / N)$ in team interaction. By knowing the P/N ratio it is possible to run the nonlinear dynamics model that will portray what types of dynamics are possible for a team. These dynamics are of three types: point attractor, limit cycle, and complexor (complex order, or "chaotic" in the mathematical sense). Low performance teams end up in point attractor dynamics, medium perfomance teams in limit cycle dynamics, and high performance teams in complexor dynamics

Keywords: positivity; connectivity; team performance; nonlinear dynamics

Positive organizational scholars have made an explicit call for the use of nonlinear models stating that their field "is especially interested in the nonlinear positive dynamics . . . that are frequently associated with positive organizational phenomena" (Cameron, Dutton, \& Quinn, 2003, pp. 4-5). This article answers this call by showing how a nonlinear dynamics model, the meta learning (ML) model, developed and validated against empirical time series data of business teams by Losada (1999), can be used to link the positivity/negativity ratio (P/N) of a team with its connectivity, the control parameter in the ML model. P/N was obtained by coding the verbal communication of the team in terms of approving versus disapproving statements. In the ML model, positivity and negativity operate as powerful feedback systems: negativity dampens deviations from some standard, while positivity acts as amplifying or reinforcing feedback that

## Losada \& Heaphy 2004 (2)

Main steps of Losada-Heaphy reasoning
(as best I can reconstruct it, anyway ...)

## Losada \& Heaphy 2004 (2)

Main steps of Losada-Heaphy reasoning
(as best I can reconstruct it, anyway ...)

- Redefinition of "emotional space": no longer equal to $P / N$.


## Losada \& Heaphy 2004 (2)

Main steps of Losada-Heaphy reasoning
(as best I can reconstruct it, anyway ...)

- Redefinition of "emotional space": no longer equal to $P / N$.
- Linking "emotional space" and "connectivity": $E=c-1$


## Losada \& Heaphy 2004 (2)

Main steps of Losada-Heaphy reasoning
(as best I can reconstruct it, anyway ...)

- Redefinition of "emotional space": no longer equal to $P / N$.
- Linking "emotional space" and "connectivity": $E=c-1$
- Linking "emotional space" and the $\mathrm{P} / \mathrm{N}$ ratio:
$P / N=(E-i) / b$


## Losada \& Heaphy 2004 (2)

Main steps of Losada-Heaphy reasoning

## (as best I can reconstruct it, anyway ...)

- Redefinition of "emotional space": no longer equal to $P / N$.
- Linking "emotional space" and "connectivity": $E=c-1$
- Linking "emotional space" and the $\mathrm{P} / \mathrm{N}$ ratio:

$$
P / N=(E-i) / b
$$

- Conclusion: $P / N=(c-i-1) / b$ where
$c=$ "connectivity"
$i=$ initial value of the $P / N$ state variable


## Losada \& Heaphy 2004 (2)

Main steps of Losada-Heaphy reasoning
(as best I can reconstruct it, anyway ...)

- Redefinition of "emotional space": no longer equal to $P / N$.
- Linking "emotional space" and "connectivity": $E=c-1$
- Linking "emotional space" and the $\mathrm{P} / \mathrm{N}$ ratio:

$$
P / N=(E-i) / b
$$

- Conclusion: $P / N=(c-i-1) / b$ where
$c=$ "connectivity"
$i=$ initial value of the $P / N$ state variable
- Does any of this make sense?


## Losada \& Heaphy 2004 (2)

Main steps of Losada-Heaphy reasoning
(as best I can reconstruct it, anyway ...)

- Redefinition of "emotional space": no longer equal to $P / N$.
- Linking "emotional space" and "connectivity": $E=c-1$
- Linking "emotional space" and the $\mathrm{P} / \mathrm{N}$ ratio:

$$
P / N=(E-i) / b
$$

- Conclusion: $P / N=(c-i-1) / b$ where
$c=$ "connectivity"
$i=$ initial value of the $P / N$ state variable
- Does any of this make sense? Not as far as I can tell ...


## Losada \& Heaphy 2004 (2)

Main steps of Losada-Heaphy reasoning
(as best I can reconstruct it, anyway ...)

- Redefinition of "emotional space": no longer equal to $P / N$.
- Linking "emotional space" and "connectivity": $E=c-1$
- Linking "emotional space" and the $\mathrm{P} / \mathrm{N}$ ratio:

$$
P / N=(E-i) / b
$$

- Conclusion: $P / N=(c-i-1) / b$ where
$c=$ "connectivity"
$i=$ initial value of the $P / N$ state variable
- Does any of this make sense?

But you should judge for yourself ...

