
An introduction

to the Fortran

programming language

Reinhold Bader

Nisarg Patel, Gilbert Brietzke, Ivan Pribec

Leibniz Supercomputing Centre

History of Fortran

© LRZ 2009-23 Introduction to the Fortran programming language 2

Fortran – the oldest portable

programming language

first compiler developed by John

Backus at IBM (1957-59)

design target: generate code

with speed comparable to

assembly programming, i.e.

for efficiency of compiled

executables

targeted at scientific /

engineering (high

performance) computing

Fortran standardization

ISO/IEC standard 1539-1

repeatedly updated

Generations of standards

TS → Technical Specifications

„mini-standards“ targeted for

future inclusion (modulo bug-fixes)

Fortran 66 ancient

Fortran 77 (1980) traditional

Fortran 90 (1991) large revision

Fortran 95 (1997) small revision

Fortran 2003 (2004) large revision

Fortran 2008 (2010) mid-size revision

TS 29113 (2012) extends C interop

TS 18508 (2015) extends parallelism

Fortran 2018 (2018) current standard

Conventions and Flags used in these talks

Legacy code

Recommend replacement by

a more modern feature

(details are not covered in

this course)

Implementation

dependencies

Processor dependent

behaviour (may be

unportable)

Performance

language feature for

performance

Standards conformance

Recommended practice

Standard conforming, but

considered questionable

style

Dangerous practice, likely to

introduce bugs and/or non-

conforming behaviour

Gotcha! Non-conforming

and/or definitely buggy

© LRZ 2009-23 Introduction to the Fortran programming language 3

Why Fortran?

SW engineering aspects

good ratio of learning effort to

productivity

good optimizability

compiler correctness checks

(constraints and restrictions)

Ecosystem

many existing legacy libraries

existing scientific code bases
→ may determine what language

to use

using tools for diagnosis of

correctness problems is

sometimes advisable

Key language features

dynamic (heap) memory

management since , much

more powerful in

encapsulation and code reuse

via modules

object based and object-

oriented features

array processing

versatile I/O processing

abstraction features: overloaded

and user-defined operators

interoperability with C

FP exception handling

parallelism

© LRZ 2009-23 Introduction to the Fortran programming language 4

some of the above are outside
the scope of this course

When not to use Fortran

When programming an embedded system

these sometimes do not support FP arithmetic

implementation of the language may not be available

When working in a group/project that uses C++, Java, Eiffel,

Haskell, … as their implementation language

synergy in group: based on some – usually technically justified –

agreement

minor exception: library code for which a Fortran interface is desirable

– use C interoperability features to generate a wrapper

© LRZ 2009-23 Introduction to the Fortran programming language 5

Fortran legacy and course scope

Original language: imperative, procedural

a large fraction of original language syntax and semantics is still

relevant for today

Fortran still supports „obsolescent“ legacy features

ability to compile and run older codes

some are rather cumbersome to learn and use → recommend code

update to modern language if it is actively developed

Scope of this course:

a (slightly opinionated) subset of modern Fortran – mostly

with a few features from

legacy features will be largely omitted (their existence might be noted)

content is mostly targeted at new code development

© LRZ 2009-23 Introduction to the Fortran programming language 6

Some references

Modern Fortran explained (8th edition incorporates)

Michael Metcalf, John Reid, Malcolm Cohen. OUP, 2018

The Fortran 2003 Handbook

J. Adams, W. Brainerd, R. Hendrickson, R. Maine, J. Martin, B.

Smith. Springer, 2008

Guide to Fortran 2008 Programming

W. Brainerd. Springer, 2015

Download of (updated) PDFs of the slides and exercise

archive

freely available under a creative commons license

https://doku.lrz.de/display/PUBLIC/Programming+with+Fortran

© LRZ 2009-23 Introduction to the Fortran programming language 7

https://doku.lrz.de/display/PUBLIC/Programming+with+Fortran

Basic Fortran Syntax
Statements, Types,

Variables, Control constructs

© LRZ 2009-23 8

Formula translation

First programming task:

calculate and print the real-valued solutions of the quadratic equation

2𝑥2 − 2𝑥 − 1.5 = 0

mathematical solution for the general case 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 is

𝑥± =
−𝑏 ± 𝑏2 − 4𝑎𝑐

2𝑎

© LRZ 2009-23 Introduction to the Fortran programming language 9

program solve_my_quadratic

implicit none
real, parameter :: a = 2.0, b = -2.0, c = -1.5

real :: x1, x2

intrinsic :: sqrt

:

end program

main program unit (exactly one needed)

named constants (unmodifiable) variable (modifiable
→ needs storage space)

executable statements: see next slide

enforce strong typing (best practice!)

enforce that the function defined
in the Fortran run-time library is usedin

d
en

ti
n

g:
 d

o
n

e
b

y
co

n
ve

n
ti

o
n

Declarative and executable statements

Statements on previous slide: declarative only

determine entities that will be used, and their properties

Added statements on this slide: will be executed when program is run

© LRZ 2009-23 Introduction to the Fortran programming language 10

program solve_my_quadratic
implicit none
real, parameter :: a = 2.0, b = -2.0, c = -1.5
real :: x1, x2
intrinsic :: sqrt

x1 = (-b + sqrt(b**2 – 4. * a * c)) / (2. * a)

x2 = (-b - sqrt(b**2 – 4. * a * c)) / (2. * a)

write(*, fmt=*) ‘Solutions are: ‘, x1, x2

end program
I/O statement

(output)

expression

intrinsic function call
assignment

declarations must always

precede executable statements

string literal

E
x
e

c
u

te
d

in
 o

rd
e

r

o
f
a
p
p
e
a
ra

n
c
e

Compiling and running
(simplest case)

will produce an output like

Compiled vs. interpreted

code

efficiency of execution

typical speed factors: 20 - 60

greatly care for large

programs

Dependency:

on processor (aka compiler)

and operating system

For example program,

store program text in ASCII

text file
solve_my_quadratic.f90

compile on Linux/UNIX:

Execution of resulting binary

© LRZ 2009-23 Introduction to the Fortran programming language 11

ifort -o prog.exe solve_my_quadratic.f90

./prog.exe

Solutions are: 1.50000000 -0.500000000

huge numbers of additional
compiler options are typically available

UNIX-specific note:
If the -o option is omitted,

a.out is used as executable name

Invocations for various compilers

Note:

Operating environment usually Linux/UNIX

On x86 or x86_64, some compilers also support the Windows or MAC

operating systems

compilers marked green are available in the hands-on sessions, possibly

using a slightly older version

© LRZ 2009-23 Introduction to the Fortran programming language 12

Vendor (Platform) most recent
version

Invocation

IBM (Power) 17.1 xlf, xlf2008, xlf2008_r

Intel (x86, x86_64) 2023.0 ifort / ifx

NVidia (x86, accelerators) 23.1 nvfortran

GCC (many) 12.2 gfortran

NAG (x86, mac) 7.1 nagfor

Cray (HPE/Cray) 13.0 ftn

ARM (arm) 22.1 armflang

LLVM-based next-
generation compiler

LLVM-based
successor to PGI Fortran

More on I/O

List-directed formatted output

Programmer control over layout:

specify an explicit format string:

will produce output

© LRZ 2009-23 Introduction to the Fortran programming language 13

write(*,fmt=*) 'Hello'

standard output fmt=* → processor

decides layout of numbers

same meaning as

or

write(*,*) 'Hello'

print *, 'Hello'

write(*,fmt='(A,F12.5,1X,E12.5)') 'Solutions are ', x1, x2

Solutions are 1.50000 -0.50000E+00

AAAAAAAAAAAAAAFFFFFFFFFFFFXEEEEEEEEEEEE

14 chars

(string)

12 chars,

5 decimals

(fixed point)

12 chars,

5 decimals

(scientific

notation)s
in

g
le

b
la

n
k

only to standard output

Quiz: how does one obtain data inside the program from standard input?

Quiz: how might the
format string for integer
output look like?

More on source layout
„free source form“

Program line

upper limit of 132 characters

Continuation line

indicated by ampersand:

variant for split tokens:

upper limit: 255

Multiple statements

semicolon used as separator

Comments:

after statement on same line:

separate comment line:

© LRZ 2009-23 Introduction to the Fortran programming language 14

write(*,fmt=*) &
'Hello'

write(*,fmt=*) 'Hel&
&lo'

a = 0.0; b = 0.0; c = 0.0

write(*,*) 'Hello' ! produce output

write(*,*) 'Hello'
! produce output

The art of commenting code:

concise

informative

non-redundant

consistent

(maintenance issue)

Fixed source form

© LRZ 2009-23 Introduction to the Fortran programming language 15

Legacy feature

to be avoided

not further discussed in this course

conversion tools exist

Technical reason:

a relic from an earlier age of computing: the punched card

Uses file extensions:
.f .ftn .F .for

Case insensitivity

For mostly historical reasons,

means exactly the same as

Mixing upper and lower case is also permitted

However,

will write two different strings to standard output

© LRZ 2009-23 Introduction to the Fortran programming language 16

a = 0.0
write(*,*) ′Hello:′‚ a

A = 0.0
WRITE(*,*) ′Hello:′‚ A

write(*,*) ′Hello′ write(*,*) ′HELLO′

Rules for names

Names are used for referencing many Fortran entities

e.g., variables, program units, constants, …

Constraints:

between 1 and 63 alphanumeric (a – z, A – Z, 0 – 9, _) characters

first character must be a letter

Recommendations for naming:

no reserved words in Fortran → but do not use keywords anyway

mnemonic names → relationship to use of variable

© LRZ 2009-23 Introduction to the Fortran programming language 17

k_reverse
q123
Xx

legal

same reference as xx or XX

1_fish
a fish!
$sign

non-conforming

integer :: day, month, year

Recommendation: Enforce strong typing

→ all object‘s types must be declared

avoid legacy implicit typing

Three numeric intrinsic types

1. integer

2. real

3. complex

Two non-numeric intrinsic types

4. character

5. logical

Non-intrinsic types

derived types will be discussed later

integer :: years
real :: mass
complex :: psi

Fortran‘s type system

© LRZ 2009-23 Introduction to the Fortran programming language 18

one storage
unit each

two storage units

numeric storage unit: typical value nowadays 4 bytes

implicit none

character :: c = ‘s‘
logical :: flag = .true.

single character

or .false.

initialization of variable

An object declared integer

can only represent values that are a subset of 𝑍 =
{0,±1, , ±2,… }

typically {−231 + 1,… ,+231 − 1}

may be insufficient in some cases

KIND type parameter

used for non-default representations:

Type parameters (1)

© LRZ 2009-23 Introduction to the Fortran programming language 19

integer, parameter :: lk = selected_int_kind(16)

integer(kind=lk) :: seconds = 31208792336_lk

two storage units

minimal decimal exponent

232 - 1 → 2,147,483,647

value is not portable

An object declared real (or complex)

can only represent values that are a subset of the real (or complex)

field

KIND type parameter

used e.g. for non-default representations

equivalent with real(kind=dk) declaration and initialization:

Type parameters (2)

© LRZ 2009-23 Introduction to the Fortran programming language 20

integer, parameter :: dk = selected_real_kind(13,200)

real(kind=dk) :: charge = 4.16665554456e-47_dk

two storage units

minimal decimal
digits and exponent

decimal point exponent

value is not portable

double precision :: charge = 4.16665554456d-47

Overview of supported KINDs

Integer and Real types:

at least two KINDs must be supported

intrinsic functions that produce KIND numbers:
selected_int_kind(), selected_real_kind(), kind()

Real types only

usually, KINDs for smaller exponents also exist

(reduced storage requirement)

some processors support 10 or 16 byte reals (performance may be very low)

Unsupported digit/exponent specification

will fail to compile

© LRZ 2009-23 Introduction to the Fortran programming language 21

real kind dec. digits exponent range

default 6 10-37 – 10+38

extended 15 10-307 – 10+308

IEEE defined

integer kind max. exponent

default 109 (231-1)

extended 1019 (263-1)

see next slide

Details on complex entities

Declaration:

real and imaginary part have the same KIND number

intrinsic function kind() produces the KIND number of its argument

Complex literal constants: (a, b) = a + ib (mathematical notation)

© LRZ 2009-23 Introduction to the Fortran programming language 22

complex :: c

complex(kind=kind(1.0d0)) :: z

default real

double precision

c = (1.2, 4.5e1)

z = (4.0_dk, 3.0_dk)
where dk has the value kind(1.0d0)

Details on character entities (1)

Literal string constant

of default kind:

single or double quotes possible;

they are delimiters only and not

part of the constant

blanks and case are significant:

characters other than the Fortran

set are allowed. E.g., a quoted &

would be part of the string entity

Quotes as part of a

character entity:

either use the one not used

as delimiter

or use double delimiter to

mask a single one:

© LRZ 2009-23 Introduction to the Fortran programming language 23

'Full House'
“Full House“

length
is 10

'full House'
'FullHouse'

different
from above

'“Thanks“, he said'
“'Thanks', he said“

'It''s true' value is:
It's true

Note: no statements on
this slide, tokens only

Details on character entities (2)

String variables

require length parametrization

because default length is one.

auto-padded with blanks at the

end (here: 2 blanks)

KIND type parameter

differentiate between different

character sets, for example

1. default character set

2. character set used in C

3. UTF-8 character set

In practice,

1. and 2. are usually the same

will not discuss 3.

special exception: character

KIND number precedes string

constant

© LRZ 2009-23 Introduction to the Fortran programming language 24

character(len=12) :: fh
:
fh = 'Full House' integer, parameter :: &

ck = kind('A')

character(kind=ck, &
len=12) :: fh

:
fh = ck_'Full House'

Arrays (1) - Simple array declaration

Aim:

Facilitate declaration of objects

capable of holding multiple

entities of a given type

DIMENSION attribute:

Alternative declaration

variants:

Layout of (scalar) array

elements in memory:

© LRZ 2009-23 Introduction to the Fortran programming language 25

integer, parameter :: dm = 6

real, dimension(dm) :: a

real :: a(dm)

real :: a
dimension :: a(dm)

attribute is implicit

statement
form

1 2 3 4 5 6
a(1) a(2) a(3) a(4) a(5) a(6)

trivial mapping between storage
sequence index and array index

applies only for simple arrays

lower bound upper bound

(1)

(2)

Indicates sequence of
array elements in
physical memory

Recommendation:
avoid statement form (can be confusing if non-local)

Arrays (2): How to use simple arrays

Array construction:

With a single statement

Legacy notation (equivalent)

Value of array elements after

execution of above statement:

References and definitions of

array elements: subscripting

t1 will have value 13.

© LRZ 2009-23 Introduction to the Fortran programming language 26

a = [1.,3.,5.,7.,9.,11.]

a = (/ 1.,3.,5.,7.,9.,11. /)

1. 3. 5. 7. 9. 11.

a(1) a(2) a(3) a(4) a(5) a(6)

integer :: i
real :: t1
i = 2
a(3) = 2.0
t1 = a(3)
a(i) = t1*3.0
t1 = t1 + a(i+4)

the above addresses small, simple arrays or single array elements

mechanisms to process complete/large arrays are needed

there‘s much more to array support in Fortran than this – stay tuned

Scalar integer
subscript:
● constant
● variable
● expression

1. 6. 2. 7. 9. 11.

a(1) a(2) a(3) a(4) a(5) a(6)

Conditional execution (1)

Argument of sqrt()

a non-negative real number is required („discriminant“)

to avoid non-conforming code, replace executable statements by

© LRZ 2009-23 Introduction to the Fortran programming language 27

disc = b**2 – 4. * a * c

if (disc >= 0.0) then
x1 = (-b + sqrt(disc)) / (2. * a)
x2 = (-b – sqrt(disc)) / (2. * a)
write(*,*) ‘Solutions are: ‘, x1, x2

else
write(*,*) ‘No real-valued solution exists‘

end if

scalar logical expression

declared as real :: disc

a block with
three statements

Conditional execution (2)

Repeated else if blocks:

the first block for which its

condition is true is executed

if none, the else block is

executed, if it exists

IF statement:

action statement: essentially

any single statement

examples:

© LRZ 2009-23 Introduction to the Fortran programming language 28

if (scalar-logical-expr) then

block

else if (scalar-logical-expr) then

block

else if … ! further blocks

:

else ! optional

block

end if

if (scalar-logical-expr) &

action-stmt

if (x < 2.) y = y + x

if (z /= 0.) a = b/z

legacy form of IF:
• arithmetic if
• not discussed here

„not equal“

not a block construct

Flow diagram for conditional execution

Shown here:

two conditions and an else block

© LRZ 2009-23 Introduction to the Fortran programming language 29

<logical-
expr 1>?

<logical-
expr 2>?

block 1 block 2
else

block

regular
(unconditional)

execution

yes

no

yes

no

Recommendation:

Do not omit else block

Avoid logically
incomplete structure

Conditional execution (3)

The CASE construct – an

alternative to multiple IF

blocks:

if only a single scalar

expression of type integer,

character or logical is

evaluated

if all values are from a pre-

defined set

Example:

no overlap is allowed within or

between selectors → at most

one block is executed

© LRZ 2009-23 Introduction to the Fortran programming language 30

[name :] select case (expr)

case selector [name]

block

: ! possibly repeated

end select [name]

select case (index)

case (0)

x = 0.

case (1:4)

x = 1.0

case (5:)

x = 2.0

case default

x = -1.0

end select

single value

lower and
upper limits

lower limit only

no case fits
(one block only)

here an integer

selector

Overview of block constructs

General concept:

construct by default has one entry and one exit point

modifies statement execution order

Overview of constructs defined in the standard:

© LRZ 2009-23 Introduction to the Fortran programming language 31

Name Purpose treated in this course?

ASSOCIATE define and use block-delimited alias no

BLOCK define structured block, possibly with local variables yes

CHANGE TEAM split coarray execution into disjoint teams no

CRITICAL limit coarray execution to a single image no

DO looping construct (repeated execution) yes

IF conditional execution yes

SELECT CASE conditional execution based on predefined values yes

SELECT RANK run time rank resolution yes

SELECT TYPE run time type / class identification no

Labeled GOTO statements
should not be used any more

Repeated execution (1) – the DO block construct

Example:

summing up the elements of

an array

can be written more

compactly as

Rules for DO constructs

loop index must be an integer

loop index may not be

modified inside the loop body
(but may be referenced)

loop index takes every value

between lower and upper limit

in order

Most general form:

e1, e2, e3 must be integer

expressions. If present, e3

must be ≠0.

© LRZ 2009-23 Introduction to the Fortran programming language 32

s = a(1)
s = s + a(2)
:
s = s + a(6)

s = 0.

do i = 1, dm

s = s + a(i)

end do

block:
„loop body“

[name:] do [,] var = &

e1, e2 [, e3]

body

end do [name]

loop index

value of loop index is dm+1

Repeated execution (2)

Index set

for general DO construct:

if e3 is not specified, set

e3 to 1

start with e1 and

increment by e3 as long

as e2 not exceeded

Empty index set: loop

body is not executed;

control of execution is

transferred to statement

after end of loop

Block diagram

© LRZ 2009-23 Introduction to the Fortran programming language 33

i = e1

block

i ≤ e2 ?

i = i + e3

yes

no

continue
regular

execution

must be „≥“ if e3 < 0

legacy DO:
• with labeled ending statement
• is not discussed here

Fine-grained execution control

Terminate a construct

use an EXIT statement

if executed, next statement is the

first one after the referenced

block

if no block name is specified,

applies to innermost enclosing

DO block

Applies for all block constructs

Proceed to next loop iteration

Use a CYCLE statement

if executed, restart referenced

loop body with the next value for

the iteration variable

if no block name is specified,

applies to innermost enclosing

DO block

Only for looping constructs

© LRZ 2009-23 Introduction to the Fortran programming language 34

i_loop: do i=1,n
:
! terminate if singular
if (den==0.0) exit i_loop
:

end do i_loop

j_loop: do j=1,n
:
! Next iteration if negative

if (t<0.) cycle j_loop
a(j) = a(j) + sqrt(t)*…

end do j_loop
Actually, 𝜃(𝑡) ∙ 𝑎𝑏𝑠(𝑡)

Recommendation: avoid this

Repeated execution (3)

Endless DO construct

requires a conditioned exit statement to eventually complete

DO WHILE construct

condition is checked before block executed for each iteration

equivalent to previously shown „endless“ DO with conditional branch as its

first block statement

use not recommended since not well-optimizable

© LRZ 2009-23 Introduction to the Fortran programming language 35

[name:] do
:
if (scalar-logical-expr) exit
:

end do [name]

[name:] do while (.not. scalar-logical-expr)
:

end do [name]

condition from above

Simple BLOCK construct

Semantics:

delineated block of executable

statements, which are executed in the

usual order, beginning with the first

one appearing inside the construct

optionally, prepended by block-local

variable declarations – these variables

only exist while the block executes

optionally, the block construct may

be given a name

an exit statement can appear as one

of the executable statements. If it

references the given construct (e.g.,

by name), execution continues after

the block

Example:

© LRZ 2009-23 Introduction to the Fortran programming language 36

real :: result
: ! executable statements

do_some_task : block
integer :: i
real :: b(n)

:
b(i) = …
:
result = …

end block do_some_task

: ! executable statements
… = result + …

construct name

local declarations

executable
statements

local b,i cease to exist

result remains available

This is not permitted for the other block constructs

Nesting of block constructs

and fine-grain execution control

Nesting is permitted

A complete construct inside

another one

Example 1: nested loops

Using a name for the DO

construct is necessary here

EXIT (on the inner loop) would

not be sufficient here

Example 2:

loop nested inside a BLOCK

construct

IF nested inside loop

© LRZ 2009-23 Introduction to the Fortran programming language 37

outer: do j=1,n
do k=1,n
:
if (t < 0.0) cycle outer

end do
a(j) = a(j) + sqrt(t)*…

end do outer
:

calculate t

ifound = 0
finder : block
integer :: i
do i=1,n

if (x == a(i)) then
ifound = i
exit finder

end if
end do
write(*,*) 'Not found'

end block finder
:

dependency

Termination with STOP and ERROR STOP

Syntax alternatives:

Semantics:

stops execution of the complete program

provided access code is usually printed to error output

an integer constant may also be propagated as process exit value

for serial programs, no substantive difference between the two
(for parallel programs that e.g. use coarrays, there is a difference)

© LRZ 2009-23 Introduction to the Fortran programming language 38

stop error stop

stop <integer-constant> error stop <integer-constant>

stop <string-constant> error stop <string-constant>

Model numbers,

Expressions and Assignment

39

Data representations

Numeric models for integer and real data

integer kind is defined by

positive integer q (digits)

integer r > 1 (normally r = 2)

integer value is defined by

sign s {1}

sequence of wk {0, ..., r-1}

© LRZ 2009-23 Introduction to the Fortran programming language 40

real kind is defined by

positive integers p (digits),

b > 1 (base, normally b = 2)

integers emin < emax

real value is defined by

sign s {1}

integer exponent emin e emax

sequence of fk {0, ..., b-1},

f1 nonzero

𝑖 = 𝑠 ×

𝑘=1

𝑞

𝑤𝑘 × 𝑟𝑘−1 𝑥 = 𝑏𝑒 × 𝑠 ×

𝑘=1

𝑝

𝑓𝑘 × 𝑏−𝑘 or x = 0

fractional part

4 bytesbase 2 → „Bit Pattern“

Inquiry intrinsics for model parameters

digits(x) for real oder integer x,

returns the number of

digits (p, q

respectively) as a
default integer value.

minexponent(x),
maxexponent(x)

for real x, returns

the default integer

emin, emax

respectively

precision(x) for real or complex x,

returns the default

integer indicating the

decimal precision

(=decimal digits) for

numbers with the kind

of x.

radix(x) for real or integer x,

returns the default

integer that is the

base (b, r

respectively) for the

model x belongs to.

range(x) for integer, real or

complex x, returns the

default integer

indicating the decimal

exponent range of the

model x belongs to.

© LRZ 2009-23 Introduction to the Fortran programming language 41

Inquiry intrinsics for model numbers

Example representation: e {-2, -1, 0, 1, 2}, p=3

look at first positive numbers (spacings
1

32
,
1

16
,
1

8
etc.)

largest representable number: Τ7 2

(beyond that: overflow)

© LRZ 2009-23 Introduction to the Fortran programming language 42

Mapping fl:

to nearest model number

maximum relative error

ℝ ∋ 𝑥 → 𝑓𝑙 𝑥

𝑓𝑙 𝑥 = 𝑥 ⋅ 1 + 𝑑 , ∣ 𝑑 ∣ < 𝑢

0 1

8

1

4

1

2
u = 1

tiny(x)

epsilon(x)

huge(x)

spacing(0.35)

rrspacing(x) = abs(x) / spacing(x)

nearest(0.35, -1.0)

0.35

purely
illustrative!

