
White PaPer
Intel® Enterprise Edition for Lustre* Software
High-Performance Data Division

Executive Summary
Data migration is a key consideration during the introduction of a new high-
performance computing (HPC) storage platform. It can be a tedious experience
to migrate terabytes or even petabytes of data from one storage platform to
another. Data migration involves multiple challenges including (but not limited
to) preserving permissions, ownerships, and metadata attributes and preventing
data corruption.

This document can help system integrators and administrators choose an
approach to HPC data migration. It also provides some planning tips, describes
three useful reference architectures for moving HPC data to Intel® Enterprise
Edition for Lustre* (Intel® EE for Lustre*) software, and evaluates two open source
data migration tools.1

As the tide of data rises ever higher, enterprises need to migrate their data from
outdated, inefficient file systems to a more powerful file system like Intel EE for
Lustre. This document helps make that process easier and more efficient.

Best practices and recommendations from Intel’s own testing and experience

Data Migration with
Intel® Enterprise Edition for
Lustre* Software

As the tide of data rises
ever higher, enterprises
need to migrate their data
from outdated, inefficient
file systems to a more
powerful file system like
Intel® Enterprise Edition for
Lustre* software.

Author
Chakravarthy Nagarajan
Solutions Architect, Intel

Table of Contents
Background . 2
Choosing a Data Migration Approach . 2
Planning for Data Migration . 2

Offline or One-Time migration . 2
Live Migration or Disaster Recovery . 3

Data Migration Architecture . 3
Reference Architecture – Typical . 3
Reference Architecture – Multi-Homed Data Movers . 4
Reference Architecture - LNET Routers . 4

Evaluation of Data Migration Tools . 4
Fpart Evaluation . 4
Multi-threaded Copy Program (MCP) . 7

Future Work .10
Conclusion .11

White Paper | Data Migration with Intel® Enterprise Edition for Lustre* Software 2

Background
High-performance computing (HPC) clusters generate large
amounts of data that need to be effectively managed and
preserved. The best practices and recommendations in this
document can help system architects migrate HPC data from
any POSIX (Portable Operating System Interface)-compliant
file system to the Lustre* file system.

Although block-based data migration may seem attractive,
it presents many challenges, including establishing
interoperability between the existing and the new storage
environments. This document focuses on the alternative
option: file-based migration. With this approach, files are
migrated using a variety of tools and techniques. File-based
migration is more prevalent in the industry because it makes
it easier to track migration progress. On the other hand,
handling the files individually can be difficult.

Data migration needs effective planning and involves
additional hardware and third-party software tools that are
not included as part of Intel® Enterprise Edition for Lustre*
(Intel® EE for Lustre*) software. It is important to understand
the state of the data within the existing storage, such as how
much of it is changing and which user directories are being
used actively. It is necessary to examine the data files for
permissions, ownership, time stamps, and xattr (extended
attributes). The objective is to migrate data safely, along
with the attributes that need to be preserved.

The following sections discuss choosing a data migration
approach, planning considerations, data migration reference
architectures, an evaluation of two data migration tools, and
a discussion of other tools worthy of investigation. Table 1
explains some data migration terminology used in this
document.

Note: The best practices and recommendations, tools, and
techniques covered in this document are specific to the
Lustre file system (that is, archival or hierarchical storage
management solutions are out of scope).

Choosing a Data Migration Approach
As more data becomes available, driven by new data sources
like social media and the Internet of Things (IoT), the demand
for storage is growing exponentially in the HPC industry.
Enterprises wishing to stay ahead of storage requirements

often find themselves needing to upgrade an outdated
storage platform to a more powerful, parallel storage
platform such as Intel EE for Lustre software.

This document discusses two data migration approaches:

• Offline or one-time data migration. This approach is used
when the data on the outdated storage platform is migrated
to a new high-performance storage platform during the
deployment of a new HPC infrastructure. In this scenario, the
source could be any POSIX-compliant file system including
Lustre while the destination is the Lustre file system.
Although the migration happens only once, it is crucial to
complete it in a timely manner without losing any data.

• Live migration or disaster recovery . Live migration of data is
driven by policies that involve the critical availability of data
during failure, as a subset of business continuity. In this scenario,
both source and destination are the Lustre file system.

Planning for Data Migration
As mentioned earlier in this document, the planning stage
is very crucial to make the data migration efficient and
successful. Much of the data migration planning process is
similar for both one-time and live migration. However, each
approach does require specific considerations, as discussed
in the following sections.

Offline or One-Time migration
Following are the factors to be considered while planning a
one-time data migration:
• Data movers . It is important to understand the data

migration performance requirements and service-level
agreement (SLA) governing data availability on the
destination (new) storage platform.

 – Based on the source and destination storage platform
performance, determine the number of data movers
that will yield the best performance from both source
and destination.

