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0 Preface
The sun himself is weak when he first rises, and gathers strength and courage as the
day gets on.

— Charles Dickens, The Old Curiosity Shop

§ 0.1 Purpose
Modular arithmetic, a cornerstone of numerous disciplines, reformulates arithmetic to leverage
the raw properties of numbers. This exposition takes the nontraditional approach of teaching
the subject from the perspective of math competitions such as the American Math Competitions
(AMC) series1, favoring intuition over formalism. It will appeal to both the mathematician and
the applied scientist. And to anyone looking for a challenge.

§ 0.2 Notation
Though most notation is standard or introduced in-text, you should be familiar with the following
specialized notation.

Notation Definition
ZC for some constraint
C

the set all integers satisfying C (e.g., Z+ denotes the
set of all positive integers)

[a, b] for a, b ∈ Z≥0 the least common multiple (LCM) of a and b

(a, b) for a, b ∈ Z≥0 the greatest common divisor (GCD) of a and b, where
(0, 0) is undefined

bxc and dxe for x ∈ R

the floor (greatest integer less than or equal to)
and ceiling (least integer greater than or equal to)
functions of x, respectively

§ 0.3 Appetizer
Throughout this book, you will be guided by examples to experience discoveries firsthand2, not
fed results directly. The problems below establish a baseline for the prerequisite skills to
understand these examples. Solve them to ensure you are ready to proceed3.

Problem 1: What is the largest positive integer that divides 40 and 78? What about the smallest
positive integer divisible by 40 and 78?

1This is the series of tests used to select the U.S. team for the International Mathematical Olympiad, among the
valuable sources for the externally-sourced problems. All sources will be credited appropriately.

2There is an honor code for you to follow. Do not memorize the formulas presented. Instead, perform the thought
experiments and make your best attempts at the examples and problems to build intuition. Read fragments of the
presented solutions if you find yourself stuck, or ask a friend. If all else fails, consult the full solution and fill in the
gaps. Only then will you see the true beauty in the math.

3All problems presented, including those below, have their solutions in the back of the book. Examples, exercises
included to introduce concepts in-text, have their solutions immediately underneath for convenience.
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Problem 2: A six place number is formed by repeating a three place number; for example, 256256
or 678678, etc. Find the GCD of all numbers of this form. (Source: 1959 AHSME #19)

Problem 3: One of the first 1234567 positive integers is chosen at random. Compute the
probability that it is divisible by 3.

Problem 4: Find all integers x for which it can be said that the positive integer 2x + 9 divides the
positive integer 3x + 4.

Problem 5: Prove that, for all primes p, the smallest positive integer whose factorial is divisible
by p is p itself.

Problem 6: Find a closed form for the remainder of a÷m, where a, m ∈ Z+.4

4Hint: Your answer should involve
⌊ a

m

⌋
.
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1 Arithmetic—Modulo m
No facts are to me sacred; none are profane; I simply experiment, an endless seeker.

— Ralph Waldo Emerson, Circles

§ 1.1 A Thought Experiment
Imagine a number line.

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

As we’re taught in school, we can count on this number line. Starting at 0, we can count up
1, 2, 3, 4, . . . or down −1,−2,−3,−4, . . . . Moreover, we can create a system of integer arithmetic
out of movements on this number line. For instance, the sum 1 + 2 = 3 can be interpreted as
starting at the number 1 and moving two units to the right to 3.

But now imagine taking a piece of this number line and wrapping it around in a circle.

0 1 2 3 4 5 6 7 8 9 10 11

0
1

2

3

4

5
6

7

8

9

10

11

How could we count on this modified number line? Well, notice that this is almost the face of a
clock, so we can imagine moving the hour hand! Because there are 12 hours on this clock, we say
its modulus is 12. Starting at 0, we can count up clockwise 1, 2, 3, 4, . . . , but this time, after we
reach 11, we loop back around to 0. Similarly, we can count down counterclockwise
11, 10, 9, 8, . . . , but when we reach 1, we loop back around to 0.

What about arithmetic? Wherever we start, if we ever move forward or backward by our
12-hour modulus, we end up exactly the same place we started. This enables us to create a
system of integer arithmetic where an integer a corresponds to the time a hours after 0 (or −a
hours before 0 if a < 0).
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Example 1: What hour on the clock does 2021 correspond to?

This question is asking us to start our hour hand at 0, move forward 2021 hours, and then
determine the time. But like we said, for every 12-hour cycle we make, we end up back at 0.
Effectively, we can divide our 2021 hours into 12-hour blocks until only r hours remain, where
0 ≤ r ≤ 11. Then, our answer is just r (all that remains is to move forward r hours from 0).

To compute the answer r, we note that it is the remainder of the division 2021 ÷ 12. Since
2021÷ 12 = 168 R 5, r = 5 . �

Two integers a and b may be deemed “equal“ in this system if they both correspond to the same
hour on the clock. However, to prevent confusion when a 6= b in standard arithmetic, we say that
a and b are congruent and write this as a ≡ b. For example, because 2021, 17, and −19 all
correspond to the same hour 5, we can write 2021 ≡ 17 ≡ −19 ≡ 5.

§ 1.2 Generalization
Now, suppose we generalize the clock from our thought experiment to include m hours, 0
through m− 1 for some m ∈ Z>1, so that m is now the modulus. We introduce some standard
terminology.

First, we write the notion that two integers a and b correspond to the same hour on this general
m-hour clock in modular form as

a ≡ b (mod m),

pronounced “a is congruent to b modulo m,“ where the (mod m) modular suffix helps us keep
track of the modulus m. This relation as a whole is known as a modular congruence.

In order to correspond to the same hour on the clock, a and b must differ by some whole number
of m-hour cycles. That is, a and b differ by an integer multiple of m. This gives us an alternative
parametric form to express the same notion:

a− b = mk; k ∈ Z.

Lastly, the hour an integer a corresponds to on a modulus m clock, equivalently the remainder of
the division a÷m, can be written in modular remainder form as

a mod m

(notice the omission of parentheses around the modular suffix) and is sometimes referred to as
the modular residue of a (mod m).

Example 2: Use modular definitions to justify 11 ≡ −3 (mod 14). Convert the congruence into
parametric form.

We have that 11 ≡ −3 (mod 14) because
11− (−3)

14
= 1 ∈ Z by modular definition. In

parametric form, this becomes 11− (−3) = (14)(1); 1 ∈ Z . �
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You might be surprised to find that, even with the few tools derived thus far, we’ve unlocked the
ability to solve new kinds of problems.

Problem 7: Claire adds the degree measures of the interior angles of a convex polygon and arrives
at a sum of 2017. She then discovers that she forgot to include one angle. What is the degree
measure of the forgotten angle? (Source: 2017 AMC 12A #11)

§ 1.3 Key Identities
To harness the power of any mathematical system, it is essential to establish its key identities.
Fortunately, the key identities of modular arithmetic are not only intuitive but easy to formalize
through conversion from modular form to parametric form and vice versa as we explore in the
next example.

Example 3: For a, b, A, B ∈ Z and m ∈ Z>1, if a ≡ A (mod m) and b ≡ B (mod m), prove each
of the following.

• a + b ≡ A + B (mod m)

• ab ≡ AB (mod m)

• an ≡ An (mod m) for n ∈ Z≥0

Using parametric form, if all k ∈ Z and a, A (mod m) have common modular residue ra while
b, B (mod m) have common modular residue rb, we can write

a = mka + ra b = mkb + rb

A = mkA + ra B = mkB + rb

It follows that
(a + b)mod m = (A + B)mod m = (ra + rb)mod m

ab mod m = AB mod m = rarb mod m,

proving the first two identities. For the third identity, the congruence reduces to the trivial 1 ≡ 1
(mod m) if n = 0 and an n-time application of the second identity otherwise (seeing as positive
integer exponentiation is repeated multiplication). �

Example 4: Use the fact1 that 89 ≡ −1 (mod 90) to find the remainder when 892021 is divided by
90.