… more realistic models

Typically used representations: IEEE-754 conforming

matched to hardware capabilities

Negative zero:

hardware may distinguish from positive zero

e.g., rounding of negative result toward zero retains sign,

e.g., I/O operations (sign stored in file)

© LRZ 2009-23 Introduction to the Fortran programming language 43

real kind dec.
digits

base 2
digits

dec. exponent
range

base 2
exponent range

default 6 24 10-37 … 10+38 -125 … +128

extended 15 53 10-307 … 10+308 -1021 … +1024

Closure issues

Arithmetic operations:

result typically outside the

model → requires rounding

implementation dependency,

but all good ones adhere to

„standard requirement“

precision achieved by using

e.g., guard digits

IEEE-754 adds

more rounding functionality

fulfills the standard req. above

Additional numbers outside

model may exist

IEEE-754 adds

denormal numbers (minimal

exponent and f1=0),

decreasing precision

infinities (Inf)

not a number (NaN)

register values with increased

range and precision

© LRZ 2009-23 Introduction to the Fortran programming language 44

𝑓𝑙𝑜𝑝 𝑥, 𝑦 = 𝑥 𝑜𝑝 𝑦 ⋅ 1 + 𝑑 ,

∣ 𝑑 ∣ ≤ 𝑢; 𝑜𝑝 = +,− Τ,∗, .

There exist relevant
algorithms for which

less strict models
cause failure!

Assignment to entities of intrinsic type

Simple example

Exact semantics:

1. value of expression on RHS is evaluated

(stay tuned for rules on this)

2. if possible (and necessary), conversion

to the type of the LHS is performed

3. the LHS takes the previously evaluated

value (it becomes defined)

Rationale:

enable safe execution of

Notes:

these semantics apply for all

intrinsic types

conversion is essentially limited to

within numeric types. Otherwise,

types and kinds of LHS and RHS

must be the same

the LHS of an assignment

statement must be a definable

entity (e.g., it must not be an

expression, or a named constant)

© LRZ 2009-23 Introduction to the Fortran programming language 45

real :: x
:
x = y * 2.0 + 3.0

(intrinsic)

assignment
RHS: (numeric)

expression

reference
on y

x = y * 2.0 + x * 3.0

assumption: has been
previously defined

LHS

Intrinsic assignment for arrays

Variant 1:

LHS an array, RHS a

scalar

→ RHS is broadcast to all

array elements of LHS

Variant 2:

LHS and RHS an array

in this example: of same

size

→ causes element-wise copy

Later talks on array processing
will provide more details

© LRZ 2009-23 Introduction to the Fortran programming language 46

real :: a(dm)
real :: y
:
y = 4.0
a = y * 2.1

real :: a(dm), b(dm), c(dm+4)

a = c ! non-conformable
a = b ! OK
a = c(1:dm) ! OK

subobject of c

Implicit conversions

Assume declarations

Examples:

1. Not exactly representable values

2. Rounding toward zero for real-to-integer conversion

3. Overflow (likely silent)

© LRZ 2009-23 Introduction to the Fortran programming language 47

real(rk) :: r
real(dk) :: d

integer(ik) :: i
integer(lk) :: k

r = 1.1
d = r
write(*,*) abs(d – 1.1_dk)

4 bytes4 bytes

4 bytes8 bytes

r = -1.6
i = r; write(*,*) i

k = 12345678900_lk
i = k; write(*,*) i

2.3841857821338408E-008

Produced output

-1

-539222988

may or may not be
what you want …

surely not
what you want

loss of precision

Best practices for conversions

i. Use suitable intrinsics

ii. Limit conversion to the case stronger → weaker type

if the reverse is not avoidable, i. may help (if for clarity only)

Improved examples:

1. Not exactly representable values

2. Suitable intrinsic for real-to-integer conversion

3. Avoid overflow

© LRZ 2009-23 Introduction to the Fortran programming language 48

d = 1.1_dk
r = real(d, kind(r))
write(*,*) abs(r – 1.1)

r = -1.6
i = nint(r); write(*,*) i

if (abs(k) <= huge(i)) then
i = k

else
: ! handle error

end if

-2
want rounding

to nearest

might not be zero, but there are
no unrealistic expectations

avoid lower-precision
constants

this also works for integers!

Conversion intrinsics

List or point at Internet

source?

Lots of further intrinsics exist, for example

Some of these perform conversions as part of their semantics

KIND argument determines KIND of result

Consult, for example, the gfortran intrinsics documentation

© LRZ 2009-23 Introduction to the Fortran programming language 49

cmplx(x [, y] [, kind]) conversion to complex, or between complex KINDs

int(x [, kind]) conversion to integers, or between integer KINDs

real(x [, kind]) conversion to reals, or between real KINDs

ceiling(a [, kind])
floor(a [, kind])

produces nearest higher (or lower) integer from real

nint(a, [, kind]) produces nearest integer from real

anint(a, [, kind]) produces nearest whole real from real

https://gcc.gnu.org/onlinedocs/gfortran/Intrinsic-Procedures.html

https://gcc.gnu.org/onlinedocs/gfortran/Intrinsic-Procedures.html

Expressions (1)

Operands and operators:

dyadic (or binary) operators:

monadic (or unary) operators:

Combining binary and unary operators: In

operator_2 must be a unary operator

© LRZ 2009-23 Introduction to the Fortran programming language 50

<operand> operator <operand>

operator <operand>

a + b

-c

Example tokens:

<operand> operator_1 operator_2 <operand>

Expressions (2)

Operands may be

constants

variables

function values

expressions → recursively

build up complex expressions

Operators may be

intrinsic operators
(depend on operand type)

defined operators
(treated later)

© LRZ 2009-23 Introduction to the Fortran programming language 51

Validity of expressions

operands must have a well-defined value

mathematical rules – e.g., no non-integer exponents of negative

numbers

limitations of model numbers may cause trouble sometimes

Initially, only operands of intrinsic types will be discussed

note however that even intrinsic operators can be overloaded for derived

type operands (treated later)

Expressions (3): Intrinsic numeric operators

Properties:

precedence increases

monotonically going down the

table

+,- and *,/ have same

precedence

equal precedence: expression is

evaluated left-to-right, except for

exponentiation **

Some special cases:

integer division truncates

toward zero

exponentiation with complex

base: a**b produces

principal value

with

© LRZ 2009-23 Introduction to the Fortran programming language 52

Symbol Meaning Remarks

+ addition also unary

- subtraction also unary

* multiplication

/ division slow

** exponentiation even slower
6/3
8/3
-8/3

expression‘s value:

2
2
-2

e𝑏⋅ log∣𝑎∣+𝑖 arg(𝑎)

−π < arg(𝑎) ≤ π

Some examples for expression evaluation
(a, b, c, d of same numeric type and kind)

Force order of evaluation by

bracketing:

starts by evaluating a/b.

Note that

may be evaluated by the

processor as

(the latter will usually be faster)

By the precedence rules,

is evaluated as

Equal precedence:

is evaluated as

but (exceptionally)

is evaluated as

© LRZ 2009-23 Introduction to the Fortran programming language 53

(a / b) / c

a / b / c

a / (b * c)

a + b * c ** d / e

a + ((b * (c ** d)) / e)

-a + b - c

((-a) + b) - c

a ** b ** c

a ** (b ** c)

the general precedence and bracketing rules
also apply for non-numeric operators

Expressions (4): Mixed mode (numeric)

Operands of same type and

kind

expression retains type and

kind

Operands of differing kinds

and types

simpler/weaker type and/or

kind is coerced to the

stronger type and/or kind

then operation is performed

result is also that of the

stronger type or kind

Operands of same type but

differing kind

a real argument of the lower

precision kind will be coerced

to the higher precision kind

an integer argument with

smaller range will be coerced

to a kind that has higher

range

© LRZ 2009-23 Introduction to the Fortran programming language 54

this does not imply higher
precision of the operand‘s value!

Note: Conversion overhead can impact performance, but the
extent of this is implementation-dependent

Expressions (5): Coercion table

for a op b

with op one of the intrinsic

numeric operations

Special rules for

exponentiation:

integer exponents are

retained

the compiler might convert

these for improved

performance:

© LRZ 2009-23 Introduction to the Fortran programming language 55

x**4 x*x*x*x

Type of a Type of b Coercion performed

I R a to R

I C a to C

R I b to R, except **

R C a to C

C I b to C, except **

C R b to C

Legend:
I → integer
R → real
C → complex

Expressions (6): Logical operations

Operands:

variables as well as evaluated result are of type logical

Examples:

© LRZ 2009-23 Introduction to the Fortran programming language 56

a b a .neqv. b a .eqv. b a .or. b a .and. b .not. a

T T F T T T F

F F F T F F T

T F T F T F

Precedence increases (.neqv. and .eqv. have same level)

unary

logical :: a, b, c, d
: ! define a, b, c
d = (a .or. b) .and. c
write(*,*) d
d = a .or. .not. c
write(*,*) d

Expressions (7): Relational operators

Operands:

numeric or character expressions

state truthfulness of the relation

between operands → result is a

logical value

precedence: lower than numeric

operators, higher than logical

operators

for complex arguments:

only ==, /= allowed

character entities: see later

Example:

© LRZ 2009-23 Introduction to the Fortran programming language 57

logical :: r1, r2
real :: a
integer :: i, j
: ! define a, i, j
r1 = a >= 2.0

r2 = a < i – j

legacy Meaning

.LT. < less than

.LE. <= less than or equal

.EQ. == equal

.NE. /= not equal

.GT. > greater than

.GE. >= greater than or equal

mixed mode expression:
coercion is done as if sum

were performed

RHS

Expressions (8): Character ordering

Collating sequence – a partial

ordering

A < B < … < Y < Z

0 < 1 < … < 8 < 9

either blank < A, Z < 0 or

blank < 0, 9 < A

if lower-case letters exist:

a < b < … < y < z

either blank < a, z < 0 or

blank < 0, 9 < a

various definitions are possible

(e.g., ASCII, EBCDIC) → do

not rely on a particular ordering

Character operands in

relational expressions:

must be of same kind

strings are compared from left

until a difference is found

differing lengths: pad shorter

string with blanks

© LRZ 2009-23 Introduction to the Fortran programming language 58

Character – Integer conversions

Must use suitable intrinsics

these operate on a single character

Mapping based on ASCII collating sequence

Mapping for each character KIND based on the processor‘s

collating sequence

© LRZ 2009-23 Introduction to the Fortran programming language 59

{0, 1, 2, … , 127} {′𝑎′, ′𝑏′, … }

achar(i)

iachar(i)

{0, 1, 2, … , 𝑛 − 1} {′𝑎′, ′𝑏′, … }

char(i, KIND)

ichar(i)

KIND can be omitted
for default character set

Alternative character ordering

Intrinsics that operate on

strings:

default character kind

comparison based on

ASCII collating sequence

return default logical result

Strings of different length:

shorter one is padded on

the right with blanks
Note:

zero-sized strings are

identical

© LRZ 2009-23 Introduction to the Fortran programming language 60

lge(string_a,
string_b)

lgt(string_a,
string b)

lle(string_a,
string_b)

llt(string_a,
string_b)

true if a follows b in the
collating sequence or
is equal, false otherwise

true if a follows b in the
collating sequence,
false otherwise

true if b follows a in the
collating sequence or
is equal, false otherwise

true if b follows a in the
collating sequence,
false otherwise

Expressions (9): Character expressions

Only intrinsic operation:

concatenation via //:

has the value 'ABcd'

both operands of same

kind

length of the result is the

sum of the length of the

operands

// can be iterated, is

associative

Assignment of result

to another character entity

Examples:

res2 as a whole is undefined

because res2(10:12) is undefined.

© LRZ 2009-23 Introduction to the Fortran programming language 61

'AB' // 'cd'

character(len=5) :: arg1, arg2

character(len=7) :: res1

character(len=12) :: res2

arg1 = 'no '

arg2 = 'house'

res1 = arg1(1:3) // arg2

! value of res1 is 'no hous'

res2(1:9) = arg1(1:3) // arg2

! value of res2(1:9)

! is 'no house '

substring of arg1

note blank at end

Now we proceed to the

exercise session …

Subprogram units

Separating out common tasks

Up to now,

we've only written program
units (main programs)

Disadvantages:

replication of code
(maybe even multiple times in the
same program)

difficult to navigate, edit,
compile, test
(maintainability issues)

Solution:

functional encapsulation into
subprograms
(sometimes also called
procedures)

Simple example:

implementation calculates n,
x1, x2 from a, b, c

© LRZ 2009-23 Introduction to the Fortran programming language 63

subroutine solve_quadratic &

(a, b, c, n, x1, x2)

implicit none
real :: a, b, c, x1, x2
integer :: n
: ! local variable declarations
: ! calculate solutions

end subroutine

dummy arguments
(declarations below):

only visible inside procedure

Subprogram code organization

Three organization variants are possible

1. Put subprogram into a module program unit

this is a container for the code

the subprogram is then known as a module procedure

2. Implement it as an internal subprogram

use a non-module program unit as container

3. Implement it as a „stand-alone“ external subprogram

legacy coding style → risky to use, not recommended

some discussion of this follows later, because you might need to deal with existing

libraries

© LRZ 2009-23 Introduction to the Fortran programming language 64

strongly
recommended

Module procedure

many more details on the semantics supported by Fortran modules

will be incrementally provided

© LRZ 2009-23 Introduction to the Fortran programming language 65

module mod_solvers

implicit none

contains

subroutine solve_quadratic (a, b, c, n, x1, x2)

real :: a, b, c, x1, x2

integer :: n

: ! local variable declarations

: ! calculate solutions

end subroutine

:

end module mod_solvers

implicit none
is taken from

module specification part

further module procedures
(solve_cubic, …) may follow

… from previous slide

specifications come before contains
hosts the procedure

Invoking a module procedure (1)

From some other program unit

outside the module –
here a main program

the actual arguments nsol and possibly x,y are overwritten on each
invocation

© LRZ 2009-23 Introduction to the Fortran programming language 66

program my_main

use mod_solvers

implicit none

: ! declarations

a1 = 2.0; a2 = 7.4; a3 = 0.2

call solve_quadratic(a1, a2, a3, nsol, x, y)

write(*, *) nsol, x, y

end program
actual argument list

access solve_quadratic
from module mod_solvers

(„use association“)

mod_solvers

solve_quadratic()

my_mainu

use statement

invocation

Invoking a module procedure (2)

From some other module procedure in the same module

From a module procedure in another module

© LRZ 2009-23 Introduction to the Fortran programming language 67

mod_solvers

solve_quadratic()

solve_something_else()

mod_solvers

solve_quadratic()

mod_other

other_procedure()

access by host association
(no use statement)

A()

B()

a statement in
B() invokes A()

Compiling multiple sources

Separate compilation

different program units are usually stored in separate source files

Example: quadratic main program which calls procedure

-c specifies that no linkage should be performed; then, -o provides the

object file name (default: same as source file name with extension

replaced by .o),

otherwise, -o specifies the executable file name.

Automated build systems for mass production:

Example: (GNU) Make

© LRZ 2009-23 Introduction to the Fortran programming language 68

gfortran -c -o mod_solvers.o mod_solvers.f90

gfortran -c -o my_main.o my_main.f90

gfortran -o main.exe my_main.o mod_solvers.o

compile sources to objects
(binary code, but not executable)

link objects into executable

must compile my_main after mod_solvers

Explicit interfaces

... are automatically created for

1. module procedures and

2. internal procedures (discussed later),

permit the compiler to do checking of procedure

characteristics for each procedure invocation.

This consists of checking the

1. type

2. kind

3. rank and other properties (discussed later)

of dummy arguments against those of actual arguments.

Mismatches cause rejection at compile time

© LRZ 2009-23 Introduction to the Fortran programming language 69

This is the reason for the compilation order mentioned previously.

„stand-alone“ procedures
have an implicit interface.
→ checking is not possible
→ some language features

will not work at all

Procedure execution (1)

Argument association

each dummy argument becomes associated with its corresponding actual

argument

two variants:

1. Positional correspondence

for the above example: a ↔ a1, b ↔ a2, x2 ↔ y etc.

2. Keyword arguments → caller may change argument ordering

the Fortran standard does not specify the means of establishing the

association

Establish (unsaved) local variables

usually on the stack

© LRZ 2009-23 Introduction to the Fortran programming language 70

call solve_quadratic(a1, a2, a3, x1 = x, x2 = y, n = nsol)

call solve_quadratic(a1, a2, a3, nsol, x, y)

Procedure execution (2)

Start with first executable statements of the subprogram

and then continue execution from there;

this will usually reference and/or define each dummy argument.

The effect of argument association implies (essentially) that this behaves as if

the corresponding actual argument were referenced and/or defined.

At the end of the subprogram, or when a RETURN statement is

encountered

delete local variables

remove argument association

for a subroutine: continue with first executable statement after the call
statement

© LRZ 2009-23 Introduction to the Fortran programming language 71

Note: dummy arguments are visible only within the scope of their defining procedure,
and possibly within an enclosed scoping unit

Declaring INTENT for dummy arguments

Inform processor about expected usage

Semantics

effect on both implementation and invocation

© LRZ 2009-23 Introduction to the Fortran programming language 72

subroutine solve_quadratic (a, b, c, n, x1, x2)

real, intent(in) :: a, b, c
real, intent(inout) :: x1, x2
integer, intent(out) :: n
:

end subroutine

specified intent property of dummy argument

in procedure must not modify the argument (or any part of it)

out
actual argument must be a variable; it becomes undefined on

entry to the procedure

inout
actual argument must be a variable; it retains its definition

status on entry to the procedure

implies the need for
consistent intent specification
(fulfilled for module procedures)

specify additional
attribute

Examples for the effect of INTENT specification

Compile-time rejection of invalid code

subroutine implementation:

subroutine usage:

Compiler diagnostic (warning) may be issued

e.g. if intent(out) argument is not defined in the procedure

Unspecified intent

actual argument determines which object accesses are conforming

© LRZ 2009-23 Introduction to the Fortran programming language 73

real, intent(in) :: a

:
a = … ! rejected by compiler

call solve_quadratic (a, t, s, n, 2.0, x)

rejected by compiler

violations → run-time error if you‘re lucky

Functions – a variant of procedure

Example:

𝒘𝒔𝒒𝒓𝒕 𝒙, 𝒑 = 𝟏 −
𝒙𝟐

𝒑𝟐
if |x| < |p|

To be used in expressions:

Notes:

function result is not a dummy

variable

no CALL statement is used for

invocation

© LRZ 2009-23 Introduction to the Fortran programming language 74

module mod_functions

implicit none

contains

real function wsqrt(x, p)

real, intent(in) :: x, p

:

wsqrt = …

end function wsqrt

end module

calculate function value and
then assign to result variable

use mod_functions

implicit none

real :: x1, x2, p, y

x1 = 3.2; x2 = 2.1; p = 4.7

y = wsqrt(x1,p) + wsqrt(x2,p)**2

if (wsqrt(3.1,p) < 0.3) then

…

end if

function result declaration

Using a RESULT clause

Alternative way of specifying a function result

permits separate declaration of result and its attributes

the invocation syntax of the function is not changed by this

In some circumstances, use of a RESULT clause is obligatory

© LRZ 2009-23 Introduction to the Fortran programming language 75

function wsqrt(x, p) result(res)

real, intent(in) :: x, p

real :: res

:

res = …

end function wsqrt

Optional arguments

Scenario:

not all arguments needed at any

given invocation

reasonable default values exist

Example:

use of intrinsic logical function

present is obligatory

Invocations:

in the second invocation, refe-

rencing dummy p (except via

present) is non-conforming

Notes:

optional arguments are permitted

for functions and subroutines,

an explicit interface is required,

keyword calls are typically nee-

ded if a non-last argument is

optional.

© LRZ 2009-23 Introduction to the Fortran programming language 76

real function wsqrt(x, p)
real, intent(in) :: x
real, intent(in), optional :: p
real :: p_loc
if (present(p)) then

p_loc = p
else

p_loc = 1.0
end if
:

end function wsqrt

y = wsqrt(x1,pg)

z = wsqrt(x2)

path 1

path 2

uses path 1

uses path 2

Recursive procedures

A procedure that invokes itself

directly or indirectly
(may be a function or subroutine)

requires the RECURSIVE attribute

Example:

Fibonacci numbers

this example demonstrates direct recursion

Note:

since , the recursive attribute is not obligatory any more

© LRZ 2009-23 Introduction to the Fortran programming language 77

recursive function fib(i) result(f)
integer, intent(in) :: i
integer :: f
if (i < 3) then

f = 1
else

f = fib(i-1) + fib(i-2)
end if

end function fib

result clause is

necessary here

Internal procedures (1)

Example:

© LRZ 2009-23 Introduction to the Fortran programming language 78

subroutine process_expressions(…)

real :: x1, x2, x3, x4, y1, y2, y3, y4, z

real :: a, b

a = …; b = …

z = slin(x1, y1) / slin(x2, y2) + slin(x3, y3) / slin(x4, y4)

…

contains

real function slin(x, y)

real, intent(in) :: x, y

slin = a * x + b * y

end function slin

subroutine some_other(…)

…

… = slin(p, 2.0)

end subroutine some_other

end subroutine process_expressions

host scoping unit
(could be main program or any
kind of procedure, except an

internal procedure)

internal subroutine

invocation within host

a, b accessed from the host
→ host association

could be declared locally, or as
dummy arguments

internal function

slin is accessed by host
association

Internal procedures (2)

Rules for use

invocation of an internal procedure is only possible inside the host, or inside

other internal procedure of the same host

an explicit interface is automatically created

Performance aspect

if an internal procedure contains only a few executable statements, it can

often be inlined by the compiler;

this avoids the procedure call overhead

Legacy functionality: statement function

should be avoided in new code

© LRZ 2009-23 Introduction to the Fortran programming language 79

subroutine process_expressions(…)
real :: x, y
slin(x, y) = a*x + b*y
…
z = slin(x1, y1) / slin(x2, y2) + slin(x3, y3) / slin(x4, y4)

end subroutine process_expressions

Array dummy arguments – simplest case

Assumed size

SX: a contiguous storage sequence (here: up to N * INCX elements needed)

size of actual argument is assumed and must be sufficient to perform all accesses

Example invocations:

© LRZ 2009-23 Introduction to the Fortran programming language 80

subroutine sscal (N, SA, SX, INCX)
integer, intent(in) :: N, INCX
real, intent(in) :: SA
real, intent(inout), dimension(*) :: SX
:

end subroutine

BLAS routine SSCAL sx sa * sx

• N elements processed
• INCX: stride between

subsequent elements

real :: x(7)
:
call sscal(4, 2.0, x, 2)
! overwrites “orange” elements
call sscal(3, -2.0, x(2), 2)
! overwrites “green” elements

often used in legacy libraries,
or calls to C

actual argument
provides „start address“

SX(1) → 7 elements needed

x

x

SX(1) → 5 elements needed

executable statements

The dangers of cheating …

… about the size of the actual argument

Possible consequences:

program crashes immediately, or somewhat later, or

element of another array is overwritten → incorrect result, or

you‘re lucky, and nothing bad happens (until you start using a different

compiler, or other compiler options)

An improved way of passing arrays will be shown tomorrow

© LRZ 2009-23 Introduction to the Fortran programming language 81

real :: x(6)
:
call sscal(4, 2.0, x, 2)
! overwrites “orange” elements
call sscal(3, -2.0, x(2), 2)
! overwrites “green” elements

SX(1) → 7 elements needed

x

x

SX(1) → 5 elements needed

illegal access attempted

OK

Character string dummy arguments

Assumed length string

string length is passed

implicitly

Usage:

produces the output

© LRZ 2009-23 Introduction to the Fortran programming language 82

subroutine pass_string(c)

intrinsic :: len

character(len=*) :: c

write(*,*) len(c)

write(*,*) c

end subroutine

intrinsic :: trim

character(len=20) :: str

str = ‘This is a string‘

call pass_string(trim(str))

call pass_string(str(9:16))

16
This is a string
8
a string

keyword spec
can be omitted

Side effects in procedure calls

A simple example

Procedure definition ... and invocation

Second call:

aliases its dummy arguments

how can two results be

written to a single variable?

