
1inch Exchange

Book your 1-Day Security
Spot Check

Date September 2021

Auditors
Nicholas Ward, Dominik
Muhs

1 Executive Summary
This report presents the results of our engagement with the 1inch development
team to review the fourth iteration of their Aggregation Router and its
surrounding code.

The review was conducted by Nicholas Ward and Dominik Muhs over the course
of 20 person-days between September 13 and September 24 , 2021.

2 Scope
Our review focused on the AggregationRouterV4 contract and its dependencies at commit hash 0cdb810149b4750dbb3c857f3dabee794c313ca9 .
The UnoswapRouter was established as a low priority despite being a dependency of AggregationRouterV4 .

The AggregationExecutor contract and its extensions and dependencies were explicitly excluded from the scope of the review. The
discountedSwap() method of AggregationRouterV4 , intended for use with pre-London EVM versions, was also excluded.

The complete list of �iles in scope can be found in the Appendix.

2.1 Objectives

Together with the 1inch development team, we identi�ied the following priorities for our review:

1. Ensure that user approvals cannot be drained from AggregationRouterV4 .

2. Ensure that swaps through the router cannot violate the minimum return condition without failing.

3. Ensure that the system is implemented consistently with the intended functionality and without unintended edge cases.

4. Identify known vulnerabilities particular to smart contract systems, as outlined in our Smart Contract Best Practices, and the
Smart Contract Weakness Classi�ication Registry.

3 System Overview

Out of scope components have been removed

4 Security Speci�ication

1 Executive Summary

2 Scope

2.1 Objectives

3 System Overview

4 Security Speci�ication

4.1 Actors

4.2 Trust Assumptions

5 Findings

5.1 Malicious maker can satisfy
balance delta check via other
sources Critical

5.2 Potential memory corruption
in UnoswapRouter Major

5.3 Dangerous use of inline
assembly Medium

5.4 Unexpected ETH should be
rejected Minor

5.5 Malicious owner can use the
AggregationExecutor to steal ETH
funds Minor

5.6 Opaque function signatures
for
AggregationExecutor.callBytes()

Minor

6 Recommendations

6.1 Improve inline documentation

6.2 Deploy AggregationRouterV4
from an EOA

Appendix 1 - Files in Scope

Appendix 2 - Disclosure

BOOK NOW

th th

https://consensys.github.io/smart-contract-best-practices/
https://swcregistry.io/
http://localhost:1313/diligence/audits/private/bm9la422ebbeaz/img/arch.png
https://pages.consensys.net/diligence-1-day-spot-check

This section describes, from a security perspective, the expected behavior of the system under audit. It is not a substitute for
documentation. The purpose of this section is to identify speci�ic security properties or assumptions that were used as a basis
for the review.

4.1 Actors

The relevant actors are listed below with their respective abilities:

Users
swap ETH, WETH, and tokens through the executor contract

swap ETH, WETH, and tokens through the Clipper trading interface

Market makers
provide liquidity for takers via 1inch RFQ orders or external sources such as AMMs and other DEXs

interface with off-chain infrastructure to facilitate trades

Owner
remove ETH and tokens from the Aggregation Router

self-destruct the Aggregation Router

4.2 Trust Assumptions

In any system, it is essential to identify what trust is expected/required between various actors.

The AggregationRouterV4.swap() function requires a user to submit the address and call data of the currently deployed
AggregationExecutor contract. As the contract is closed-source, it becomes infeasible for a user to validate the contents of their

transaction. There is an inherent trust in the executing medium, e.g. the 1inch frontend, to provide the correct call values. No
reentrancy guards have been used across the system for gas-optimization purposes. However, it must be noted that an attacker,
e.g., manipulating the front end, can provide malicious swap parameters, resulting in unsuspecting users executing arbitrary
calls.

5 Findings
Each issue has an assigned severity:

Minor issues are subjective in nature. They are typically suggestions around best practices or readability. Code maintainers
should use their own judgment as to whether to address such issues.

Medium issues are objective in nature but are not security vulnerabilities. These should be addressed unless there is a clear
reason not to.

Major issues are security vulnerabilities that may not be directly exploitable or may require certain conditions in order to be
exploited. All major issues should be addressed.