Using our exponentiation identity, we have

89 ≡ −1 (mod 90) =⇒ 892021 ≡ (−1)2021 ≡ −1 ≡ 89 (mod 90).

�
1In case you haven’t realized by now, negative numbers are really powerful and often help simplify the arithmetic

part of modular arithmetic.
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Problem 8: In year N, the 300th day of the year is a Tuesday. In year N + 1, the 200th day is also
a Tuesday. On what day of the week did the 100th day of the year N − 1 occur?2 (Source: 2000
AMC 10 #25)

Problem 9: If n and m are integers and n2 + m2 is even3, which of the following is impossible?
(Source: 2014 AMC 8 #13)
(A) n and m are even (B) n and m are odd (C) n + m is even (D) n + m is odd
(E) none of these are impossible

Problem 10: When the sum

(1 · 2 · 3) + (2 · 3 · 4) + (3 · 4 · 5) + · · ·+ (2018 · 2019 · 2020)

is evaluated, what is the units digit4 of the result?

Unfortunately, division does not work as you would expect in congruences. For example, 3 ≡ 6
(mod 3), but we can’t divide both sides of the congruence by 3 to obtain 1 ≡ 2 (mod 3) as this is
obviously false. In fact, most expositions stop here and insist it is a dead end. However, there is a
way to make division work if we’re careful. . .

§ 1.4 Resolving the Division Anomaly
Let’s delve right in with an example. As with all examples, pause and try to make progress on
your own before reading on. As a warning, however, the example below is particularly involved,
so feel free to refer to parts of the solution whenever you feel irrevocably stuck.

Example 5: For a, b, d, m ∈ Z with d 6= 0 and m > 1, suppose ad ≡ bd (mod m). Find a way to
correctly divide the congruence by d to write a congruence between a and b.

We don’t know how to divide in congruences, but we do know how to divide in equations! This
motivates us to convert our relation ad ≡ bd (mod m) from modular congruence form to
parametric equation form and then divide by d, giving us the following for k ∈ Z :

ad− bd = mk

a− b =
mk
d

Since a, b ∈ Z, a− b =
mk
d
∈ Z.

Consequently, d can be written as the product of two integer factors in the form dmdk, where
m
dm
∈ Z and

k
dk
∈ Z. Plugging this form in and rearranging yields a key insight:

mk
d

=
m
dm

k
dk

2Hint: The day of the week corresponding to a certain day is given by its modular residue (mod 7) because there
are 7 days in a week.

3Hint: Even or odd parity is given by the modular residue (mod 2).
4Hint: The units digit of a number is its modular residue (mod 10).
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mk
d
m
dm

=
k
dk
∈ Z

Now, as we have both
m
dm
∈ Z and

d
dm

= dk ∈ Z, we obtain
(m, d)

dm
∈ Z, from which follows

another key insight:
m
dm
m

(m, d)

∈ Z.

Finally, since two integers multiply to an integer, we obtain a third and final insight by multiplying
our two insights together:

mk
d
m
dm

m
dm
m

(m, d)

=

mk
d
m

(m, d)

=
a− b

m
(m, d)

∈ Z

In modular form, this becomes a− b ≡ 0
(

mod
m

(m, d)

)
=⇒ a ≡ b

(
mod

m
(m, d)

)
. �

Problem 11: Al, Bob, and Carl each have favorite numbers so that the sum of Al and Bob’s favorite
numbers has a units digit of 2, the sum of Bob and Carl’s favorite numbers has a units digit of 4,
and the sum of Al and Carl’s favorite numbers has a units digit of 0. If their favorite numbers are
all positive integers, what is the sum of all possible values of the units digit of the sum of their
three favorite numbers?
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2 Revisiting Divisibility Rules
If you have built castles in the air, your work need not be lost; that is where they should
be. Now put the foundations under them.

— Henry David Thoreau, Walden

§ 2.1 The Magic of the Decimal Representation
All of the divisibility rules you were taught (e.g., the canonical sum of the digits divisibility for 3)
have their roots in modular arithmetic. Let’s derive some of them.

First, as you may recall, a number we generally see in standard arithmetic is said to be in its
decimal representation. This means it can be easily expressed as the sum of multiples of powers
of 10. All we have to do is read the digits off one by one.

Example 6: Write 2021 as the sum of powers of 10.

2021 = 2 · 103 + 0 · 102 + 2 · 101 + 1 · 100 . �

In general, a number like d1d2d3 . . . dn, where all d denote digits, can be written as the sum

10n−1d1 + 10n−2d2 + 10n−3d3 + · · ·+ 100dn.

This alone establishes many useful divisibility rules.

Example 7: For many m ∈ Z>1, the divisibility rule of m can be obtained by considering the
modular residue of the general decimal representation above (mod m). For k ∈ Z>0, discover
the divisibility rules of 2k, 3, 5k, 9, 10k, and 11.

Modulo 2k, 5k, or 10k, all terms 10idn−i for i ≥ k vanish to 0, leaving only those with 0 ≤ i < k.
Therefore, the divisibility rule for 2k, 5k, and 10k is to consider the modular residue of the last k
digits. For example,

9998796 ≡ 96 ≡ 0 (mod 22)

9998796 ≡ 96 ≡ 21 (mod 52)

9998796 ≡ 96 ≡ 96 (mod 102)

Modulo 3 and 9, all terms 10idn−i ≡ 1idn−i ≡ dn−i. Therefore, the divisibility rule for 3 and 9 is to
consider the modular residue of the sum of the digits. For example,

123456789 ≡ 1 + 2 + 3 + · · ·+ 9 ≡ 9 · 10
2
≡ 0 (mod 9)

1723103 ≡ 1 + 7 + 2 + 3 + 1 + 0 + 3 ≡ 17 ≡ 1 + 7 ≡ 2 (mod 3)
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Lastly, modulo 11, all terms 10idn−i become (−1)idn−i. Therefore, the divisibility rule for 11 is to
consider the modular residue of the alternating difference/sum (strictly from right to left) of the
digits. For example,

1315 ≡ 5− 1 + 3− 1 ≡ 6 (mod 11)

�

Problem 12: Eleven members of the Middle School Math Club each paid the same integer amount
for a guest speaker to talk about problem solving at their math club meeting. In all, they paid their
guest speaker $1A2. What is the missing digit A of this 3-digit number? (Source: 2014 AMC 8 #8)

Problem 13: The 5-digit number 2 0 1 8 U is divisible by 9. What is the remainder when this
number is divided by 8? (Source: 2018 AMC 8 #7)

Problem 14: The digits 1, 2, 3, 4, and 5 are each used once to write a five-digit number PQRST.
The three-digit number PQR is divisible by 4, the three-digit number QRS is divisible by 5, and
the three-digit number RST is divisible by 3. What is P? (Source: 2016 AMC 8 #24)

Problem 15: Let S(n) equal the sum of the digits of positive integer n. For example, S(1507) = 13.
For a particular positive integer n, S(n) = 1274. Which of the following could be the value of
S(n + 1)? (Source: 2017 AMC 10A #20, 12A #18)
(A) 1 (B) 3 (C) 12 (D) 1239 (E) 1265

Problem 16: Let S(n) denote the sum of the digits of a positive integer n with two digits or more.
The digital root of a number is found by applying the function S to the number repeatedly until
a one-digit number is obtained. For example, the digital root of 1234567 is 1. Let f (n) denote the
square of the positive integer with n digits, all of whose digits are 1. For example, f (4) = 11112.
What is the digital root of f (1) + f (2) + · · ·+ f (2018)?

§ 2.2 Make Your Own
As useful as the fundamental divisibility rules are, you sometimes need to combine them. For
instance, the divisibility rule for 12 is a combination of those for 3 and 4.1 Other times, you have
to start from scratch and make your own.

Example 8: To test a number for divisibility by 7, prove that it suffices to remove its final digit and
then subtract twice this digit from whatever remains. For example, we can say 434 is divisible by
7 because 43− 2(4) = 35 is.