(same memory location!)

© LRZ 2009-23 Introduction to the Fortran programming language 84

subroutine modify_a_b(a, b)
real, intent(inout) :: a, b

…
a = …
…
b = …

end subroutine

real :: x, y
…
x = …
y = …

call modify_a_b(x, y)

call modify_a_b(x, x)

Definition of aliasing

Aliasing of dummy argument:

access to object (or sub-

object) via a name other than

the argument's name:

1. (sub)object of actual

argument is associated with

another actual argument (or

part of it)

2. actual argument is (part of) a

global variable which is

accessed by name

3. actual variable (or part of it)

can be accessed by host

association in the executed

procedure (this is similar to 2.)

Example for 3.:

inside bar(), this is aliased

against x

© LRZ 2009-23 Introduction to the Fortran programming language 85

c
o

n
c
e

p
t
is

e
x
p

la
in

e
d

la
te

r

program alias_host
real :: x(5)

call bar(x,5)
contains
subroutine bar(this,n)
real :: this(*)
integer :: n
…

end subroutine bar
end program

x is accessible by
host association

A more subtle example

Procedure definition ... and invocation

Second call: aliased

next slide discusses what

might happen (potential

conflicts of reads and writes)

© LRZ 2009-23 Introduction to the Fortran programming language 86

subroutine modify_a(a, b)
real, intent(inout) :: a
real, intent(in) :: b

a = 2 * b
… = b
a = a + b

end subroutine

real :: x, y
…
x = …
y = …
call modify_a(x, y)
call modify_a(x, x)
call modify_a(x, (x))

A
B
C

Discussion of possible outcomes

Implementation dependence

on argument passing mechanism

assume x=2.0, y=2.0 at entry

Model 1: copy-in/copy-out

working on local copies

both aliased and non-aliased

calls produce the same result for

x (6.0)

only first argument is copied out

third call always effectively uses

copy-in for the second argument

(actual argument is an

expression) → avoids aliasing

Model 2: call-by-reference

pass address of memory location

result depends on procedure-

internal optimization

possible results: 6.0 or 8.0

further possible side effect: result

of statement B depends on

statement reordering

© LRZ 2009-23 Introduction to the Fortran programming language 87

x

a

b

memory
location

(aliased)

registers

a x
write back

after statement
A or not?

→ depends on resource usage!

perform
operation

other models are conceivable

Aliasing restriction on dummy arguments

Consequence:

restriction in language which

makes the problematic calls

illegal

but aliasing is not generally

disallowed

Restriction:

if (a subobject of) the argument

is defined in the subprogram, it

may not be referenced or defined

by any entity aliased to that

argument

Intent:

enable performance

optimizations by statement

reordering and/or register use

avoid ambiguities in assignments

to dummy arguments

Notes:

further rules exist that apply to

dynamic features of the language

→ see advanced course

exceptions to restrictions exist for

special situations

→ see advanced course

restriction effectively also applies

to parallel procedure invocations

in a shared memory environment

(e.g., OpenMP)

© LRZ 2009-23 Introduction to the Fortran programming language 88

Aliasing – further examples
(rather artificial)

Partial aliasing:

x(3), x(4) may not be modified by

subp() via either dummy

argument

x(1:2) may be modified via the

first argument

x(5:7) may be modified via the

second argument

(assuming that subp() always

references complete argument)

Aliasing against host

associated entity:

this(2:5) is not modified by

bar()

© LRZ 2009-23 Introduction to the Fortran programming language 89

real :: x(7)
x = ...
call subp(x(1:4), x(3:))

actual arg

x(1) x(7)

program alias_host
real :: x(5)

call bar(x,5)
contains
subroutine bar(this,n)
real :: this(*)
integer :: n
this(1) = ...
... = x(1) ! NO
... = x(2) ! OK

end subroutine bar
end program

Side effects of function calls

Example function

Undefined actual argument

because badfun() may or may

not have been called

Effective aliasing:

Restriction: a function reference

is not allowed to modify a vari-

able or affect another function

reference appearing in the same

statement

→ above invocations are non-

conforming

© LRZ 2009-23 Introduction to the Fortran programming language 90

integer function badfun(i)
integer, intent(inout) :: i
:
i = -1
badfun = …

end function

modifies argument

if (x < 0.0 .or. &
badfun(i) > 0) then

…
end if

i is undefined here

if (i < 0 .and. &
badfun(i) > 0) then

…
end if

q = badfun(i) + badfun(i)**2

Dealing with side effects in function calls

Strategy 1:

document proper usage

for the previous example, an

invocation like

with separate actual

arguments would be OK.

Strategy 2 (preferred):

avoid side effects altogether

at minimum, declare all

dummy arguments of a

function INTENT(IN).

even better: declare all

functions PURE (see next

slide)

© LRZ 2009-23 Introduction to the Fortran programming language 91

q = badfun(i) + badfun(j)**2

Functions declared PURE

Example:

Compiler ensures freedom from side effects, in particular

all dummy arguments have INTENT(IN)

neither global variables nor host associated variables are defined

no I/O operations on external files occur

no STOP statement occurs

…

→ compile-time rejection of procedures that violate the rules

Notes:

in contexts where PURE is not needed, an interface not declaring the function as PURE

might be used

in the implementation, obeying the rules becomes programmer's responsibility if PURE

is not specified

© LRZ 2009-23 Introduction to the Fortran programming language 92

pure integer function goodfun(i)
integer, intent(in) :: i
:
goodfun = …

end function

troublesome for debugging
→ temporarily remove the attribute

certain things not allowed here …

Subroutines declared PURE, etc.

For subroutines declared PURE, the only difference from functions

is:

all dummy arguments must have declared INTENT

Notes on PURE procedures in general:

Purposeful use of the PURE property in an invocation requires an

explicit interface

PURE is needed for invocations in some block constructs, or

invocations from (other) PURE procedures

another motivation for the PURE attribute is the capability to execute

multiple instances of the procedure in parallel without incurring race

conditions.

However, it remains the programmer‘s responsibility to exclude

race conditions for the assignment of function values, and for actual

arguments that are updated by PURE subroutines.

© LRZ 2009-23 Introduction to the Fortran programming language 93

Passing arguments by value

Use VALUE attribute

for dummy argument

Example:

a local copy of the actual

argument is generated when the

subprogram is invoked

General behaviour / rules

local modifications are only

performed on local copy –

they never propagate back to

the caller

argument-specific side effects

are therefore avoided
→ VALUE can be combined with

PURE

argument may not be

INTENT(out) or

INTENT(inout)

INTENT(in) is allowed but mostly not

useful

© LRZ 2009-23 Introduction to the Fortran programming language 94

subroutine foo(a, n)
implicit none
real, intent(inout) :: a(:)

integer, value :: n
:
n = n – 3
a(1:n) = …

end subroutine

Interface specifications

and

Procedures as arguments

Recall BLAS example (SSCAL)

BLAS is a „legacy library“, but very often used

„stand-alone“ external procedures with implicit interfaces

baseline (seen often in practice): unsafe usage – no signature checking

another common error: argument count wrong

Note:

for external functions, the return type must be explicitly declared if

strong typing is in force.

© LRZ 2009-23 Introduction to the Fortran programming language 96

program uses_sscal
implicit none
external :: sscal
real :: x(7)
call sscal(4, 2.0, x, 2)
call sscal(3, -2, x(2), 2)
write(*,*) x

end program
no complaint from compiler

about wrong type of actual argument

statement often omitted
→ sscal external by default

Manually created explicit interface
(remember: this is neither needed nor permitted for module procedures!)

Makes external procedures safer

to use

Recommendation:

place in specification part of a

module

Modified program that invokes

the procedure

similarly, incorrect argument

count is now caught by the

compiler

however, incorrect array size is

usually not

© LRZ 2009-23 Introduction to the Fortran programming language 97

module blas_interfaces
interface

subroutine sscal (N, &
SA, SX, INCX)

integer, intent(in) :: N, INCX
real, intent(in) :: SA
real, intent(inout), &

dimension(*) :: SX
end subroutine
: ! further
: ! interfaces

end interface
end module

executable statements
are not permitted

In
te

rf
a

c
e

 b
lo

c
k

program uses_sscal
use blas_interfaces
implicit none
real :: x(7)
call sscal(4, 2.0, x, 2)
call sscal(3, -2, x(2), 2)
write(*,*) x

end program
rejected by compiler

Manually created interface for C library calls

Additional language feature needed:

interoperability with C; intrinsic module ISO_C_BINDING

Example: C function with prototype

Fortran interface:

© LRZ 2009-23 Introduction to the Fortran programming language 98

module libm_interfaces
implicit none
interface
real(c_float) function lgammaf_r(x, is) BIND(C)

use, intrinsic :: iso_c_binding

real(c_float), value :: x
integer(c_int) :: is

end function
end interface
end module

enforce C name mangling

provides kind numbers for interoperating types

C-style value
argument

float lgammaf_r(float x, int *signp);

Further comments on interoperability

KIND numbers:

c_float and c_int are usually the default Fortran KINDs anyway

further types supported: c_char (length 1 only), c_double, …

unsigned types are not supported

Mixed-case C functions

an additional label is needed

C-style arrays

require assumed size declaration in Fortran interface

Much more information is provided in the advanced course

© LRZ 2009-23 Introduction to the Fortran programming language 99

example C prototype:
void Gsub(float x[], int n);

interface
subroutine ftn_gsub(x, n) BIND(C, name=′Gsub′)
use, intrinsic :: iso_c_binding
real(c_float), dimension(*) :: x
integer(c_int), value :: n

end function
end interface

invocation from Fortran via Fortran name

Procedures as arguments (1)

Up to now:

procedure argument a variable or

expression of some datatype

For a problem like, say,

numerical integration

want to be able to provide a

complete function as argument

„functional programming style“

Example:

implementation of quadrature

routine

© LRZ 2009-23 Introduction to the Fortran programming language 100

input data:
• interval [a, b]
• function f(.)

output: න

𝑎

𝑏

𝑓 𝑡 𝑑𝑡

module quadrature

implicit none

contains

subroutine integral_1d(&

a, b, fun, valint, status)

real, intent(in) :: a, b

real, intent(out) :: valint

integer, optional, &

intent(out) :: status

interface

real function fun(x)

real :: x

end function

end interface

: ! implementation

… = … + fun(xi) * wi

valint = …

end subroutine

end module

invokes function that
is provided as

actual argument

Procedures as arguments (2)

Invoking the quadrature

routine

step 1 – provide

implementation of integrand

step 2 – call quadrature routine

with suitable arguments

© LRZ 2009-23 Introduction to the Fortran programming language 101

module integrands

implicit none

contains

real function my_int(x)

real :: x

my_int = x**3 * exp(-x)

end function

end module

program run_my_integration

use integrands

use quadrature

implicit none

real :: a, b, result

a = 0.0; b = 12.5

call integral_1d(a, b, &

my_int, result)

write(*, *) 'Result: ', &

result

end program

Abstract interface

Dummy procedure interface

writing this may be cumbersome

if specification must be reiterated

in many calls

note that no procedure needs to

actually exist as long as no

invocation has been written →

interface is „abstract“

Equivalent alternative

define the abstract interface in

specification part of the module

and reference that interface

(possibly very often)

© LRZ 2009-23 Introduction to the Fortran programming language 102

module quadrature

implicit none
abstract interface

real function f_simple(x)

real :: x
end function

end interface

contains
subroutine integral_1d(&

a, b, fun, valint, status)

real :: a, b, valint
integer, optional :: status

procedure(f_simple) :: fun

: ! implementation

… = … + fun(xi) * wi
valint = …

end subroutine

end module

reference to above definition

Now we proceed to an

exercise session …

alternative

implementation

Derived Types and

more on Modules

Concept of derived type

Overcome insufficiency

of intrinsic types for description

of abstract concepts

Type components:

can be of intrinsic or derived

type, scalar or array

further options discussed later

Recommendation:

a derived type definition

should be placed in the

specification section of a

module.

Reason: it is otherwise not

reusable (simply copying the type

definition creates a second, distinct

type)

© LRZ 2009-23 Introduction to the Fortran programming language 104

module mod_body
implicit none
type :: body
character(len=4) :: units
real :: mass
real :: pos(3), vel(3)

end type body
contains
…

end module

position
velocity

declarations of
type components

Formal type
definition

layered creation of
more complex types

from simple ones

creates two scalars and an

array with ndim elements of
type(body)

sufficient memory is supplied

for all component subobjects

access to type definition here

is by use association

Structures

Objects of derived type

Examples:

Structure constructor

permits to give a value to an object of derived type (complete definition)

It has the same name as the type,

and keyword specification inside the constructor is optional.
(you must get the component order right if you omit keywords!)

Default assignment

copies over each type component individually

© LRZ 2009-23 Introduction to the Fortran programming language 105

use mod_body
type(body) :: ball, copy
type(body) :: asteroids(ndim)

here: a program unit
outside mod_body

ball = body('MKSA', mass=1.8, pos=[0.0, 0.0, 0.5], &
vel=[0.01, 4.0, 0.0])

copy = ball

Structures as dummy arguments

Implementation of „methods“

declares scalar dummy

argument of type(body)

access to type definition

here is by host association

invocation requires an

actual argument of exactly

that type (→ explicit interface

required)

© LRZ 2009-23 Introduction to the Fortran programming language 106

module mod_body
implicit none
type :: body
…
contains
subroutine kick(this, …)
type(body), intent(inout) :: this
…

end subroutine
end module

type definition
shown earlier

use mod_body
type(body) :: ball
type(body) :: asteroids(ndim)
… ! define objects
call kick(ball, …)
call kick(asteroids(j), …)

Accessing type components

Via component selector %

this % vel is an array of type real with 3 elements

this % vel(i) and

this % mass are real scalars

(spaces are optional)

© LRZ 2009-23 Introduction to the Fortran programming language 107

subroutine kick(this, dp)
type(body), intent(inout) :: this
real, intent(in) :: dp(3)
integer :: i

do i = 1, 3
this % vel(i) = this % vel(i) + dp(i) / this % mass

end do
end subroutine

Remarks on storage layout

Single derived type object

compiler might insert padding

between type components

Array element sequence

as for arrays of intrinsic type

Special cases

sequence types enforce storage

layout in specified order

BIND(C) types enforce C struct

storage layout:

is interoperable with

© LRZ 2009-23 Introduction to the Fortran programming language 108

type :: s_type
sequence
real :: f
integer :: il(2)

end type

type, BIND(C) :: c_type
real(c_float) :: f
integer(c_int) :: il(2)

end type

typedef struct {
float s;
int i[2];

} Ctype;

type :: d_type
character :: c
real :: f

end type

avoid use

%c %funused

type(d_type) :: obj(3)

obj(1) obj(2) obj(3)

obj(:)%c

could look like

What is a module?

Semantics

Permits packaging of

global variables

named constants

type definitions

procedure interfaces

procedure implementations

for reuse,

Allows

information hiding

(limited) namespace
management

Module definition syntax

Symbolic representation

© LRZ 2009-23 Introduction to the Fortran programming language 109

module <module-name>
[specification-part]

contains
[module-subprogram, ...]

end module <module-name>

mod_body

body%

kick()

reference:
example

from
earlier
slide

An alternative for communicating

with subprograms

Typical scenario:

call multiple procedures which
need to work on the same data

Known mechanism:

data are passed in/out as
procedure arguments

disadvantage: need to declare
in exactly one calling program
unit; access not needed from
any other program unit
(including the calling one)

Alternative:

define global storage area for
data

accessible from subroutines
without need for the client to
provision/manage it

better separation of concerns

© LRZ 2009-23 Introduction to the Fortran programming language 110

set(…,a) op1(…,b) op2(…,c)

my_data

my_data

set(…)

my_data(:) = …

op1(…)

… = my_data(:)

define

reference

Declaring and using a global variable

Assumption: data in question only need to exist once

sometimes also called „Singleton“ in computer science literature

Further attributes can be specified (discussed later)

Fortran 77 COMMON blocks should not be used any more

declares COMMON obsolescent

© LRZ 2009-23 Introduction to the Fortran programming language 111

module mod_globaldata
implicit none
integer, parameter :: dm = 10000
real :: my_data(dm)

contains
subroutine set(…)
…
my_data(:) = …

end subroutine set
subroutine op1(…)
…

end subroutine op1
end module mod_globaldata

my_data is not among arguments
my_data is not among arguments.

It is accessed by host association

Information hiding (1)

Prevent access to my_data by use association:

refers to access by name

default accessibility is public

© LRZ 2009-23 Introduction to the Fortran programming language 112

module mod_globaldata
implicit none
integer, parameter :: dm = 10000
real, private :: my_data(dm)

contains
…

end module mod_globaldata

use mod_globaldata

my_data(5) = …

call set(…)

my_data is private → rejected by compiler

set() is public → OK

procedures set, op1, … as in previous slide

Information hiding (2)

Changing the default accessibility to private

need to explicitly declare entities public that should be accessible by use

association

© LRZ 2009-23 Introduction to the Fortran programming language 113

module mod_globaldata
implicit none
private
public :: set, op1, …
integer, parameter :: dm = 10000
real :: my_data(dm)

contains
…

end module mod_globaldata

blanket private statement

Information hiding (3): Opaque derived types

Hide components

type is public, but its compo-

nents are private → access to

type components or use of structure

constructor requires access by host

association

default assignment is permitted

in use association context

Write a module function

Usage example:

© LRZ 2009-23 Introduction to the Fortran programming language 114

module mod_date
implicit none
type, public :: date

private
integer :: year, mon, day

end type
contains
…
end module mod_date

mod_date

date
year,
mon,
day

use mod_date
type(date) :: easter

easter = date(2016,03,27)

easter = set_date(2016,03,27)

module mod_date
…
contains
function set_date(year, &

mon, day) result(d)
type(date) :: d
…
d = date(year, mon, day)

end function
end module mod_date

components private – rejected by compiler

public function set_date – OK

Information hiding (4): Mixed accessilibity

Some type components PRIVATE, others PUBLIC

Usage example:

© LRZ 2009-23 Introduction to the Fortran programming language 115

module mod_person
use mod_date
…
type, public :: person

private
character(len=smx) :: name
type(date) :: birthday
character(len=smx), public :: location

end type
…

end module

use mod_person
type(person) :: a_person
a_person%name = 'Matthew'

a_person%location = 'Room 23'

name is private – rejected by compiler

location is public – OK

The PROTECTED attribute

„Read-only“ flag that can be applied to module variables

modification of variable value only permitted in host association

context

© LRZ 2009-23 Introduction to the Fortran programming language 116

module mod_scaling
implicit none
real, protected :: conversion_factor = 11.2

contains
subroutine rescale(factor)
…
conversion_factor = conversion_factor * factor

end subroutine
end module

use mod_scaling
…
conversion_factor = 3.5
call rescale(1.1)
x_new = x_old * conversion_factor

non-conforming – likely rejected by compiler

read access is permitted

modification OK because in host

OK

Propagation of use-associated entities

Public entities of mod_date

can be accessed inside host of mod_person

can also be accessed inside host of prog due to the blanket public
statement

Note: access can be changed from public to private for individual entities from
mod_date inside mod_person. But this will have no effect if the associating unit
directly uses mod_date (dotted line)

© LRZ 2009-23 Introduction to the Fortran programming language 117

mod_date

progu

date

set_date()

mod_person

public

u

u

Effect of PRIVATE on use-associated entities

Public entities of mod_date

can be accessed inside host of mod_person

cannot be accessed inside host of prog due to

the blanket private statement

Note: access can be set to public for individual

entities from mod_date inside mod_person

This does not mean

that date and set_date()

are private per se,

since prog may still

access them by using

mod_date directly (dotted

line)

© LRZ 2009-23 Introduction to the Fortran programming language 118

mod_date

progu

date

set_date()

mod_person

private

u

u

Name space issues

Global identifiers

for example, module names

must be unique for program

Local identifiers

for example, names declared as

variables or type names or

procedure names („class 1“)

must be unique for scoping unit

Exception:

generic procedure names

discussed tomorrow

© LRZ 2009-23 Introduction to the Fortran programming language 119

mod_x

p1()

mod_x

p2()

prog

u u
Not permitted

program prog
use mod_date
implicit none
integer :: date(3)
…

end program

collision between use associated type name
and variable name → non-conforming

has type definition
of date

How to avoid name space issues

for local identifiers

1. Use information hiding to encapsulate entities only needed in host

➢ i.e. the PRIVATE attribute

2. Adopt a naming convention for public module entities

3. Rename module entities on the client

4. Limit access to module entities on the client

5. Limit the number of scoping units that access a module

Some or all of the above can be used in conjunction

© LRZ 2009-23 Introduction to the Fortran programming language 120

Some possible naming conventions

Scheme 1

Module name

mod_<purpose>

Data type in module

<purpose>

<purpose>_<detail> if multiple

types are needed

Public variables / constants

var_<purpose>_<detail>

const_<purpose>_<detail>

Public procedures

<verb>_<purpose> or

<verb>_<purpose>_<detail>

Scheme 2

Module name

<name>

Data type in module

<name>_<purpose>

Public variables / constants

<name>_<purpose>

Public procedures

<name>_<verb> or

<name>_<verb>_<purpose>

© LRZ 2009-23 Introduction to the Fortran programming language 121

Example: module mod_date Example: modules mpi, mpi_f08

Renaming module entities

Corrected example from previous slide

Avoiding naming collisions that result from use association only

© LRZ 2009-23 Introduction to the Fortran programming language 122

program prog
use mod_date, pdate => date
implicit none
type(pdate) :: easter
integer :: date(3)
…

end program

program prog
use mod_date
use otherdate, pdate => date
implicit none
type(date) :: easter
type(pdate) :: schedule
…

end program

collision is triggered only if entity is

actually referenced on the client

also has type
definition of date

type has been renamed,
but works with all semantics

defined in mod_date

Limiting access on the client

Assumption:

mod_date contains a public entity

lk

avoid collision via ONLY option

that limits use access to

specified entities

works if none of the needed

entities has a collision

Combine ONLY with

renaming

© LRZ 2009-23 Introduction to the Fortran programming language 123

program prog
use mod_date, only : date
implicit none
integer, parameter :: lk = …
type(date) :: easter
…

end program

program prog
use mod_date, only : &

pdate => date
implicit none
integer, parameter :: lk = …
type(pdate) :: easter
real :: date(3)
…

end program

Use association dependencies

Modules are separately

compiled

If a program unit use

associates a module
the latter must be compiled first

directed acyclical dependency

graph („DAG“)

order of compilation in the above

setup:

m1, m2, [m3|m4]

dependency generation support for

build systems is useful

Circular use dependencies are

disallowed

example: m1 may not use m3, since

m3 (indirectly) uses m1

Recompilation cascade:

if a module is changed, all program

units using it must be recompiled

usually even if only the implemen-

tation (contains part) is modified

© LRZ 2009-23 Introduction to the Fortran programming language 124

u

m3

m4

u

m2

m1

u

solution to this in advanced course

Typical implementation strategy

At compilation

the usual object file is generated

per module contained in the file, one additional file with information describing at

least the specification part of the module, including the signatures of all explicit

interfaces, is created

this module information file usually is named module_name.mod; it is essentially a

kind of pre-compiled header

it is needed whenenever the compiler encounters a

use <module_name>
statement in another program unit → potentially forces compilation order

Location of module information files

need to use the compiler‘s –I<path> switch if not in current directory
(usually the case for packaged libraries, but the files should be placed in the include folder

instead of lib)

© LRZ 2009-23 Introduction to the Fortran programming language 125

Note: large modules and multitudes of dependent modules can cause problems
→ use submodules to deal with this (cf. advanced topics course)

Generating libraries

Assumption

a (possibly large) group of object

files covering a certain area of

functionality was generated

should be packaged up for later use

(possibly by someone else)

Generate a library

use the archiver ar

options: -c creates library archive if

necessary, -r replaces existing

members of same name, -u only

does so if argument object is newer

ranlib generates an archive index

Further notes

objects from different

(processor) architectures

should not go into the same

library file

some architectures support

multiple binary formats –

especially 32 vs. 64 bit

→ special options for the ar
command may be needed
(for example AIX on Power: -Xany)

shared libraries: not treated in

this course

© LRZ 2009-23 Introduction to the Fortran programming language 126

ar -cru libstuff.a a.o b.o c.o
ar -cru libstuff.a d.o
ranlib libstuff.a

Using libraries

Assumption

prepackaged library libstuff.a
is located in some directory, say
/opt/pstuff/lib

How to make use of objects

inside library?

task performed by the linker ld

normally: implicitly called by the

compiler

complex dependencies: multiple

libraries may be required

What can go wrong?

error message about missing

symbols

→ need to specify additional

libraries, or fix linkage order

error message or warning about

duplicate symbols

→ may need to fix linkage line

e.g., by removing superfluous

libraries

error message concerning binary

incompatibility (32-bit vs. 64-bit

binaries)

→ need to specify libraries

appropriate for used compilation

mode

© LRZ 2009-23 Introduction to the Fortran programming language 127

ifort -o myprog.exe myprog.o \
-L/opt/pstuff/lib -lstuff

Array Processing

128

More on array declarations

Previously shown array declarations: Rank 1

however, higher ranks (up to 15) are possible (scalars have rank 0)

permit representation of matrices (rank 2), physical fields (rank 3, 4), etc.