## Putting it all together: Fredrickson \& Losada 2005

## Putting it all together: Fredrickson \& Losada 2005

F\&L 2005 derived the critical positivity ratio of 2.9013 as follows:

## Putting it all together: Fredrickson \& Losada 2005

F\&L 2005 derived the critical positivity ratio of 2.9013 as follows:
Subsequent work on the model (Losada \& Heaphy, 2004)
revealed that the positivity ratio relates directly to the control parameter by the equation $P / N=\left(c-Y_{0}-1\right) b^{-1} \ldots$
Past mathematical work on Lorenz systems by Sparrow (1982) and others (Frøyland \& Alfsen, 1984; Michielin \& Phillipson, 1997) has established that when $r$, the control parameter in the Lorenz model, reaches 24.7368 , the trajectory in phase space shows a chaotic attractor.
Losada (1999) established the equivalence between his
control parameter, $c$, and the Lorenzian control parameter, $r$.
Using the above equation, it is known that the positivity ratio equivalent to $r=24.7368$ is 2.9013 .

## Fredrickson \& Losada 2005 (2)

F\&L didn't explain where $r_{\text {crit }}=24.7368$ comes from or how it leads to $(P / N)_{\text {crit }}=2.9013 \ldots$

## Fredrickson \& Losada 2005 (2)

F\&L didn't explain where $r_{\text {crit }}=24.7368$ comes from or how it leads to $(P / N)_{\text {crit }}=2.9013 \ldots$ but we can!

## Fredrickson \& Losada 2005 (2)

- Accept uncritically the main "result" of Losada \& Heaphy:

$$
P / N=(c-i-1) / b
$$

## Fredrickson \& Losada 2005 (2)

- Accept uncritically the main "result" of Losada \& Heaphy: $P / N=(c-i-1) / b$
- Accept that Losada "established" the equivalence of connectivity $c$ and Lorenz control parameter $r \ldots$


## Fredrickson \& Losada 2005 (2)

- Accept uncritically the main "result" of Losada \& Heaphy: $P / N=(c-i-1) / b$
- Accept that Losada "established" the equivalence of connectivity $c$ and Lorenz control parameter $r \ldots$ (in fact he merely declared it by fiat)


## Fredrickson \& Losada 2005 (2)

- Accept uncritically the main "result" of Losada \& Heaphy: $P / N=(c-i-1) / b$
- Accept that Losada "established" the equivalence of connectivity $c$ and Lorenz control parameter $r \ldots$
(in fact he merely declared it by fiat)
- Set $c$ equal to $r_{\text {crit }}=\sigma(\sigma+b+3) /(\sigma-b-1)$ : the boundary between chaos and non-chaos in the Lorenz system


## Fredrickson \& Losada 2005 (2)

- Accept uncritically the main "result" of Losada \& Heaphy: $P / N=(c-i-1) / b$
- Accept that Losada "established" the equivalence of connectivity $c$ and Lorenz control parameter $r \ldots$ (in fact he merely declared it by fiat)
- Set $c$ equal to $r_{\text {crit }}=\sigma(\sigma+b+3) /(\sigma-b-1)$ : the boundary between chaos and non-chaos in the Lorenz system
- Simple algebra then yields

$$
(P / N)_{\mathrm{crit}}=\frac{\sigma(\sigma+b+3)}{b(\sigma-b-1)}-\frac{i+1}{b}
$$

## Fredrickson \& Losada 2005 (3)

- Specializing to $\sigma=10, b=8 / 3, i=16$ yields

$$
(P / N)_{\mathrm{crit}}=\frac{441}{152}=2.901 \overline{315789473684210526}
$$

## Fredrickson \& Losada 2005 (3)

- Specializing to $\sigma=10, b=8 / 3, i=16$ yields

$$
(P / N)_{\text {crit }}=\frac{441}{152}=2.901 \overline{315789473684210526}
$$

- F\&L were too modest to claim merely five significant digits: their critical positivity ratio is an exact rational number!


## Fredrickson \& Losada 2005 (3)

- Specializing to $\sigma=10, b=8 / 3, i=16$ yields

$$
(P / N)_{\mathrm{crit}}=\frac{441}{152}=2.901 \overline{315789473684210526}
$$

- F\&L were too modest to claim merely five significant digits: their critical positivity ratio is an exact rational number!
- But where did $\sigma=10, b=8 / 3, i=16$ come from?


## Fredrickson \& Losada 2005 (3)

- Specializing to $\sigma=10, b=8 / 3, i=16$ yields

$$
(P / N)_{\mathrm{crit}}=\frac{441}{152}=2.901 \overline{315789473684210526}
$$

- F\&L were too modest to claim merely five significant digits: their critical positivity ratio is an exact rational number!
- But where did $\sigma=10, b=8 / 3, i=16$ come from?
- Saltzman (1962) chose $\sigma=10, b=8 / 3$ for illustrative purposes.