 – It is recommended to run a benchmark, such as IOR
or IOZONE, on the data movers to characterize the file
system performance on both source and destination.

• Data migration tool . Choose a robust data migration
tool, since it is one of the critical components of the data
migration process.

Table 1 . Data Migration Terminology

System Component Definition

Data mover(s) Server(s) or Lustre* client(s) responsible for moving the data between source and destination storage, running the
required Linux* distribution as determined by the data migration tool, Lustre clients, interconnects, and so on.

Data migration tool Software installed on the data movers which partitions and moves the data between the source and destination.

Source One-time migration: An existing Lustre platform or an outdated Portable Operating System Interface (POSIX)-
compliant file system.
Live migration or disaster recovery: High-performance storage running Intel® Enterprise Edition for Lustre* software.

Destination High-performance storage running Intel Enterprise Edition for Lustre software.

High-performance
data network/fabric

The network/fabric on which the source and destination file systems are mounted on the data movers, including
InfiniBand*, Intel® Omni-Path Architecture, 10GbE, or 1GbE.

White Paper | Data Migration with Intel® Enterprise Edition for Lustre* Software 3

• Bandwidth and latency . The bandwidth and latency of the
network/fabric through which the source and the destination
file systems are mounted play a key role in data migration
performance.

 – Tune the kernel and the Lustre Networking (LNET) layer
for the best performance.

 – The LNET self-test is a good utility to measure the LNET
performance for tuning.

 – Refer to the LNET tuning guide for efficient tuning
between multiple networks and fabrics.

• Data bucketing . The following tips can help improve
migration performance:

 – Segregate the data based on size, and apply necessary Lustre
tuning based on the file size for optimum performance.

 – Use find, lfs find or fpart for size-based segregation of
data and prepare the list of files with various partitions.

 – Assign specific data movers to handle smaller files and
others to handle larger files.

• Object storage target (OST) pools and striping . Use the
following recommendations to further enhance migration
performance:

 – If required, configure OST pools for dedicated bandwidth
and better control of performance with respect to file size.

 – Apply striping for larger files.

• Additional considerations . The following recommendations
can help avoid conflicts and failures:

 – Ensure both file systems are offline from production to
yield the best performance. It is recommended to mount
the source file system as read-only to avoid conflicts.

 – Running a batch job through a workload manager in
re-queue on fail mode is strongly recommended for
automatic failure handling.

 – Data validation can be done by checksum verification
between source and destination files.

 – If the source file system is GPFS* (General Parallel File
System), then consider mounting the source file system
using CNFS (Clustered NFS) to avoid any conflicts
between GPFS and the Lustre clients at the data movers.

Live Migration or Disaster Recovery
Apart from the typical data center-to-disaster recovery
site requirements for hardware and software, the following
factors can improve data migration performance between the
data center and the disaster recovery site.

• Data movers . Choose the number of data movers based on
the data migration performance requirements and the SLA
governing data availability from the disaster recovery site.

• Data migration tool . Choose a robust data migration
tool, since it is one of the critical components of the data
migration process.

• Lustre changelogs . Consider implementing changelog-
based disaster recovery replication, which records events
that change the file system namespace or file metadata.

 – Changes such as file creation, deletion, renaming, and
attribute changes are recorded with the target and parent file
identifiers (FIDs), the name of the target, and a timestamp.

 – This approach helps reduce the metadata overhead and
replicates only the changed data instead of traversing the
entire file system tree.

• Compression . If required, enable compression for better
disk space utilization of the disaster recovery site. Intel EE
for Lustre software with ZFS2 as the backend file system,
enabled with the compression feature, may be a better
choice for efficient space management.

• Bandwidth and latency . The network/fabric bandwidth and
latency between the data center and the disaster recovery
site plays a key role on the performance.

 – Tune the kernel and the LNET layer for the best performance.
 – The LNET self-test is a good utility to measure the
performance for tuning. Refer to the LNET tuning guide for
efficient tuning between multiple networks and fabrics.

Data Migration Architecture
The data migration architecture differs depending on how
the source, destination, and data movers are configured. The
following sections provide architecture information for the
following three configurations:

• Typical architecture . The source, destination, and data
movers are connected to the same fabric/network.

• Multi-homed data movers. The source is on a different
network/fabric than the destination and the data movers
use two separate connections.

• LNET routers . The source is on a different network/fabric
than the destination and the data movers mount the source
file system through the LNET routers.

Reference Architecture – Typical
Figure 1 illustrates the typical configuration where the source,
destination, and the data movers are connected to the same
network/fabric.