Suppose the number is n. Removing its final digit leaves
⌊ n

10

⌋
, so its final digit is n− 10

⌊ n
10

⌋
.

We are asked to prove that if⌊ n
10

⌋
− 2

(
n− 10

⌊ n
10

⌋)
≡ 0 (mod 7),

1To find the exact residue in such a combination, we need to solve a system of linear congruences, which we will
get to in a later chapter.
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then n ≡ 0 (mod 7). Simplifying gives

21
⌊ n

10

⌋
+ 5n ≡ 0 (mod 7),

But now, since 21 ≡ 0 (mod 7), the first term vanishes, and we are left with n ≡ 0 (mod 7) after
dividing by 5. �

Problem 17: If we instead subtract three times the final digit from what remains, we obtain a
divisibility test for a different prime. What is it? (Source: Mandelbrot)
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3 Exponential Remainders
To live, I must have faith. I must trust myself to the totally unknown.

— Alan Watts, Man and Nature

§ 3.1 Inductive Reasoning
Many of the important problems modular arithmetic solves involve finding the remainders of
notoriously large exponents that cannot be computed by hand. In many cases, you’ll find that it
is enough to find the first few exponents of the base to see how the modular residues cycle. You
can then induct the cycle to pin down the desired residue.

Example 9: What is the units digit of 22021?

We proceed with inductive reasoning by looking at the modular residues of the first few powers
of 2 modulo 10.

21 ≡ 2 (mod 10)

22 ≡ 4 (mod 10)

23 ≡ 8 (mod 10)

24 ≡ 6 (mod 10)

25 ≡ 2 (mod 10)

Aha! Our residues cycle as 2, 4, 8, 6, 2, 4, 8, 6, . . . . Because each cycle has length 4 (four residues
are contained inside the cycle), the 2018th residue will have position 2018 mod 4 = 2 in the cycle.
Therefore, because all residues with position 2 in their respective cycle have value 4, our answer
is 4 . �

Problem 18: A number m is randomly selected from the set {11, 13, 15, 17, 19}, and a number n is
randomly selected from {1999, 2000, 2001, . . . , 2018}. What is the probability that mn has a units
digit of 1? (Source: 2018 AMC 10A #19)

§ 3.2 Euler’s Totient Theorem
For m ∈ Z>1, Euler’s totient function φ(m) counts the number of positive integers not exceeding
m relatively prime to m. It turns out this is a very useful function for us in modular arithmetic.
Let’s see how.

Example 10: For m ∈ Z>1, suppose the prime factorization of m is
n
∏

k=1
pek

k , where all p are its

prime divisors and e their exponents. To find φ(m), we could just look at the GCD of m with each
of the first m positive integers, but devise a faster way using this information.
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Consider the set of the first m positive integers. Because m is evenly divisible by all its prime
divisors p and this is a continuous range of integers, the residues modulo all p are evenly
distributed in this set. Now, we must count how many numbers in this set are relatively prime to
m. Imagine constructing one such number. To be relatively prime to m, it cannot be divisible by

any of the prime divisors p. For a given p, due to the even distribution, exactly
1
p

of the numbers

in the set are divisible by p (in other words, 0 modulo p). Therefore, the other 1 − 1
p

of the

numbers are not. Because all p are independent, the overall fraction of the numbers that are not

divisible by any of the p is given by the product ∏
(

1− 1
p

)
. But this is exactly

φ(m)

m
. Therefore,

we have

φ(m) = m
n

∏
k=1

(
1− 1

pk

)
.

�

Example 11: Compute φ(12) in two ways.

The prime factorization of 12 is 22 · 3, so φ(12) = 12 · 1
2
· 2

3
= 4 . However, φ(12) also counts the

number of positive integers not exceeding 12 relatively prime to 12. There are also four of these,
1, 5, 7, and 11, as expected. �

Example 12: What is φ(p) for prime p?

All positive integers less than p (and all positive integers in general) are relatively prime to p.
Therefore, φ(p) = p− 1 . �

Example 13: For m ∈ Z>1, prove that aφ(m) ≡ 1 (mod m) for all integers a such that (a, m) = 1.
This is known as Euler’s totient theorem.

Throughout this problem, suppose we work using modular arithmetic (mod m). There are
exactly m residues 0, 1, 2, . . . , m− 1 in this system. However, by the definition of φ, only φ(m) of
these residues are relatively prime to m. Let Sm = {n1, n2, . . . , nφ(m)} denote this special set of
φ(m) residues. Now, suppose we multiply all residues in this set by a and mod out to find the
residues, producing a new set aSm = {an1 mod m, an2 mod m, . . . , anφ(m) mod m} of
residues. The crucial claim is that Sm = aSm. This is because all elements remained distinct and
relatively prime to m before and after being multiplied by a (as (a, m) = 1), and there were
exactly φ(m) of them before and after. Therefore, if we multiply all the elements in Sm and all the
elements in aSm, the two products must be congruent (mod m):

n1 · n2 · · · nφ(m) ≡ an1 · an2 · · · anφ(m)

n1n2 · · · nφ(m) ≡ aφ(m)n1n2 · · · nφ(m) (mod m)

Dividing both sides by n1n2 · · · nφ(m) without affecting the modulus m as this number is relatively
prime, we get

aφ(m) ≡ 1 (mod m)

15



as desired. �

Example 14: For m, b ∈ Z>1, show that ab ≡ ab mod φ(m) (mod m) for all integers a such that
(a, m) = 1.

We can write b = φ(m)

õ
b

φ(m)

û
+ b mod φ(m). Substituting this in and using Euler’s totient

theorem gives us

aφ(m)bb/φ(m)c+b mod φ(m) ≡ (aφ(m))bb/φ(m)cab mod φ(m) ≡ ab mod φ(m) (mod m)

�

Problem 19: What is the remainder when 69354 is divided by 89?

Problem 20: An integer N is selected at random in the range 1 ≤ N ≤ 2020. What is the
probability that the remainder when N16 is divided by 5 is 1? (Source: 2017 AMC 10B #14)

Problem 21: What are the last two digits in the decimal representation of 201120122013
?
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4 Linear Congruences
I saw it once, I have no doubt; but now can’t place its whereabouts. I try to think it,
time and time; but what it is, won’t come to mind.

— Lang Leav, Déjà Vu

§ 4.1 Alluding Back to the Basics
We commence with this section by alluding back to the preliminary algebra of solving a linear
equation. The typical method to solve these was performing the exact same arithmetic operations
to both sides of the equation.

Example 15: Solve 2x− 1 = 3 for x.

This is just regular algebra.

• 2x− 1 = 3 (Given)

• 2x = 4 (Add 1 to both sides)

• x = 2 (Divide both sides by 2, yielding the answer)

�
As you may expect, we can also solve linear congruences in a similar algebraic way. We must
be careful that division does not work the normal way in modular arithmetic and numbers other
than integers do not exist. Also, keep in mind that while each linear congruence has at most one
modular solution, that solution describes a whole infinite class of integers (sometimes referred to
as a residue class).

Example 16: Find the first three positive integers x such that 2x− 1 ≡ 5 (mod 12).

Our approach is to find the modular solution to the congruence first and then find the first three
positive integers based on that solution. Adding 1 to both sides gives us

2x ≡ 6 (mod 12).

Now, we can divide both sides by 2, remembering to divide the modulus by (2, 12) = 2.

x ≡ 3 (mod 6)

The first three positive integers in the residue class 3 (mod 6) are 3, 9, 15 . �

§ 4.2 Modular Inverses and the Extended Euclidean
Algorithm

For a, b ∈ Z+ and m ∈ Z>1, our current method solves a linear congruence of the form ax ≡ b
(mod m) by dividing both sides by a and the modulus by (a, m). Of course, there is no guarantee

17



that a|b, so we may have to add multiples of m to our original b until a|b. But what if it takes a
very long time to find a suitable b? What if there is no suitable b because the congruence has no
solutions?