Critical issues are directly exploitable security vulnerabilities that need to be �ixed.

5.1 Malicious maker can satisfy balance delta check via other sources Critical

Resolution

The development team has addressed this issue in commit 0e667047e38bdd70be701205bc93c81eafe14194 . This change has not been
reviewed by the audit team.

Description

The AggregationRouterV4 contract relies on a check comparing the taker’s spentAmount of the input token to the amount of output
token received. If the taker’s balance in the output token (dstToken) is increased by at least the speci�ied minReturnAmount , the trade
is considered successfully executed. For partial �ills, this minReturnAmount is adjusted based on the amount of input token (srcToken)
consumed.

This check not only protects takers from unexpected slippage, but it also serves as a critical safety check against a potentially
malicious AggregationExecutor . Because the AggregationExecutor contract is outside the scope of this review and the source code will
not be made public, this check is considered particularly important.

code/contracts/AggregationRouterV4.sol:L132-L137

if (flags & _PARTIAL_FILL != 0) {
 spentAmount = initialSrcBalance.add(desc.amount).sub(srcToken.uniBalanceOf(msg.sender));
 require(returnAmount.mul(desc.amount) >= desc.minReturnAmount.mul(spentAmount), "Return amount is not enough");
} else {
 require(returnAmount >= desc.minReturnAmount, "Return amount is not enough");
}

Exploit

This loose de�inition of a successful swap can be exploited by a malicious AggregationExecutor or any counterparty able to gain
control of execution during the swap. Because of the black box treatment of the AggregationExecutor contracts, it is assumed that
there could be many ways to take this control of execution. But, consider an ERC-777 callback from one of the traded tokens as a
simple example.

In addition to control of execution, a potential attacker would need a mechanism to accomplish one of the following:

1. Increase the taker’s balance in the output token in a way that does not decrease their own balance by the same amount.

2. Force unexpected side effects within 1inch or an external smart contract system.

Three concrete variations of this attack follow, all of which would occur between the initial check of the taker’s dstToken balance
and the �inal check on the success of the swap.

1. Force the taker to recognize the transfer of tokens as a deposit. If, for example, the taker was a DeFi protocol or DAO that
also allowed shares to be purchased for the dstToken , the maker or AggregationExecutor could buy shares during the execution
of the trade. The taker’s balance would increase by the necessary amount to make the trade succeed, but the attacker could
later withdraw the dstToken that the taker expected to receive outright.

2. Execute a limit order signed by the taker for the same dstToken . The increase in the taker’s balance provided from the
successful limit order execution would incorrectly satisfy the balance delta check for both swaps. For partial �ill orders,
execution of a limit order from the taker for the srcToken could be similarly exploited.

3. Force a payout of dstToken that is already owed to the taker from another smart contract. Take for example a user swapping
DAI for UNI that also has an unclaimed payout in the Uniswap MerkleDistributor contract. The attacker could call
MerkleDistributor.claim() with the necessary merkle proof, then force the transfer of UNI from the swap execution to fail.

Assuming the amount of claimed UNI was at least the minReturnAmount , this would satisfy the �inal check on the taker’s balance
and the maker would receive the DAI from the trade. However, the maker would not have forfeited their UNI .

Recommendation

Use an intermediate address with approvals to the Aggregation Router to collect the tokens from a swap. Perform the balance
delta checks on this intermediate address, then transfer the tokens to the intended destinations.

5.2 Potential memory corruption in UnoswapRouter Major

Resolution

The development team has addressed this issue in commit c9d4bee4ac0fb6bb9d2da44278274fa0d40f69f8 . This change has not been
reviewed by the audit team.

