
SENTER Sandman: Using Intel TXT to Attack BIOSes

Xeno Kovah Corey Kallenberg John Butterworth
Sam Cornwell

xkovah@mitre.org @xenokovah
ckallenberg@mitre.org @coreykal

jbutterworth@mitre.org @jwbutterworth3
scornwell@mitre.org @ssc0rnwell

The MITRE Corporation
Approved for Public Release: 14-2053. Distribution Unlimited.

c©2014 The MITRE Corporation. All rights reserved.

Abstract
A comparatively large number of security problems at
the PC BIOS level have been found in the last 2 years
relative to the preceding years [7]. In this paper we
will discuss the interplay between the behavior of Intel
Trusted Execution Technology (TXT) and existing at-
tacks, and how this leads to Intel TXT being useful for
an attacker. We will also discuss how Intel TXT behavior
has changed in “newer CPUs” (not defined by the Intel
documentation), and how that removes the possibility of
these initial attacks, while simultaneously removing the
trustworthiness of technologies like Copernicus 2[8] for
combatting attacks like the “Smite’em” SMM MitM[9].
This leads to a situation where if TXT behaves in the old
way, a system is vulnerable to certain attacks, and if it
behaves in the new way, it’s vulnerable to others.

1 Introduction

The Basic Input/Output System (BIOS) is the first code
external to the CPU that is executed upon startup on In-
tel x86-based PCs. On modern systems it is stored in a
non-volatile flash memory chip accessible via the Serial
Peripheral Interface (SPI) bus, which is in turn acces-
sible via the Platform Control Hub (PCH) or I/O Con-
trol Hub (ICH). The CPU makes a request for address
0xFFFFFFF0, which based on the reset state of hardware
on the system, is directed to the SPI chip.

Because the code from the BIOS executes first on the
system, it is necessarily the most powerful code. It is re-
sponsible for configuring hardware, and loading subse-
quent software. But as has been seen with typical Mas-
ter Boot Record-based boot kits, subverted boot code
can compromise and downgrade the security of code that
runs after it. Beyond this, the BIOS instantiates System
Management RAM (SMRAM), which is the special pro-
tect memory region where code executes from when the
CPU transitions to System Management Mode (SMM).

SMM was originally intended to provide a location with
confidentiality and integrity from which platform ven-
dors could run hardware management and other code.
However SMM execution is an attractive target for at-
tackers because it is functionally the most privileged ex-
ecution domain on the CPU. This is because SMM code
cannot be read (or integrity checked) once it is locked
down; but when it is running it can read and write all
memory for all other code (e.g. hypervisors, OSes, and
applications.)

With this in mind, security of the BIOS is paramount
to the security of the overall system. In this paper we
discuss a novel way to write into the BIOS (e.g. to brick
it or backdoor it) when it would otherwise be deemed
properly secured.

2 Related Work

A recent defensive talk, “Copernicus 2: SENTER the
Dragon”[9], and a recent vulnerability talk, “Setup for
Failure: Defeating SecureBoot”[6] are highly related to
the vulnerability that is discussed in this paper. And
specifically it is the “Charizard” portion, which had been
tacked on to an existing short presentation, beginning on
slide 49, which is the most relevant. As whitepapers do
not exist for either of these talks, the relevant portions
will be re-described here.

2.1 Copernicus 2
Copernicus 2 is an improvement upon MITRE’s
Copernicus[1] tool which was released in 2013. It was
understood at the time of release that Copernicus is a
“best effort” system for performing BIOS vulnerabil-
ity & integrity checking. This is because as a simple
Windows kernel driver, it is vulnerable to attack via all
the typical rootkit-type means such as hooking the OS
filesystem writing routines, hooking it’s IO via a VMM-
based rootkit, or simply targeting it directly. Just like

1



all other security software, with the exception of our
previous Checkmate work[10], it does not provide ad-
equate self-protection against attackers at the same priv-
ilege level (ring 0).

But as if typical kernel-mode subversion was not
enough, in [9] a new generic attack against all software-
based SPI firmware capture mechanisms was shown.
Two variants of such attacks were shown, relying on
either the FSMIE (Flash System Management Interrupt
Enable) bit being set, or on the attacker racing the de-
fender. The FSMIE bit based method was particularly
subversive (at least against software that didn’t know
about it), because it allowed an attacker to reside in
SMM, where defenders can not directly inspect, and Man
in the Middle (MitM) the defender’s SPI flash acqui-
sition attempts. This SMM MitM attacker was named
“Smite’em”.