Typical Configuration
Data Migration Reference Architecture

Source
File System

Destination
File SystemData

Movers

High-Performance
Data Network/

Fabric

Figure 1 . This shows the typical configuration where the
source, destination, and the data movers are connected to
the same network/fabric.

http://www.intel.com/content/dam/www/public/us/en/documents/guides/configuring-lnet-routers-file-systems-lustre-guide.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/guides/configuring-lnet-routers-file-systems-lustre-guide.pdf

White Paper | Data Migration with Intel® Enterprise Edition for Lustre* Software 4

Reference Architecture – Multi-Homed Data Movers
Figure 2 illustrates the connectivity between the data
movers, source, and destination if the source is on a different
network/fabric than the destination. In this architecture,
the data movers are connected to both networks/fabrics
and mount the source file system over “High-Performance
Data Fabric/Network 1” and the destination file system over
“High-Performance Data Fabric/Network 2.” This architecture
is preferred because it is less complex and most efficient.
However, compatibility issues may exist between the Lustre
client, operating system version, Host Channel Adapters, Host
Fabric Interface, and relevant drivers on the data movers.

Reference Architecture - LNET Routers
Figure 3 shows another approach to connectivity between
the data movers, source, and destination if the source is on a
different network/fabric than the destination. In this architecture,
the data movers mount the source file system through the LNET
routers, which are connected to both networks/fabrics. Refer
to “Intel® Omni-path Storage Router – Design Guide” for more
information on the detailed configuration.

Evaluation of Data Migration Tools
Multiple open source data migration tools are available,
including cp, rsync, tar, GridFTP, bbcp, and bbftp. We have
evaluated only fpart and Multi-Threaded Copy Program (MCP),
which are parallel data movers that provide high efficiency,
metadata preservation, data integrity, and robustness.

We used two types of data sets in our evaluations:
• Small data set . 100,000 * 16-MB files

• Large data set . One hundred * 50-GB files

The evaluations involved running several tests, the results of
which are not representative of a production Lustre file system
environment. Instead, they merely provide baseline comparisons
between different methods and software applications.

Fpart Evaluation
Rsync is an open source data synchronization tool that is
included in the Linux distribution. It is used between POSIX-
compliant file systems. Traditionally, the snapshot link tree
structure provided by rsync with the --link-dest option has
been considered optimal from a data management perspective
because it creates a coherent view of the data set at a given
point in time without requiring reference to previous backups.
Each directory uses hard links to populate the snapshot with
files that are unchanged between jobs.

However, one limitation of rsync is that it builds the file list
(that is, traverses the source file tree) before sending data

Multi-Homed Data Movers
 Reference Architecture

High-Performance
Data Network/

Fabric 2

High-Performance
Data Network/

Fabric 1
Data

Movers

Source
File System

Destination
File System

High-Performance
Data Network/

Fabric 2

High-Performance
Data Network/

Fabric 1
Data

Movers

LNET Routers
 Reference Architecture

LNET
Routers

Source
File System

Destination
File System

Figure 2 . This shows the connectivity between the data
movers, source, and destination if the source is on a different
network/fabric than the destination.

Figure 3 . This shows the connectivity between the data
movers, source, and destination if the source is on a different
network/fabric than the destination. The data movers mount
the source file system through the LNET routers.

Table 2 . Test Environment

System Component Configuration

Data movers • 2x Intel® Xeon® processor E5-2660 v2 with
64 GB memory and 1x FDR InfiniBand* port

• OS: CentOS*3 Linux* release 7.2.1511
• Lustre Client: Intel® Enterprise Edition for

Lustre* software 3.0

Data migration tools • fpart and Multi-Threaded Copy Program

Source • Storage: Dell PowerVault* MD3420 for
metadata target (MDT) and management
target (MGT) and 2x Dell PowerVault
MD3460 for object storage targets (OSTs)

• Useable Capacity: 261 TB
• File system: Intel Enterprise Edition for

Lustre software 2.4 with ldiskfs

Destination • Storage: HPE Apollo* 4520 Appliance
• Useable Capacity: 145 TB
• File system: Intel Enterprise Edition for

Lustre software 3.0 with ZFS*

High-performance
data network/fabric

• 56-Gbps FDR InfiniBand*

http://www.intel.com/content/dam/support/us/en/documents/network-and-i-o/fabric-products/Intel_OP_Storage_Router_DG_H99668_v2_0.pdf

White Paper | Data Migration with Intel® Enterprise Edition for Lustre* Software 5

to the destination file system. The rsync documentation
indicates that rsync should start file transfers while it is
still building file lists, but rsync does not appear to be
particularly effective at sustaining the pipeline.

Fpart is a data migration tool that is based on the hypothesis
that if one can start transferring files while the source file tree
is still being traversed, one can reduce the elapsed time of
the pipeline. The fpart utility is available under BSD license
here: https://github.com/martymac/fpart. Fpart is written
in C and is distributed as source code. It must be compiled
for the target operating system. It has very few runtime
dependencies and the 0.9.2 release compiles without any
issues on Red Hat Enterprise Linux and CentOS 6.x and 7.x.