For this, we invent the concept of the modular inverse.

Example 17: Let a, m ∈ Z+ and m > 1. Prove that ax ≡ 1 (mod m) has a solution if and only if
(a, m) = 1.

Note that there are two directions, if and only if, and thus two parts to our proof.

Let’s begin with the if part. If (a, m) = 1, by Euler’s totient theorem, we have

aφ(m) ≡ 1 (mod m)

We can rewrite this as
aaφ(m)−1 ≡ 1 (mod m),

so we have demonstrated the solution x ≡ aφ(m)−1 (mod m).

Let’s move on to the only if part. Because we are more familiar with equations than congruences,
we can rewrite this in parametric form with parameter k ∈ Z:

ax−mk = 1

We now prove this has a solution only if (a, m) = 1 using a proof by contradiction. Assume for
the sake of contradiction that this equation has a solution and (a, m) = c for some c ∈ Z>1. Then,
because c|a and c|m, c|(ax − mk). But this means c|1, which is impossible unless c = 1, so we
arrive at a contradiction. �

In general, we write the solution to ax ≡ 1 (mod m) from the previous problem as x ≡ a−1

(mod m) and say that a−1 is the modular inverse of a (mod m).1

Example 18: Find 5−1 (mod 6). Use this to solve the congruence 5x ≡ 3 (mod 6) without the
division method from before.

Because (5, 6) = 1, 5−1 exists and we can continue. 5−1 is the number we multiply by 5 (mod 6)
to produce 1 (mod 6). However, 5 ≡ −1 (mod 6), and because (−1)(−1) ≡ 1 (mod 6), we
have 5−1 ≡ −1 ≡ 5 (mod 6).2

Moving on to the congruence, we need some way to omit the 5 coefficient on the left without
division. But remember, 5−1 · 5 ≡ 1 (mod 6), so we can just multiply both sides by 5−1.

5−1 · 5x ≡ 3 · 5−1 (mod 6)

x ≡ 3 · 5−1 (mod 6)

1a−1 is not a shorthand for
1
a

like in regular arithmetic! Remember, only integers exist in modular arithmetic.
2This is yet another example of the power of negative numbers in modular arithmetic.
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As we know, 5−1 ≡ 5 (mod 6), so we can finish off.

x ≡ 3 · 5 ≡ 15 (mod 6) =⇒ x ≡ 3 (mod 6) .

�
In the previous example, we were able to find the modular inverse by using a clever observation.
Often, however, such a trick won’t be obvious. For example, we don’t yet have the tools to find
33−1 (mod 667) efficiently without trial and error. We could write it as 33φ(667)−1 = 33615 using
Euler’s totient theorem, but it turns out we actually have to calculate 154 exponentials before we
find the residue cycle. We will learn a way to alleviate this problem when we discuss systems of
linear congruences and the Chinese remainder theorem later on, but for now, we have an even
better approach.

Example 19: Prove that, for a, b ∈ Z≥0 and a > b, (a, b) = (a− b, b). Use this to in turn prove that
(a, b) = (a mod b, b). This is known as the extended Euclidean algorithm.

For any divisor m ∈ Z>1, suppose m is a divisor of both a− b and b. We can write

a− b ≡ 0 (mod m)

b ≡ 0 (mod m)

Adding these congruences gives a ≡ 0 (mod m). Therefore, any common divisor of a− b and b
must also be a divisor of a. Similarly, if m is a common divisor of both a and b, we can write

a ≡ 0 (mod m)

b ≡ 0 (mod m)

Subtracting these gives a− b ≡ 0 (mod m). Therefore, any common divisor of a and b must also
be a divisor of a − b. Taken together, these facts imply that all common divisors of a and b are
the same as all common divisors of a− b and b. Therefore, the maximum divisor in each of these
groups is also the same, giving us the desired

(a, b) = (a− b, b).

Because repeated subtraction becomes division, applying the result repeatedly gives the extended
Euclidean algorithm

(a, b) = (a mod b, b).

�

Example 20: Use the extended Euclidean algorithm repeatedly to show that (33, 667) = 1.

Because a mod b is the remainder of a÷ b, we can write each step (a, b) in the form

a =
⌊a

b

⌋
b + a mod b,

where the key parts are underlined so that the next step is (b, a mod b). We can stop as soon as
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the a mod b becomes 1. Doing so gives

667 = 20 · 33 + 7
33 = 4 · 7 + 5
7 = 1 · 5 + 2
5 = 2 · 2 + 1

Therefore, the GCD is 1. �

Example 21: Use the equations from the last example backwards to work out 33−1 (mod 667).

In general, we know that since (a, b) = 1 whenever a−1 (mod b) exists, the very final remainder
(which gives the GCD) in our repeated applications of the extended Euclidean algorithm process
must always be 1. Therefore, the overall process must always look like this for c, d ∈ Z>1:

...

c =
⌊ c

d

⌋
d + c mod d

d =

õ
d

c mod d

û
(c mod d) + 1

Note that we can rewrite these equations as

...

c mod d = c−
⌊ c

d

⌋
d

1 = d−
õ

d
c mod d

û
(c mod d)

But this means that we can perform repeated substitutions as we work from the bottom to the top!
For instance, from the last two equations,

1 = d−
õ

d
c mod d

û
(c mod d)

= d−
õ

d
c mod d

û(
c−

⌊ c
d

⌋
d
)

= d
(

1 +
õ

d
c mod d

û ⌊ c
d

⌋)
− c
õ

d
c mod d

û
Then, d can be substituted from the equation right above (not shown), and so on. Once we get to
the top, we’ll have written an equation

ax + by = 1

for x, y ∈ Z. From here, (mod b) tells us that

ax ≡ 1 (mod b)
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x ≡ a−1 (mod b),

and as we’ll know what x is, we’ll have our modular inverse! From the previous example,

667 = 20 · 33 + 7
33 = 4 · 7 + 5
7 = 1 · 5 + 2
5 = 2 · 2 + 1

Thus,

7 = 667− 20 · 33
5 = 33− 4 · 7
2 = 7− 1 · 5
1 = 5− 2 · 2

1 = 5− 2 · 2
= 5− 2 · (7− 1 · 5)
= 3 · 5− 2 · 7
= 3 · (33− 4 · 7)− 2 · 7
= 3 · 33− 14 · 7
= 3 · 33− 14 · (667− 20 · 33)
= 283 · 33− 14 · 667

Therefore, our inverse is 283 (mod 667) . �

Problem 22: Prove that two consecutive positive integers are always relatively prime.

Problem 23: The remainder a two-digit positive integer leaves upon division by 9 is 1. The
remainder it leaves upon division by 10 is 3. What is the remainder its tens digit leaves upon
division by 3?

Problem 24: Prove that
21n + 4
14n + 3

is irreducible for every natural number n. (Source: 1959 IMO #1)

Problem 25: The base-69 number system consists of the digits 0, 1, 2, . . . , 9 and A1, A2, A3, . . . , A59
in that order. For instance, the base-10 number 2021 is A20A11 in base-69. In base-69, what is the
smallest positive integer that can be multiplied by A20A11 for a product with a units digit of 3?
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5 Linear Diophantines
There are things known and there are things unknown, and in between are the doors
of perception.

— Aldous Huxley, The Doors of Perception

§ 5.1 The Modular Cloaking Method
Number theory studies the integers, and linear equations are the most fundamental of
mathematical relationships. Uniting these ideas, we now investigate linear Diophantine
equations, linear equations that permit only integer solutions. We already have all the tools we
need.

Example 22: Use wishful thinking to find all integer solutions (x, y) to the equation 3x + 4y = 5.

Since we have two variables and only one equation, we can’t play our usual “isolate the variable“
game. . . Or can we? Let’s use wishful thinking. We want to be able to isolate, for example, x, so
we need some way to get rid of y. But modular arithmetic is good at that: x and y have to be
integers! Imagine wrapping a (mod 4) invisibility cloak around the equation. 4y ≡ 0 (mod 4),
so it will vanish, leaving only

3x ≡ 5 ≡ 9 (mod 4) =⇒ x ≡ 3 (mod 4).