Example: Rank 2 array

lower bounds: 1, -1

upper bounds: 2, 1

shape: 2, 3

i-th element of the shape is also called i-th extent

size: 2 * 3 = 6

layout in memory:

© LRZ 2009-23 Introduction to the Fortran programming language 129

integer, parameter :: nb = 2, ld = 1
real, dimension(nb, -ld:ld) :: bb

1 3 5

2 4 6

1

2

-1 0 1

„column major“ array
element sequence

bb(2,0) is fourth element
in the sequence

if no lower bound is
specified, it has the value 1

1st dimension

2nd dimension

dimensions must be
constants
for „static“ arrays

Array inquiry intrinsic functions

Bounds

lower and upper bounds

without dim, a default rank

1 integer array with bounds

in all dimensions is

returned, else the bound in

specified dim

special cases will be mentioned

as they come along ...

Shape and size

rank 1 array with shape of

array or scalar argument
(for a scalar, a zero size array)

size of array (or extent

along dimension dim if

present)

Note:
extent = ubound – lbound + 1

© LRZ 2009-23 Introduction to the Fortran programming language 130

lbound(array [, dim])

ubound(array [, dim])

shape(source)

size(array [, dim])

Array sections (1)

Array subobject

created by subscript specification

a colon without bounds specifi-

cations means the complete set

of indices in the dimension it is

specified in

also possible: only lower or only

upper bounds are specified in the

subscript

Strided array subobject

it is allowed to omit index

specifications:

every second column of

d, starting in the first one

Introduction to the Fortran programming language 131

real :: d(10, 20)

d(:,16:19)
contiguous

d(4:7,4:11)
non-contiguous

d(:,6:20:5)
fully specified

subscript triplet

d(:,::2)

4

7

4 11

16 19

6 11 16

© LRZ 2009-23

1

10

1

10

Construction and assignment of arrays

Array constructor

used for defining complete

arrays (all array elements)

intrinsic reshape creates a

higher rank array from a rank

1 array

Array assignment

conformability of LHS and

RHS: if RHS is not a scalar,

shape must be the same

scalars are broadcast

element-wise assignment by

array element order

© LRZ 2009-23 Introduction to the Fortran programming language 132

intrinsic :: reshape

a = [1.,3.,5.,7.,9.,11.]
bb = reshape([1,3,5,7,9,11], &

shape=[2,3])

alternative notation: (/ … /)
bb = d(4:5,16:18)

d(:,11:) = d(:,5:14)

real :: a(6)

we don‘t care
about lower
bounds here

overlap of LHS and RHS
→ array temporary may

be created

Array sections (2): Vector subscripts

A rank 1 integer expression for subobject extraction

one-to-one:

many-to-one:

you can also use an integer array variable as vector subscript:

Care is needed in some cases:

v(iv) cannot appear in a context that may cause ambiguities e.g., as an

actual argument matching an INTENT(INOUT) dummy

Introduction to the Fortran programming language 133

… = v([2, 3, 9, 5])

… = v([2, 3, 9, 2])

1 2 4 3 element order

1,4 2 3 element order

© LRZ 2009-23

real :: v(10)

integer :: iv(4)

iv = [2, 3, 9, 5]

… = v(iv)

Array sections (3): Zero size

Zero-size arrays

may result from suitable (algorithm-induced) indexing of a defined

array, or by dynamic allocation (discussed later)

always defined, but no valid reference of an array element is possible

lower bound is 1, upper bound 0

Example:

avoids the need for explicit masking

remember array conformity rules

Introduction to the Fortran programming language 134

do i = 1, n

:

… = d(:,i:n-1)

end do

© LRZ 2009-23

last loop iteration
produces a zero-sized array

Array sections (4): rank reduction

Subarray formation may change rank of object:

number of vector subscripts and subscript triplets determines rank of

subarray

Note: declaration syntax and that

used in executable statements have

different meanings!

Introduction to the Fortran programming language 135

real :: e(10, 10, 5, 20) ! rank 4

… = e([2, 3], 5, :, 20) ! rank 2

real :: f(2, 5)

f = e([2, 3], 5, :, 20)

this assignment is equivalent to:

f(1,1) = e(2, 5, 1, 20)
f(2,1) = e(3, 5, 1, 20)
f(1,2) = e(2, 5, 2, 20)
…
f(1,5) = e(2, 5, 5, 20)
f(2,5) = e(3, 5, 5, 20)

number of array elements: 10000

number of array elements: 10

© LRZ 2009-23

vector subscript subscript triplet (same as :::)

Array sections (5): derived types

Earlier declarations …

Subobject designators:

However, there may not be

two (or more) designators

which are arrays:

Introduction to the Fortran programming language 136

type :: body
…
real :: pos(3)

end type
type(body) :: asteroids(ndim)

asteroids(2)%pos(2) real scalar

asteroids(2)%pos real rank-1 array

asteroids(:)%pos(3) real rank-1 array

asteroids(2) scalar of type body
(with array subobjects)

asteroids(:)%pos disallowed

© LRZ 2009-23

Array expressions

Illustrated by operations on numerical type

operations are performed

element-wise

binary operations of scalar and

array: each array element is

one operand, the scalar the

other

binary operations of two con-

formable arrays: matching array

elements are the operands

for result array element

Lower bounds of expressions

are always remapped to 1!

© LRZ 2009-23 Introduction to the Fortran programming language 137

real :: a(10, 20), b(5, 10)

intrinsic :: all, sqrt

b = b + 1.0 / a(1:5,1:10)

if (all(a >= 0.0)) then

a = sqrt(a)

end if

a(6:10,11:20) = &

b * a(4:8,2:11)

subarray of a
conformable with b

elemental intrinsic

a logical 10 by 20 array

example:
a(6,11) is assigned
the value b(1,1) * a(4,2)

Array intrinsics that perform reductions

9 transformational functions
except for count, result is of same

type and kind as argument

ninth function is on next slide ...

Additional optional arguments
provide extra semantics

see following slides

© LRZ 2009-23 Introduction to the Fortran programming language 138

Name and arguments Description Name and arguments Description

all(mask [, dim])

returns .true. if all elements of

logical array mask are true, or if

mask has zero size, and .false.

else

minval(array [, dim]
[, mask])

returns the minimum value of all

elements of an integer or real array.

For a zero-sized array, the largest

possible magnitude positive value

is returned.

any(mask [, dim])

returns .true. if any element of

logical array mask is true, and

.false. if no elements are true or if

mask has zero size.

product(array [, dim]
[, mask])

returns the product of all elements

of an integer, real or complex array.

For a zero-sized array, one is

returned.

count(mask [, dim])
returns a default integer value

that is the number of elements of

logical array mask that are true.

sum(array [, dim]
[, mask])

returns the sum of all elements of

an integer, real or complex array.

For a zero-sized array, zero is

returned.

maxval(array [, dim]
[, mask])

returns the maximum value of all

elements of an integer or real

array. For a zero-sized array, the

largest possible magnitude

negative value is returned.

parity(mask [, dim])
returns .true. if .neqv. of all

elements of logical array mask is

true, and .false. else.

REDUCE: Generic user-defined reduction

Increased abstraction:

programmer can define operation

to use

it can be applied to objects of

arbitrary type

Example invocation:

Further optional arguments:

DIM, MASK (see later)

ORDERED: logical value,

enforces order of operations

Programmer-supplied parts:

operation must be an associative

PURE function of exactly two

scalar arguments

identity element covers the case

of a zero-sized argument array

© LRZ 2009-23 Introduction to the Fortran programming language 139

use mod_p
type(p) :: a(ndim), b

b = reduce(a(i:j), prod_p, &
identity = p_id)

module mod_p
type :: p
:

end type
type(p) :: p_id = … ! one

contains
pure type(p) function &

prod_p(x, y)
type(p), intent(in) :: x,y
: ! evaluate product

end function prod_p
end module mod_p

𝑏 = ෑ

𝑘=𝑖

𝑗

𝑎𝑘

optional

a procedure argument

Optional argument dim

Perform reduction along a

single array dimension

other dimensions are treated

elementally (→ result is an

array!)

example above: xs2(i)
contains sum(x(i,:))

dim must be second argument

and/or specified by keyword

1 ≤ dim ≤ rank of array

Illustration of reduction

along a dimension:

© LRZ 2009-23 Introduction to the Fortran programming language 140

real :: x(6,4)
real :: xs2(6)
: ! define x

xs2 = sum(x, dim = 2)
4.1 0.9

argument array x result array
(assigned to xs2)

1.2 0.3 6.5

𝑗

𝑥(: , 𝑗)

example
shows
3rd of 6
array

elements

Optional argument mask

Select a subset of elements

some functions may use a

logical array mask as a third

optional argument

mask must have same shape

as the first argument

Illustration of masked

reduction

Combining dim and mask

is possible

both are applied to the first

(array) argument

Further intrinsics that

support dim and mask exist

see compiler documentation

© LRZ 2009-23 Introduction to the Fortran programming language 141

real :: a(4), s
a = …

s = sum(a, mask = a>0.)

4.1 -1. 1.2 0.3 5.6

argument array a result scalar s

Array location intrinsics

Logical argument back:

if supplied with value .false., the last identified location is returned

default value is .true.

added in

Example:

© LRZ 2009-23 Introduction to the Fortran programming language 142

Name and arguments Description

maxloc (array [,dim] [,mask] [,back])
Location of maximum value of an
integer or real array

minloc (array [,dim] [,mask] [,back])
Location of minimum value of an
integer or real array

findloc (array, value, [,dim] [,mask] [,back])
Location of supplied value in an array
of intrinsic type

integer :: x(2,-1:1)
x = reshape([2,3,5,1,1,1], &

shape=[2,3])
write(*,*) maxloc(x)
write(*,*) maxloc(x, dim=2)

2 5 1

3 1 1

1

2

x -1 0 1

2 5 1

3 1 1

1

2

1 2 3

2 5 1

3 1 1

1

2

1 2 3

lower bounds
remapped

1 2

2 1

array element
values

Transformational array intrinsics

© LRZ 2009-23 Introduction to the Fortran programming language 143

Name and arguments Description

dot_product (vector_a, vector_b) dot (scalar) product of numerical or logical rank 1 arrays.

matmul (matrix_a, matrix_b) matrix multiplication of numeric arrays of rank 1 or 2

transpose (matrix)
transposition of rank 2 array representing a matrix
matrix(i, j) →matrix(j, i)

merge (tsource, fsource, mask)
elemental merging of two arrays of same type and shape,
based on logical mask value

spread (source, dim, ncopies) replicate an array ncopies time along dimension dim

reshape (source, shape
[, pad] [, order])

reshape optional arguments:
• pad array to fill in excess elements of result
• subscript permutation via integer permutation array order

cshift (array, shift [, dim]) circular shift of array elements along dimension 1 or dim

eoshift (array, shift
[, boundary] [, dim])

end-off shift of array elements along dimension 1 or dim,
using boundary to fill in gaps if supplied

Array intrinsics: Packing and unpacking

Transformational functions:

convert from multi-rank arrays

(of any type) to rank 1 arrays

(of same type) and back

a logical mask is used to

select a subset of array

elements (may be a scalar with

value .true.)

Unpack result:

type is that of vector

shape is that of logical array mask

size of vector: at least number of

true elements of mask

field of same type as vector,

and a scalar, or same shape as

mask

© LRZ 2009-23 Introduction to the Fortran programming language 144

pack (array, mask [, vector])

1

2

3

4

5

6

1 2 3 6

7 8

1 2 3 6 7 8

vector
(optional, size at least number of true elements of mask)

array
(mask color coded)

result (→ vector for unpack)

result

unpack (vector, mask, field)

pack

9

10 1

2

9

10

6

7

8

3
unpack

field
(mask color coded)

Performance of serial code

Some comments on current hardware

Standard Architectures of this decade

multi-core multi-threaded processors with a deep cache hierarchy

typically, two sockets per node

© LRZ 2009-23 Introduction to the Fortran programming language 146

L1D

L2

L1D

L2

L1D

L2

L1D

L2

L3

Memory Interface

Memory

P

T0

T1

P

T0

T1

P

T0

T1

P

T0

T1

L1D

L2

L1D

L2

L1D

L2

L1D

L2

L3

Memory Interface

Memory

P

T0

T1

P

T0

T1

P

T0

T1

P

T0

T1

ccNUMA architecture: „cache-coherent non-uniform memory access“

Illustration shows 4 cores per socket. Typical: 8 – 14 cores

HT or QPI

socket

Concept of cache

A small but fast memory area

used for storing a (small)

memory working set for efficient

access

Reasons:

physical and economic

limitations

Loads/Stores to core

registers

may trigger cache miss →

transfer of memory block („cache

line“, CL) from memory

Cache fills up …

usually least recently used CL

is evicted

Example:

© LRZ 2009-23 Introduction to the Fortran programming language 147

Main memory

Cache

Core

c(:) = a(:) + …

a CL of A a CL of C

core register:
load a(1)

…
store c(1)

delayed
to eviction

Serial vs. parallel execution

This course

limits itself (mostly) to serially

executed code

only one core of a node is used

For efficient exploitation of

the architecture

you need to enable use of all

available resources

Possible execution modes:

throughput – execute multiple

instances of serial code on a

single node (parameter study)

capability – enable parallel

execution of a single instance of

the program

which to use depends on the resource

needs vs. their availability

Parallel models

inside Fortran:

DO CONCURRENT

Coarrays

outside Fortran:

Library approach (MPI)

Directive approach (OpenMP,

OpenACC)

Conceptual scalability

shared memory:

program execution limited to a

single node

distributed memory:

ability of program to execute on

multiple nodes, and exchange

data between them

© LRZ 2009-23 Introduction to the Fortran programming language 148

briefly touched
in this course

© LRZ 2009-23

Two very important words

from the HPC glossary

Latency

Time interval T between

request of worker for single

datum

and

availability of data item for

being worked on

depends on speed and

length of assembly line

x

time

x

x

T

storage: RAM, remote

node, disk, ...

I want x

Introduction to the Fortran programming language 149

© LRZ 2009-23

x1 x2 x3 x4 x5

... and here the second one

Bandwidth

Number of data words per

second the assembly line

can deliver

much shorter interval

between consecutive items!

speed of assembly line is

relevant, length is not

aim: keep assembly line

full!

time

Latency

storage: RAM, remote

node, disk, ...

x1 x2 x3 x4 x5

x1 x2 x3 x4 x5

All items delivered

Now give

me all!

Introduction to the Fortran programming language 150

Processor architecture

Performance Characteristics

determined by memory

hierarchy

Impact on Application

performance: depends on

where data are located

temporal locality: reuse of

data stored in cache allows

higher performance

no temporal locality:

reloading data from memory

(or high level cache) reduces

performance

For multi-core CPUs,

available bandwidth may

need to be shared between

multiple cores

© LRZ 2009-23 Introduction to the Fortran programming language 151

L1D

L2

L1D

L2

L1D

L2

L1D

L2

L3

Memory Interface

Memory

P

T0

T1

P

T0

T1

P

T0

T1

P

T0

T1

Bandwidth:

determines how

fast application

data can be

brought to

computational

units on CPU

high
bandwidth
available

low
bandwidth
available

→ shared caches and memory
data start out
residing here

Using synthetic loop kernels

for performance evaluation

Characteristics

known operation count, load/store count

some variants of interest:

run repeated iterations for varying vector lengths (working set sizes)

© LRZ 2009-23 Introduction to the Fortran programming language 152

132Vector Triadai = bi * ci + di

122Linked Triad (Stream)ai = bi * s + ci

012Normn2 = n2 + ai * ai

022Scalar Products = s + ai * bi

StoresLoadsFlopsNameKernel

Synthetic benchmark: bandwidths of „raw“ architecture, looped version

for a single core

Vector Triad D(:) = A(:) + B(:) * C(:)

© LRZ 2009-23 Introduction to the Fortran programming language 153

L1D – 32kB
< 112 GB/s

L2 – 256 kB
< 62 GB/s

L3 – 20 MB
~ 33 GB/s

Memory
~ 14.7 GB/s

measured „effective“ BW:

3 LD+1ST

16 Bytes / Flop, repeated execution
(actually issued: 4 LD+1ST in L2 and higher)

Vectorization (256 Bit registers)

provides performance boost

mostly in L1/L2 cache

Performance by type and kind

© LRZ 2009-23 Introduction to the Fortran programming language 154

~ 60 MFlop/s

2x

2x

2x

uses SSE 4.1 VEX

working set size is
different for same

vector length

© LRZ 2009-23 Introduction to the Fortran programming language 155

Hardware dependence of Triad Performance

Note:
vector processors
have a qualitatively
different characteristic

Double Precision Triad

Microprocessor Architecture continued

Loads and Stores

apply to cache lines

size: fixed by architecture
(64, 128 or more Bytes)

Pre-fetch

avoid latencies when

streaming data

pre-fetches are usually done

in hardware

decision is made according to

memory access pattern

Pre-Requisite:

spatial locality

violation of spatial locality:

if only part of a cache line is

used → effective reduction in

bandwidth observed

© LRZ 2009-23 Introduction to the Fortran programming language 156

execution time

LD W1 W2 W3 W4 W5 W6 W7 W8

TLatency

cache line 1

execution time

PF

cache line 2PF

cache line 3PF

Performance of strided triad on Sandy Bridge
(loss of spatial locality)

ca. 40 MFlop/s

(remains constant

for strides > ~25)

© LRZ 2009-23 Introduction to the Fortran programming language 157

Notes:

▪ stride known at

compile time

▪ serial compiler

optimizations may

compensate perfor-

mance losses in

real-life code

D(::stride) = A(::stride) + B(::stride)*C(::stride)
Example: stride 3

vectorizability
is lost

Avoid loss of spatial locality

Avoid incorrect loop ordering

Accessing type components

Correct:

© LRZ 2009-23 Introduction to the Fortran programming language 158

real :: a(ndim, mdim)

do i=1, n
do j=1, m

a(i, j) = …
end do

end do

real :: a(ndim, mdim)

do j=1, m
do i=1, n

a(i, j) = …
end do

end do jumps through in
strides of ndim

innermost loop
corresponds to
leftmost array index

type(body) :: a(ndim)

do i=1, n
… = a(i)%vel(3)

end do
do i=1, n
… = a(i)%pos(3)

end do

type(body) :: a(ndim)

do i=1, n
… = a(i)%mass
… = a(i)%pos(:)
… = a(i)%vel(:)

end do

effectively
stride 8 uses 7/8 of

cache line

Fortran language features targetting

performance

Language design was from the beginning such that

processor's optimizer not inhibited

loop iteration variable is not permitted to be modified inside loop body →

enables register optimization (provided a local variable is used)

aliasing rules (discussed previously)

With Fortran 90 and later

extension of the existing rules was necessary (not discussed in this

course)

Other languages have caught up

e.g. beginning with C99, C has the restrict keyword for pointers →

similar aliasing rules as for Fortran

also, compiler aliasing analysis has improved

© LRZ 2009-23 Introduction to the Fortran programming language 159

Fortran Environment

160

After the Lunch break …

Intrinsics

Processing the command line

Executing system commands

Process environment variables

© LRZ 2009-23 Introduction to the Fortran programming language 161

command_argument_count() integer function that returns what it says

get_command_argument(number
[, value] [, length] [, status])

subroutine that delivers information

about a single command line argument

get_command(command
[, length] [, status])

subroutine that delivers information

about the complete command line

execute_command_line(command
[, wait] [, exitstat],
[, cmdstat] [, cmdmsg])

subroutine that executes a system

command specified as a string

Replaces the non-standard extension
call system(command)

get_environment_variable(name
[, value] [, length]
[, status] [, trim_name])

subroutine that delivers information about

a named environment variable

Usage example

Obtain the value of the PATH variable:

These intrinsics support additional diagnostics

it is strongly recommended to use them

see intrinsics documentation for details

© LRZ 2009-23 Introduction to the Fortran programming language 162

integer, parameter :: strmx = 1024
character(len=strmx) :: path_value
integer :: path_length, istat
call get_environment_variable('PATH', length=path_length, &

status=istat)
if (istat /= 0) &
stop 'PATH undefined or environment extraction unsupported′

if (path_length > strmx) &
write(*, *) ′Warning: value of PATH is truncated′

call get_environment_variable('PATH', path_value)

Intrinsic Module ISO_FORTRAN_ENV

Contains some often-used

constants

Here a subset:

Contains some inquiry

procedures

return string constants

Some of this was added in

© LRZ 2009-23 Introduction to the Fortran programming language 163

Name Purpose

int8, int16, int32,
int64

integer KINDs
by size in bits

real32, real64,
real128

real KINDs by
size in bits

integer_kinds,
real_kinds,
character_kinds,
logical_kinds

constant arrays
containing all
supported KIND
numbers

character_storage_size
numeric_storage_size
file_storage_size

storage sizes in
bits

compiler_options()

compiler_version()

https://gcc.gnu.org/onlinedocs/gfortran/Intrinsic-Modules.html

https://gcc.gnu.org/onlinedocs/gfortran/Intrinsic-Modules.html

Usage examples

Additional INTRINSIC keyword on USE statement

use of this is recommended to avoid mistaken access to a non-intrinsic

module with the same name

Comment on KIND numbers

declarations like REAL*8 (using byte units) are supported in many compilers,

but are not standard-conforming

© LRZ 2009-23 Introduction to the Fortran programming language 164

use, intrinsic :: iso_fortran_env
implicit none
integer, parameter :: wp = real64, ik = int32, strmx=128

real(kind=wp) :: x
integer(kind=ik) :: i4

character(len=strmx), parameter :: version = compiler_version()

Scoping and

Lifetime of objects

Examples for nested scoping (1)

Derived types and interfaces

© LRZ 2009-23 Introduction to the Fortran programming language 166

module mod_scoping_1
implicit none
type :: p

end type
real :: x
abstract interface

end interface
end module

real function f(x, s)
import :: p
real, intent(in) :: x
type(p), intent(in) :: s

end function scope 3

integer :: i
real :: x

scope 1

scope 2

type components
are „class 2“ identifiers;
must be unique per-type

interface has no host access
→ type definition must be IMPORTed

no collision of global variable with
type component or dummy argument

in interface

Examples for nested scoping (2)

Global and local variables; host association

source of programming errors or
performance problems

forget local declaration for entities
meant to be local → access by host
association

implicit none does not help here

less probable if suggestive names are
given to globals

© LRZ 2009-23 Introduction to the Fortran programming language 167

module mod_scoping_2
implicit none
integer :: is, js, ks

contains

end module

subroutine proc(is)
integer, intent(in) :: is
integer js
js = is
ks = ifun()

contains

end subroutine

integer function ifun()
ifun = is + js

end function

scope 1

scope 2

dummy is is a „class 3“ identifier

(must be unique per-interface);
it is a separate entity that overrides global is

local js in scope 2;

it is a separate entity that overrides global js

is and js are host associated from scope 2

scope 3

ks is host associated from scope 1

Controlling host association for nested scoping

IMPORT statement: extended in

Variants:

IMPORT, ALL makes all entities

from the host available.

IMPORT, ONLY : ... makes a set

of variables from the host

accessible, all others require

declaration (or follow implicit typing rules)

IMPORT, NONE: no variable

from the host is accessible.