Fpart works by walking an arbitrary directory structure and
building lists of the tree that it splits into uniform chunks,
each of which can be written out to a file. Normally, it builds
the lists then writes them out when the walk is complete.
However, it also has a “live” mode that generates the lists as
they become ready.

Fpart also has hooks that can be executed when the list file
is created. The simplest approach is to tell fpart to launch
an rsync job with a file list. However, this still results in
serialization of the rsync processes, so a little more work
is required in order to obtain the desired “live” effect.

Fortunately, in addition to the fpart utility itself, there is
a useful wrapper script, written as a UNIX* shell, called
fpsync. Fpsync acts as a mini job scheduler for running
multiple fpart and rsync tasks in parallel across an arbitrary
number of nodes. In our evaluation, fpsync was able to
distribute multiple tasks in parallel across two data mover
clients, but it can also be run on a single node if required.

Figure 4 compares the performance of rsync and fpsync
for the replication between the source and destination on
a data set of 1 million inodes4 on each test case.

As shown in Figure 4, fpsync provides considerable
performance improvement over rsync. Fpsync scheduled
transfers using two data movers, whereas rsync runs on a
single data mover.

Fpsync creates a set of jobs to be submitted for each
chunk of file lists that fpart generates. A shared directory
contains the chunks, and another directory on each data
mover node contains a work queue. Fpsync uses the fpart
post-hook feature to create a script that it writes to the job
queue. A separate function in the fpsync script runs in the
background and processes the queue. If there is a new job in
the queue it assigns the job to run on one of the data mover
nodes, up to the job limit.

By using fpsync, one can distribute file replication work
across multiple hosts and run several data transfer
processes in parallel. Fpart and fpsync run entirely in the
user-space and are file system-agnostic.

The real advantage of combining fpart and fpsync, though,
is that there is no state to be kept between runs—each
instance of the synchronization execution is self-contained
and there is no intermediate data management system
or database. Also, one can continue to make use of the
snapshot structure that has already been established using
the --link-dest hard links feature (this needs to be added
as an option to fpsync, which is straightforward). There is no
need to do any deletes or other manipulation of the backup
environment—the file list generated on the source is the
definitive catalogue of the live file tree. When transferring to
the snapshot site, if the file exists in the previous snapshot
and is unchanged it gets a hard link as normal; if it has
changed, the changes get transferred; and if the file is new,
then it gets sent over in entirety. There should be no need to
generate a delete list.

To test fpart and fpsync, a representative data set will be
required for testing purposes, installed on an environment
that also represents the production storage platform and
client nodes used for data migration. Comparison data
needs to be collected for execution of rsync, in addition to
various configurations of fpart and fpsync. Therefore, a test
of rsync against the sample data set should be conducted to
provide the runtime baseline.

There is no direct comparison between fpart and rsync,
since fpart only creates file lists, but rsync does have a
--dry-run option that might be comparable. The real
goal is to compare fpsync to rsync, but in order to fast-track
experimentation, focusing on optimization of fpart initially
should help with the tuning of fpsync.

While fpart requires no special configuration to run on a
host, the fpsync script relies on passphrase-less Secure
Shell (SSH) keys in order to be able to submit jobs to
the data movers. Since the software will be executed
using the root super-user account, this does represent
a security risk.

Figure 4 . This compares the performance of rsync and fpsync
for data set replication between the source and destination.

Data Set Replication Comparison
Rsync vs. Fpsync

Lower Is Better

Fpsync
1 worker

Without Nested
Directories

With Nested
Directories
Depth = 8

Fpsync
1 worker

Fpsync
2 workers

Rsync
1 worker

El
ap

se
d

Ti
m

e
(H

ou
rs

)

0

5

10

15

20

25

30

58 minutes

https://github.com/martymac/fpart

White Paper | Data Migration with Intel® Enterprise Edition for Lustre* Software 6

Fpart Command Syntax
There are several command-line options for fpart and
for fpsync (see Tables 3 and 4), so some experimentation
is necessary to establish optimum results. The following
example provides a reasonable fpart command template:
fpart -f <count> -o <output template> -Z -L
<src dir >

Here is a sample fpart command:
fpart -f 500 -o /lfs/demo/fp/part.500/o -Z -L
/lfs/demo/src

Fpsync Command Syntax
The fpsync command is a bit more complex than the fpart
command. The following template is a good starting point:
fpsync -n <jobs> -f <nfiles> -w <node>
[-w <node> ...] -d <listdir> <src> <dest>

We used the following fpsync command in our evaluation:
fpsync -n 160 -f 256 -d <shared-directory>
-w root@<data_mover1> -w root@<data_mover2>
-w root@<data_mover3> -w root@<data_mover4>
-w root@<data_mover5> -w root@<data_mover6>
-w root@<data_mover7> -w root@<data_mover8>
<source> <destination>

Fpsync creates directories under /tmp/fpsync providing the
logs, partitions, work, and queue information which will help
to monitor the jobs progress, scripts, and OUT and ERR files.