## Fredrickson \& Losada 2005 (3)

- Specializing to $\sigma=10, b=8 / 3, i=16$ yields

$$
(P / N)_{\mathrm{crit}}=\frac{441}{152}=2.901 \overline{315789473684210526}
$$

- F\&L were too modest to claim merely five significant digits: their critical positivity ratio is an exact rational number!
- But where did $\sigma=10, b=8 / 3, i=16$ come from?
- Saltzman (1962) chose $\sigma=10, b=8 / 3$ for illustrative purposes.
- Lorenz (1963) followed him; Losada (1999) followed Lorenz.


## Fredrickson \& Losada 2005 (3)

- Specializing to $\sigma=10, b=8 / 3, i=16$ yields

$$
(P / N)_{\mathrm{crit}}=\frac{441}{152}=2.901 \overline{315789473684210526}
$$

- F\&L were too modest to claim merely five significant digits: their critical positivity ratio is an exact rational number!
- But where did $\sigma=10, b=8 / 3, i=16$ come from?
- Saltzman (1962) chose $\sigma=10, b=8 / 3$ for illustrative purposes.
- Lorenz (1963) followed him; Losada (1999) followed Lorenz.
- There is nothing special about these numbers!

Any other values within a wide range would produce qualitatively similar behavior - but completely different predictions for $(P / N)_{\text {crit }}$.

## Fredrickson \& Losada 2005 (4)

Conclusion: Even if we accept for the sake of argument that

- Every single claim made in Losada (1999) and Losada and Heaphy (2004) is correct;
- The Lorenz equations provide a valid and universal way of modeling human emotions;


## Fredrickson \& Losada 2005 (4)

Conclusion: Even if we accept for the sake of argument that

- Every single claim made in Losada (1999) and Losada and Heaphy (2004) is correct;
- The Lorenz equations provide a valid and universal way of modeling human emotions;
the critical minimum positivity ratio of 2.9013 would still be


## Fredrickson \& Losada 2005 (4)

Conclusion: Even if we accept for the sake of argument that

- Every single claim made in Losada (1999) and Losada and Heaphy (2004) is correct;
- The Lorenz equations provide a valid and universal way of modeling human emotions;
the critical minimum positivity ratio of 2.9013 would still be nothing more than an artifact of the arbitrary choice of an illustratively convenient value made by a geophysicist in Hartford in 1962.


## July 2, 2012: Submission to American Psychologist

Dear Dr. Anderson,
We are enclosing a submission to American Psychologist entitled "The Complex Dynamics of an Intellectual Imposture: The Critical Positivity Ratio", by Nicholas J.L. Brown, Alan D. Sokal and Harris L. Friedman. The manuscript is 35 pages long.

We are happy for the manuscript to be given the customary masked review, and we have deleted all identifying information from the manuscript.

All three authors have agreed to the byline order and to the submission of the manuscript in this form. ETC ETC

## 10 days later: Summary rejection

Thank you for submitting your manuscript, "The Complex Dynamics of an Intellectual Imposture: The Critical Positivity Ratio," to the American Psychologist (AP). I am sorry to inform you that it will not be sent out for formal peer review. ...
[ Y ]our manuscript is really a commentary on a manuscript previously published in the AP. The AP has a standard commentary policy, and it involves a timely response ... Proposed AP comments are expected within 2-3 months after the publication of an article in the AP. ... [T]hus, the manuscript file will be closed.

Sincerely, Gary R. VandenBos, PhD, Managing Editor

## July 13, 2012: Appeal to the Editor-in-Chief

Dear Dr. Anderson,

... Of course, you have a perfect right to apply your "standard commentary policy" as rigidly as you wish; it is not our role to tell you how to run your journal. But as should be obvious from the title, introduction, content and conclusion of our manuscript, this is no ordinary comment. Rather, we are contending ... that a highly-cited article published 7 years ago in American Psychologist ... is an out-and-out intellectual imposture. ...

## July 13, 2012: Appeal to the Editor-in-Chief

This situation is quite likely unprecedented in the history of $A P$, and for this reason you might wish to be a bit flexible in your response. Otherwise, fair-minded observers will take home the following message about $A P$ 's editorial practices: it is acceptable for $A P$ to publish an article that is, in reality, an intellectual imposture; but unless the imposture is discovered within 2-3 months of publication, $A P$ will not deign to publish a corrective. This is an absurdly restrictive "statute of limitations", and your reliance on it will not enhance the public image of $A P$.

## July 13, 2012: Appeal to the Editor-in-Chief

Of course, the foregoing presumes the correctness of our claim that the article of Fredrickson and Losada (2005) is indeed an intellectual imposture. Perhaps you doubt this claim. Fair enough: then send our manuscript out for review, and let us see whether any of the reviewers can come up with any valid scientific criticisms of our reasoning.

Let us be clear: we are not begging you to publish our manuscript. ...

## Three hours later: Reversal by American Psychologist

Dear Dr. Sokal,
I received your letter of appeal of the decision to reject without review your manuscript, "The Complex Dynamics of an Intellectual Imposture: The Critical Positivity Ratio" ... I have carefully reviewed your letter and have decided to grant your appeal. We will begin processing your manuscript shortly.