Description

The UnoswapRouter contract uses inline assembly to optimize swap interactions with UniswapV2 pools. Before performing a swap
with a pool, it makes a staticcall to the following function on the caller-provided pool address:

getReserves() public view returns (uint112 _reserve0, uint112 _reserve1, uint32 _blockTimestampLast)

This call speci�ies the return offset and expected return data length for the staticcall , expecting the memory indicated by this
offset and length to be overwritten with the return data.

code/contracts/UnoswapRouter.sol:L55-L61

mstore(emptyPtr, _UNISWAP_PAIR_RESERVES_CALL_SELECTOR_32)
if iszero(staticcall(gas(), pair, emptyPtr, 0x4, emptyPtr, 0x40)) {
 reRevert()
}

let reserve0 := mload(emptyPtr)
let reserve1 := mload(add(emptyPtr, 0x20))

Note that while the getReserves() function is expected to return 96 bytes of data, the UnoswapRouter speci�ies the length to copy as
64 bytes, meaning the value returned for _blockTimestampLast is never copied into memory.

There are cases where a staticcall to getReserves() can succeed without returning the expected amount of data. Notably, this
occurs for any call to an address that contains no code (e.g. a yet-to-be-deployed pair address). When this happens, the
memory region passed to staticcall for return data is left unchanged. This means that if a pool address is either an account
containing no code or a contract that returns less than 64 bytes of data, the UnoswapRouter will interpret dirty memory regions as
reserve0 and reserve1 . While the emptyPtr from which this memory is read is manually updated based on the free memory pointer

stored by Solidity, the memory beyond this free memory pointer can not be expected to be empty, as per the Solidity
documentation.

Because the UnoswapRouter was heavily de-prioritized, the potential impact of this issue was not deeply explored. However,
memory corruption issues of any kind should be considered high severity.

Recommendation

Either check that the staticcall returns the expected 96 bytes of data using RETURNDATASIZE , or replace the implicit memory copy
by the STATICCALL opcode with an explicit RETURNDATACOPY , which will write zeros to the speci�ied memory region if the requested
copy length exceeds the length of the return data.

5.3 Dangerous use of inline assembly Medium

Resolution

The development team has addressed this issue in commit 4736ce74afaf41b97195b19d091de91fa62ef234 . This change has not been
reviewed by the audit team.

Description

Yes, inline assembly can reduce gas costs compared to vanilla Solidity, sometimes signi�icantly. However, it is crucial to
consider, from a security perspective, where assembly is being used, how it is being used, and whether the gas saved is worth

https://github.com/Uniswap/merkle-distributor/blob/c3255bfa2b684594ecd562cacd7664b0f18330bf/contracts/MerkleDistributor.sol#L34-L45
https://docs.soliditylang.org/en/latest/internals/layout_in_memory.html?highlight=memory%20pointer#layout-in-memory

the risk introduced.

The 1inch development team is well aware of the risks of using assembly, and the intended use of the contracts in question does
demand e�icient resource consumption. This being said, our opinion is that the where and the how of this assembly usage
should be reconsidered.

As an example, the LimitOrderProtocolRFQ contract makes heavy use of assembly in validating signed orders. It also uses assembly
to modify caller-provided data in place before sending this data to a caller-provided address. This assembly is hidden behind
layers of internal function calls, hindering both readability and auditability.

code/contracts/LimitOrderProtocolRFQ.sol:L172-L182

code/contracts/helpers/ArgumentsDecoder.sol:L32-L36

function patchAddress(bytes memory data, uint256 argumentIndex, address account) internal pure {
 assembly { // solhint-disable-line no-inline-assembly
 mstore(add(add(data, 0x24), mul(argumentIndex, 0x20)), account)
 }
}

code/contracts/LimitOrderProtocolRFQ.sol:L190-L196

function _makeCall(address asset, bytes memory assetData, uint256 amount) private {
 assetData.patchUint256(_AMOUNT_INDEX, amount);
 bytes memory result = asset.functionCall(assetData, "LOP: asset.call failed");
 if (result.length > 0) {
 require(abi.decode(result, (bool)), "LOP: asset.call bad result");
 }
}

Of particular concern here is that using assembly to both validate and modify this data in place is extremely susceptible to
subtle errors that could very easily result in an arbitrary call to a caller-provided address – that is, to stealing of all user token
approvals.

In addition to LimitOrderProtocolRFQ , both UnoswapRouter and UnoswapV3Router are written primarily in assembly.

Recommendation

Revisit the current usage of assembly. Consider the consequences of an assembly error in each place that it is used, the
complexity and readability of the required assembly, and the gas savings provided.