Fpart Performance Dashboards
Our evaluation demonstrated that fpart is scalable on both large
and small data sets, as shown in Figures 5 and 6 (small files)
and Figures 7 through 10 (large files). As mentioned earlier, this
performance data is not representative of a production Lustre
file system; however, it does provide a baseline comparison.
Note that the performance is dependent on multiple factors
since the Lustre client must saturate both the read bandwidth
at the source and the write bandwidth at the destination.

Table 3 . Fpart Command-Line Options

Option Meaning

-f Limit partitions to <count> files.

-o Output partitions to <output template>; partitions are
sequentially numbered starting with 0.

-Z Treat unreadable directories as empty (implies -z).

-z Pack empty directories (default: pack files only).

-L Live mode: generate partitions during file system crawling.

Table 4 . Fpsync Command-Line Options

Option Meaning

-n Start <jobs> concurrent sync jobs. It is recommended to
set this number equal to or lesser than the total number of
CPU cores on the data movers.

-f Transfer at most <nfiles> files per sync job. This number
can be up to 256 per partition.

-w Space-separated list of Secure Shell (SSH) workers. For
example:
-w 'login@host1 login@host2 login@host3' or
-w 'login@host1' -w 'login@host2' -w
'login@host3'

Jobs are executed locally if not specified (default).

-d Set the fpsync shared directory to <listdir> (absolute path).
This option is mandatory when using SSH workers.

-o Override default rsync options with <options>. Use this
option with care, as certain options are incompatible with
a parallel usage (for example, --delete).

Figure 5 . Fpart read bandwidth at the source with 20 data
movers - small files. In our tests, fpart achieved 6.76 GB/s of
read bandwidth with 29,000 metadata ops while transferring
100,000 16-MB files at the source file system (results were
the same with both 8 and 20 data movers).

Figure 6 . Fpart write bandwidth at destination with 20 data
movers - small files. In our tests, fpart achieved 11 GB/s of
write bandwidth with 60,000 sustained metadata ops while
transferring 100,000 16-MB files at the destination file system
(results were the same with both 8 and 20 data movers).

White Paper | Data Migration with Intel® Enterprise Edition for Lustre* Software 7

Fpart Analysis
Our overall analysis of fpart shows advantages and
disadvantages.

ADVANTAGES
• It is easy to install and use with few dependencies.

• Multi-threaded, multi-node rsync is efficiently used.

• Logs are available for monitoring.

• It can be used for one-time migration and disaster recovery
with scripts managed by cron.

DISADVANTAGES
• It requires minimal documentation.

• It will not split files or stripes; it depends on the backend file
system striping for larger files.

• If several paths are provided to fpart, it will examine all of
them. If those paths overlap or if the same path is specified
more than once, the same files will appear more than once
within generated partitions. This is not a bug; fpart does not
de-duplicate file system crawling results.

Multi-threaded Copy Program (MCP)
MCP is a high-performance file copy utility that achieves
performance gains through parallelization. Multiple files and
parts of single files are processed in parallel using multiple
threads on multiple processors. The program employs the
OpenMP and MPI (Message Passing Interface) programming
models. MCP is part of mutil, licensed under the GNU General
Public License. We used mutil-1.822.3 for this evaluation,
along with coreutils-8.22, both of which are easily compiled
on CentOS and Red Hat Enterprise Linux 6.x and 7.x. MCP is
available here: https://software.nasa.gov/software/ARC-16494-1.

It is common to use mutil to copy files between local file
systems on a daily basis. Files are constantly being moved
to locations accessible by systems with different functions
and/or storage limits, being backed up and restored, or being
moved due to upgraded and/or replaced hardware. Hence,
maximizing the performance of copies as well as checksums
that ensure the integrity of copies is desirable to minimize the
turnaround time of user and administrator activities.

Lustre provides very high performance for such operations
using a variety of techniques such as striping files across
multiple disks to increase aggregate I/O bandwidth and
spreading disks across multiple servers to increase aggregate
interconnect bandwidth.

Figure 7 . Fpart read bandwidth at source file system with
8 data movers - large files. In our tests, fpart achieved
7.45 GB/s of read bandwidth while transferring one hundred
50-GB files at the source file system with 8 data movers.

Figure 9 . Fpart read bandwidth at source file system with
20 data movers - large files. In our tests, fpart achieved
8.5 GB/s of read bandwidth while transferring one hundred
50-GB files at the source file system with 20 data movers.

Figure 8 . Fpart write bandwidth at destination file system
with 8 data movers - large files. In our tests, fpart achieved
7.45 GB/s of write bandwidth while transferring one hundred
50-GB files at the destination file system with 8 data movers.