Best wishes,

Norman Anderson, Ph.D.
Chief Executive Officer
American Psychological Association

# The Complex Dynamics of Wishful Thinking 

## The Critical Positivity Ratio

Nicholas J. L. Brown<br>Alan D. Sokal<br>Harris L. Friedman

Strasbourg, France<br>New York University and University College London<br>Saybrook University and University of Florida

We examine critically the claims made by Fredrickson and Losada (2005) concerning the construct known as the "positivity ratio." We find no theoretical or empirical justification for the use of differential equations drawn from fluid dynamics, a subfield of physics, to describe changes in human emotions over time; furthermore, we demonstrate that the purported application of these equations contains numerous fundamental conceptual and mathematical errors. The lack of relevance of these equations and their incorrect application lead us to conclude that Fredrickson and Losada's claim to have demonstrated the existence of a critical minimum positivity ratio of 2.9013 is entirely unfounded. More generally, we urge future researchers to exercise caution in the use of advanced mathematical tools, such as nonlinear dynamics, and in particular to verify that the elementary conditions for their valid application have been met.
Keywords: positivity ratio, broaden-and-build theory, positive psychology, nonlinear dynamics, Lorenz system

T
he "broaden-and-build" theory (Fredrickson, 1998, $2001,2004)$ postulates that positive emotions help to develop broad repertoires of thought and action, which in turn build resilience to buffer against future emo-
those who were "flourishing" had an average positivity ratio of 3.2.

The work of Fredrickson and Losada (2005) has had an extensive influence on the field of positive psychology. This article has been frequently cited, with the Web of Knowledge listing 322 scholarly citations as of April 25, 2013. Fredrickson and Kurtz (2011, pp. 41-42), in a recent review, highlighted this work as providing an "evidencebased guideline" for the claim that a specific value of the positivity ratio acts as a "tipping point beyond which the full impact of positive emotions becomes unleashed" (they now round off 2.9013 to 3 ). An entire chapter of Fredrickson's (2009) popular book (Chapter 7) is devoted to expounding this "huge discovery" (p. 122), which has also been enthusiastically brought to a wider audience by Seligman (2011a, pp. 66-68, 2011b). In fact, the paperback edition of Fredrickson's (2009) book is subtitled Top-Notch Research Reveals the 3-to-1 Ratio That Will Change Your Life.

It is worth stressing that Fredrickson and Losada (2005) did not qualify their assertions about the critical positivity ratios in any way. The values 2.9013 and 11.6346 were presented as being independent of age, gender, ethnicity, educational level, socioeconomic status or any of the many other factors that one might imagine as potentially

# Updated Thinking on Positivity Ratios 

Barbara L. Fredrickson<br>University of North Carolina at Chapel Hill

This article presents my response to the article by Brown, Sokal, and Friedman (2013), which critically examined Losada's conceptual and mathematical work (as presented in Losada, 1999; Losada \& Heaphy, 2004; and Fredrickson \& Losada; 2005) and concluded that mathematical claims for a critical tipping point positivity ratio are unfounded. In the present article, I draw recent empirical evidence together to support the continued value of computing and seeking to elevate positivity ratios. I also underscore the necessity of modeling nonlinear effects of positivity ratios and, more generally, the value of systems science approaches within affective science and positive psychology. Even when scrubbed of Losada's now-questioned mathematical modeling, ample evidence continues to support the conclusion that, within bounds, higher positivity ratios are predictive of flourishing mental health and other beneficial outcomes.
Keywords: positivity ratio, broaden-and-build theory, positive psychology, nonlinear dynamics, Lorenz system

In their lively article "The Complex Dynamics of Wishful Thinking: The Critical Positivity Ratio," Brown, Sokal, and Friedman (2013) offered a critique of the application of nonlinear dynamics and differential equations in two of Marcial Losada's foundational papers (Losada, 1999; Losada \& Heaphy, 2004). They also identified additional logical errors that nermeate an article that
use of nonlinear differential equations, particularly chaotic ones such as the Lorenz equations, is appropriate.

My aim in this response article is not to defend Losada's mathematical and conceptual work. Indeed, I have neither the expertise nor the insight to do so on my own. My aim, rather, is to update the empirical evidence for the value and nonlinearity of positivity ratios. My intent is to offer a steadying counterpoint to Brown and colleagues' (2013) article. Absorbing their many critiques of Losada's work might tempt a reader to throw out the proverbial baby with the bath water. Even while Brown and colleagues have called into question some of the claims Losada and I made in 2005, in the intervening years, others of our claims not only remain unchallenged but stand now on even firmer empirical footing.