As a concrete example, do not pass caller-provided data to arbitrary addresses, especially not data that has been modi�ied
multiple times by separate assembly blocks. For the 4 words of memory required for a transferFrom() call, the risk far outweighs
the reward.

Avoid assembly blocks whenever possible. When necessary, make validation of the correctness of the assembly a high priority.
Assembly blocks are easy to test in the happy path, but they have far more potential for unexpected behavior than high-level
Solidity. This means that manual veri�ication, fuzzing, symbolic execution, and other methods for ensuring correctness are well-
warranted.

5.4 Unexpected ETH should be rejected Minor

Resolution

The development team has addressed this issue in commits 30f4067d9cac87280083407719dc4e436ed9ceab and
c40696f8c8824f27bfd826dd65734d0a0c355225 . These changes have not been reviewed by the audit team.

Description

Many of the swap-related functions in the Aggregation Router are payable , as they give users the option to send ETH with the call
which is then used in the swap. However, some of these methods do not reject calls with a nonzero msg.value in cases where ETH
is not used in the swap.

Examples

The uniswapV3SwapTo() function below checks that the right amount of ETH was provided if the caller has asked that the callvalue
be wrapped into WETH. However, it does not perform any additional checks on the callvalue in other cases.

code/contracts/UnoswapV3Router.sol:L50-L64

function _callMakerAssetTransferFrom(address makerAsset, bytes memory makerAssetData, address taker, uint256 makingAmount) private {
 // Patch receiver or validate private order
 address orderTakerAddress = makerAssetData.decodeAddress(_TO_INDEX);
 if (orderTakerAddress != address(0)) {
 require(orderTakerAddress == msg.sender, "LOP: private order");
 }
 if (orderTakerAddress != taker) {
 makerAssetData.patchAddress(_TO_INDEX, taker);
 }
 _makeCall(makerAsset, makerAssetData, makingAmount);
}

function uniswapV3SwapTo(
 address payable recepient,
 uint256 amount,
 uint256 minReturn,
 uint256[] calldata pools
) public payable returns(uint256 returnAmount) {
 uint256 len = pools.length;
 require(len > 0, "UNIV3R: empty pools");
 returnAmount = amount;
 bool wrapWeth = pools[0] & _WETH_WRAP_MASK > 0;
 bool unwrapWeth = pools[len - 1] & _WETH_UNWRAP_MASK > 0;
 if (wrapWeth) {
 require(msg.value == amount, "UNIV3R: wrong msg.value");
 _WETH.deposit{value: amount}();
 }

Recommendation

To prevent accidental locking of user funds, revert if the provided callvalue is nonzero on any path that does not utilize ETH.
These checks should be added to UnoswapV3Router.uniswapV3SwapTo() and ClipperRouter.clipperSwapTo()

5.5 Malicious owner can use the AggregationExecutor to steal ETH funds Minor

Description

The AggregationRouterV4 contract’s swap function is the main point of interaction for users to trade in the system. Its �irst parameter
takes a user-supplied AggregationExecutor interface (caller), which is called with user-supplied call data (data).

The given AggregationExecutor is then triggered using a low-level call . All gas from the current execution context will be
forwarded to the external call. As the system does not have reentrancy guards, any other system component can be reentered.

code/contracts/AggregationRouterV4.sol:L121-L123

bytes memory callData = abi.encodePacked(caller.callBytes.selector, bytes12(0), msg.sender, data);
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory result) = address(caller).call{value: msg.value}(callData);

An attacker, e.g., manipulating the frontend or tricking users directly, can make users submit swap function calls with a caller

address of their choosing.

code/contracts/AggregationRouterV4.sol:L88-L92

function swap(
 IAggregationExecutor caller,
 SwapDescription calldata desc,
 bytes calldata data
)

If the source token is ETH, an attacker can use a malicious contract with owner privileges to hijack the execution �low and
reenter the AggregationRouterV4 contract by calling the destroy function. Consequently, selfdestruct will be called, and the ETH
funds in transit will be sent to the message sender.

code/contracts/AggregationRouterV4.sol:L155-L157

function destroy() external onlyOwner {
 selfdestruct(msg.sender);
}

The swap function’s balance checks in the original execution frame will never be called as execution terminates immediately.