From here, we can write the parametric equation x = 4k + 3, where k ∈ Z. Plugging this back into
the original equation and solving for y, we get

3(4k + 3) + 4y = 5 =⇒ y = −3k− 1.

Therefore, all (x, y) that satisfy this equation are (4k + 3,−3k− 1); k ∈ Z . �

Example 23: Extend your insights from the previous example to prove that ax + by = c, where
all variables are integers, has a solution (x, y) if and only if (a, b)|c.

The modular cloaking method, as we’ll call it, served us well last time. Let’s try it again. Cloaking
(mod b) leaves

ax ≡ c (mod b).

If we find the necessary and satisfactory constraints for which this congruence has a solution, we
will have solved the original problem because, by the equation ax + by = c, y is guaranteed to
exist as long as x does. There are two cases for a necessary and sufficient solution.

• (a, b) = 1, meaning a−1 (mod b) exists and so does x ≡ a−1c (mod b).

• (a, b) > 1 but (a, b)|c, so we can divide both sides of the congruence by (a, b) and then

multiply both sides by a−1 in the new modulus, giving x ≡ a−1 c
(a, b)

(
mod

b
(a, b)

)
.
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Both cases can be conflated to form the single condition that (a, b)|c as desired. �

Problem 26: How many ways are there to write 2016 as the sum of twos and threes, ignoring
order? (For example, 1008 · 2 + 0 · 3 and 402 · 2 + 404 · 3 are two such ways.) (Source: 2016 AMC
10A #14)

Problem 27: Penniless Pete’s piggy bank has no pennies in it, but it has 100 coins, all nickels,
dimes, and quarters, whose total value is $8.35. It does not necessarily contain coins of all three
types. What is the difference between the largest and smallest number of dimes that could be in
the bank? (Source: 2003 AMC 12B #7)

§ 5.2 The Extended Euclidean Algorithm Method
Wait a second. Haven’t we seen linear Diophantines before this chapter? Just last chapter, the
extended Euclidean algorithm on (a, b) gave us (x0, y0) such that

ax0 + by0 = 1,

where all variables are integers. Let’s take a closer look.

Example 24: If we have (x0, y0) such that ax0 + by0 = 1, how can we find all (x, y) such that
ax + by = c?

Multiplying both sides of this equation by c, we have

a(cx0) + b(cy0) = c.

This tells us that (cx0, cy0) is one specific (x, y). How can we find all (x, y)? Constructively, for a
parameter k ∈ Z, we can come up with x = bk + cx0 and y = −ak + cy0. Substituting these in
gives us

a(bk + cx0) + b(−ak + cy0) = abk + a(cx0)− abk + b(cy0) = a(cx0) + b(cy0) = c.

Therefore, all (x, y) are given by (bk + cx0,−ak + cy0); k ∈ Z . As an aside, if (a, b) 6= 1 in a
general Diophantine ax + by = c to start, we can fix the Diophantine by dividing out by (a, b) as
we require c|(a, b) regardless. �

Example 25: Find all integer solutions (x, y) to the equation 3x + 4y = 5, this time using the
extended Euclidean algorithm. Show the parametric form obtained is equivalent to the one from
before.

(3, 4) = 1, so we can find (x0, y0) by the extended Euclidean algorithm on (3, 4) :

4 = 3 · 1 + 1

1 = 4− 3 · 1.

Therefore, (x0, y0) is (−1, 1). This gives us (4k − 1 · 5,−3k + 1 · 5) = (4k− 5,−3k + 5); k ∈ Z .
This is equivalent to the form (4k + 3,−3k − 1) from before because 4k − 5 = 4(k − 2) + 3 and
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−3k + 5 = −3(k− 2)− 1. �

Problem 28: A lattice point is a point in the plane with integer coordinates. How many lattice
points are on the line segment whose endpoints are (3, 17) and (48, 281)? (Include both endpoints
of the segment in your count.) (Source: 1989 AHSME #16)

Problem 29: Elmo makes N sandwiches for a fundraiser. For each sandwich he uses B globs of
peanut butter at $0.04 per glob and J blobs of jam at $0.05 per blob. The cost of the peanut butter
and jam to make all the sandwiches is $2.53. Assume that B, J, and N are positive integers with
N > 1. What is the cost of the jam Elmo uses to make the sandwiches? (Source: 2006 AMC 10B
#22)
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6 Systems of Linear Congruences
What is the reason for a unity? Many things have a plurality of parts. They are not
merely complete aggregates but instead wholes beyond their parts.

— Translation of Aristotle, Metaphysics

§ 6.1 The Chinese Remainder Theorem
This whole book, we’ve explored parallels between equations and congruences. For linear
equations, we’ve discussed linear congruences. But consider systems of linear equations. Can we
have systems of linear congruences? Let’s start by discussing a central theorem.

The Chinese remainder theorem states that, for any system of linear congruences involving one
variable that has at least one solution, it has exactly one unique solution modulo the LCM of all
the moduli in the system. This follows as a consequence of the extended Euclidean algorithm,
but the full proof is rather involved and will not be discussed here. The reader is strongly
encouraged to look it up if interested.

§ 6.2 The Modular Cloaking Method (Reprise)
In the last chapter, we investigated a modular cloaking method to solve Diophantines. We can do
the same for systems of linear congruences by turning them into Diophantines. As always, let’s
begin with an example.

Example 26: Solve the following system.

x ≡ 2 (mod 3)
x ≡ 3 (mod 5)

In parametric form x can be expressed as 3a + 2 and 5b + 3 for parameters a, b ∈ Z. Hence, we
can set these equal to get

3a + 2 = 5b + 3.

This is exactly like the Diophantine situation we analyzed in the previous section, so we can cloak
(mod 3). This gives us

2b ≡ 2 (mod 3) =⇒ b ≡ 1 (mod 3) =⇒ b = 3c + 1; c ∈ Z.

Now, recall
x = 5b + 3 = 5(3c + 1) + 3 = 15c + 8.

Therefore, x ≡ 8 (mod 15) . This solution is unique as the Chinese remainder theorem
proclaims any solution modulo [3, 5] = 15 must be unique. �

It is sometimes beneficial to use the Chinese remainder theorem backwards to destruct moduli
and then reconstruct them.
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Example 27: Find 33−1 (mod 100) by noting that 100 = 25 · 4.

Because 100 = 25 · 4, if we find 33−1 (mod 25) and 33−1 (mod 4), we can combine them using a
Chinese remainder theorem argument modulo [4, 25] = 100.

33 ≡ 8 (mod 25) =⇒ 33−1 ≡ 8−1 ≡ 24−1 · 3 ≡ −1 · 3 ≡ −3 ≡ 22 (mod 25).

33 ≡ 1 (mod 4) =⇒ 33−1 ≡ 1 (mod 4).

Therefore, our answer is x such that

x ≡ 22 (mod 25)
x ≡ 1 (mod 4)

In parametric form, x can be 25a+ 22 or 4b+ 1 for parameters a, b ∈ Z. This gives the Diophantine

25a + 22 = 4b + 1.

Cloaking (mod 4) gives

25a + 22 ≡ a + 2 ≡ 1 (mod 4) =⇒ a ≡ −1 ≡ 3 (mod 4).

Therefore, a = 4c + 3 for parameter c ∈ Z. In turn,

x = 25a + 22 = 25(4c + 3) + 22 = 100c + 97 =⇒ x ≡ 97 (mod 100) .

�

Problem 30: Let N = 123456789101112 . . . 4344 be the 79-digit number that is formed by writing
the integers from 1 to 44 in order, one after the other. What is the remainder when N is divided
by 45? (Source: 2017 AMC 10B #23)

Problem 31: Let m be the least positive integer divisible by 17 whose digits sum to 17. Find m.
(Source: 2015 AIME II #3)

§ 6.3 The Modular Part Method
For systems with lots of congruences, the modular cloaking method becomes cumbersome.
Fortunately, we have an alternative.