© LRZ 2009-23 Introduction to the Fortran programming language 168

module mod_scoping_2
implicit none
integer :: is, js, ks

contains

end module

subroutine proc(is)
import, only : ks
integer, intent(in) :: is
integer js
js = is
ks = ifun()

contains

end subroutine

integer function ifun()
import, all
ifun = is + js

end function

scope 1

scope 2

scope 3

Lifetime of local and global entities

Typical situation:

(memory for an) entity exists from start of execution of its scoping

unit

until execution of its scoping unit has completed

Definition status:

may become defined after start of execution, or not at all

will become undefined once execution of its scoping unit completes

Exceptional situation:

module variables („globals“) are persistent
(static module variables exist for the duration of the program execution)

Fortran terminology: they implicitly have the SAVE attribute

disadvantage for shared-memory parallelism: not thread-safe

© LRZ 2009-23 Introduction to the Fortran programming language 169

Explicit SAVE attribute

Example

(legacy) standalone procedure

Properties:

at the subsequent invocation of

the procedure, SAVEd local

variables have the same defini-

tion status and value as at the

end of the previous execution

→ „lifetime extension“

for recursive subroutines, only

one instance of SAVEd local

variable exists for all active

invocations

a blanket SAVE statement

applies to all local variables in

the scoping unit, or all module

variables if in the specification

section of a module

→ avoid the above two items

© LRZ 2009-23 Introduction to the Fortran programming language 170

subroutine process(a, n)
implicit none
real :: a(*)
integer :: n

integer, save :: first = 0
real :: work(1000)
save :: work

if (first .EQ. 0) then
…
work(…) = …
first = 1

end if
:

end subroutine

expensive calculation of
reusable array work

is done once only

update array a

attribute form

statement form

Constant Expressions,

Initializations, and

Specification Expressions

171

What are initializations?

Statements which provide initial values to

named constants

variables (module or local)

data in COMMON blocks (not treated in this course)

The actual values must be specified as constant

expressions

rules allow to perform all initializations at compile time

historical note: constant expressions were earlier known as initialization expressions

© LRZ 2009-23 Introduction to the Fortran programming language 172

Initialization of variables (1)

Intent:

provide a value with which a

(local or global) variable is

defined at the beginning of the

first execution of its scoping

unit

Variant 1:

follow the declaration with a

constant expression

rules as for intrinsic assign-

ment

Variant 2:
the DATA statement

sequence of values

matching the type of each

element of the object list

note the repeat factor for

the array initial values

Recommendation:
variant 1 for readability

© LRZ 2009-23 Introduction to the Fortran programming language 173

integer :: i = 5
character(len=4) :: cn='f'
type(date) :: o = date(…)
real :: xx(3) = [0.,0.,0.]

integer :: i
character(len=4) :: cn
type(date) :: o
real :: xx(3)
data i, o / 5, date(…) /, &

cn, xx / 'f ', 3*0.0 /

Initialization of variables (2)

Consequences:

initialized variables acquire

the (implicit) SAVE attribute

different from C semantics

(similar syntax!)

Constant expressions:

built from constants, subob-

jects of constants and other

constant expressions

may use array or structure

constructors

may use intrinsic operations

certain intrinsic functions:

elemental intrinsics, array

inquiry functions, transfor-

mational intrinsic functions

Note: was more restrictive

with respect to which intrinsics

were allowed; ** could be used

only with integer exponent.

The above list is not entirely complete

© LRZ 2009-23 Introduction to the Fortran programming language 174

void c_proc() {
int i = 0;
… = i + …

}

subroutine f_proc()
integer :: i = 0
… = i + …

end subroutine

value 0 only on first invocation,
then that from last invocation

value 0 always.
int i=0; is an executable stmt

and i is not a static variable

subroutine f_proc2()
integer :: i
i = 0
… = i + …

end subroutine

same semantics
as C code above

Implied-do loops (1)

Within-statement processing
of array expressions

need to generate a local
scope for loop index

may be nested → must then
use distinct iteration
variables

Three scenarios:

1. constant expression within a
DATA statement

2. within an array constructor
(not necessarily a constant expres-
sion)

3. within an I/O data transfer
statement
→ will be treated in context of I/O
(not a constant expression)

© LRZ 2009-23 Introduction to the Fortran programming language 175

… (<expr>, i = low, high[, step]) …

s
ta

te
m

e
n
t

b
e

g
in

s

s
ta

te
m

e
n

t
e
n
d
s

loop index, low,
high and step values

are integers of
any kind

Implied-do loops (2)

Examples for scenario 1

both DATA statements perform partial initialization:

a(2:4) and b(:,::2) are initialized

initialization of b uses two nested implied-do loops

© LRZ 2009-23 Introduction to the Fortran programming language 176

real :: a(10), b(5,10)
integer :: i, j

data (a(i), i=2,4) / 1.0, 2.0, 3.0 /

data ((b(i, j), i=1,5), j=1,10,2) / 20*0.0, 5*1.0 /

Implied-do loops (3)

Examples for scenario 2

for bb, a rank-1 array is constructed via two nested implied-do loops, then

reshape() is used to convert to a rank-2 array

if the complete implied-DO loop is intended to be a constant expression,

the argument expression must be a constant expression

© LRZ 2009-23 Introduction to the Fortran programming language 177

integer :: i, j

real :: aa(10) = [(real(i),i=1,size(aa))]
real :: bb(5,10)

bb = reshape([((sin(real(i)), i=1,size(bb,1)),
j=1,size(bb,2))], shape(bb))

Default initialization (1)

Specify default values for derived type components

at component declaration inside type definition

need not do so for all components (in fact it may not be possible for

components of opaque type)

derived type components: any pre-existing initialization is overridden if a

default initialization is specified

© LRZ 2009-23 Introduction to the Fortran programming language 178

module mod_person
use mod_date
implicit none
type, public :: person

private
character(len=smx) :: name = 'Unknown'
type(date) :: birthday
character(len=smx), public :: location

end type
end module

type :: date
private
integer :: year = 0, &

mon = 0, day = 0
end type

constant expression
required

Default initialization (2)

Objects of such a type:

components are default initialized to values specified in type definition

Further properties of default initialization

can be overridden by explicit initialization (DATA disallowed in this situation)

applies to static and dynamic objects (including automatic objects, local variables,

function results – see later); is independent of component accessibility

does not by itself imply the SAVE attribute for objects

INTENT(OUT) objects of such a type: are default initialized upon

invocation of the procedure

© LRZ 2009-23 Introduction to the Fortran programming language 179

type(person) :: chairman

write(*,*) chairman % name
write(*,*) chairman % birthday

chairman = person(location = 'Room 23')

prints the two lines:
Unknown
0 0 0

default initialized components
can be omitted from constructor

Specification expressions:
Providing data needed for specifications

A special class of
expressions:

may need to be evaluated
on entry to a procedure at
beginning of its execution
(i.e., run time evaluation)

can be used to determine
array bounds and character
lengths in specification
statements → these are
integer valued scalars

Inside a specification
expression

a restricted form of non-
integer expressions can
occur

Restricted expressions:

built from constants, subob-
jects of constants, dummy
arguments, host variables or
global entity object
designators (with some
restrictions) and other
restricted expressions

intrinsic functions,
specification inquiries or
specification functions

intrinsic operations

array or structure
constructors, implied-do

© LRZ 2009-23 Introduction to the Fortran programming language 180

Specification inquiries and functions

Subclass of inquiry

intrinsics e.g.,
array inquiry function
size(), …

bit inquiry function
bit_size()

character inquiry
len()

numeric inquiry
huge(), …

type parameter inquiry

Subclass of user-defined

functions
must be PURE

must not be internal, or a

statement function

must not have a procedure

argument

must have an explicit

interface

Note: a recursive

reference in a specification

expression inside such a

function is not allowed

© LRZ 2009-23 Introduction to the Fortran programming language 181

general expressions

constant
expressions

specification
expressions

e.g. non-constante.g. non-integer constant and integer

Examples

Function returning a string

Not permitted:

non-constant expression in main

program or module spec. part

→ compiler throws error

Declare working space

automatic (non-SAVEd!) variables

© LRZ 2009-23 Introduction to the Fortran programming language 182

function pad_string(c, n) result(s)
character(len=*) :: c
integer :: n
character(len=len(c)+n) :: s
:

end function

module mod_proc

integer, parameter :: dm = 3, &

da = 12

contains

subroutine proc(a, n)

real a(*)

integer :: n

real wk1(&

int(log(real(n))/log(10.)))

real wk2(sfun(n))

:

end subroutine proc

pure integer function sfun(n)

integer, intent(in) :: n

sfun = dm * n + da

end function sfun

end module mod_proc

program p
integer :: n = 7
real :: a(2*n)
:

end program

restricted expression

specification function

explicit interface
required

wk1, wk2 removed at end of procedure

Notes on automatic objects

A special-case variant of dynamic memory

usually placed on the stack

dynamic memory is otherwise managed on the heap → treated soon

An automatic variable is

brought into existence on entry

deleted on exit from the procedure

Note:

for many and/or large arrays creation may fail due to stack size

limitations – processor dependent methods for dealing with this issue

exist

© LRZ 2009-23 Introduction to the Fortran programming language 183

Now we proceed to an

exercise session …

Array Processing – Part 2

Procedure interfaces and block constructs

© LRZ 2009-23 184

Assumed shape dummy argument

This is the recommended array argument style

© LRZ 2009-23 Introduction to the Fortran programming language 185

module mod_solver
implicit none

contains
subroutine process_array(ad)

real, intent(inout) :: ad (:,:)
integer :: i, j
:
do j=1, size(ad,2)
do i=1, size(ad,1)
ad(i,j) = …
…

end do
end do
:

end subroutine
end module

assumed shape
rank 2 array

Notes

shape/size are implicitly available

lower bounds are 1 (by default), or

are explicitly specified, like

real :: ad(0:,0:)

Usage of the procedure

Invocation is straightforward

Actual argument

must have a shape

can be an array section

normally, a descriptor will be

created and passed → no

copying of data happens

© LRZ 2009-23 Introduction to the Fortran programming language 186

program use_solver
use mod_solver
implicit none
real :: aa(0:1, 3), ab(0:2, 9)

: ! define aa, ab
call process_array(aa)
call process_array(ab(0::2,1::3))
:

end program

access explicit interface
for process_array

consistency of argument‘s
type, kind and rank

with interface specification
is required

Memory layouts for

assumed shape dummy objects

Actual argument is the complete array aa(0:1,3)

Actual argument is an array section (0::2,1::3) of ab(0:2,9)

1

2

3

4

5

6

1 2 3 dim2

indicates array
element sequence

of dummy argument

1

2

3

4

5

6

1 2 3 dim2

all „orange“ storage units
are not part of the dummy
object. They are invisible.

is_contiguous(ad) returns .true.

is_contiguous(ad) returns .false.

© LRZ 2009-23 Introduction to the Fortran programming language 187

remapped lower bound

The CONTIGUOUS attribute

For large problem sizes,

non-contiguous access inefficient due to loss of spatial locality

Expected effect at invocation:

with a contiguous actual argument → passed as usual
(actual argument: a whole array, a contiguous section of a whole array, or an object

with the CONTIGUOUS attribute, …)

with a non-contiguous actual argument → copy-in / copy-out
(creating the compactified temporary array has some overhead!)

© LRZ 2009-23 Introduction to the Fortran programming language 188

module mod_solver
implicit none

contains
subroutine process_array_contig(ad)

real, intent(inout), contiguous :: ad (:,:)
:

end subroutine
end module

assures contiguity
of dummy argument

Assumed size arrays: Typical interface design
(for use of legacy or C libraries)

Notes:

leading dimension(s) of array as well as problem dimensions must be

explicitly passed
this permits (but does not force) the programmer to assure that

ad(i,j) corresponds to element (i,j) of the actual argument

actual memory requirement implied by addressing: LDA*(M-1) + N array
elements

Example: Level 2 and 3 BLAS interfaces (e.g., DGEMV)

Introduction to the Fortran programming language 189

AD

subroutine slvr(ad, lda, n, m)
integer :: lda, n, m
real :: ad(lda, *)
…
do j=1, m
do i=1, n

ad(i,j) = …
…

end do
end do
…

LDA

N

M

ad(1,1)

contiguous sequence
of array elements

does not have
a shape because
size is assumed
from actual arg.

© LRZ 2009-23

part of array
actually defined
in procedure call

conceptual
layout

of dummy
argument

ad(n,m)

Assumed size: typical usage

Actual argument is

a complete array

of same type, kind and rank as

dummy argument

behaves as if address of first array

element is passed to procedure

© LRZ 2009-23 Introduction to the Fortran programming language 190

integer, parameter :: lda = …
real :: aa(lda, lda)
:
: ! calculate n, m
call slvr(aa, lda, n, m)

AD == AA

LDA

N

M

aa(1,1)

aa(1,2)

part of array
actually defined
in procedure call

aa(n,m)

Assumed size: non-contiguous actual argument

Actual argument is

a non-contiguous array subobject

(selected by sectioning or

vector subscripting)

of same type, kind and rank as

dummy argument

causes copy-in/copy-out: a

contiguous temporary array is

created and passed to the

procedure

© LRZ 2009-23 Introduction to the Fortran programming language 191

integer, parameter :: lda = …
real :: aa(lda, lda)
:
: ! calculate n, m
call slvr(aa(1:2*n:2,:), n, n, m)

AD is a compactified
copy of AA(1:2*n:2,:)

== LDAN

M

aa(3,1)

aa(1,1)

array AD is
completely defined
in procedure call.

aa(2*n-1,m)

i.e., size(aa(1:2*n:2,:), 1)

fo
r

IN
T

E
N

T
(I

N
)

o
n
ly

Assumed size: rank mismatch

Actual argument is

a complete array

of same type and kind as dummy

argument

but of different rank

behaves as if address of first array

element is passed to procedure

data layout must be correctly set up by

caller

© LRZ 2009-23 Introduction to the Fortran programming language 192

integer, parameter :: aadim = …
real :: aa(aadim)
:
: ! calculate lda, n, m
call slvr(aa, lda, n, m)

AD

LDA

N

M

aa(1)

aa(lda+1)

part of array
actually defined
in procedure call

aa(lda*(m-1)+n)
example:

rank 1

Assumed size: array element

as actual argument

Example:

blocked processing of subarrays

behaves as if address of specified

array element is passed to procedure

Beware (for all usage patterns):

avoid addressing outside storage

area (e.g., MB too large for supplied array)

„staircase effect“ if you get leading

dimension wrong

© LRZ 2009-23 Introduction to the Fortran programming language 193

real :: aa(lda, lda)
:
: ! calculate i, j, nb, mb
call slvr(aa(i, j), lda, nb, mb)

pass scalar to procedure

AA

LDA
NB

aa(i, j) corresponds to ad(1, 1)
aa(i, j+1) corresponds to ad(1, 2)

MB

aa(i,j)
aa(i,j+1)

distance: LDA
array elements

part of array
actually defined
in procedure call

Explicit shape dummy argument

Dummy array bounds

declared via specification

expressions

also sometimes used in

legacy interfaces

Argument passing

works in the same way as for

an assumed size object

except that the dummy

argument has a shape

(therefore the actual argument must

have at least as many array elements

as the dummy if the whole dummy

array is referenced or defined)

© LRZ 2009-23 Introduction to the Fortran programming language 194

subroutine slvr_explicit(&
ad, lda, n, m)

integer :: lda, n, m
real :: ad(lda, n)
…

Array-valued functions

Example:

Interface must be explicit

shape of result evaluated at

run time through use of a

specification expression (at

entry to function)

Usage

conforming LHS required in an

assignment

© LRZ 2009-23 Introduction to the Fortran programming language 195

function add_real_int(r, i) &
result(ri)

real :: r(:)
integer :: i(:)
real :: ri(size(r))
integer :: k
do k = 1, size(r)
ri(k) = r(k) + real(i(k))

end do
end function

use …
implicit none
integer, parameter :: ndim=…
real :: r(ndim)
integer :: ix(ndim)
: ! initialize r, ix

r = add_real_int(r, ix)

whatever module
the function is part of

ELEMENTAL procedures

Declaration:

elemental prefix:

all dummy arguments (and function result if a function) must be

scalars

an interface block is required for an external procedure

elemental procedures are also PURE

introduces an IMPURE attribute for cases where PURE is

inappropriate

© LRZ 2009-23 Introduction to the Fortran programming language 196

module elem_stuff
contains
elemental subroutine swap(x, y)
real, intent(inout) :: x, y
real :: wk
wk = x; x = y; y = wk

end subroutine swap
end module

Invoking an ELEMENTAL procedure

Actual arguments (and possibly function result)

can be all scalars or all conformable arrays

execution of subroutine applies for every array element

Further notes:

many intrinsics are elemental

some array constructs: subprogram calls in body may need to be

elemental

© LRZ 2009-23 Introduction to the Fortran programming language 197

use elem_stuff
real :: x(10), y(10), z, zz(2)
: ! define all variables
call swap(x, y) ! OK
call swap(zz, x(2:3)) ! OK
call swap(z, zz) ! invalid

WHERE statement and construct
(„masked operations“)

Execute array operations

only for a subset of elements

defined by a logical array

expression e.g.,

general form:

wherein x must be a logical array

expression with the same shape

as y.

x is evaluated first, and the

evaluation of the assignment is

only performed for all index

values for which x is true.

Multiple assignment

statements

can be processed with a

construct

same mask applies for every

assignment

y4 is assigned for all elements

with .not. x .and. z

© LRZ 2009-23 Introduction to the Fortran programming language 198

where (a > 0.0) a = 1.0/a

where (x) y = expr

where (x)

y1 = …

y2 = …

y3 = …

[elsewhere [(z)]

y4 = …]

end where

optional only for final
elsewhere block

Assignment and expression

in a WHERE statement or construct

Assignment may be

a defined assignment (introduced later) if it is elemental

Right hand side

may contain an elemental function reference. Then, masking extends

to that reference

may contain a non-elemental function reference. Masking does not

extend to the argument of that reference

array-valued non-elemental references are also fully evaluated before

masking is applied

© LRZ 2009-23 Introduction to the Fortran programming language 199

where (a > 0.0) &

a = sqrt(a)

sqrt() is an elemental intrinsic

where (a > 0.0) &

a = a / sum(log(a))

sum() is an non-elemental intrinsic

→ all elements must be evaluated in log()

FORALL statement

Parallel semantics

of array element assignment

expression can be evaluated in any order, and assigned in any order

of the index values

conditional array element assignment

more powerful than array syntax – a larger class of expressions is

implicitly permitted

© LRZ 2009-23 Introduction to the Fortran programming language 200

forall (i=1:n, j=5:m:2) a(i, j) = b(i) + c(j)

forall (i=1:n, c(i) /= 0.0) b(i) = b(i)/c(i)

forall (i=1:n) a(i,i) = b(i)*c(i)

FORALL construct

Multiple statements to be executed

can be enclosed inside a construct

Semantics: each statement is executed for all index values before

the next statement is initiated
in the example, the third statement is conforming if a(:,m) was defined prior to the

FORALL construct; the other values of a are determined by the first statement.

this limits parallelism to each individual statement inside the block

© LRZ 2009-23 Introduction to the Fortran programming language 201

forall (i=1:n, j=1:m-1)

a(i,j) = real(i+j)

where (d(i,:,j) > 0) a(i,j) = a(i,j) + d(i,:,j)

b(i,j) = a(i,j+1)

end forall

Flow
dependency
for array a

effectively, an array assignment

Further notes on FORALL

Permitted statement types

inside a FORALL statement

or construct

array assignments
(may be defined assignment)

calls to PURE procedures

where statement or construct

forall statement or

construct

pointer assignments

(discussed later)

Issues with FORALL:

implementations often (need to)

generate many array temporaries

statements are usually not

parallelized anyway

performance often worse than

that of normal DO loop

→ Recommendation:

do not use FORALL in

performance critical code

sections

flags FORALL obsolescent

© LRZ 2009-23 Introduction to the Fortran programming language 202

The DO CONCURRENT construct

Improved parallel semantics

requirement on program: statements must not contain dependencies that

inhibit parallelization

syntax: an extension of the standard DO construct

constraints preventing functional dependencies: checked by compiler.

For example: cycle or exit statements that exit the construct

Permission / Request to compiler for

parallelizing loop iterations, and/or

vectorizing / pipelining loop iterations

© LRZ 2009-23 Introduction to the Fortran programming language 203

do concurrent (i=1:n, j=1:m, i<=j)

a(i, j) = a(i, j) + alpha * b(i, j)

end do

optional logical mask that
curtails the iteration space

Example:
Intel Fortran will perform multi-threading if the -parallel option is specified

Examples

Incorrect usage

flow dependencies for real

scalar x and b make correct

parallelization impossible

note that x is updated by

iterations different from those

doing references

Correct usage

performance is implementation-

dependent

has improvements (locality

specifications, outside the scope

of this course)

© LRZ 2009-23 Introduction to the Fortran programming language 204

do concurrent (i=1:n, j=1:m)

x = a(i, j) + …

b(i, j) = x * c(j, i)

if (j > 1) a(i, j) = b(i, j-1)

end do

do concurrent (i=1:n, j=1:m)

block

real :: x

x = a(i, j) + …

b(i, j) = x * c(j, i)

end block

end do

do concurrent (j=2:m)

a(:, j) = b(:, j-1)

end do

per-iteration variable
is created

Dynamic Entities

and

Memory management

© LRZ 2009-23 205

Some remarks about memory organization

Virtual memory

every process uses the same

(formal) memory layout

physical memory is mapped

to the virtual address space

by the OS

protection mechanisms

prevent processes from

interfering with each other's

memory

32 vs. 64 bit address space

executable code (non-writable)

initialized global variables

uninitialized global variables
(„block started by symbol“)

Stack: dynamic data needed

due to generation of new

scope (grows/shrinks automa-

tically as subprograms are invoked

or completed; size limitations apply)

Heap: dynamically allocated

memory (grows/shrinks under

explicit programmer control, may

cause fragmentation)

Introduction to the Fortran programming language 206

high address

low address

T
e
x
t

D
a
ta

B
S

S
S

ta
c
k

H
e
a
p

static memory

© LRZ 2009-23

Static vs. dynamic memory

Defining all entities statically

has consequences:

need to check against defined

size

need to recompile often if size

insufficient

may not need large entities

for complete duration of

program run

may run into physical memory

limits (unlikely on systems with

virtual memory if no default

initialization is done)

Four mechanisms for dyna-

mic provisioning of memory:

ALLOCATABLE entities

POINTER entities: can be, but

need not be related to dynamic

memory

determine type as well as

memory dynamically (data

polymorphism, not treated in this

course)

automatic entities (already dealt

with)

Beware:

performance impact of

allocation and deallocation

fragmentation of memory

Introduction to the Fortran programming language 207© LRZ 2009-23

Allocatable objects (1)

Declaration

Allocation, use and deallocation

© LRZ 2009-23 Introduction to the Fortran programming language 208

nd1 = … ; nd2 = …

allocate(phi(0:nd1, 0:nd2), stat=ifail)
if (ifail /= 0) stop ‘procedure XXX: allocate failed‘
do …

phi(i, j) = …
end do

deallocate(phi)
phi becomes deallocated

can usually be omitted
(auto-deallocation of non-saved objects)

phi is used for calculations …

contiguous memory area
for phi created on heap

real(dk), allocatable :: phi(:,:)
integer :: ifail, nd1, nd2

deferred shape → shape determined at run time
(phi is unallocated when execution starts)attribute

The stat argument

It is optional and can be used in both allocation and deallocation

a value of zero is returned if and only if the (de)allocation was successful

→ permits the programmer to deal with failures

without the stat argument, execution terminates if (de)allocation fails

© LRZ 2009-23 Introduction to the Fortran programming language 209

Allocatable objects (2)

© LRZ 2009-23 Introduction to the Fortran programming language 210

Allocatable scalars

this feature allows to determine size of character strings at run

time (making the use of ISO_VARYING_STRINGS mostly obsolete)

→ dynamic strings

otherwise relevant for polymorphic objects (not dealt with in this

course) and parameterized derived types (see later)

character(len=:), allocatable :: dyn_string
type(body), allocatable :: a_body
:

allocate(character(len=64) :: dyn_string)
allocate(a_body)
:

do things with dyn_string and a_body

deferred-length string

Rules for allocatable objects

Rationale: avoid undefined states and memory leakage

an ALLOCATE statement must not be applied to an allocated object

a DEALLOCATE statement must not be applied to an unallocated

object

Supporting intrinsic

the logical function ALLOCATED can be used in situations where the

allocation status is not obvious

example:

Allocatable variables with the (implicit or explicit) SAVE attribute

allocation status is persistent (no auto-deallocation!)

once allocated, object is persistent (until explicitly deallocated)

© LRZ 2009-23 Introduction to the Fortran programming language 211

if (allocated(phi)) then

deallocate(phi)

end if

Allocatable objects (3): Auto-allocation

Assignment to allocatable object

If LHS is unallocated or has wrong shape → auto-allocation to correct shape

Note: this only works for assignment, not for an I/O transfer statement

© LRZ 2009-23 Introduction to the Fortran programming language 212

integer, allocatable :: ai(:)
character(len=:), allocatable :: str

ai = [1, 2]
str = “Hello World“

ai = [3, 4, 7]
str = str(1:5)

ai = [4, 4, 7]

auto-allocation

re-allocation to new
size / string length

no re-allocation because
RHS is conformant

Apparent change of semantics?