Figure 10 . Fpart write bandwidth at source file system with
20 data movers - large files. In our tests, fpart achieved
11 GB/s of write bandwidth while transferring one hundred
50-GB files at the destination file system with 20 data movers.

https://software.nasa.gov/software/ARC-16494-1

White Paper | Data Migration with Intel® Enterprise Edition for Lustre* Software 8

To achieve peak performance from parallel file systems like
Lustre, it is typically necessary to utilize multiple concurrent
readers/writers from multiple systems to overcome various
single-system limitations, such as the number of processors and
network bandwidth. The standard cp and md5sum tools of GNU
coreutils found on every modern UNIX/Linux system, however,
utilize only a single execution thread on a single CPU core of a
single system. Therefore, these tools cannot take full advantage
of the increased performance of clustered file systems.

Mutil provides the mcp and msum commands, which are
drop-in replacements for cp and md5sum that utilize multiple
types of parallelism to achieve maximum copy and checksum
performance on parallel file systems like Lustre:
• Multi-threading is used to keep nodes as busy as possible.
• Read/write parallelism allows individual operations of a

single copy to be overlapped using asynchronous I/O.
• Multi-node cooperation allows different nodes to take part

in the same copy/checksum.
• Split file processing allows multiple threads to operate

concurrently on the same file.
• Hash trees allow inherently serial checksums to be

performed in parallel.

MCP Syntax
Tables 5 and 6 (on the next page) describe the MCP and
msum command-line options. The defaults shown in brackets
will vary depending on which compile-time options are used.

Here is the command we used during our evaluation:

mpirun --mca plm_rsh_agent “ssh -q -o
StrictHostKeyChecking=no” --allow-
run-as-root -np 400 -npernode 20 -machinefile
hosts / /dm-tools/coreutils-8.22/src/mcp
-pr --stripe-count=1 –T <source> <destination>

MCP Performance Dashboards
Our evaluation demonstrated that MCP is more efficient for
larger files and needs more optimization for smaller data
sets, as shown in Figures 11 through 14 (small files) and
Figures 15 through 18 (large files). As mentioned earlier, this
performance data is not representative of a production Lustre
file system. However, it does provide a baseline comparison.
Note that the performance is dependent on multiple factors
since the Lustre client must saturate both the read bandwidth
at the source and the write bandwidth at the destination.

Figure 11 . MCP read bandwidth at source with 8 data
movers - small files. In our tests, MCP achieved 2 GB/s of
read bandwidth and 30,000 sustained metadata ops while
transferring 100,000 16-MB files on the source file system
with 8 data movers.

Figure 13 . MCP read bandwidth at source with 20 data
movers - small files. In our tests, MCP achieved 6.76 GB/s of
read bandwidth with 29,000 sustained metadata ops while
transferring 100,000 16-MB files on the source file system
with 20 data movers.

Figure 12 . MCP write bandwidth at destination with 8 data
movers - small files. In our tests, MCP achieved 6 GB/s of write
bandwidth with 100,000 metadata ops while transferring
100,000 16-MB files at the destination file system with 8 data
movers. The increase in metadata ops is due to the metadata
performance improvements on Intel® EE for Lustre* 3.0 with
ZFS as the backend file system.

Figure 14 . MCP write bandwidth at destination with 20 data
movers - small files. In our tests, MCP achieved 11 GB/s of
write bandwidth and 60,000 sustained metadata ops while
transferring 100,000 16-MB files at the destination file
system with 20 data movers.

White Paper | Data Migration with Intel® Enterprise Edition for Lustre* Software 9

Table 5 . MCP Command-Line Options

Option Meaning
--buffer-size=<mbytes> Read/write buffer size [4]
--check-tree Print hash subtrees to pinpoint corruption
--direct-read Enable use of direct I/O for reads
--direct-write Enable use of direct I/O for writes
--double-buffer Enable use of double buffering during file I/O
--dst-offset=<pos> Copy to destination file beginning at <pos>
--fadvise-read Enable use of posix_fadvise during reads
--fadvise-write Enable use of posix_fadvise during writes
--hash-leaf-size=<kbytes> Granularity of hash tree [1048576]
--hash-type=<type> Hash type [MD5]. <type> can be one of the following:

md5 sha1 sha256 sha384 sha512 sha224 crc32 crc32rfc1510 crc24rfc2440
--length=<len> Copy <len> bytes beginning at --offset (or from 0 if --offset is not specified)
--listen-port=<port> Listen on <port> for requests from cooperating hosts
--manager-host=<host> Host name or IP address of the management thread for multi-node/multi-host copies
--manager-port=<port> Port on which to contact the management thread
--mpi Enable use of Message Passing Interface (MPI) for multi-node copies
--offset=<pos> Copy --length bytes beginning at <pos> (or to end if --length is not specified)
--password-file=<file> File to use for passwords (will be created if it does not exist)
--print-hash Print hash of each file to stdout similar to md5sum, with sum of the src file computed, but dst file name printed

so that md5sum –c can be used on the output to check that the data written to disk was what was read
--print-src Print src instead of dst in --print-hash and --print-stats}
--print-stats Print performance per file to stderr
--print-stripe Print striping changes to stderr
--read-stdin Perform a batch of operations read over stdin in the form 'SRC DST RANGES' where SRC and DST must

be URI-escaped (RFC 3986) file names and RANGES is zero or more comma-separated ranges of the form
'START-END' for 0 <= START < END