In the presence of an attacker like Smite’em, it’s de-
sirable to significantly strengthen the defensive software
through the application of trusted computing technol-
ogy. To this end, the improved Copernicus 2 made use
of Intel TXT. More specifically, it was built as a Piece
of Application Logic (PAL) for the open source Flicker
project[11]1. In Intel terminology, the code which is
launched by TXT in a trustworthy way is called the
Measured Launch Environment (MLE), and it is started
with the SENTER instruction. Flicker builds upon the
MLE by essentially creating a framework by which a ba-
sic piece of an application (but probably not the entire
thing), that needs to be trustworthy, can effectively be
statically compiled into a standalone PAL for execution
within the MLE. PALs must be fully self-sufficient, as
they can not expect that they have OS services to rely on,
as any other code outside of the PAL should be treated as
untrustworthy.

Porting Copernicus to a Flicker PAL was relatively
straightforward as it is the type of application which
mostly uses direct assembly-based access to hardware
registers, rather than highly relying on API calls. This
is a property that it shares with the Sandman attacker.
Ultimately, while Flicker provides a robust measurement
& attestation starting point, the core reason for starting to
use TXT was actually because of a side-effect. In the In-
tel TXT Software Development Guide[2] it states, “The
ILP [Initial Launch Processor] must re-enable SMIs that
were disabled as part of the SENTER process; most sys-
tems will not function properly if SMIs are disabled for
any length of time.” This property, that SMIs would
be suppressed on entry to the MLE, would theoretically
mean that any Smite’em-like attacker would be function-
ally suppressed for the duration of the Copernicus 2 run-

1http://flickertcb.sf.net. Code was contributed back by the authors
to fix support for Windows 7 32 bit so that it would properly handle
Physical Address Extensions-based paging, the default paging type.

time, as it need not re-enable SMIs until it was done run-
ning. This is the core property that Copernicus 2, and
Sandman, take advantage of.

2.2 SMI Suppression Attacks

Both the attack code-named “The Sicilian” [5] (after the
chess opening) and “Charizard” [6] (after the pokemon
:P) showed ways to defeat one BIOS protection mech-
anism, if System Management Interrupts (SMIs) could
be prevented from executing their intended handler. But
they go about achieving SMI suppression in two very dif-
ferent ways. The Sicilian utilizes SMM cache poisoning
[?][13] in order to insert a RSM (resume) instruction at
the SMM entry point. This makes SMM return immedi-
ately, doing nothing. The insertion can be removed once
the attacker has written to the BIOS. Charizard, on the
other hand, finds a SMI enable bit for the ICH/PCH, and
temporarily disables SMIs generated by those pieces of
hardware.

The value from disabling SMIs is as follows. One
of the oldest and most frequently used protection
mechanisms on the BIOS is the interaction between
the BIOS CNTL.BIOSWE (BIOS Write Enable) and
BIOS CNTL.BLE (BIOS Lock Enable) bits found via
the LPC interface of the ICH/PCH. When BLE is set
to 1, if BIOSWE is set to 1, it generates an SMI. The
SMI causes the CPU to stop whatever code is currently
running, and transition to SMM. The SMI handler is re-
sponsible for determining whether the BIOS is currently
supposed to be writable (e.g. it may have a policy to only
allow setting BIOSWE to 1 in the event that it’s initiated
by the SMI handler itself.) If the SMI handler determines
that BIOSWE should not be allowed to be set to 1, then it
resets the value to 0, and exits SMM. From the perspec-
tive of the interrupted software, reading back the value of
BIOSWE after having set it, it would look like the write
of BIOSWE to be 1 had never occurred at all.

Therefore the attacker’s approach in both [5] and [6]
was to suppress SMIs, write BIOSWE = 1, and then write
directly to the flash chip via the SPI programming regis-
ters found in the ICH/PCH.

3 SENTER Sandman

As should be obvious when presented in this step-wise
fashion, the Sandman attacker described in this paper is
a new 3rd way to perform SMI suppression style attacks.
It is possible to write malicious Flicker PAL code that
will execute within the context of the MLE. With SMIs
enabled upon entry to the MLE, the Sandman attacker
can set BIOSWE = 1, and proceed to write to the BIOS
to brick or backdoor it.

2



4 Caveats

4.1 Differing behavior for “newer CPUs”

There is another important line of text that was missed
by the authors of Copernicus 2 shortly after the moti-
vating “The ILP must re-enable SMIs that were disabled
as part of the SENTER process; most systems will not
function properly if SMIs are disabled for any length
of time.” That line of text is “Newer CPUs may auto-
matically enable SMIs on entry to the MLE;” This is
a pivotal line. If SMIs are not suppressed upon MLE
entry, then Copernicus 2 is not trustworthy, and Sand-
man is not a valid attacker. It turns out we had only
one test system where Flicker Win 7 32 bit would func-
tion AND where the BIOS was protected primarily by
BIOS CNTL.BLE2. On this system, a “1st generation”
Core i5-540M, we could see that indeed, when the Sand-
man PoC PAL set BIOSWE = 1 and read it back and
printed it, the value was reported as 0. This indicates that
on such systems, SMIs are not suppressed on entry to the
MLE.