Recommendation

We recommend implementing reentrancy guards on administrative functions to prevent insider attacks and reduce the trust
assumptions put into the owner role.

5.6 Opaque function signatures for AggregationExecutor.callBytes() Minor

Description

Currently, AggregationExecutor contracts are expected to expose a function callBytes(address, bytes) . The AggregationRouter takes user-
supplied data and prepends the selector for callBytes() before calling to the AggregationRouter . Because the AggregationRouter holds
user approvals, the development team wishes to avoid redeploying the router whenever possible.

To support multiple encodings for this bytes parameter without updates to the router, the AggregationExecutor contains a function
with the desired types that is brute-forced to match the 4-byte function selector of callBytes(address, bytes) , which is 0x2636f7f8 .
For example:

code/contracts/AggregationExecutor.sol:L56-L58

This intentional use of function selector collisions introduces complexity for developers and users, making the encoded data
that a user must sign indecipherable without access to the AggregationExecutor source code and could create unpredictable
overlaps in argument encodings.

Recommendation

function func_0701rz5(address /* msgSender */, CallDescription[] calldata calls, bytes calldata /* approvedSenderAndSignature */) exte
 _makeCalls(calls);
}

Implement the callBytes(address, bytes) function as written in AggregationExecutor contracts, and use Solidity’s abi.decode() to decode
the bytes parameter to the desired types. The development team currently avoids this due to gas concerns, but we assess that
the risk and complexity introduced outweigh the bene�its.

6 Recommendations
6.1 Improve inline documentation

Description

The source units hardly contain any inline documentation, making it hard to reason about methods and how they are supposed
to be used. Consider adding natspec-format compliant inline code documentation, describe functions, what they are used for,
and who is supposed to interact with them: document function or source-unit speci�ic assumptions.

Not only will improved documentation increase the code’s maintainability, but it also reduces the potential for future bugs.
Furthermore, readability will be increased, allowing third-party auditors and new engineers to get started with the codebase
quickly.

6.2 Deploy AggregationRouterV4 from an EOA

Description

The Aggregation Router allows the contract owner to trigger a self-destruct at any time. If the contract were deployed via the
CREATE2 opcode using indeterminate initialization code, or if any contract within the deployment path were deployed using
CREATE2 *, the self-destructed router could be replaced with malicious code at the same address. This would allow all user token

approvals to be stolen.

code/contracts/AggregationRouterV4.sol:L155-L157

function destroy() external onlyOwner {
 selfdestruct(msg.sender);
}

To minimize owner control of user assets, the Aggregation Router should be deployed in a transparently permanent manner.
Ideally, this would mean deployment by an externally owned account (EOA).

* For example, contract X is deployed using CREATE2 (not necessarily with indeterminate initialization code). Contract X deploys
the Aggregation Router using CREATE . Both contract X and the Aggregation Router are self-destructed. This resets the nonce for
both accounts. Because the destination address of CREATE relies on the deploying contract’s nonce rather than the deployed
contract’s initialization code, the re-deployed Contract X can now deploy different contract code to the original Aggregation
Router address.

Appendix 1 - Files in Scope
This audit covered the following �iles:

File SHA-1 hash

./AggregationRouterV4.sol b54545e1f9ee517363fe3dfa2ab913f72555db45

./ClipperRouter.sol 6c6a877418e8f362bc0b2d04abefc470d�bfcb00

./helpers/ArgumentsDecoder.sol 00683488411bb10896080c25a82a8cc26f7f217b

./helpers/EthReceiver.sol 0792504da4f912f0ea49a2fc46b89046e2b547a0

./helpers/Permitable.sol 71f9d0e79b980cf70d80528163ad2ae763c5b050

./helpers/RevertReasonParser.sol 28714ae9c3a4011c9425c99621d51105df089c56

./helpers/UniERC20.sol ca13eb469f49�b970dbddd2e87b1012466469378

./LimitOrderProtocolRFQ.sol 7b19d00eabf35a12c1fcdea4aaa28a22e01f710d

./UnoswapRouter.sol 72501583c4d9�bdc36672070fa633585bf742f54

./UnoswapV3Router.sol f63d3b0a7c6ba6d1686bb4a359ffc471d5f77908

Appendix 2 - Disclosure
ConsenSys Diligence (“CD”) typically receives compensation from one or more clients (the “Clients”) for performing the analysis
contained in these reports (the “Reports”). The Reports may be distributed through other means, including via ConsenSys
publications and other distributions.