It bears underscoring that the claims Losada and I made in our 2005 AP article (Fredrickson \& Losada, 2005) were supported by three interwoven elements: psychological theory, mathematical modeling, and quantitative data. Here I unthread the now-questionable element of mathematical modeling from this braid, which leaves us in territory familiar to most psychological scientists, that at the interface of theory and data. While perhaps not as compelling as the trio of theory and data buttressed by mathematical modeling, the resulting duo nevertheless remains a strong and dynamic one.

Before illuminating the logic and importance of positivity ratios, I lay the necessary theoretical and empirical

## Fredrickson 2013

- "My aim . . . is not to defend Losada's mathematical and conceptual work. Indeed, I have neither the expertise nor the insight to do so on my own."


## Fredrickson 2013

- "My aim . . . is not to defend Losada's mathematical and conceptual work. Indeed, I have neither the expertise nor the insight to do so on my own."
- "My aim, rather, is to update the empirical evidence for the value and nonlinearity of positivity ratios."


## Fredrickson 2013

- "My aim . . . is not to defend Losada's mathematical and conceptual work. Indeed, I have neither the expertise nor the insight to do so on my own."
- "My aim, rather, is to update the empirical evidence for the value and nonlinearity of positivity ratios."

But Fredrickson 2013 is extremely unclear about

- which claims she has opted to renounce
- which claims she has chosen to reaffirm


## Fredrickson 2013

- "My aim . . . is not to defend Losada's mathematical and conceptual work. Indeed, I have neither the expertise nor the insight to do so on my own."
- "My aim, rather, is to update the empirical evidence for the value and nonlinearity of positivity ratios."

But Fredrickson 2013 is extremely unclear about

- which claims she has opted to renounce
- which claims she has chosen to reaffirm

Let's try to disentangle it.

## Fredrickson 2013 (2)

To clarify what is at stake, consider the following sequence of successively weaker claims for the behavior of "degree of flourishing" as a function of the positivity ratio:

## Fredrickson 2013 (2)

To clarify what is at stake, consider the following sequence of successively weaker claims for the behavior of "degree of flourishing" as a function of the positivity ratio:

1. There is a discontinuous phase transition ("tipping point") exactly at 2.9013 .
2. There is a discontinuous phase transition somewhere around 3.
3. There is a rapid change somewhere around 3.
4. There is an inflection point (separating convexity from concavity) somewhere around 3.
5. There is an inflection point (separating convexity from concavity) somewhere.
6. There is some nonlinearity somewhere.

Fredrickson 2013 (2)


## Fredrickson 2013 (3)

- Fredrickson and Losada (2005) made claim \#1.


## Fredrickson 2013 (3)

- Fredrickson and Losada (2005) made claim \#1.
- Fredrickson (2009) reaffirmed claim \#1 but noted that, because of "impurities" and measurement imprecision, the data might look in practice more like claim \#2 or \#3.


## Fredrickson 2013 (3)

- Fredrickson and Losada (2005) made claim \#1.
- Fredrickson (2009) reaffirmed claim \#1 but noted that, because of "impurities" and measurement imprecision, the data might look in practice more like claim \#2 or \#3.
- What does Fredrickson (2013) assert?


## Fredrickson 2013 (3)

- Fredrickson and Losada (2005) made claim \#1.
- Fredrickson (2009) reaffirmed claim \#1 but noted that, because of "impurities" and measurement imprecision, the data might look in practice more like claim \#2 or \#3.
- What does Fredrickson (2013) assert? Alas, this is shrouded in confusion.


## Fredrickson 2013 (3)

- Fredrickson and Losada (2005) made claim \#1.
- Fredrickson (2009) reaffirmed claim \#1 but noted that, because of "impurities" and measurement imprecision, the data might look in practice more like claim \#2 or \#3.
- Perhaps still \#1?

The question ... is whether positivity ratios obey one or more critical tipping points, and if so, whether those critical tipping points coincide with the ones identified by Losada's mathematical work for all individuals, samples, and subgroups. Clearly, these questions merit further test.

## Fredrickson 2013 (3)

- Fredrickson and Losada (2005) made claim \#1.
- Fredrickson (2009) reaffirmed claim \#1 but noted that, because of "impurities" and measurement imprecision, the data might look in practice more like claim \#2 or \#3.
- Perhaps still \#1?

The question ... is whether positivity ratios obey one or more critical tipping points, and if so, whether those critical tipping points coincide with the ones identified by Losada's mathematical work for all individuals, samples, and subgroups. Clearly, these questions merit further test.
[Puzzling because their mathematical model does not make any definite prediction for the "critical tipping points": it depends on completely arbitrary choices of $\sigma, b$ and $i$.]

## Fredrickson 2013 (3)

- Fredrickson and Losada (2005) made claim \#1.
- Fredrickson (2009) reaffirmed claim \#1 but noted that, because of "impurities" and measurement imprecision, the data might look in practice more like claim \#2 or \#3.
- Perhaps still \#1?