Auto-allocation may be treacherous for legacy codes

caused by vendor extensions that tolerate non-conforming array operations

with new semantics may become conforming, yet deliver unexpected results

No reallocation happens with an array section LHS: shape conformance is

programmer‘s responsibility

compiler switches are usually available to revert to behaviour, but it is

better to fix your code

© LRZ 2009-23 Introduction to the Fortran programming language 213

allocate(ai(2))
ai = [1, 2]

ai = [3]

ai = [1, 3, 2]

ai(:) = [2, 3]

allocate(ai(2))
ai = [1, 2]

ai = [3]

ai = [1, 3, 2]

ai(:) = [2, 3]

non-conforming; may get [3, 2].

may get [1, 3].

required

re-allocate to
size 1, then size 3

non-conforming

Moving an allocation

Intrinsic MOVE_ALLOC

both arguments must have the

ALLOCATABLE attribute

to must be type and rank compatible

with from

After execution:

to has shape and value that from
had at entry. If necessary, to is

reallocated

from is deallocated

Efficiency

avoids an extra copy of data
(basically, the descriptor is moved)

Usage example:

efficient resizing of an array

resizing might also involve

shrinking, of course …

© LRZ 2009-23 Introduction to the Fortran programming language 214

call move_alloc(from, to)

real, allocatable :: &
x(:), auxil(:)

integer :: new_size

new_size = … ! larger than
! size(x)

allocate(auxil(new_size))
auxil(1:size(x,1)) = x
auxil(size(x,1)+1:) = …

call move_alloc(auxil, x)

assumption: x is allocated

The POINTER and TARGET attributes

Declaration:

pt can be used as an alias for a real rank

one array

tg can be used as an object a pointer can

be aliased against

Pointer assignment:

causes pt to become associated (with tg)

is a type/kind/rank-safe procedure

(compile-time check of consistency)

© LRZ 2009-23 Introduction to the Fortran programming language 215

tg

pt
real(dk), pointer :: pt(:)

real(dk), target :: tg(3)

deferred shape

a named targetpt => tg

Using POINTER entities / states of a POINTER

Example:

pointer takes shape and bounds

from target

definitions and references to

pointer operate on target

Symbolic representation

© LRZ 2009-23 Introduction to the Fortran programming language 216

real(dk), pointer :: pt(:)

real(dk), target :: tg(3)

pt => tg

pt(2) = 7.2
:
pt => null()
:

pt X

tg

pt

tg

pt

tg 7.2assignment
to target via alias

after pointer
assignment:
associated

state after
declaration:
undefined

pt
disassociated after nullification

tg(2) is defined

now pt is disassociated

POINTER objects and dynamic allocation

Creation of an anonymous TARGET

use of DEALLOCATE is usually necessary for POINTER

objects. Otherwise, memory leaks are likely to occur;

the argument of DEALLOCATE must be a pointer to the

complete anonymous target that was previously allocated;

the ALLOCATED intrinsic cannot be applied to

POINTER objects.

© LRZ 2009-23 Introduction to the Fortran programming language 217

real(dk), pointer :: phi_ptr(:,:)
integer :: ifail, nd1, nd2
:

nd1 = … ; nd2 = …

allocate(phi_ptr(0:nd1, 0:nd2), stat=ifail)
if (ifail /= 0) stop ‘procedure XXX: allocate failed‘
:

deallocate(phi_ptr)

deferred shape → shape determined at run time

phi_ptr is used for calculations

1. contiguous memory area with implicit
TARGET attribute created on heap

2. phi_ptr is pointer associated with it

anonymous

target

phi_ptr

The ASSOCIATED intrinsic

A logical function that

returns association status of an entity with POINTER attribute;

it cannot be applied to an undefined POINTER

© LRZ 2009-23 Introduction to the Fortran programming language 218

real(dk), pointer :: pt(:), qt(:)
real(dk), target :: tg(3)

pt => tg
write(*,*) associated(pt), associated(pt, tg)

allocate(qt(3))
write(*,*) associated(qt)
write(*,*) associated(pt, qt)

pt => null()
write(*,*) associated(pt)

prints T (.TRUE.), twice

prints F (.FALSE.)

prints F (.FALSE.)

prints T (.TRUE.)

Aliasing of subobjects

Subobjects of a target

also are targets

Example:

pt associated with non-

contiguous subobject

After first assignment:

After second assignment

© LRZ 2009-23 Introduction to the Fortran programming language 219

real(dk), pointer :: pt(:)
real(dk), target :: tg(3)
type(body), target :: bb(3)
:
pt => tg(1::2)
pt(2) = 7.2
:
pt => bb%mass
pt = 1.2

pt

tg 7.2

only orange
parts are aliased

bb

pt
only orange

parts are aliased

1.2

is_contiguous(pt) returns .false.

Pointer initialization

Avoid the initially undefined state

null() intrinsic function → start with disassociated state

supports initialization with a non-allocatable TARGET (sub)object

Initialization implies the SAVE attribute

however for pointers it is only the association status that is preserved

(because the values, if any, are stored in the targets)

© LRZ 2009-23 Introduction to the Fortran programming language 220

real(dk), pointer :: pt(:) => null()

real(dk), target, save :: x(ndim)
real(dk), pointer :: pt(:) => x(::2)

Dangers using dynamically generated targets
(Note: other methods for generating invalid pointers exist)

Potential memory leak

unreachable memory area created

Undefined pointer after

deallocation

Introduction to the Fortran programming language 221

real, pointer :: pt(:) => null()

real, target :: tg(3)

allocate(pt(3))

pt => tg

pt

tg
after allocation

pt

tgafter reassignment
of pointer

real, pointer :: pt(:)=>null(),&

pt_2(:)=>null()

allocate(pt(3))

pt_2 => pt

deallocate(pt)

pt

pt_2

pt

pt_2

X

after deallocation pt is nullified

… but pt_2 is undefined

(cannot use associated on it)

pt_2 has same target as pt

© LRZ 2009-23

POINTER type components

a „reference“ container

Container types

Allocatable type components

a „value“ container

© LRZ 2009-23 Introduction to the Fortran programming language 222

type :: polynomial
private

real, allocatable :: f(:)
end type

type :: cont_t
private

real, pointer ::
item(:) => null()

end type

polynomial

f(:)

default (initial) value is
not allocated

default value is
disassociated

cont_t

Not a Fortran term

Note: Container types will not be thoroughly treated in this course

item(:)

Container types (2):
Object declaration and assignment semantics

Allocatable type components

assignment statement is

equivalent to

„deep copy“

POINTER type components

assignment statement is

equivalent to

„shallow copy“

© LRZ 2009-23 Introduction to the Fortran programming language 223

type(polynomial) :: p1, p2

:

p2 = p1

if (allocated(p2%f)) &
deallocate(p2%f)

allocate(p2%f(size(p1%f)))
p2%f(:) = p1%f

define p1
(see e.g. next slide)

type(cont_t) :: s1, s2

:

s2 = s1

s2%item => s1%item

a reference,
not a copy

define s1

Container types (3):

Structure constructor

Allocatable type components

dynamically allocates p1%f to

become a size 2 array with

elements 1.0 and 2.0

When object becomes

undefined

allocatable components are

automatically deallocated

POINTER type components

explicit target:

not permitted:

→ e.g., overload constructor to avoid

this situation (create argument copy)

© LRZ 2009-23 Introduction to the Fortran programming language 224

type(polynomial) :: p1

p1 = polynomial([1.0, 2.0])

type(cont_t) :: s1
real, target :: t1(ndim)
real, parameter :: t2(ndim) = …

s1 = cont_t(null())

s1 = cont_t(t2)

s1 = cont_t(t1)

a constant cannot be a target

usually will not happen for POINTER components

could be omitted (default initialized component)

Container types (4): Storage layout

Irregularity:

each array element might have a component of different length

or an array element might be unallocated (or disassociated)

Applies for both allocatable and POINTER components

a subobject designator like p_arr(:)%f(2) is not permitted

© LRZ 2009-23 Introduction to the Fortran programming language 225

type(polynomial) :: p_arr(4)

p_arr(1) = polynomial([1.0])
p_arr(3) = polynomial([1.0, 2.0])
p_arr(4) = polynomial([1.0, 2.0, 3.1, -2.1])

p_arr(1)

p_arr(2)

p_arr(3)

p_arr(4)

p_arr(4)%f

type component of array element
is a descriptor that references
a memory area “elsewhere”

Allocatable and POINTER dummy arguments
(explicit interface required)

Allocatable dummy argument

useful for implementation of „factory procedures“ (e.g. by reading data from a file)

POINTER dummy argument

example: handling of a „reference container“

Actual argument must have matching attribute

Introduction to the Fortran programming language 226

subroutine read_simulation_data(simulation_field, file_name)
real, allocatable, intent(out) :: simulation_field(:,:,:)
character(len=*), intent(in) :: file_name
:

end subroutine read_simulation_data

deferred-shape

© LRZ 2009-23

implementation allocates storage
after determining its size

subroutine add_reference(a_container, item)
type(cont_t) :: a_container
real, pointer, intent(in) :: item(:)
if (associated(item)) a_container%item => item

end subroutine add_reference

a private pointer type component

an exception to this will
be discussed in the

advanced course

INTENT semantics for dynamic objects

„Becoming undefined“ for objects of derived type:

type components become undefined if they are not default initialized

otherwise they get the default value from the type definition

allocatable type components become deallocated

© LRZ 2009-23 Introduction to the Fortran programming language 227

specified intent allocatable dummy object pointer dummy object

in
procedure must not modify

argument or change its allocation

status

procedure must not change

association status of object

out

argument becomes deallocated

on entry pointer becomes undefined on

entry

inout
retains allocation and definition

status on entry

retains association and definition

status on entry

auto-deallocation of
simulation_field

on previous slide!

Bounds of deferred-shape objects

Bounds are preserved across procedure invocations and pointer

assignments

Example:

What arrives inside add_reference?

this is different from assumed-shape, where bounds are remapped

it applies for both POINTER and ALLOCATABLE objects

Explicit remapping of lower bounds is possible:

© LRZ 2009-23 Introduction to the Fortran programming language 228

real, pointer :: my_item(:) => null

type(cont_t) :: my_container(ndim)

allocate(my_item(-3:8))

call add_reference(my_container(j), my_item)

subroutine add_reference(…)
:
if (associated(item)) a_container%item => item

lbound(item) hat the value [-3]

ubound(item) has the value [8]

same applies for a_container%item

if (associated(item)) a_container % item(1:) => item

bounds are remapped for a_container % item

Rank-changing pointer assignment

A pointer of any rank may point at a rank-1 target

Example:

requires specification of lower and upper bounds on LHS of pointer

assignment

© LRZ 2009-23 Introduction to the Fortran programming language 229

real, allocatable, target :: storage(:)
real, pointer :: matrix(:,:), diagonal(:)
integer :: lb, ub, n

n = … ;lb = …; ub = lb + n - 1
allocate(storage(n*n))

matrix(lb:ub,lb:ub) => storage
diagonal => storage(::n+1) diagonal(i) now addresses

the same location as
matrix(lb+i-1,lb+i-1)

CONTIGUOUS pointers

The CONTIGUOUS attribute can be specified for pointers

(we already saw it for assumed-shape arrays)

difference: programmer is responsible for guaranteeing the contiguity of the

target in a pointer assignment

Examples:

object matrix from previous slide

can be declared contiguous because whole allocated array storage is

contiguous

if contiguity of target is not known, check via intrinsic:

© LRZ 2009-23 Introduction to the Fortran programming language 230

real, pointer, contiguous :: matrix(:,:)
:
allocate(storage(n*n))
matrix(lb:ub,lb:ub) => storage

if (is_contiguous(other_storage)) then
matrix(lb:ub,lb:ub) => other_storage

else
…

with possibly new values
for lb, ub

Allocatable function results
(explicit interface required)

Scenario:

size of function result cannot be

determined at invocation

example: remove duplicates from

array

Possible invocations:

efficient (uses auto-allocation on

assignment):

less efficient (two function calls

needed):

function result is auto-deallocated

after completion of invocation

© LRZ 2009-23 Introduction to the Fortran programming language 231

function deduplicate(x) result(r)

integer, intent(in) :: x(:)

integer, allocatable :: r(:)
integer :: idr
:
allocate(r(idr))
:
do i = 1, idr
r(i) = x(…)

end do
end function deduplicate

integer, allocatable :: res(:)

res = deduplicate(array)

find number idr
of distinct values

integer :: res(ndim)

res(:size(deduplicate(array))) &
= deduplicate(array)

large enough?

It is not permitted to do
CALL MOVE_ALLOC(deduplicate(array), res)

POINTER function results
(explicit interface required)

The POINTER attribute

for a function result is permitted

it is more difficult to handle on both

the provider and the client side
(need to avoid dangling pointers and

potential memory leaks)

A reasonably safe example:

extract section from container

no anonymous target creation

involved in this case!

invocation:

note the pointer assignment

it is essential for implementing

correct semantics and sometimes

also to avoid memory leaks

© LRZ 2009-23 Introduction to the Fortran programming language 232

function get_section(c, s) result(r)

type(cont_t), intent(in) :: c
integer, intent(in) :: s(:)
real, pointer :: r(:)
r => null()
if (associated(c % item)) &

r => c % item(s(1):s(2):s(3))
end function get_section

type(cont_t) :: a_container
real, pointer :: section(:)
:

section => get_section(&
a_container, [start,end,stride])

if (associated(section)) then
:

end if

set up a_container

do work on section

checks on s omitted

Opinionated recommendations

Dynamic entities should be used, but sparingly and systematically

performance impact, avoid fragmentation of memory → allocate all needed

storage at the beginning, and deallocate at the end of your program; keep

allocations and deallocations properly ordered.

If possible, ALLOCATABLE entities should be used rather than

POINTER entities

avoid memory management issues (dangling pointers and leaks)

avoid using functions with pointer result

aliasing via pointers often has negative performance impact

A few scenarios where pointers may not be avoidable:

information structures → program these in an encapsulated manner.

The user of the facilities should normally not see a pointer at all.

subobject referencing (arrays and derived types) → performance impact (loss

of spatial locality, suppression of vectorization)!

© LRZ 2009-23 Introduction to the Fortran programming language 233

Further performance aspects

and use of

Parameterized derived types

© LRZ 2009-23 Introduction to the Fortran programming language 234

Array syntax and assumed shape arrays

Array syntax

D(:) = A(:) + B(:)*C(:)

fully optimized by

compiler

Assumed shape array

processing inside

procedure

in this simple case,

compiler appears to

generate multi-version

code, so no difference

to CONTIGUOUS

case

© LRZ 2009-23 Introduction to the Fortran programming language 235

POINTER dummy argument

Actual aliasing is not

happening

Compiler sees this

and performs

vectorization for some

cases anyway

INTENT(inout)

pointers perform quite

badly

© LRZ 2009-23 Introduction to the Fortran programming language 236

Comparing compilers (1)

© LRZ 2009-23 Introduction to the Fortran programming language 237

Comparing compilers (2)

© LRZ 2009-23 Introduction to the Fortran programming language 238

Note the reduced
maximum value

Performance of object-based code

Remember derived type (DT)

"body":

"this" was declared a scalar

More typical usage:

use an array

to handle multiple bodies or

a trajectory of a single body

requires a new variant of

kick that handles

arrays of structure (AoS)

performance expectation?

© LRZ 2009-23 Introduction to the Fortran programming language 239

module mod_body
implicit none
type :: body
character(len=4) :: units
real :: mass
real :: pos(3), vel(3)

end type body
contains
subroutine kick(this, …)

…
end subroutine

end module

use mod_body
:
type(body), allocatable :: traj(:)
:
allocate(traj(ntraj))
call kick_s(traj, dp)

Parameterized derived type (PDT)

Idea:

fold array properties into type component → structure of arrays (SoA)

this is achieved via integer-typed parameters, which become part of the type

Two variants: KIND and LEN (length) parametrization

semantic difference: compile-time vs. run-time resolution of parameter values

© LRZ 2009-23 Introduction to the Fortran programming language 240

type :: body_p(k, ntraj)
integer, kind :: k = kind(1.0)
integer, len :: ntraj = 1

character(len=4) :: units
real(kind=k) :: mass(ntraj)
real(kind=k) :: pos(ntraj,3), vel(ntraj,3)

end type body_p

default values
are permitted

reduce overhead

array dimension folded
into component

reuse for different
representations

PDT Structures

Static declarations

unspecified type parameters take default values;

specification is obligatory if no defaults exist

Dynamic objects

length type parameters are usually deferred:

(might also be an allocatable dummy argument)

allocation requires a type specification:

© LRZ 2009-23 Introduction to the Fortran programming language 241

type(body_p (ntraj=ndim)) :: traj_ndim
type(body_p) :: traj_1
type(body_p (k=kind(1.0d0), ntraj=ndim)) :: dptraj_ndim

type(body_p (ntraj=:)), allocatable :: dyn_traj

allocate(body_p (ntraj=12) :: dyn_traj)

write(*,*) 'Shape of vel component: ',shape(dyn_traj%vel)

a PDT scalar

constant expression required

value is [12 , 3]

Type parameter inquiry

Type parameters are also type components

special case: read-only access

Example:

produces the output

(4 is the KIND number used for default real by Intel Fortran)

© LRZ 2009-23 Introduction to the Fortran programming language 242

write(*,*) dyn_traj % k, dyn_traj % ntraj

4 12

Comparing AoS vs SoA Memory Layout

AoS with 3 array elements

SoA with LEN parameter value 3

Memory area colored blue is referenced or defined by "kick"

AoS has effective stride, especially for „mass“ component→ loss of

spatial locality, independent of array size

AoS vectorization length is 1 and 3, respectively

SoA always uses contiguous memory for both components

SoA can be fully vectorized for sufficiently large fields

© LRZ 2009-23 Introduction to the Fortran programming language 243

velocity for array element 2

mass for array element 2

all masses all velocities

actual
layout

may differ
in details

Procedures with PDT arguments

Requires special syntax for dummy argument declaration

KIND type parameter requires compile-time constant as specification.

Each value requires its separate procedure

LEN type parameter is declared as being assumed from the actual

argument

© LRZ 2009-23 Introduction to the Fortran programming language 244

subroutine kick_p(bowling_ball, dp)

type(body_p(k=kind(1.0), ntraj=*)), &
intent(inout) :: bowling_ball

real, intent(in) :: dp(:,:)
:

end subroutine kick_p

Performance Comparison

on an Intel Skylake 2.3 GHz base frequency core

© LRZ 2009-23 Introduction to the Fortran programming language 245

Further comments on PDTs

Only part of the PDT semantics was covered here

come to the "Advanced Fortran Topics" course for more

PDTs were one of the latest-implemented features

compilers are still rather buggy in places, but simple scenarios such as shown

here should now work

Container types permit similar optimizations

vectorization should work

however, irregular memory layout can cause difficulties

More detailed control of vectorization

might be achieved by using OpenMP SIMD directives

check compiler vectorization report!

© LRZ 2009-23 Introduction to the Fortran programming language 246

e.g., allocatable
type components

Generic interfaces

and overloading

© LRZ 2009-23 Introduction to the Fortran programming language 247

Generic Interfaces (1)

Basic idea

invoke procedures that „do the

same thing“ for differently typed

arguments by the same name

Example:

both default and high precision

versions of wsqrt should be

usable by the same name

achieved by specifying a named

interface that lists the specific

procedures

Rules:
specifics must be either all functions

or all subroutines

external procedures also possible

one specific per module may itself

have the generic name

© LRZ 2009-23 Introduction to the Fortran programming language 248

Precedent: intrinsics already
work that way.

For example, sqrt will work for real

arguments of any kind, as well as
for complex arguments

module mod_functions

interface wsqrt
procedure wsqrt
procedure wsqrt_dk

end interface wsqrt
private :: wsqrt_dk

contains
real function wsqrt(x, p)
real, intent(in) :: x, p
…

end function wsqrt
real(dk) function wsqrt_dk(x, p)
real(dk), intent(in) :: x, p
…

end function wsqrt_dk
end module

also permitted:
module procedure

only expose the
generic name

dk specifies

non-default real

𝒘𝒔𝒒𝒓𝒕 𝒙, 𝒑 = 𝟏 −
𝒙𝟐

𝒑𝟐
if |x| < |p|

Generic Interfaces (2)

Invocation

Specific functions

must have sufficiently different

interface

invocations always determined at

compile time

Distinguishability:

(only the most relevant rules listed here)

at least one non-optional

argument must be different with

respect to either type, kind or

rank (TKR),

or differ by being a dummy

procedure argument as opposed

to a dummy data argument

© LRZ 2009-23 Introduction to the Fortran programming language 249

use mod_functions
implicit none
real :: x,p
real(dk) :: xd, pd

:
write(*,*) wsqrt(x,p)

write(*,*) wsqrt(xd,pd)

write(*,*) wsqrt(x,pd)

initialize variables

invokes specific wsqrt

invokes specific wsqrt_dk

no matching specific exists → rejected by compiler

Generic Interfaces (3): Keyword call

The following generic
(which legitimately references interfaces

of external procedures)

is non-conforming, since the call

cannot be unambiguously

resolved.

TKR rule

is easy if numbers of non-

optional arguments differ

may need to also account for

permutations of arguments if

not

When does it not make sense to

use a generic?

to get around name space prob-

lems → using encapsulation

(only clause) or renaming are

better alternatives in this case

danger of functional confusion

(code using the generics

becomes difficult to read)

© LRZ 2009-23 Introduction to the Fortran programming language 250

interface foo
subroutine foo_1(i, r)
integer :: i
real :: r

end subroutine
subroutine foo_2(r, i)
integer :: i
real :: r

end subroutine
end interface foo

integer :: j
call foo(i=j, r=2.0)

Generic Interfaces (4)
Working across module boundaries

Exception to naming rules

with generics, same name can be re-used in different modules

Unambiguous resolution:

also depends on which specifics are accessed

gfun(): interface of fun_spec2() might be ambiguous with respect to other
specifics (not recommended!), since not use associated by „prog“

© LRZ 2009-23 Introduction to the Fortran programming language 251

mod_1

gfun()

fun_spec1()

mod_2

gfun()

fun_spec2()

mod_3

gfun()

fun_spec3()

gfun()

fun_spec4()

prog

call gfun(...)

u

u

Generic Interfaces (5)
Arrays of differing rank

Write a generic that supports an actual argument of multiple ranks

Assumed shape dummy argument

somewhat troublesome – may need to write 15 specific interfaces for

every argument to cover all possible ranks (16 if scalars are included)

Assumed size dummy argument

when defining generic interfaces with such an argument, a rank mismatch

between actual and dummy argument is not allowed

this is different from using a specific call – but in the latter, scalar arguments

cannot participate

and the argument size typically must be specified as a separate argument

A new feature in is available ...