Example 28: Solve the following system.

x ≡ 2 (mod 3)
x ≡ 2 (mod 4)
x ≡ 1 (mod 5)

One way to approach the solution is to think of x as the sum of three modular parts: x3, x4, and
x5. We multiply the part corresponding to each modulus by all other moduli to ensure that the
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parts are independent.

x ≡ 4 · 5x3 + 3 · 5x4 + 3 · 4x5 (mod [3, 4, 5])

The reason these coefficients ensure independence is that if we look at x in a given modulus,
the irrelevant parts disappear. For instance, (mod 4) or (mod 5), the (mod 3) part 4 · 5x3
disappears, but (mod 3), 4 · 5x3 is all that remains. Now, we solve for x3, x4, x5 by considering
what happens in each modulus. (mod 3), we have

x ≡ 4 · 5x3 ≡ 20x3 ≡ 2x3 ≡ 2 (mod 3) =⇒ x3 ≡ 1 (mod 3).

This means we can just say x3 = 1 (we don’t need to worry about multiple values because one
value is enough to find the residue class). (mod 4), we have

x ≡ 3 · 5x4 ≡ 15x4 ≡ −x4 ≡ 2 (mod 4) =⇒ x4 ≡ −2 ≡ 2 (mod 4).

We can just say x4 = 2. (mod 5), we have

3 · 4x5 ≡ 12x5 ≡ 2x5 ≡ 1 ≡ 6 (mod 5) =⇒ x5 ≡ 3 (mod 5).

Thus, x5 = 3. Substituting x3, x4, x5 back in gives

x ≡ 4 · 5 · 1 + 3 · 5 · 2 + 3 · 4 · 3 ≡ 86 ≡ 26 (mod 60) .

�

§ 6.4 Neat Tricks
Sometimes, there is a neat trick to significantly speed up the solution.

Example 29: Solve the following system.

x ≡ 3 (mod 4)
x ≡ 6 (mod 7)

We can rewrite the system as

x ≡ −1 (mod 4)
x ≡ −1 (mod 7)

That is,

x + 1 ≡ 0 (mod 4)
x + 1 ≡ 0 (mod 7)

But this just means

x + 1 ≡ 0 (mod [4, 7]) =⇒ x ≡ 27 (mod 28) .
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�

Problem 32: What is the smallest positive integer greater than 1 that leaves a remainder of 1 when
divided by 4, 5, and 6? (Source: 2017 AMC 8 #12)

28



7 Solutions
The solution often turns out more beautiful than the puzzle.

— Richard Dawkins, Unweaving the Rainbow

§ 7.1 Solutions to Preface
Solution 1: Greedily, if we want to find the largest positive integer that divides 40 and 78, we
need to selectively multiply together the largest power of each prime divisor common to both.
This in fact forces us to choose the smallest exponents across all prime divisors. The prime
factorization of 40 is 23 · 5, and that of 78 is 2 · 3 · 13. The only prime divisor common to both is 2,
and it is already of the largest power possible. By definition, this is the GCD, so we can write
(40, 78) = 2 .

To find the smallest positive integer divisible by both 40 and 78, we again take a greedy
approach: selectively multiply together the smallest power of each prime divisor that satisfies
the divisibility requirement. This in fact forces us to choose the largest exponents across all prime
divisors. Using the prime factorizations mentioned earlier, this becomes 23 · 3 · 5 · 13 = 1560. By
definition, this is the LCM, so we can write [40, 78] = 1560 .

In retrospect, we could expedite the process of finding the GCD using the extended Euclidean
algorithm, which we will cover when we visit linear congruences, and that of the LCM using the
identity that

[40, 78] =
40 · 78
(40, 78)

.

�

Solution 2: The number abcabc can be rewritten as 1000abc + abc (constructively, think of shifting
the second abc three places to the right to make room for the first abc). Therefore, it is just 1001abc,
and since nothing more can be said about abc, the answer is 1001 . �

Solution 3: We must count the number of the first 1234567 positive integers divisible by 3 and
divide that by 1234567. Given the magnitude of that number, this seems like no easy task.
Regardless, we push through, in search of a pattern to exploit.

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 . . .

Aha! Every three numbers we count, we find precisely one positive integer divisible by 3, and
this is no coincidence: it’s the definition of divisibility. This already tells us that our probability

will be close to
1
3

, but we can find the exact value. All we have to do is count the number of

packages of three we can cut the first 1234567 positive integers into:
õ

1234567
3

û
.
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Our final answer becomes

õ
1234567

3

û
1234567

= 0.33333306 . . . , matching our
1
3

approximation. �

Solution 4: From the problem statement, we can extract the following requirements:

x ∈ Z

2x + 9 ∈ Z+ =⇒ x ∈ Z≥−4

3x + 4 ∈ Z+ =⇒ x ∈ Z≥−1

3x + 4 ≥ 2x + 9 =⇒ x ∈ Z≥5

Additionally, we require

3x + 4
2x + 9

= 1 +
x− 5

2x + 9
∈ Z+ =⇒ x− 5

2x + 9
∈ Z≥0.

This secondary requirement means that either x = 5 or

x− 5 ≥ 2x + 9 =⇒ x ∈ Z≤−14.

The second case is clearly impossible due to the strict x ∈ Z≥5 requirement from earlier, so the
only valid integer x is 5 . �

Solution 5: It is trivial by inspection that p satisfies this condition. Let the smallest positive such
integer be k. For the sake of contradiction, assume that k < p and p|k!. Then, k! is the product of all
positive integers less than p and p is present in the prime factorization of k!. Some of the positive
integers in this product are themselves primes less than p, while others are less than p and have
unique prime factorizations involving only primes less than p by the fundamental theorem of
arithmetic. Thus, p cannot be present in prime factorization of k!, establishing contradiction. This
means that k = p. �

Solution 6: Because finding the remainder directly does not seem like an easy task, we first look
for the quotient q. Because the quotient is the greatest number of times m goes into a, it is the
integer part of

a
m

. But how do we truncate the fractional part? Apply the floor function!

q =
⌊ a

m

⌋
Our remainder becomes a−mq = a−m

⌊ a
m

⌋
. �

§ 7.2 Solutions to Arithmetic—Modulo m
Solution 7: Let x be the measure of the forgotten angle. The degree sum of the measures of the
interior angles of an n-gon is 180(n− 2), or 180(n− 2)− x if we forget x. We can solve for x if we
note that

180(n− 2)− x ≡ −x (mod 180).
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Claire’s sum of 2017 ≡ 37 ≡ −143 (mod 180), so x ≡ 143 (mod 180). In fact, since x < 180 due
to the convex condition, x = 143◦ . �

Solution 8: Instead of using names for the days of the week, we can use modular residues
(mod 7) (for 7 days in a week), allowing us to use modular arithmetic. Let Monday be 0
(mod 7), Tuesday be 1 (mod 7), and so on so that Sunday is 6 (mod 7). Now, the 300th day of
year N is 1 (mod 7). Suppose year N has d days, where d is 365 or 366 depending on whether
it’s a leap year. Then, the number of days it takes to get from the 300th day of year N to the 200th
of year N + 1 is d− 100. Since the 200th of year N + 1 is also 1 (mod 7), we can write

1 + d− 100 ≡ 1 (mod 7) =⇒ d ≡ 2 (mod 7).