Whether the Lorenz equations ... can be fruitfully applied
to understanding the impact of particular positivity ratios
merits renewed and rigorous inquiry.

## Fredrickson 2013 (3)

- Fredrickson and Losada (2005) made claim \#1.
- Fredrickson (2009) reaffirmed claim \#1 but noted that, because of "impurities" and measurement imprecision, the data might look in practice more like claim \#2 or \#3.
- Or maybe \#2?

Whether the outcomes associated with positivity ratios show discontinuity and obey one or more specific change points, however, merits further test.

## Fredrickson 2013 (3)

- Fredrickson and Losada (2005) made claim \#1.
- Fredrickson (2009) reaffirmed claim \#1 but noted that, because of "impurities" and measurement imprecision, the data might look in practice more like claim \#2 or \#3.
- Or maybe \#2?

Whether the outcomes associated with positivity ratios show discontinuity and obey one or more specific change points, however, merits further test.
"On empirical grounds, yes, tipping points are highly probable."
(Fredrickson to a British journalist, January 2014)

## Fredrickson 2013 (3)

- Fredrickson and Losada (2005) made claim \#1.
- Fredrickson (2009) reaffirmed claim \#1 but noted that, because of "impurities" and measurement imprecision, the data might look in practice more like claim \#2 or \#3.
- But Fredrickson did not present any evidence that such a discontinuity occurs or is even plausible.


## Fredrickson 2013 (3)

- Fredrickson and Losada (2005) made claim \#1.
- Fredrickson (2009) reaffirmed claim \#1 but noted that, because of "impurities" and measurement imprecision, the data might look in practice more like claim \#2 or \#3.
- But Fredrickson did not present any evidence that such a discontinuity occurs or is even plausible.
- Rather, in summarizing recent empirical work, she appeared to be arguing for claim \#4, \#5 or \#6 (it is not clear which).


## Analysis of Fredrickson 2013's empirical evidence

Fredrickson \& Losada (2005) empirical study

## Analysis of Fredrickson 2013's empirical evidence

Fredrickson \& Losada (2005) empirical study

- Studied two samples of college students $(n=87,101)$
- Purported to find empirical evidence in favor of claim \#1


## Analysis of Fredrickson 2013's empirical evidence

Fredrickson \& Losada (2005) empirical study

- Studied two samples of college students $(n=87,101)$
- Purported to find empirical evidence in favor of claim \#1
- Unfortunately, their study design and method of analysis were such that no data whatsoever could provide any evidence for any nonlinearity (i.e. even the weakest claim \#6) ...


## Analysis of Fredrickson 2013's empirical evidence

Fredrickson \& Losada (2005) empirical study

- Studied two samples of college students $(n=87,101)$
- Purported to find empirical evidence in favor of claim \#1
- Unfortunately, their study design and method of analysis were such that no data whatsoever could provide any evidence for any nonlinearity (i.e. even the weakest claim \#6) ... because the information that might provide this evidence was discarded at an early stage, when participants were dichotomized as "flourishing" or "nonflourishing".


## Analysis of Fredrickson 2013's empirical evidence

Fredrickson \& Losada (2005) empirical study

- Studied two samples of college students $(n=87,101)$
- Purported to find empirical evidence in favor of claim \#1
- Mean positivity ratio for "flourishers" was 3.2; for "nonflourishers" it was 2.3.


## Analysis of Fredrickson 2013's empirical evidence

Fredrickson \& Losada (2005) empirical study

- Studied two samples of college students $(n=87,101)$
- Purported to find empirical evidence in favor of claim \#1
- Mean positivity ratio for "flourishers" was 3.2; for "nonflourishers" it was 2.3.
- This provides some evidence of a positive correlation between positivity ratio and "degree of flourishing".


## Analysis of Fredrickson 2013's empirical evidence

Fredrickson \& Losada (2005) empirical study

- Studied two samples of college students $(n=87,101)$
- Purported to find empirical evidence in favor of claim \#1
- Mean positivity ratio for "flourishers" was 3.2; for "nonflourishers" it was 2.3.
- This provides some evidence of a positive correlation between positivity ratio and "degree of flourishing".
- It provides no evidence about whether that correlation is linear or nonlinear.


## Analysis of Fredrickson 2013's empirical evidence

Fredrickson \& Losada (2005) empirical study

- Studied two samples of college students $(n=87,101)$
- Purported to find empirical evidence in favor of claim \#1
- Mean positivity ratio for "flourishers" was 3.2; for "nonflourishers" it was 2.3.
- This provides some evidence of a positive correlation between positivity ratio and "degree of flourishing".
- It provides no evidence about whether that correlation is linear or nonlinear.
- It certainly does not provide any evidence of a discontinuity!