--skip-chmod Retain temporary permissions used during copy
--split-size=<mbytes> Size to split files for parallelization [1024]
--stripe-count=<count> Absolute number of stripes. When followed by ‘s’ (as in 1s, 2s, 3s) it specifics stripes per src GBs. When

followed by 'l' it specifies stripes per --length GBs.
--threads=<number> Number of OpenMP worker threads to use [4]

Table 6 . Msum Command-Line Options

Option Meaning
--buffer-size=<mbytes> Read/write buffer size [4]
--check-tree Print/check hash subtrees to pinpoint corruption
--direct-read Enable use of direct I/O for reads
--double-buffer Enable use of double buffering during file I/O
--fadvise-read Enable use of posix_fadvise during reads
--hash-leaf-size=<kbytes> Granularity of hash tree [1048576]
--hash-type=<type> Hash type [MD5]. <type> can be one of the following:

md5 sha1 sha256 sha384 sha512 sha224 crc32 crc32rfc1510 crc24rfc2440
--length=<len> Hash <len> bytes beginning at --offset (or 0 if --offset is not specified)
--listen-port=<port> Listen on <port> for requests from cooperating hosts
--manager-host=<host> Host name or IP address of the management thread for multi-node/multi-host copies
--manager-port=<port> Port on which to contact the management thread
--mpi Enable use of Message Passing Interface (MPI) for multi-node checksums
--offset=<pos> Hash --length bytes beginning at <pos> (or to end if --length is not specified)
--password-file=<file> File to use for passwords (will be created if it does not exist)
--read-stdin Perform a batch of operations read over stdin in the form 'FILE RANGES' where FILE must be a

URI-escaped (RFC 3986) file name and RANGES is zero or more comma-separated ranges of the form
'START-END' for 0 <= START < END

--split-size=<mbytes> Size to split files for parallelization [0]
--threads=<number> Number of OpenMP worker threads to use [4]

White Paper | Data Migration with Intel® Enterprise Edition for Lustre* Software 10

MCP Analysis
Our overall analysis of MCP shows advantages and
disadvantages.

ADVANTAGES
• It is easy to use and install.

• It is MPI-driven and has an option to provide the stripe size.

• It is good for larger files.

• Msum (parallel checksum) is an added advantage.

• It can be used for both one-time migration and live
migration/disaster recovery.

DISADVANTAGES
• It requires minimal documentation.

• Small file performance needs to be optimized.

• Logging facility is not available.

Future Work
In addition to the data migration best practices,
recommendations, and tools and techniques covered in this
document, there is still additional work that needs to be done
to enable a seamless migration:
• Development of scripts that require minimal management
• Cron configuration for both fpart and MCP

The following data migration tools are worthy of investigation,
as they are completely enabled and managed by a distributed
queue system (which needs to be evaluated in the future).

Lustre data mover from San Diego Super Computer
Center (https://github.com/sdsc/lustre-data-mover). This
tool is built around RabbitMQ* and Python Celery* scripts.
The advantages of this tool include management of data
movers with scripts, centralized logging, and performance
monitoring. Workers can be configured through the HPC
cluster compute nodes and the worker’s pool configuration

Figure 15 . MCP read bandwidth at source with 8 data
movers - large files. In our tests, MCP achieved 8 GB/s of read
bandwidth while transferring one hundred 50-GB files at the
source file system with 8 data movers.

Figure 17 . MCP read bandwidth at source with 20 data movers
- large files. In our tests, MCP achieved 8.5 GB/s of read
bandwidth while transferring one hundred 50-GB files at the
source file system with 20 data movers.

Figure 16 . MCP write bandwidth at destination with 8 data
movers - large files. In our tests, MCP achieved 10 GB/s of
write bandwidth while transferring one hundred 50-GB files
at the destination file system with 8 data movers.

Figure 18 . MCP write bandwidth at source with 20 data
movers – large files. In our tests, MCP achieved 11 GB/s of
write bandwidth while transferring one hundred 50-GB files
at the destination file system with 20 data movers.

https://github.com/sdsc/lustre-data-mover

White Paper | Data Migration with Intel® Enterprise Edition for Lustre* Software 11

looks impressive. This could be a good solution for live
migration of data or disaster recovery, since the migration
happens based on atime and mtime.