Therefore, d = 366 and year N is indeed a leap year, and thus year N − 1 is not. To go back from
the 300th day of year N to the 100th of year N − 1, we subtract 200 + 365 = 565 days. This means
our answer is the day of the week corresponding to 1− 565 ≡ 3 (mod 7), or Thursday . �

Solution 9: Parity is given by the residue (mod 2), and each of n, m can be 0, 1 (mod 2) Thus,
we have four cases (n, m) (mod 2). Of these four cases, only (0, 0) and (1, 1) make n2 + m2 ≡ 0
(mod 2). In both cases, n + m ≡ 0 (mod 2), so (D) . �

Solution 10: The units digit is given by the residue (mod 10). Computing the residues for the
first few terms reveals the repeating pattern: 6, 4, 0, 0, 0 (mod 10), with a sum of 6 + 4 + 0 + 0 +
0 ≡ 0 (mod 10). This pattern repeats k times, leaving a remainder of 2018 mod 5 = 3 terms, which
are 6, 4, 0 (mod 10), with a sum of 6 + 4 + 0 ≡ 0 (mod 10). Thus, the answer is 0k + 0 ≡ 0
(mod 10). �

Solution 11: Let their numbers be a, b, c by name. Since the units digit is the residue (mod 10),
we are given the following:

a + b ≡ 2 (mod 10)

b + c ≡ 4 (mod 10)

a + c ≡ 0 (mod 10)

Adding the congruences gives us

2(a + b + c) ≡ 6 (mod 10)

We can divide both sides of the congruence by 2 and the modulus by (2, 10) = 2 :

a + b + c ≡ 3 (mod 5)

Going back to (mod 10), this means we have

a + b + c ≡ 3, 8 (mod 10).

Therefore, our answer is 3 + 8 = 11 . �
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§ 7.3 Solutions to Revisiting Divisibility Rules
Solution 12: By the divisibility rule for 11,

2− A + 1 ≡ 3− A ≡ 0 (mod 11) =⇒ A ≡ 3 (mod 11).

�

Solution 13: By the divisibility rule for 9,

2 + 0 + 1 + 8 + U ≡ 2 + U ≡ 0 (mod 9) =⇒ U ≡ 7 (mod 9).

Thus, U = 7. By the divisibility rule of 2k, since 8 = 23, the answer is 187 mod 8 = 3 . �

Solution 14: We have
10Q + R ≡ 2Q + R ≡ 0 (mod 4)

S ≡ 0 (mod 5)

R + S + T ≡ 0 (mod 3)

Since S 6= 0, we have S = 5. Since R is either 2 or 4, we just try both. If R = 2, from the third
congruence T = 2 as well, which is illegal. Thus, R = 4 and T = 3. From the first congruence, we
have

2Q + 4 ≡ 0 (mod 4) =⇒ Q ≡ 0 (mod 2),

meaning Q = 2 and P = 1 . �

Solution 15: By the divisibility rule of 9, n ≡ S(n) (mod 9). Therefore, S(n + 1) ≡ n + 1 ≡
S(n) + 1 ≡ 1275 ≡ 1 + 2 + 7 + 5 ≡ 6 (mod 9). The only choice with a residue of 6 is (D) . �

Solution 16: By the divisibility rule of 9, n ≡ S(n) (mod 9). But this also means S(n) ≡ S(S(n))
(mod 9). In fact, we can nest S as many times as we want, so imagine we just keep doing so until
we find the digital root. This tells us that the digital root is just the (mod 9) residue, or 9 if the
residue is 0. Effectively, all we have to do is find the modular residue (mod 9) of f (1) + f (2) +
· · · + f (2018). However, note that f (n) ≡ n2 (mod 9) by another application of the divisibility
rule. As such, by the sum of squares formula,

12 + 22 + · · ·+ 20182 ≡ 2018(2018 + 1)(2 · 2018 + 1)
6

≡ 8 (mod 9).

�

Solution 17: Let the prime be p. We have⌊ n
10

⌋
− 3

(
n− 10

⌊ n
10

⌋)
≡ 0 (mod p)

31
⌊ n

10

⌋
+ 4n ≡ 0 (mod p).

By the same logic as in the example, p = 31 . �
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§ 7.4 Solutions to Exponential Remainders
Solution 18: Suppose we select a number m from the set. We have to examine exponents of m
(mod 10) to see if we ever reach a 1. If and when we do, the residues cycle thereafter. To be precise,
if we find the smallest t ∈ Z+ such that mt ≡ 1 (mod 10),1 then we can say that the residue will
be 1 for all n that are multiples of t. We can find the smallest such t for each m through inductive
reasoning. While no such t exists for 15, below are the correct values of t for each of the other
residues:

111 ≡ 1 (mod 10)

134 ≡ 1 (mod 10)

174 ≡ 1 (mod 10)

192 ≡ 1 (mod 10)

Because the second set is a continuous range of 2018− 1999 + 1 = 20 integers and 20 is evenly
divisible by all values of t, our overall probability is

∑
1
5
· 1

t
=

1
5

(
1 +

1
4
+

1
4
+

1
2

)
=

2
5

.

�

Solution 19: 89 is prime, so φ(89) = 88. Then,

69354 ≡ 69354 mod 88 ≡ 692 ≡ (−20)2 ≡ 400 ≡ 44 (mod 89).

�

Solution 20: Because there is a continuous range of 2020 integers and 2020 ≡ 0 (mod 5), N can
be any (mod 5) residue with equal probability. Therefore, it suffices to consider all five possible
residues r. For r = 0, the remainder is obviously 0. However, consider 0 < r ≤ 4 with φ(5) = 4:

r16 ≡ r16 mod 4 ≡ r0 ≡ 1 (mod 5).

Therefore, the probability is
4
5

. �

Solution 21: The last two digits are given by the (mod 100) residue, so we have 1120122013
. By the

binomial theorem2,

(10+ 1)20122013
=

20122013

∑
k=0

(
20122013

k

)
10k120122013−k =

20122013

∑
k=0

(
20122013

k

)
10k ≡ 10 · 20122013 + 1 (mod 100).

The units digit of 10 · 20122013 + 1 will be 1 while the tens digit will be the units digit of 20122013.

1It is important to know that, in the general case modulo m, φ(m) is not necessarily the smallest such t and only
one such t. In fact, the smallest such t is very closely tied to the concept of multiplicative order, beyond the scope of
this book but very worth exploring for those interested.

2The reader should look this up if unfamiliar.
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By inductive reasoning, the powers of 2 (mod 10) cycle with length 4, so3

20122013 ≡ 22013 ≡ 22013 mod 4 ≡ 21 ≡ 2 (mod 10).

Therefore, the answer is 21 . �

§ 7.5 Solutions to Linear Congruences
Solution 22: Two consecutive positive integers can be represented by n and n + 1 for n ∈ Z+. By
the Euclidean algorithm, we have

(n, n + 1) = (n, n + 1− n) = (n, 1) = 1,

so two consecutive positive integers must be relatively prime. �

Solution 23: Because the number is 3 (mod 10), its units digit is 3. Thus, if it has a tens digit of
x, it can be expressed as 10x + 3. Using the 9 condition, we have

10x + 3 ≡ 1 (mod 9) =⇒ x ≡ −2 ≡ 7 (mod 9).

Therefore, the tens digit x can be written in the form 9t + 7 for some parameter t ∈ Z. However,
taking this (mod 3) gives us

9t + 7 ≡ 7 ≡ 1 (mod 3).

�

Solution 24: A fraction is irreducible if its numerator and denominator are relatively prime. We
can use the Euclidean algorithm:

(21n + 4, 14n + 3) = (21n + 4− (14n + 3), 14n + 3)
= (7n + 1, 14n + 3)
= (7n + 1, 14n + 3− (7n + 1))
= (7n + 1, 7n + 2)

Because 7n + 1 and 7n + 2 are consecutive positive integers, they are relatively prime, and thus
the numerator and denominator are also relatively prime as desired. �

Solution 25: By the same logic that the units digit of a base-10 positive integer is its remainder
upon division by 10, the units digit of a base-69 positive integer is its remainder upon division by
69. Hence, we can do this problem (mod 69) without having to work with numbers base-69 and
just convert to base-69 at the end. We need to find the smallest positive integer x such that

2021x ≡ 3 (mod 69).

Because 2021 ≡ 20 (mod 69) and (20, 69) = 1, this reduces to

20x ≡ 3 (mod 69) =⇒ x ≡ 20−1 · 3 (mod 69).