## Analysis of Fredrickson 2013's empirical evidence

Fredrickson \& Losada (2005) empirical study

- Studied two samples of college students $(n=87,101)$
- Purported to find empirical evidence in favor of claim \#1
- Mean positivity ratio for "flourishers" was 3.2; for "nonflourishers" it was 2.3.
- The fact that "these mean ratios flanked the 2.9 ratio", which F\&L considered "critical to our hypothesis" reiterated by Fredrickson (2013) — is utterly irrelevant:


## Analysis of Fredrickson 2013's empirical evidence

Fredrickson \& Losada (2005) empirical study

- Studied two samples of college students $(n=87,101)$
- Purported to find empirical evidence in favor of claim \#1
- Mean positivity ratio for "flourishers" was 3.2; for "nonflourishers" it was 2.3.
- The fact that "these mean ratios flanked the 2.9 ratio", which F\&L considered "critical to our hypothesis" reiterated by Fredrickson (2013) — is utterly irrelevant: it provides no evidence even for claim \#6 (nonlinearity), much less for claim \#1 (discontinuity).

Analysis of Fredrickson 2013's empirical evidence (2)

Rego et al. (2012)

## Analysis of Fredrickson 2013's empirical evidence (2)

Rego et al. (2012)

- Studied Portuguese retail workers $(n=595)$
- Measured positivity ratio and "creativity"
- Data were quantitative, not dichotomized
- Performed linear and quadratic regressions


## Analysis of Fredrickson 2013's empirical evidence (2)

Rego et al. (2012)


## Analysis of Fredrickson 2013's empirical evidence (2)

Rego et al. (2012)


No hint of any inflection point, much less any discontinuity!

## Analysis of Fredrickson 2013's empirical evidence (2)

Rego et al. (2012)


Does provide evidence of

- Positive correlation between positivity ratio and "creativity"
- Concave nonlinearity in this correlation


## Analysis of Fredrickson 2013's empirical evidence (2)

Rego et al. (2012)


But in retrospect such concave nonlinearity is inevitable, since "creativity" is bounded (from 1 to 5 in Rego et al.) while positivity ratio $(\mathrm{P} / \mathrm{N})$ is unbounded (from 0 to $\infty$ )

## Analysis of Fredrickson 2013's empirical evidence (2)

Rego et al. (2012)

Better approach:

- Use "positivity fraction" $\mathrm{P} /(\mathrm{P}+\mathrm{N})$ as independent variable
- Runs from 0 to 1


## Analysis of Fredrickson 2013's empirical evidence (2)

Rego et al. (2012)


## Analysis of Fredrickson 2013's empirical evidence (2)

Rego et al. (2012)


Now correlation is almost linear.

## Analysis of Fredrickson 2013's empirical evidence (3)

Conclusions:

## Analysis of Fredrickson 2013's empirical evidence (3)

Conclusions:

- No evidence whatsoever for any tipping points


## Analysis of Fredrickson 2013's empirical evidence (3)

Conclusions:

- No evidence whatsoever for any tipping points
- Significant evidence against tipping points
(Rego et al. 2012, Shrira et al. 2011)


## Analysis of Fredrickson 2013's empirical evidence (3)

Conclusions:

- No evidence whatsoever for any tipping points
- Significant evidence against tipping points (Rego et al. 2012, Shrira et al. 2011)
- Significant evidence for positive correlations between positivity ratio and various other things (but the direction of causality, if any, is still uncertain)


## Analysis of Fredrickson 2013's empirical evidence (3)

Conclusions:

- No evidence whatsoever for any tipping points
- Significant evidence against tipping points
(Rego et al. 2012, Shrira et al. 2011)
- Significant evidence for positive correlations between positivity ratio and various other things (but the direction of causality, if any, is still uncertain)
- Weak evidence for concave nonlinearity in these correlations


## Response from Fredrickson

## Let's give the last word to a sociologist ...

The process that has taken place in this trio of articles was presciently foreseen four decades ago by the sociologist Stanislav Andreski:

## Let's give the last word to a sociologist ...

The process that has taken place in this trio of articles was presciently foreseen four decades ago by the sociologist Stanislav Andreski:

The recipe for authorship in this line of business is as simple as it is rewarding: just get hold of a textbook of mathematics, copy the less complicated parts, put in some references to the literature in one or two branches of the social studies without worrying unduly about whether the formulae which you wrote down have any bearing on the real human actions, and give your product a good-sounding title, which suggests that you have found a key to an exact science of collective behaviour.
— Andreski, Social Sciences as Sorcery (1972)

## Let's give the last word to a sociologist ...

The process that has taken place in this trio of articles was presciently foreseen four decades ago by the sociologist Stanislav Andreski:

The recipe for authorship in this line of business is as simple as it is rewarding: just get hold of a textbook of mathematics, copy the less complicated parts, put in some references to the literature in one or two branches of the social studies without worrying unduly about whether the formulae which you wrote down have any bearing on the real human actions, and give your product a good-sounding title, which suggests that you have found a key to an exact science of collective behaviour.