Psync data mover (https://github.com/ncsa/psync) is another
option to investigate, since it is enabled with parallel rsync at
both the directory and file level. Psync is managed by Python
Celery scripts, RabbitMQ, and Redis* with centralized logging.
Because it is enabled with parallel rsync, it may be a good fit
for both small and large data sets (based on our experience
with fpart). Psync could be another solution for live migration
of data or disaster recovery, since the migration happens
based on atime and mtime.

Conclusion
The information in this document can help system integrators
and administrators plan and define the best possible
implementation of data migration using fpart and MCP. Careful
planning, an informed architecture choice, and the appropriate
use of data migration tools can help make data migration go
smoothly and efficiently, with minimal disruption to day-to-day
processes. Whether the source is a Lustre file system or some
other POSIX-compliant file system, migrating data to Intel EE
for Lustre software will help future-proof the enterprise HPC
storage infrastructure by enabling the enterprise to easily keep
pace with an ever-growing flood of data.

For more information visit intel .com/lustre or
email hpdd-sales@intel.com.

1 Discussion of any open source, third-party tool does not imply endorsement of that tool by Intel, nor does it imply any responsibility for supporting that tool.
2 ZFS is a combined file system and logical volume manager designed by Sun Microsystems.
3 Community ENTerprise Operating System. A free rebuild of source packages from the Red Hat Enterprise Linux.
4 An inode is a data structure used to represent a filesystem object.
 Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families. See intel.com/products/

processor_number for details.
 All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.
 Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software, or service activation. Performance varies depending on system configuration.

No computer system can be absolutely secure. Check with your system manufacturer or retailer, or learn more at intel.com.
 Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using

specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests
to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to intel.com/performance

 Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in
system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are
considering purchasing. For more information on performance tests and on the performance of Intel products, reference www.intel.com/performance/resources/benchmark_limitations.htm or call (U.S.)
1-800-628-8686 or 1-916-356-3104.

 No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.
 THE INFORMATION PROVIDED IN THIS PAPER IS INTENDED TO BE GENERAL IN NATURE AND IS NOT SPECIFIC GUIDANCE. RECOMMENDATIONS (INCLUDING POTENTIAL COST SAVINGS) ARE BASED

UPON INTEL’S EXPERIENCE AND ARE ESTIMATES ONLY. INTEL DOES NOT GUARANTEE OR WARRANT OTHERS WILL OBTAIN SIMILAR RESULTS.
 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY

RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL
DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

 Copyright © 2016 Intel Corporation. All rights reserved. Intel, the Intel logo, and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.
 * Other names and brands may be claimed as the property of others. 0816/EYAR/KC/PDF Please Recycle 334704-001

Learn More
You may find the following resources useful:

• fpart: sourceforge.net/projects/fpart

• mutil: people.nas.nasa.gov/~kolano/projects/mutil.html

• Lustre Data Mover presentation: http://cdn.opensfs.
org/wp-content/uploads/2016/04/LUG2016D3_
Lustre-Data-Mover_Wagner.pdf

• Parallel Synchronization of Multi-Pebibyte File
Systems presentation: http://lustre.ornl.gov/
ecosystem/documents/tech/Loftus-NCSA-Psync.pdf

https://github.com/ncsa/psync
http://www.intel.com/content/www/us/en/software/intel-solutions-for-lustre-software.html
mailto:hpdd-sales@intel.com
http://www.intel.com/products/processor_number
http://www.intel.com/products/processor_number
http://www.intel.com
http://www.intel.com/performance/resources/benchmark_limitations.htm
https://sourceforge.net/projects/fpart/
http://people.nas.nasa.gov/~kolano/projects/mutil.html
http://cdn.opensfs.org/wp-content/uploads/2016/04/LUG2016D3_Lustre-Data-Mover_Wagner.pdf
http://cdn.opensfs.org/wp-content/uploads/2016/04/LUG2016D3_Lustre-Data-Mover_Wagner.pdf
http://cdn.opensfs.org/wp-content/uploads/2016/04/LUG2016D3_Lustre-Data-Mover_Wagner.pdf
http://lustre.ornl.gov/ecosystem/documents/tech/Loftus-NCSA-Psync.pdf
http://lustre.ornl.gov/ecosystem/documents/tech/Loftus-NCSA-Psync.pdf

	Background
	Choosing a Data Migration Approach
	Planning for Data Migration
	Offline or One-Time migration
	Live Migration or Disaster Recovery

	Data Migration Architecture
	Reference Architecture – Typical
	Reference Architecture – Multi-Homed Data Movers
	Reference Architecture - LNET Routers

	Evaluation of Data Migration Tools
	Fpart Evaluation
	Multi-threaded Copy Program (MCP)

	Future Work
	Conclusion