3You might be tempted to use Euler’s totient theorem here and reduce it to 22013 mod φ(10). However, (2, 10) 6= 1,
so this is incorrect! Trickily enough, the bogus solution coincidentally yields the correct answer.
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It remains to calculate 20−1 (mod 69), which we can do via the extended Euclidean algorithm on
(20, 69):

69 = 3 · 20 + 9
20 = 2 · 9 + 2
9 = 4 · 2 + 1

9 = 69− 3 · 20
2 = 20− 2 · 9
1 = 9− 4 · 2

1 = 9− 4 · 2
= 9− 4 · (20− 2 · 9)
= 9 · 9− 4 · 20
= 9 · (69− 3 · 20)− 4 · 20
= 9 · 69− 31 · 20

So 20−1 ≡ −31 ≡ 38 (mod 69). This gives us

x ≡ 20−1 · 3 ≡ 38 · 3 ≡ 45 (mod 69).

In base-69, 45 becomes A36 . �

§ 7.6 Solutions to Linear Diophantines
Solution 26: Suppose we invoke x twos and y threes. We have the Diophantine

2x + 3y = 2016.

Cloaking (mod 3), we get

2x ≡ 2016 ≡ 2 + 0 + 1 + 6 ≡ 0 (mod 3) =⇒ x ≡ 0 (mod 3).

This means x = 3k for parameter k ∈ Z. Substituting this back in to the original equation and
solving for y gives

2(3k) + 3y = 2016 =⇒ y = 672− 2k.

Note that x, y ≥ 0, so
3k ≥ 0 =⇒ k ≥ 0

672− 2k ≥ 0 =⇒ k ≤ 336

Therefore, we must count the number of k ∈ Z[0,336]. There are 336− 0 + 1 = 337 of these. �

Solution 27: Let n, d, q be the numbers of nickels, dimes, and quarters, respectively. From the

35



total value of $8.35, we know

5n + 10d + 25q = 835 =⇒ n + 2d + 5q = 167.

From the 100 coins, we know
n + d + q = 100.

Subtracting the second equation from the first gives the Diophantine

d + 4q = 67,

through which we must find the difference between the largest and smallest possible values of d.
Cloaking (mod 4) gives

d ≡ 67 ≡ 3 (mod 4).

Therefore, d = 4k + 3 for parameter k ∈ Z. Substituting back in to solve for q gives

4k + 3 + 4q = 67 =⇒ q = 16− k.

Since d, q ≥ 0,
4k + 3 ≥ 0 =⇒ k ≥ 0

16− k ≥ 0 =⇒ k ≤ 16.

Finally,
k ∈ Z[0,16] =⇒ d ∈ Z[3,67].

The difference is 67− 3 = 64 . �

Solution 28: Let the line segment be a set of points (x, y). We are already given x ∈ Z[3,48] and
y ∈ Z[17,281]. Other than these conditions, the line segment is defined by the equation of the line it
is on. By a conversion from point-slope form into standard form, we have

y− 17 =
281− 17
48− 3

(x− 3) =⇒ 88x− 15y = 9.

Since (88, 15) = 1, the extended Euclidean algorithm gives

88 = 5 · 15 + 13
15 = 1 · 13 + 2
13 = 6 · 2 + 1

13 = 88− 5 · 15
2 = 15− 1 · 13
1 = 13− 6 · 2
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1 = 13− 6 · 2
= 13− 6 · (15− 1 · 13)
= 7 · 13− 6 · 15
= 7 · (88− 5 · 15)− 6 · 15
= 7 · 88− 41 · 15

Thus, (x0, y0) = (7, 41), and (x, y) = (15k + 7 · 9, 88k + 41 · 9); k ∈ Z. Imposing the original
conditions gives

3 ≤ 15k + 7 · 9 ≤ 48 =⇒ −4 ≤ k ≤ −1

17 ≤ 88k + 41 · 9 ≤ 281 =⇒ −4 ≤ k ≤ −1.

Therefore, k ∈ Z[−4,−1], giving 4 lattice points �

Solution 29: Given the information for N sandwiches,

N(4B + 5J) = 253.

Since N > 1 and 253 = 11 · 23, N = 11. Therefore,

4B + 5J = 23.

As (4, 5) = 1, the extended Euclidean algorithm gives

5 = 4 · 1 + 1

1 = 5− 4 · 1.

Therefore, (B0, J0) = (−1, 1) and (B, J) = (5k− 23,−4k + 23) for parameter k ∈ Z. The positive
integer condition means

5k− 23 > 0 =⇒ k ≥ 5

−4k + 23 > 0 =⇒ k ≤ 5.

Therefore, we must have k = 5, with B = 2, J = 3. The total cost is thus 3 · 5 · 11 = 165 cents, or
$1.65 . �

§ 7.7 Solutions to Systems of Linear Congruences
Solution 30: We want the modular residue of N (mod 45). However, 45 isn’t a very nice number,
so let’s break it down. We can write 45 = 9 · 5 and look at the residues of N (mod 9, 5) instead,
combining them with a Chinese remainder theorem argument for [9, 5] = 45. By the divisibility
rule for 9, the residue of N (mod 9) is the same as that of the sum of its digits. But we can reuse
the divisibility rule for 9 to regroup the digits and form an arithmetic series as well. In short, we
have

N ≡ 1 + 2 + 3 + · · ·+ 44 ≡ 44 · 45
2
≡ 0 (mod 9).

By the divisibility rule for 5, the residue of N (mod 5) is the same as that of its last digit. Therefore,
N ≡ 4 (mod 5). Overall, we have

N ≡ 0 (mod 9)
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N ≡ 4 (mod 5)

In parametric form, N = 9a = 5b+ 4 for parameters a, b ∈ Z. Cloaking this Diophantine (mod 5)
gives

9a ≡ 4a ≡ 4 (mod 5) =⇒ a ≡ 1 (mod 5) =⇒ a = 5c + 1; c ∈ Z.

Then,
N = 9a = 9(5c + 1) = 45c + 9 =⇒ N ≡ 9 (mod 45).

�

Solution 31: By the divisibility rule for 9, m is congruent to the sum of its digits modulo 9. Thus,

m ≡ 17 ≡ 8 (mod 9).

Overall,
m ≡ 0 (mod 17)

m ≡ 8 (mod 9)

In parametric form, m = 17a = 9b + 8 for parameters a, b ∈ Z. Cloaking (mod 9) gives

17a ≡ 8a ≡ 8 (mod 9) =⇒ a ≡ 1 (mod 9) =⇒ a = 9c + 1; c ∈ Z.

Hence,
m = 17a = 17(9c + 1) = 153c + 17 =⇒ m ≡ 17 (mod 153).

We now need to search for the smallest m with a sum of digits equal to 17. The only way to do
this from here is trial and error.

• 17 =⇒ 1 + 7 = 8 6= 17

• 170 =⇒ 1 + 7 + 0 = 8 6= 17

• 323 =⇒ 3 + 2 + 3 = 8 6= 17

• 476 =⇒ 4 + 7 + 6 = 17

Thus, m = 476 . �

Solution 32: We want the smallest positive integer x > 1 such that

x ≡ 1 (mod 4, 5, 6) =⇒ x− 1 ≡ 0 (mod 4, 5, 6) =⇒ x− 1 ≡ 0 (mod [4, 5, 6]) ≡ 0 (mod 60).

Therefore, x = 61 . �

38



8 Denouement
Stories never really end. . . even if the books like to pretend they do. Stories always go
on. They don’t end on the last page, any more than they begin on the first page.

— Cornelia Funke, Inkspell

As a closing remark, I hope you had as much fun solving through this book as I had writing it.
While this is the end of the exposition, this is not the end of modular arithmetic. We have
covered but the tip of the iceberg, and readers interested may continue their journey into more
advanced topics such as multiplicative order, primitive roots, quadratic residues, generating
functions, Pell equations, and more.

Best of luck!
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