- Andreski, Social Sciences as Sorcery (1972)
- An exaggeration? Yes, in most cases.


## Let's give the last word to a sociologist ...

The process that has taken place in this trio of articles was presciently foreseen four decades ago by the sociologist Stanislav Andreski:

The recipe for authorship in this line of business is as simple as it is rewarding: just get hold of a textbook of mathematics, copy the less complicated parts, put in some references to the literature in one or two branches of the social studies without worrying unduly about whether the formulae which you wrote down have any bearing on the real human actions, and give your product a good-sounding title, which suggests that you have found a key to an exact science of collective behaviour.

- Andreski, Social Sciences as Sorcery (1972)
- But in this case literally accurate.

How on earth could this have happened?

## How on earth could this have happened?

How could such a loony paper

- Have passed muster with reviewers at the most prestigious American journal of psychology?


## How on earth could this have happened?

How could such a loony paper

- Have passed muster with reviewers at the most prestigious American journal of psychology?
- Netted 350 scholarly citations prior to our critique?


## How on earth could this have happened?

How could such a loony paper

- Have passed muster with reviewers at the most prestigious American journal of psychology?
- Netted 350 scholarly citations prior to our critique?
- Been cited in dozens of popular books and 25,000 web pages?


## How on earth could this have happened?

How could such a loony paper

- Have passed muster with reviewers at the most prestigious American journal of psychology?
- Netted 350 scholarly citations prior to our critique?
- Been cited in dozens of popular books and 25,000 web pages?
- Repeatedly hyped by the "father of positive psychology" (and past president of APA)?


## How on earth could this have happened?

How could such a loony paper

- Have passed muster with reviewers at the most prestigious American journal of psychology?
- Netted 350 scholarly citations prior to our critique?
- Been cited in dozens of popular books and 25,000 web pages?
- Repeatedly hyped by the "father of positive psychology" (and past president of APA)?
without anyone calling it into question ...


## How on earth could this have happened?

How could such a loony paper

- Have passed muster with reviewers at the most prestigious American journal of psychology?
- Netted 350 scholarly citations prior to our critique?
- Been cited in dozens of popular books and 25,000 web pages?
- Repeatedly hyped by the "father of positive psychology" (and past president of APA)?
without anyone calling it into question ... until a first-term part-time Masters' student at an obscure London university came along and expressed his doubts?


## How on earth could this have happened?

- Where were all the leaders in positive psychology?


## How on earth could this have happened?

- Where were all the leaders in positive psychology?
- The leaders in applying nonlinear-dynamics models to psychology?


## How on earth could this have happened?

- Where were all the leaders in positive psychology?
- The leaders in applying nonlinear-dynamics models to psychology?
- Was everyone really so credulous?


## How on earth could this have happened?

- Where were all the leaders in positive psychology?
- The leaders in applying nonlinear-dynamics models to psychology?
- Was everyone really so credulous?
- Or were some people less credulous but politely silent, for reasons of internal politics?


## For further reading (1)

- Marcial Losada, "The complex dynamics of high performance teams", Mathematical and Computer Modelling 30, 179-192 (1999).
- Marcial Losada and Emily Heaphy, "The role of positivity and connectivity in the performance of business teams: A nonlinear dynamics model", American Behavioral Scientist 47, 740-765 (2004).
- Barbara Fredrickson and Marcial Losada, "Positive affect and the complex dynamics of human flourishing", American Psychologist 60, 678-686 (2005).
- Barbara Fredrickson, Positivity (Crown, New York, 2009).
- Barbara Fredrickson, "The dynamics of positive opposites", lecture (March 2010), http: / /www • youtube .com/watch $\mathrm{T}_{-.5766} \mathrm{~V}=$


## For further reading (2)

- Nick Brown, Alan Sokal and Harris Friedman, "The complex dynamics of wishful thinking: The critical positivity ratio", American Psychologist 68, 801-813 (2013), arXiv:1307.7006 [nlin.CD].
- Barbara Fredrickson, "Updated thinking on positivity ratios", American Psychologist 68, 814-822 (2013).
- Brown-Sokal-Friedman, "The persistence of wishful thinking: Response to 'Updated thinking on positivity ratios'", American Psychologist 69, 629-632 (2014), arXiv:1409.4837 [stat.AP].
- Brown-Sokal-Friedman, "Positive psychology and romantic scientism: Reply to comments", American Psychologist 69, 636-637 (2014), arXiv:1409.5172 [stat.AP].


## For further reading (3)

- Tom Bartlett, "The magic ratio that wasn't", Chronicle of Higher Education, August 5, 2013.
- Vinnie Rotondaro, "Nick Brown smelled bull", narrative.ly, October 17, 2013.
- Andrew Anthony, "The British amateur who debunked the mathematics of happiness", The Observer [London], January 19, 2014.


## Thanks to my collaborators



Nick Brown


Harris Friedman