© LRZ 2009-23 Introduction to the Fortran programming language 252

Assumed-rank dummy argument (1)

Scenario:

An algorithm is considered that can handle problems of different

dimensionality

The functionality cannot be handled by an ELEMENTAL procedure

Consequences:

the computational interface should supply a single specific that can handle

calls with arrays of arbitrary rank

it should be also possible to use this as a specific in a generic interface (e.g.,

because types might also be varied)

© LRZ 2009-23 Introduction to the Fortran programming language 253

use mod_io
:
real :: a, b(nbdim), c(ncdim1,ncdim2), d(nddim1,nddim2,nddim3)
: ! supply all values

call write_iobuf(a, outfile_a)
call write_iobuf(b, outfile_b)
call write_iobuf(c, outfile_c)
call write_iobuf(d, outfile_d)

Assumed-rank dummy argument (2) and

SELECT RANK block construct

Declaration

requires explicit interface

also permitted: explicit

DIMENSION(..) attribute

no references or definitions are

possible, except certain array

inquiries (e.g. RANK(), SHAPE())

Run time rank resolution

a new block construct

inside each block, object is of

designated rank, and references and

definitions are permitted

at most one block gets executed

© LRZ 2009-23 Introduction to the Fortran programming language 254

module mod_io
:
contains
subroutine write_iobuf(buf,file)

real, intent(in) :: buf(..)
character(len=*), &

intent(in) :: file
: ! open file
:

end subroutine write_iobuf
end module mod_io

select rank (buf)
rank (0)
write(iu) buf

rank (1)
write(iu) buf(:)

rank (2)
write(iu) buf(:,:)

rank (3)
write(iu) buf(:,:,:)

rank (*)
stop 'assumed size unsupported'

rank default
stop 'rank > 3 unsupported'

end select

actual argument
is assumed-size

actual argument
is scalar

Overloading the structure constructor

Named interface with same name as a derived type

has the same accessibility as the type (as possibly opposed to its components)

© LRZ 2009-23 Introduction to the Fortran programming language 255

module mod_date
: ! previous type definition for date
interface date
module procedure create_date
module procedure create_date_safe

end interface
contains
type(date) function create_date(day, mon, year)
integer, intent(in) :: day, mon
integer, intent(in) :: year
: ! check constraints on input
create_date%day = day; … ! define object

end function
type(date) function create_date_safe(day, mon, year)
integer, intent(in) :: day
character(len=3), intent(in) :: mon
integer, intent(in) :: year
: ! implementation omitted

end function
end module mod_date

improve safety of use
via a suitably chosen
interface signature

provide additional
semantics

any number of
specific functions

obliged to use
component notation

must be a function with scalar result

Notes on overloading the structure constructor

If a specific overloading function has the same argument

characteristics as the default structure constructor, the latter

becomes unavailable

advantage: for opaque types, object creation can also be done in use

association contexts

disadvantage: it is impossible to use the overload in constant expressions

© LRZ 2009-23 Introduction to the Fortran programming language 256

Of course, a specific may have a wildly different interface, corresponding to the
desired path of creation for the object (e.g., reading it in from a file)

Using the overloaded constructor

Example from previous

slide continued:

Implement additional

semantics not available

through structure

constructor e.g.,

enforce constraints on

values of type components

provide a safe-to-use

interface

handle dynamic type

components (see later)

© LRZ 2009-23 Introduction to the Fortran programming language 257

use mod_date
type(date) :: o_d1, o_d2

o_d1 = date(12, 10, 2012)

o_d2 = date(day=12, &
mon='Oct', &
year=2012)

invokes create_date
(same syntax as

structure constructor)

invokes create_date_safe

Operator overloading

Type for rational numbers

(also an exercise)

For fractions, operations like +, - , *, / exist, mathematically

but these will not „simply“ work for the above-defined derived type

Fortran permits defining extensions of these for derived types

both numeric and non-numeric (e.g. //, .or.) operators can be

extended

© LRZ 2009-23 Introduction to the Fortran programming language 258

module rational
implicit none
type :: fraction

:
:

end type
:
end module

type components
etc. omitted

Extending intrinsic operators

Example: add fractions

restricted named interface

Usage:

Further rules:

both dummy arguments must be

intent(in)

for a unary operator, a single dummy

argument with intent(in) must be

specified

existing intrinsic operators cannot be

changed

© LRZ 2009-23 Introduction to the Fortran programming language 259

module rational
:

interface operator(+)
module procedure add_fi
module procedure add_fl

end interface
contains
function add_fi(f1, f2) result(r)
type(fraction), &

intent(in) :: f1,f2
type(fraction) :: r
:

end function
function add_fl(f1, f2) result(r)
:

end function
end module

use rational
type(fraction) :: x, y, z

:
x = y + z

previous type definition

same for a different type
fraction_l

that uses „long“ integers

define y, z

invokes
x = add_fi((y),(z))exactly two

dummy arguments

Programmer-defined operators

Example: convolution

a (binary) operation not covered

by an intrinsic operation

Usage:

Further rules:

generic name can have up to 31

characters between dots

otherwise same rules as for intrinsic

operations

© LRZ 2009-23 Introduction to the Fortran programming language 260

module user_ops

interface operator (.convolve.)
module procedure conv

end interface
contains
function conv(op, vc) result(r)
real, intent(in) :: op(:),vc(:)
real :: r(size(vc))
:

end function
end module

𝑓𝑖 =

𝑗≤𝑖

𝑜𝑝𝑖−𝑗+1 ⋅ 𝑣𝑐𝑗 use user_ops
integer, parameter :: ndim=100
real :: x(ndim), op(ndim)

:

x = op .convolve. x

define x, op

implementation not
shown here

invokes
x = conv((op),(x))

Expressions involving overloaded operators

Overloaded intrinsic

operators

obey the same precedence

rules than their intrinsic

counterparts

usual left-to-right evaluation

(except for **)

Semantic aspects:

for (different) derived types,

the overloading should obey

associativity
possible performance issue (A derived

type, B and C intrinsic type):

both expressions are valid, but the

second one is typically faster

parentheses for readability

and correctness if multiple

operators are overloaded
example: for A, B, and C of derived

type, with overloaded + and *

is by default evaluated as

© LRZ 2009-23 Introduction to the Fortran programming language 261

X = (A*B)*C; Y = A*(B*C)

X = A + B * C

X = A + (B * C)

Expressions involving defined operators

Unary defined operators

have higher precedence than

any other operator

Binary defined operators

have lower precedence than

any other operator

Parentheses may be vital

is evaluated as

which very probably is not what

you meant.

what you meant must be written

© LRZ 2009-23 Introduction to the Fortran programming language 262

X = A .convolve. B + C

X = A .convolve. (B + C)

X = (A .convolve. B) + C

Further properties of generic interfaces

Renaming of defined operators on the USE line

however, this is not allowed for intrinsic operators

Generic resolution against elemental specifics

if both an elemental and a non-elemental specific match, the non-

elemental specific is used

Overloading intrinsic procedures

is allowed, but will render the intrinsic procedure inaccessible if it has

the same interface

is definitely not recommended unless interface is sufficiently different

Generic names cannot be used as procedure arguments

for generic intrinsics, there exists a whitelist

© LRZ 2009-23 Introduction to the Fortran programming language 263

use user_ops, operator(.conv.) => operator(.convolve.)

Some limitations of default assignment

Default assignment is unavailable between objects of different

derived types

Default assignment for derived types might not have the desired

semantics

especially for container types (see advanced course)

This motivates a desire for overloading the assignment ...

© LRZ 2009-23 Introduction to the Fortran programming language 264

Overloading the assignment operator

Uses a restricted named

interface:

here, a conversion is implemented

Further rules:
first argument must be

intent(out) or intent(inout)

second argument must be
intent(in)

assignment cannot be

overloaded for intrinsic types (as

both first and second arguments)

overload usually wins out vs.

intrinsic assignment (if the latter

exists)
Exception: implicitly assigned

aggregating type‘s components →

aggregating type must also overload

the assignment

© LRZ 2009-23 Introduction to the Fortran programming language 265

module rational

: ! type definition

interface assignment(=)

procedure assign_from_int

end interface

contains

subroutine assign_from_int(r, x)

type(rational), intent(out) :: r

integer, intent(in) :: x

:

end subroutine

end module

exactly two arguments

Now we proceed to an
exercise session

Input and Output

to external storage

Terminology: Record and File

(logical) Record:

sequence of values or
characters

Types of records:

formatted: conversion
between internal
representation of data and
external form

unformatted: same
representation of internal and
external form

endfile: last record of a file;
may be implicitly or explicitly
written

external form: operating
environment dependency

File:

sequence of records

records must be all formatted

or all unformatted

Types of files:

(nearly independent of record type)

external: exists on a medium

outside the program

access methods: sequential,

direct-access and stream

access

internal: memory area which

behaves like a file

(used for conversion between

data representations)

© LRZ 2009-23 Introduction to the Fortran programming language 267

Handling I/O from Fortran

File operation I/O statements

manage connection of

external files with the

program

determine mode or kind of I/O

most important statements:

OPEN, CLOSE, INQUIRE

navigate inside file:

BACKSPACE, REWIND

Data transfer I/O statements

read, generate or modify

records inside files

most important statements:

READ, WRITE

Arguments for data transfers:

objects to be transferred: I/O

list

transfer method: I/O control

specification

specifically for formatted

records: I/O editing – an

important part of the control

specification

© LRZ 2009-23 Introduction to the Fortran programming language 268

Concept of I/O unit

Abstraction:

allows the program to refer to a file

via a default integer,

which is part of the global state of the program

Pre-connected units:

units associated with a (special) file without executing an OPEN statement

special notation: star instead of integer

standard output

standard input

error unit: this is where error messages from the run time library typically are

written to. May be the same as standard output

Alternative:

replace star by constants defined in ISO_FORTRAN_ENV:

© LRZ 2009-23 Introduction to the Fortran programming language 269

write(*, …) …

read(*, …) …

use, intrinsic :: iso_fortran_env
write(output_unit, …) …
read(input_unit, …) …

or to error_unit

Associating a file with a unit –

The OPEN and CLOSE statements

Example:

opening a (sequential)

formatted file for reading only

A unit may only be associa-

ted with one file at a time

and vice versa

close the file to disassociate

© LRZ 2009-23 Introduction to the Fortran programming language 270

integer :: iunit
: ! define iunit
open(unit=iunit, &

action='READ', &
file='my_file', &
form='FORMATTED‘‚ &
status=‘OLD‘)

read(iunit, …) …

I/O control specification I/O list

! … continued from before
close(unit=iunit)

open(iunit, &
action='WRITE',
file='new_file', &
form='FORMATTED')

write(iunit, …) …

will be detailed later …

a write statement

is not permissible here

need not be in same
program unit as close

a read statement

is not permissible here

the keyword
„unit=“ is optional

Identifying a usable I/O unit

A given unit number

need not exist (some may be

reserved)

may already be in use

perform inquiry by unit:

Note:

Shell/OS limit on number of

filehandles – not a Fortran issue

Improved method:

use the newunit specifier in

open:

this will define iunit with a

(negative) integer that is

connected to the specified

file.

© LRZ 2009-23 Introduction to the Fortran programming language 271

logical :: unit_exists, &
unit_used

iunit = …
inquire(iunit, &

exist=unit_exists, &
opened=unit_used)

if unit_exists is set to .true. and unit_used

is set to .false., an open on iunit will succeed.

some non-negative integer

integer :: iunit
:
open(newunit=iunit, …, &

file=‘myfile‘, …)

Specification of I/O lists

I/O list:

list containing all objects for

which I/O is to be performed

may include an implied-DO list,

otherwise comma-separated

items

read: variables

write: variables or expressions
(including function calls)

Array items:

I/O in array element order:

the three statements are

equivalent

an array element may not appear

more than once in an input

statement

Derived type objects

transfer in order of type

components for POD types

„container types“ require UDDTIO

Dynamic entities

must be allocated/associated

for pointer variables, the target is

transferred

Empty I/O list

no object specified, or

zero-trip implied-DO

writes an empty record, or shifts

file position to next record upon

read()

© LRZ 2009-23 Introduction to the Fortran programming language 272

write(iu, *) a(1:3)
write(iu, *) a(1),a(2),a(3)
write(iu, *) (a(i),i=1,3)

implied-DO loop

List-directed I/O

A statement of the form

writes all items from the I/O list to the unit

in a processor-dependent format (including record length)

Resulting file can be (portably) processed with list-directed input

Note: slash in input field terminates

I/O statement.

© LRZ 2009-23 Introduction to the Fortran programming language 273

write(iunit, fmt=*) a, b, c

keyword “fmt=“ is optional. It stands for the word “format”.

integer :: iunit, i
real :: z(7)
character(len=20) :: c
logical :: w
:
read(iunit, fmt=*) i, &

z(1:6), c, w

open the unit
on my_file

contents of my_file

5 .3 , , -1.2E-1, 1.4
2*3.6 "No guarantee" .T.

.3 U -.12 1.4 3.6 3.6

variable z(1:6) after I/O statement

blanks and/or comma
are value separators

quotes prevent unwanted splitting

null value in input field

reading „z“ would fail

repeat factor

Edit descriptors

Give programmer means

to permit specification on how

to perform formatted I/O

transfer

via a parenthesized character

expression - a format string

This uniquely defines

conversion from character

string representing an I/O

record to internal

representation (or vice versa)

Three classes of edit

descriptors:

data edit descriptors
(associated with the way an I/O

item of a specific type is

converted)

control edit descriptors
(refers to the specific way a

record is transferred)

character string descriptor
(embed a string in the character

expression → usually used for

output)

© LRZ 2009-23 Introduction to the Fortran programming language 274

Character string editing

Embed a string in a format specification

applies only for output

Example:

will produce the character sequence

Note: repeated single quote masks a single one inside format string

© LRZ 2009-23 Introduction to the Fortran programming language 275

write(*, fmt='(i5,'' comes before '',i5)') 22, 23

bbb22bcomesbbeforebbbb23

Table of data edit descriptors

Descriptor
type of list

item
specific function

A character

B integer conversion to/from binary

I integer

O integer conversion to/from octal

Z integer conversion to/from hexadecimal

D real indicate extended precision and exponent

E real indicate exponent

EN real engineering notation

ES real scientific notation

EX real hexadecimal notation

F real fixed point (mostly …)

L logical

G any intrinsic general editing: „auto-detection“ of edit descriptor to use

DT derived type user-defined „object-oriented“ I/O (aka UDDTIO)

© LRZ 2009-23 Introduction to the Fortran programming language 276

Items marked green will be explicitly mentioned

a
ls

o
 u

s
e

d
fo

r
c
o

m
p

le
x

ty
p

e
s

Table of control edit descriptors

Descriptor(s) function comments

BN, BZ
handling of embedded blanks
in input fields

ignore / insert zero

SS, SP, S output of leading signs
suppress/enforce/processor-
defined

kP
scale numbers on input (or
output)

usually by factor 10-k (or 10k),
except for scientific representation

Tn, (TRn nX), TLn tabulation inside a record
move to position / right / left
(n in units of characters)

/ generate a new record „linefeed“

: terminate format control when running out of I/O items

RU,RD,RZ,RN,RC,RP
change rounding mode for
connection

up, down, to zero, to nearest,
compatible, processor-defined

© LRZ 2009-23 Introduction to the Fortran programming language 277

Items marked green will be explicitly mentioned

colon

synonyms

Formatted I/O: Format definition

Format argument may be

an asterisk → list-directed input or output as previously discussed,

a default character expression specifying an explicit format, or

a statement label referencing a (non-executable) format statement

Examples:

© LRZ 2009-23 Introduction to the Fortran programming language 278

character(len=10) :: my_fmt
real :: r
:
my_fmt = '(e10.3)'
r = 2.33444e+2
open(iu, …)
write(iu, fmt=my_fmt) r
write(iu, '(e11.4)') r
write(iu, fmt=1001) r
:

1001 format(e12.5)
end

internal I/O (see later)
allows to dynamically define format

output might be:
b0.233E+03
b0.2334E+03
b0.23344E+03

If you use labeled formats, collect them
near the end of the subprogram, with
number range separate from other labels

Note: format variable may not
be part of I/O input list

Recommended
method

blanks indicated by “b”

Using data and control edit descriptors (1)

Field width and repeat factor

Bracketing and tabulation

© LRZ 2009-23 Introduction to the Fortran programming language 279

real :: x(2); integer :: i(3)
character(len=3) :: s = 'def'
x = [2.331e+1,-.7151]; i = [7,9,-3]

write(iu, '(2E10.3,3I2,A2)') x, i, s

Output will be

b0.233E+02-0.715E+00b7b9-3de

blanks indicated by “b”

repeat count

write(iu, ‘(2(F5.2,1X,I2))‘) x(1),i(1),x(2),i(2)

repeat count applies to parenthesised expression

Output will be

23.30bb7-0.72bb9

control edit descriptor for right tabulation
inserts a single blank

field width is 10 (includes sign) width 2 – blank padding if not all characters needed

Using data and control edit descriptors (2)

Unlimited repeat count and colon editing

Force record split

© LRZ 2009-23 Introduction to the Fortran programming language 280

write(iu, '(*(I2,:,'',''))') csv_list

only permitted on last
item of format string

terminates output if data items run out

Output for above value of csv_list

b1,b2,b3,b4,b5 no comma at the end

write(iu, '(*(3I2,/))') csv_list Output:

b1b2b3
b4b5

integer, allocatable :: csv_list(:)
allocate(csv_list(5))
csv_list(:) = [1, 2, 3, 4, 5]

Undefined situations ...

Format overflow on output Input variables undefined

due to inconsistent width
(note that number of decimals is

usually ignored on input)

RTL might terminate program

© LRZ 2009-23 Introduction to the Fortran programming language 281

integer :: i
real(dk) :: x

i = 12345
write(iu,'(i3)') i
x = -1.532E102
write(iu,'(e8.4)') x
write(iu,'(e10.4)') x
x = 1.6732E7
write(iu,'(f7.1)') x

Output File contains:

-.1532+103

Input File contains:
12345
-1.532E+102
b1.6732E+07

read(iu,'(i9)') i
read(iu,'(e8.3)') x
read(iu,'(e18.4)') x

... and how to avoid them

On output

width ≥ digits + 7 for scientific

notation

specify exponent width for sc. not.

width(number, digits) for fixed point

width(number) for integer

Alternative

automatic width adjustment for fixed

point or integer

Character output

variable length determines

length of output for 'A' format

without width specifier

On input

use same format

specifications as for writing

note that F formatting in general

behaves differently for input than

for output (depends on input

data) → not dealt with in this

course

for strings, the length parameter

determines how many characters

are read if the 'A' format is used

© LRZ 2009-23 Introduction to the Fortran programming language 282

i = 12345
write(iu,'(i0)') i
x = -1.532E102
write(iu,'(e11.4e3)') x
x = 1.6732E7
write(iu,'(f0.1)') x

File contains:
12345
-.1532E+103
16732000.0

Format exhaustion and reversion

Assumption:

format string without

components in parentheses

more items in I/O list than edit

descriptors are available

Output:

will produce three records

(the last one incomplete)

format specification is

repeated

Input:

format exhaustion → remain-

der of record is skipped

otherwise similar to output

example: file with contents

which is processed using

will only read the values

marked red (in which order?)

© LRZ 2009-23 Introduction to the Fortran programming language 283

integer :: i(24)
i = …
write(iu, '(10i4)') i

1 2 3 4 5

11 12 13 14 15

21 22 23

read(…, fmt='(3i3)') is(:3,:3)

Format exhaustion and reversion continued

Exceptional case:

format string with parenthesized

components

Format processing:

when the last right

parentheses are reached,

select the format item

enclosed by the parentheses

whose right part precedes the

last one

include any repeat count

associated with these

parentheses

Examples:

upon format exhaustion,

control reverts to format items

marked red

© LRZ 2009-23 Introduction to the Fortran programming language 284

… fmt='(i4, 3(2i3,2e10.3))' …
… fmt='(i4, (2i3))' …

penultimate right parenthesis
in format string

Unformatted I/O

Perform I/O without

conversion to character

strings

avoid conversion overhead

avoid possible roundoff errors

binary representation more

space efficient

Requires suitable OPEN

specification:

Data transfer statements

without format or namelist

specification

each transfer statement

writes (or reads) exactly one

record

processor may pad record to

a convenient size

reading a record must be

performed consistently with

the write (data type, array

size, but order of array

elements can be arbitrary)

© LRZ 2009-23 Introduction to the Fortran programming language 285

open(unit=iunit, &
action='WRITE', &
file='my_bin_file', &
form='UNFORMATTED')

write(iunit) x(1:n), y(1:n)

Unformatted I/O – portability issues

Disadvantage: binary files

may be unportable

padding

big- vs. little endian

large file treatment

Recommendations:

may need to convert to

formatted and back again

if no derived type entities are

written, intrinsic type repre-

sentations are consistent and

large files don't pose

problems, then I/O on

„foreign“ binary files may

work anyway

Big- vs. little endian

representation of intrinsic

types differ only with respect

to byte ordering

compiler may offer switches

and/or environment variables

to deal with this situation

© LRZ 2009-23 Introduction to the Fortran programming language 286

e.g. files or records
larger than 2 GByte

Now:
10 Minute break

The OPEN statement in more detail

General rules for all specifications

a unit= or newunit= specifier is required for connections to external

files

a file= specifier supplying the name of the file to be opened must

be provided under most circumstances

character expressions on the RHS of a specification are often from a

fixed list; these may be lower or upper case. Trailing blanks are

ignored.

© LRZ 2009-23 Introduction to the Fortran programming language 287

Table of additional OPEN specifications

mode keyword
argument values

(defaults in bold)
semantics

access=
'direct', 'sequential' or
'stream'

determines access method

action=
'read', 'write' or
'readwrite'

determines I/O direction;
default is processor-dependent.

asynchronous= 'yes' or 'no' necessary (but not sufficient) for AIO

encoding= 'default' or 'utf-8' UNICODE might work ...

form=
'formatted' or
'unformatted'

conversion method;
default depends on access method.

position= 'asis', 'rewind' or 'append'
specifies the initial position of the file (sequential
or stream access)

recl= positive integer value
record length (in file storage units – often 1 byte)

for direct or sequential access files

status=
'old', 'new', 'unknown',
'replace' or 'scratch'

enforce condition on existence state of file
before the OPEN statement is executed.