The Reports are not an endorsement or indictment of any particular project or team, and the Reports do not guarantee the
security of any particular project. This Report does not consider, and should not be interpreted as considering or having any
bearing on, the potential economics of a token, token sale or any other product, service or other asset. Cryptographic tokens
are emergent technologies and carry with them high levels of technical risk and uncertainty. No Report provides any warranty or
representation to any Third-Party in any respect, including regarding the bugfree nature of code, the business model or
proprietors of any such business model, and the legal compliance of any such business. No third party should rely on the
Reports in any way, including for the purpose of making any decisions to buy or sell any token, product, service or other asset.
Speci�ically, for the avoidance of doubt, this Report does not constitute investment advice, is not intended to be relied upon as
investment advice, is not an endorsement of this project or team, and it is not a guarantee as to the absolute security of the
project. CD owes no duty to any Third-Party by virtue of publishing these Reports.

PURPOSE OF REPORTS The Reports and the analysis described therein are created solely for Clients and published with their
consent. The scope of our review is limited to a review of code and only the code we note as being within the scope of our

Request a Security Review Today
Get in touch with our team to request a quote for a smart contract audit.

A U D I T S

F U Z Z I N G

S C R I B B L E

B L O G

T O O L S

R E S E A R C H

A B O U T

C O N TA C T

C A R E E R S

P R I VA C Y P O L I C Y

Subscribe to Our Newsletter
Stay up-to-date on our latest offerings, tools,
and the world of blockchain security.

Email*

e-mail address

→

review within this report. Any Solidity code itself presents unique and unquanti�iable risks as the Solidity language itself remains
under development and is subject to unknown risks and �laws. The review does not extend to the compiler layer, or any other
areas beyond speci�ied code that could present security risks. Cryptographic tokens are emergent technologies and carry with
them high levels of technical risk and uncertainty. In some instances, we may perform penetration testing or infrastructure
assessments depending on the scope of the particular engagement.

CD makes the Reports available to parties other than the Clients (i.e., “third parties”) – on its website. CD hopes that by making
these analyses publicly available, it can help the blockchain ecosystem develop technical best practices in this rapidly evolving
area of innovation.

LINKS TO OTHER WEB SITES FROM THIS WEB SITE You may, through hypertext or other computer links, gain access to web sites
operated by persons other than ConsenSys and CD. Such hyperlinks are provided for your reference and convenience only, and
are the exclusive responsibility of such web sites’ owners. You agree that ConsenSys and CD are not responsible for the content
or operation of such Web sites, and that ConsenSys and CD shall have no liability to you or any other person or entity for the
use of third party Web sites. Except as described below, a hyperlink from this web Site to another web site does not imply or
mean that ConsenSys and CD endorses the content on that Web site or the operator or operations of that site. You are solely
responsible for determining the extent to which you may use any content at any other web sites to which you link from the
Reports. ConsenSys and CD assumes no responsibility for the use of third party software on the Web Site and shall have no
liability whatsoever to any person or entity for the accuracy or completeness of any outcome generated by such software.

TIMELINESS OF CONTENT The content contained in the Reports is current as of the date appearing on the Report and is subject
to change without notice. Unless indicated otherwise, by ConsenSys and CD.

CONTACT US

http://localhost:1313/diligence/audits/
http://localhost:1313/diligence/fuzzing/
http://localhost:1313/diligence/scribble/
http://localhost:1313/diligence/blog/
http://localhost:1313/diligence/tools/
http://localhost:1313/diligence/research/
http://localhost:1313/diligence/about/
http://localhost:1313/diligence/contact/
https://consensys.net/open-roles/?discipline=32525
http://localhost:1313/diligence/privacy-policy/
https://consensys.net/
http://localhost:1313/diligence/contact/