© LRZ 2009-23 Introduction to the Fortran programming language 288

Changeable connection modes

General properties

set additional properties in the OPEN statement which apply for all

subsequent I/O statements

set additional properties within subsequent READ or WRITE statements

which apply for that particular statement

use INQUIRE on unit to obtain presently set properties (see later; RHS

expressions are then replaced by character string variables)

these modes apply for formatted I/O only

Example:

© LRZ 2009-23 Introduction to the Fortran programming language 289

real :: r = 2.33444e+2
open(iu, …)
write(iu, '(e11.4)') r
write(iu, sign='plus', '(e11.4)') r
write(iu, sign='suppress' , '(e11.4)') r

expected output
b0.2334E+03
+0.2334E+03
b0.2334E+03

(first line is
processor dependent)

assumption: open
does not specify sign=

Table of changeable connection modes

mode keyword
argument values

(defaults in bold)
semantics

blank= 'null' or 'zero'
determine how blanks in input field are
interpreted

decimal= 'comma' or 'point'
set character used as decimal point during
numeric conversion

delim=
'apostrophe', 'quote' or
'none'

sets delimiter for character values in list-directed
and namelist output

pad= 'yes' or 'no'
padding with blanks during input if more charac-
ters must be processed than contained in record

round=
'up', 'down', 'zero', 'nearest',
'compatible',
'processor_defined'

set rounding mode for formatted I/O processing

sign=
'plus', 'suppress'
'processor_defined'

controls whether an optional plus sign will appear
in formatted output

© LRZ 2009-23 Introduction to the Fortran programming language 290

The CLOSE statement in more detail

Execution of CLOSE:

terminates connection of

previously OPENed file to

specified unit

at program termination, all

connected units are implicitly

CLOSEd

application of CLOSE to a

unit which does not exist or is

not connected has no effect

status= specifier

'keep'

'delete'

Notes:

1. 'keep' is not allowed if file was

opened with status='scratch'

2. if 'keep' is specified for a non-

existent file, it does not exist

after execution of CLOSE

© LRZ 2009-23 Introduction to the Fortran programming language 291

default if OPENed with
status='scratch'

default if OPENed with
status other than 'scratch'

The INQUIRE statement

Obtain information about

a unit's connection properties („inquire by unit“), or

connection properties allowed for a file („inquire by file“), or

(minimum) record length needed for an output item („inquire by output

list“ → see direct access file discussion)

General rules

may specify a file or a unit, but not both

uses inquiry specifiers of the form keyword=variable

for some of the keywords (also those that are also permitted in an OPEN

statement), an additional status of 'UNKNOWN' or 'UNDEFINED' may

be returned

© LRZ 2009-23 Introduction to the Fortran programming language 292

Examples for use of the INQUIRE statement

Inquiry on unit

character values are returned

in uppercase

Inquiry on file

if my_file was not previously

opened, trim(fm) has the

value 'UNDEFINED'

if it was opened before the

INQUIRE using the statement

from the left hand side of the

slide, trim(fm) has the

value 'UNFORMATTED'

© LRZ 2009-23 Introduction to the Fortran programming language 293

character(len=12) :: fm, ac, bl
:
open(unit=22, action='READ', &

file='my_file', &
form='UNFORMATTED')

inquire(unit=22, form=fm, &
action=ac, blank=bl)

character(len=12) :: fm
:
inquire(file='my_file', &

form=fm)

if OPEN was successful:

trim(fm) has the value 'UNFORMATTED'
trim(ac) has the value 'READ'
trim(bl) has the value 'UNDEFINED'

Table of INQUIRE specifications

specific to that statement

mode keyword
argument variable type

(and possible return values)
semantics

direct=,
sequential=,
stream=

character string: 'YES',
'NO', or 'UNKNOWN'

determine whether specified access is allowed
for file

exist= logical determine whether a file or unit exists

formatted=,
unformatted=

character string: 'YES',
'NO', or 'UNKNOWN'

determine whether (un)formatted I/O is allowed

name= character string find the name of a file connected to a unit

named= logical find out if file has a name

nextrec= integer find the next record number of a direct access file

number= integer
identify unit connected to a file (-1 if no unit is
connected)

opened= logical determine whether file or unit is connected

read=, write=,
readwrite=

character string: 'YES',
'NO', or 'UNKNOWN'

determine whether named access mode is
allowed for file

size= integer
determine size of a file (in file storage units; -1 if
the size cannot be determined)

© LRZ 2009-23 Introduction to the Fortran programming language 294

Specifiers for data transfer statements

READ and WRITE statements

allow the changeable connection mode specifiers already discussed

for OPEN

... and we of course have seen the unit and fmt specifiers

additional specifiers refer to specific I/O functionality which is

discussed on the following slides (mostly by way of specific examples)

Note:

Stream I/O

Non-advancing I/O

are not dealt with in this course

© LRZ 2009-23 Introduction to the Fortran programming language 295

Direct access files (1)

OPEN for direct access – differences to sequential files

predefine file as a container with records of equal size

records are identified by index number

record size specified in file storage units (whose size is processor dependent)

any record can be written, read and rewritten without interfering with

another one
(contrast to sequential file: overwriting a record invalidates all following

records)

A direct access file may be formatted or unformatted

default is unformatted

© LRZ 2009-23 Introduction to the Fortran programming language 296

record length recl
direct access file

record

rec = 1 2 3

Direct access files (2)

Step 1: determine maximum

record size

INQUIRE by output list may help

specify complete I/O list

objects should have the maximum

size occurring during the program run

Step 3:

Write a record

record not filled → remainder is undefined

Step 2: Create direct access

file

specify the maximum

expected record length

© LRZ 2009-23 Introduction to the Fortran programming language 297

open(unit=iu, file='da_file', &
access='direct', &
recl=max_length, &
action='write', &
status='replace')

do nr=…
: ! set up x, y
write(unit=iu, rec=nr) size(x), size(y), x, y

end do

integer(kind=lk) :: max_length

inquire(iolength=max_length) &
size(x), size(y), x, y

... Step 4: close file

usually, a single record

Direct access files (3)

Open an existing direct access file for reading

information about number of records and the size of data to be read:

„metadata“ that must be separately maintained
(the latter, in the example, are written at the beginning of a record)

© LRZ 2009-23 Introduction to the Fortran programming language 298

inquire(file='my_da', recl=r_length)

open(unit=iu, file='da_file', access='direct', &
recl=r_length, action='read')

do nr=…
read(iu, rec=nr) nx, ny
allocate(x(nx), y(ny))
read(iu, rec=nr) nx, ny, x, y
: ! process x, y
deallocate(x, y)

end do

inquire by file

Direct access files (4)

Limitations

processor-dependent upper limit

for record sizes (may differ for

formatted and unformatted files)

large number/size of records may

lead to performance issues

(access times)

parallel access (MPI or coarray

programs) to disjoint records may

or may not work as expected
(depends on access pattern and file

system semantics)

Remark on

formatted direct access

slash edit descriptor causes

record number to increase by

one, and further I/O

processing starts at the

beginning of the next record

© LRZ 2009-23 Introduction to the Fortran programming language 299

Concept of file position

Part of state of connected file

initial point established when

connection is formed (OPEN) – at

beginning of first record

terminal point is just after last existing

record

File position typically changes

when either

data transfer statements or

positioning statements

are executed

Error conditions:

lead to indeterminate file position

End-of-file condition:

data transfer statement executed

after terminal position was reached

→ abort unless END specifier

present

Default I/O processing:

„advancing“ → file position is

always between records

© LRZ 2009-23 Introduction to the Fortran programming language 300

rec 1

rec 2

rec 3

file position
after OPEN
(initial point)

rec 1

rec 2

rec 3

file position
after first data
transfer stmt

rec 1

rec 2

rec 3

file position
after 2nd data
transfer stmt

previous

next

File positioning statements

BACKSPACE statement

change file position to before

the current record (if there is

one), or else to before the

previous record

the statement has no effect if

the connection is in the initial

position

ENDFILE statement

write an EOF as the next record

and position the file connection

there

REWIND statement

change position of file

connection to initial position

allows to revert from

undefined to defined file

position

Typically used

for sequentially accessed files

© LRZ 2009-23 Introduction to the Fortran programming language 301

backspace(<unit>)

endfile(<unit>)

rewind(<unit>)

beware
performance
issues

Error handling for I/O

An I/O statement may fail

Examples:

opening a non-existing file with status=‘OLD‘

reading beyond the end of a file

runtime error during format processing

Without additional measures, the RTL will terminate the program

Prevent this via user-defined error handling

specify an iostat and possibly iomsg argument in the I/O statement

legacy arguments: err / end (require a label to which execution branches) →

do not use

Two logical functions

are provided that check whether the iostat value of an I/O operation

corresponds to an EOF (end of file) or EOR (end of record) condition

© LRZ 2009-23 Introduction to the Fortran programming language 302

is_iostat_end(i)
is_iostat_eor(i)

relevant for non-advancing
input only (not treated here)

Examples for I/O error handling

Graceful failure if the file input.dat does not exist

Gracefully dealing with an EOF condition

© LRZ 2009-23 Introduction to the Fortran programming language 303

integer :: ios, iu
character(len=strmx) :: errstr
open(iu, file='input.dat', action='READ', form='FORMATTED'‚ &

status='OLD', iostat=ios, iomsg=errstr)
if (ios /= 0) then

write(*,*) 'OPEN failed with error/message: ', ios, trim(errstr)
error stop 1

end if

positive value returned in case of error

ioloop : do
read(iu, fmt=…, iostat=ios, iomsg=errstr) x
if (ios /= 0) then

if (is_iostat_end(ios)) exit ioloop
write(*,*) 'READ failed with error/message: ', ios, trim(errstr)
error stop 1

end if
: ! process x

end do ioloop

negative value returned in case of EOF

Namelist processing (1)

Purpose:

handling of key-value pairs

association of keys and

values is defined in a file

a set of key value-pairs is

assigned a name and called a

namelist group

Example file:

contains two namelist groups

first non-blank item: &

terminated by slash

Required specifications

Reading the namelist

NML specifier instead of FMT

multiple namelists require same

order of reading as specified in

file

© LRZ 2009-23 Introduction to the Fortran programming language 304

&groceries flour=0.2,
breadcrumbs=0.3, salt=0.01 /

&fruit apples=4, pears=1,
apples=7 /

file
my_nml.dat

real :: flour, breadcrumbs, &
salt, pepper

integer :: apples, pears
namelist /groceries/ flour, &

breadcrumbs, salt, pepper
namelist / fruit / pears, apples

open(12, file='my_nml.dat', &
form='formatted', action='read')

read(12, nml=groceries)
! pepper is undefined
read(12, nml=fruit)final value relevant

Namelist processing (2)

Arrays

namelist file can contain array

values in a manner similar to list-

directed input

declaration may be longer (but not

shorter) than input list – remaining

values are undefined on input

I/O is performed in array element

order

Strings

output requires DELIM

specification

otherwise not reusable for name-

list input in case blanks inside

string („too many items in input“)

input requires quotes or

apostrophes around strings

Derived types

form of namelist file (output):

Output

generally uses large caps for

identifiers

© LRZ 2009-23 Introduction to the Fortran programming language 305

character(len=80) :: name
namelist /pers_nm/ name
name='John Smith'
open(17, delim='quote', …)
write(17, nml=pers_nm)

&PERSON
ME%AGE=45,
ME%NAME=“R. Bader“,
YOU%AGE=33,
YOU%NAME=“F. Smith“
/

all Fortran objects
must support the
specified type
components

Internal I/O (1)

What is an internal file?

basically a character entity –
a file storage area inside the
program

which replaces the unit
number in data transfer
statements

What is it used for?

use the internal file as
intermediate storage for
conversion purposes e.g.,

1. read data whose format is not
known in advance („parsing“)

2. prepare output lists
containing a mixture of
various data types

Example 1:

represent an integer as string

Rules:

no explicit connection needed

only formatted sequential
access is possible

explicit, list-directed and
namelist formatting is
possible

© LRZ 2009-23 Introduction to the Fortran programming language 306

character(len=range(1)+1) :: &
i_char

integer :: i
: ! define i
write(i_char, fmt='(i0)') i
write(*, fmt='(a)') &

trim(i_char)

why this spec?

Internal I/O (2)

Rules (cont'd):

file positioning and file inquiry are not available

single record: corresponds to a character scalar

multiple records: correspond to a character array

length of string is the (maximum) record length

Example 2:

generate format dynamically

also illustrates character

string descriptor

© LRZ 2009-23 Introduction to the Fortran programming language 307

character(len=...) :: my_fmt
integer, allocatable :: iarr(:)
integer :: iw
:
iw = … ! prospective width e.g., 4
write(my_fmt, fmt= &
'(''('',i0,''i'',i0,'')'')' &
) size(iarr), iw

:
write(unit=…, fmt=my_fmt) iarr

iarr is allocated to size 7 and defined

value of my_fmt is '(7i4)'

Now proceeding to last exercise session

This concludes the workshop

Thanks for your attention!

	Folie 1: An introduction to the Fortran programming language
	Folie 2: History of Fortran
	Folie 3: Conventions and Flags used in these talks
	Folie 4: Why Fortran?
	Folie 5: When not to use Fortran
	Folie 6: Fortran legacy and course scope
	Folie 7: Some references
	Folie 8: Basic Fortran Syntax Statements, Types, Variables, Control constructs
	Folie 9: Formula translation
	Folie 10: Declarative and executable statements
	Folie 11: Compiling and running (simplest case)
	Folie 12: Invocations for various compilers
	Folie 13: More on I/O
	Folie 14: More on source layout „free source form“
	Folie 15: Fixed source form
	Folie 16: Case insensitivity
	Folie 17: Rules for names
	Folie 18: Fortran‘s type system
	Folie 19: Type parameters (1)
	Folie 20: Type parameters (2)
	Folie 21: Overview of supported KINDs
	Folie 22: Details on complex entities
	Folie 23: Details on character entities (1)
	Folie 24: Details on character entities (2)
	Folie 25: Arrays (1) - Simple array declaration
	Folie 26: Arrays (2): How to use simple arrays
	Folie 27: Conditional execution (1)
	Folie 28: Conditional execution (2)
	Folie 29: Flow diagram for conditional execution
	Folie 30: Conditional execution (3)
	Folie 31: Overview of block constructs
	Folie 32: Repeated execution (1) – the DO block construct
	Folie 33: Repeated execution (2)
	Folie 34: Fine-grained execution control
	Folie 35: Repeated execution (3)
	Folie 36: Simple BLOCK construct
	Folie 37: Nesting of block constructs and fine-grain execution control
	Folie 38: Termination with STOP and ERROR STOP
	Folie 39: Model numbers, Expressions and Assignment
	Folie 40: Data representations
	Folie 41: Inquiry intrinsics for model parameters
	Folie 42: Inquiry intrinsics for model numbers
	Folie 43: … more realistic models
	Folie 44: Closure issues
	Folie 45: Assignment to entities of intrinsic type
	Folie 46: Intrinsic assignment for arrays
	Folie 47: Implicit conversions
	Folie 48: Best practices for conversions
	Folie 49: Conversion intrinsics
	Folie 50: Expressions (1)
	Folie 51: Expressions (2)
	Folie 52: Expressions (3): Intrinsic numeric operators
	Folie 53: Some examples for expression evaluation (a, b, c, d of same numeric type and kind)
	Folie 54: Expressions (4): Mixed mode (numeric)
	Folie 55: Expressions (5): Coercion table
	Folie 56: Expressions (6): Logical operations
	Folie 57: Expressions (7): Relational operators
	Folie 58: Expressions (8): Character ordering
	Folie 59: Character – Integer conversions
	Folie 60: Alternative character ordering
	Folie 61: Expressions (9): Character expressions
	Folie 62: Subprogram units
	Folie 63: Separating out common tasks
	Folie 64: Subprogram code organization
	Folie 65: Module procedure
	Folie 66: Invoking a module procedure (1)
	Folie 67: Invoking a module procedure (2)
	Folie 68: Compiling multiple sources
	Folie 69: Explicit interfaces
	Folie 70: Procedure execution (1)
	Folie 71: Procedure execution (2)
	Folie 72: Declaring INTENT for dummy arguments
	Folie 73: Examples for the effect of INTENT specification
	Folie 74: Functions – a variant of procedure
	Folie 75: Using a RESULT clause
	Folie 76: Optional arguments
	Folie 77: Recursive procedures
	Folie 78: Internal procedures (1)
	Folie 79: Internal procedures (2)
	Folie 80: Array dummy arguments – simplest case
	Folie 81: The dangers of cheating …
	Folie 82: Character string dummy arguments
	Folie 83: Side effects in procedure calls
	Folie 84: A simple example
	Folie 85: Definition of aliasing
	Folie 86: A more subtle example
	Folie 87: Discussion of possible outcomes
	Folie 88: Aliasing restriction on dummy arguments
	Folie 89: Aliasing – further examples (rather artificial)
	Folie 90: Side effects of function calls
	Folie 91: Dealing with side effects in function calls
	Folie 92: Functions declared PURE
	Folie 93: Subroutines declared PURE, etc.
	Folie 94: Passing arguments by value
	Folie 95: Interface specifications and Procedures as arguments
	Folie 96: Recall BLAS example (SSCAL)
	Folie 97: Manually created explicit interface (remember: this is neither needed nor permitted for module procedures!)
	Folie 98: Manually created interface for C library calls
	Folie 99: Further comments on interoperability
	Folie 100: Procedures as arguments (1)
	Folie 101: Procedures as arguments (2)
	Folie 102: Abstract interface
	Folie 103: Derived Types and more on Modules
	Folie 104: Concept of derived type
	Folie 105: Structures
	Folie 106: Structures as dummy arguments
	Folie 107: Accessing type components
	Folie 108: Remarks on storage layout
	Folie 109: What is a module?
	Folie 110: An alternative for communicating with subprograms
	Folie 111: Declaring and using a global variable
	Folie 112: Information hiding (1)
	Folie 113: Information hiding (2)
	Folie 114: Information hiding (3): Opaque derived types
	Folie 115: Information hiding (4): Mixed accessilibity
	Folie 116: The PROTECTED attribute
	Folie 117: Propagation of use-associated entities
	Folie 118: Effect of PRIVATE on use-associated entities
	Folie 119: Name space issues
	Folie 120: How to avoid name space issues for local identifiers
	Folie 121: Some possible naming conventions
	Folie 122: Renaming module entities
	Folie 123: Limiting access on the client
	Folie 124: Use association dependencies
	Folie 125: Typical implementation strategy
	Folie 126: Generating libraries
	Folie 127: Using libraries
	Folie 128: Array Processing
	Folie 129: More on array declarations
	Folie 130: Array inquiry intrinsic functions
	Folie 131: Array sections (1)
	Folie 132: Construction and assignment of arrays
	Folie 133: Array sections (2): Vector subscripts
	Folie 134: Array sections (3): Zero size
	Folie 135: Array sections (4): rank reduction
	Folie 136: Array sections (5): derived types
	Folie 137: Array expressions
	Folie 138: Array intrinsics that perform reductions
	Folie 139: REDUCE: Generic user-defined reduction
	Folie 140: Optional argument dim
	Folie 141: Optional argument mask
	Folie 142: Array location intrinsics
	Folie 143: Transformational array intrinsics
	Folie 144: Array intrinsics: Packing and unpacking
	Folie 145: Performance of serial code
	Folie 146: Some comments on current hardware
	Folie 147: Concept of cache
	Folie 148: Serial vs. parallel execution
	Folie 149: Two very important words from the HPC glossary
	Folie 150: ... and here the second one
	Folie 151: Processor architecture
	Folie 152: Using synthetic loop kernels for performance evaluation
	Folie 153: Vector Triad D(:) = A(:) + B(:) * C(:)
	Folie 154: Performance by type and kind
	Folie 155: Hardware dependence of Triad Performance
	Folie 156: Microprocessor Architecture continued
	Folie 157: Performance of strided triad on Sandy Bridge (loss of spatial locality)
	Folie 158: Avoid loss of spatial locality
	Folie 159: Fortran language features targetting performance
	Folie 160: Fortran Environment
	Folie 161: Intrinsics
	Folie 162: Usage example
	Folie 163: Intrinsic Module ISO_FORTRAN_ENV
	Folie 164: Usage examples
	Folie 165: Scoping and Lifetime of objects
	Folie 166: Examples for nested scoping (1)
	Folie 167: Examples for nested scoping (2)
	Folie 168: Controlling host association for nested scoping
	Folie 169: Lifetime of local and global entities
	Folie 170: Explicit SAVE attribute
	Folie 171: Constant Expressions, Initializations, and Specification Expressions
	Folie 172: What are initializations?
	Folie 173: Initialization of variables (1)
	Folie 174: Initialization of variables (2)
	Folie 175: Implied-do loops (1)
	Folie 176: Implied-do loops (2)
	Folie 177: Implied-do loops (3)
	Folie 178: Default initialization (1)
	Folie 179: Default initialization (2)
	Folie 180: Specification expressions: Providing data needed for specifications
	Folie 181: Specification inquiries and functions
	Folie 182: Examples
	Folie 183: Notes on automatic objects
	Folie 184: Array Processing – Part 2 Procedure interfaces and block constructs
	Folie 185: Assumed shape dummy argument
	Folie 186: Usage of the procedure
	Folie 187: Memory layouts for assumed shape dummy objects
	Folie 188: The CONTIGUOUS attribute
	Folie 189: Assumed size arrays: Typical interface design (for use of legacy or C libraries)
	Folie 190: Assumed size: typical usage
	Folie 191: Assumed size: non-contiguous actual argument
	Folie 192: Assumed size: rank mismatch
	Folie 193: Assumed size: array element as actual argument
	Folie 194: Explicit shape dummy argument
	Folie 195: Array-valued functions
	Folie 196: ELEMENTAL procedures
	Folie 197: Invoking an ELEMENTAL procedure
	Folie 198: WHERE statement and construct („masked operations“)
	Folie 199: Assignment and expression in a WHERE statement or construct
	Folie 200: FORALL statement
	Folie 201: FORALL construct
	Folie 202: Further notes on FORALL
	Folie 203: The DO CONCURRENT construct
	Folie 204: Examples
	Folie 205: Dynamic Entities and Memory management
	Folie 206: Some remarks about memory organization
	Folie 207: Static vs. dynamic memory
	Folie 208: Allocatable objects (1)
	Folie 209: The stat argument
	Folie 210: Allocatable objects (2)
	Folie 211: Rules for allocatable objects
	Folie 212: Allocatable objects (3): Auto-allocation
	Folie 213: Apparent change of semantics?
	Folie 214: Moving an allocation
	Folie 215: The POINTER and TARGET attributes
	Folie 216: Using POINTER entities / states of a POINTER
	Folie 217: POINTER objects and dynamic allocation
	Folie 218: The ASSOCIATED intrinsic
	Folie 219: Aliasing of subobjects
	Folie 220: Pointer initialization
	Folie 221: Dangers using dynamically generated targets (Note: other methods for generating invalid pointers exist)
	Folie 222: Container types
	Folie 223: Container types (2): Object declaration and assignment semantics
	Folie 224: Container types (3): Structure constructor
	Folie 225: Container types (4): Storage layout
	Folie 226: Allocatable and POINTER dummy arguments (explicit interface required)
	Folie 227: INTENT semantics for dynamic objects
	Folie 228: Bounds of deferred-shape objects
	Folie 229: Rank-changing pointer assignment
	Folie 230: CONTIGUOUS pointers
	Folie 231: Allocatable function results (explicit interface required)
	Folie 232: POINTER function results (explicit interface required)
	Folie 233: Opinionated recommendations
	Folie 234: Further performance aspects and use of Parameterized derived types
	Folie 235: Array syntax and assumed shape arrays
	Folie 236: POINTER dummy argument
	Folie 237: Comparing compilers (1)
	Folie 238: Comparing compilers (2)
	Folie 239: Performance of object-based code
	Folie 240: Parameterized derived type (PDT)
	Folie 241: PDT Structures
	Folie 242: Type parameter inquiry
	Folie 243: Comparing AoS vs SoA Memory Layout
	Folie 244: Procedures with PDT arguments
	Folie 245: Performance Comparison on an Intel Skylake 2.3 GHz base frequency core
	Folie 246: Further comments on PDTs
	Folie 247: Generic interfaces and overloading
	Folie 248: Generic Interfaces (1)
	Folie 249: Generic Interfaces (2)
	Folie 250: Generic Interfaces (3): Keyword call
	Folie 251: Generic Interfaces (4) Working across module boundaries
	Folie 252: Generic Interfaces (5) Arrays of differing rank
	Folie 253: Assumed-rank dummy argument (1)
	Folie 254: Assumed-rank dummy argument (2) and SELECT RANK block construct
	Folie 255: Overloading the structure constructor
	Folie 256: Notes on overloading the structure constructor
	Folie 257: Using the overloaded constructor
	Folie 258: Operator overloading
	Folie 259: Extending intrinsic operators
	Folie 260: Programmer-defined operators
	Folie 261: Expressions involving overloaded operators
	Folie 262: Expressions involving defined operators
	Folie 263: Further properties of generic interfaces
	Folie 264: Some limitations of default assignment
	Folie 265: Overloading the assignment operator
	Folie 266: Input and Output to external storage
	Folie 267: Terminology: Record and File
	Folie 268: Handling I/O from Fortran
	Folie 269: Concept of I/O unit
	Folie 270: Associating a file with a unit – The OPEN and CLOSE statements
	Folie 271: Identifying a usable I/O unit
	Folie 272: Specification of I/O lists
	Folie 273: List-directed I/O
	Folie 274: Edit descriptors
	Folie 275: Character string editing
	Folie 276: Table of data edit descriptors
	Folie 277: Table of control edit descriptors
	Folie 278: Formatted I/O: Format definition
	Folie 279: Using data and control edit descriptors (1)
	Folie 280: Using data and control edit descriptors (2)
	Folie 281: Undefined situations ...
	Folie 282: ... and how to avoid them
	Folie 283: Format exhaustion and reversion
	Folie 284: Format exhaustion and reversion continued
	Folie 285: Unformatted I/O
	Folie 286: Unformatted I/O – portability issues
	Folie 287: The OPEN statement in more detail
	Folie 288: Table of additional OPEN specifications
	Folie 289: Changeable connection modes
	Folie 290: Table of changeable connection modes
	Folie 291: The CLOSE statement in more detail
	Folie 292: The INQUIRE statement
	Folie 293: Examples for use of the INQUIRE statement
	Folie 294: Table of INQUIRE specifications specific to that statement
	Folie 295: Specifiers for data transfer statements
	Folie 296: Direct access files (1)
	Folie 297: Direct access files (2)
	Folie 298: Direct access files (3)
	Folie 299: Direct access files (4)
	Folie 300: Concept of file position
	Folie 301: File positioning statements
	Folie 302: Error handling for I/O
	Folie 303: Examples for I/O error handling
	Folie 304: Namelist processing (1)
	Folie 305: Namelist processing (2)
	Folie 306: Internal I/O (1)
	Folie 307: Internal I/O (2)
	Folie 308: This concludes the workshop Thanks for your attention!