An attempt to collect a list, based on the documenta-
tion, of which processors exhibited this behavior proved
fruitless. The furthest we got in our search was to de-
termine that CPUs which support “dual monitor treat-
ment” (which can be tested by checking for bit 49 = 1 in
the IA32 VMX BASIC MSR) should also be suppress-
ing SMIs. While we can of course test this on all sys-
tems that we have access to, it would be nice if a list
existed somewhere. Private discussions with Intel em-
ployees suggested that this will likely be supported on
all “Nehalem” microarchitecture (released Q3 2009) and
newer CPUs.

Importantly the TXT developer guide says that SMIs
“may automatically enable SMIs”. But it does not say
under what condition they may still be suppressed. This
begs the question of whether there are conditions that the
Sandman attacker can control which will allow him to
continue to be relevant on such systems. Here again, we
went looking in the documentation. While the public
documentation does not contain any information, when
we saw that the support was tied to “dual monitor treat-
ment”, we went looking for private docs. This is because
“dual monitor treatment” is another name for the Intel
SMM Transfer Monitor (STM). The STM is effectively
a second virtual machine monitor (hence, “dual moni-
tor”) which is meant to virtualize and jail the SMM code.
This is Intel’s solution for the problem of SMM code run
amuck, capable of subverting normal VMMs. If the sys-
tem supports it, when the MLE is launched, it can indi-
cate that it supports an STM. This is public information

2An HP Elitebook 2540p at revision F09. Revision F22 added ad-
ditional protections beyond BLE.

documented both in the Intel TXT developer guide, and
the normal Intel software developer guide Volume 3[4].

What’s not public is the exact logic whereby the deci-
sion is made to suppress SMIs or not. Intel has a STM
Developers Guide which is still not public, more than 5
and a half years after the last time you might have heard
it mentioned, by ITL in their attack against TXT[12].
However the guide is available to those with an NDA
with Intel (search for Intel document ID 415068). In that
guide there is a helpful picture that describes the logic.
Intel has not granted us permission to excerpt and repro-
duce only that table. However, we can say that there ex-
ist paths by which the Sandman attack, and Copernicus
2 can retain relevance. Unfortunately they are not the
default path, as exhibited by the test on our own system.

5 Defense

In this section we examine how we can defend against
the Sandman attack.

5.1 BIOS Access Controls

As BIOS programmers have been hearing from Intel, us,
and others, it is imperative that they properly set the ac-
cess control on the BIOS. Unfortunately what exactly is
“proper” access control on the BIOS depends both on
the architectural design decisions that have been made,
as well as the moving target of what’s currently known
for BIOS vulnerabilities. E.g. while it would be tempt-
ing to think that vendors need only set SMI LOCK, in
reality we have already found and disclosed an architec-
tural flaw in the protection of the BIOS CNTL.BLE bit.
This will be described in a future publication.

Therefore we will re-state in this publication what
we have stated in past [5] publications [6]: BIOS pro-
grammers need to make use of Protected Range Regis-
ters (PRRs) for any portion of the BIOS flash chip that
they do not want being manipulated after the system has
booted. A lack of the use of PRRs (e.g. as shown by
Copernicus), is a good indication that a system will likely
be vulnerable to one or more attacks.

Another access control method that can poten-
tially help protect against SMI suppression attacks is
BIOS CNTL.SMM BWP. While this should be used
where it’s supported, we are also aware of mechanisms
to bypass this bit as well. However those are imple-
mentation flaws, and not architectural flaws. And PRRs
are currently the only BIOS access control mechanism
for which no architectural bypasses are known (although
documentation suggests that Intel AMT may have this
ability.)

3



5.2 TXT Access Controls

Properly configured BIOS access controls are not always
available from OEMs. Luckily it is still possible for the
end user to configure the system to prevent TXT-born
attackers like Sandman, or other unknown future attack-
ers. This is possible through the use of Launch Con-
trol Policies (LCPs). LCPs provide a way to allow some
whitelisted MLEs to run, while denying everything else.
In this way something like Copernicus 2 could be the
sole allowed MLE, while blocking any possible future
attackers such as Sandman from running.

LCPs are stored in the non-volatile RAM (NVRAM)
in the TPM. Modification of NVRAM data requires au-
thorization of the TPM owner, which takes the form of
a password. Under the assumption that the TPM is be-
ing securely provisioned in order to provide remote at-
testation capabilities for a tool like Copernicus 2, it is
reasonable to expect that the TPM owner authorization
could be used without fear of compromise at provision-
ing time, and then would not need to be exposed to future
LCP-restricted attackers thereafter.

6 Conclusion

In this paper we have described a novel new attack that
could compromise the BIOS of some system which oth-
erwise appear to be fully protected. We call this attacker
the Sandman, because it uses SMI suppression to effec-
tively put the SMI handler to sleep, allowing it to bypass
the BIOS CNTL.BLE protection bit, and write to por-
tions of the BIOS not protected by PRRs or other mech-
anisms.

The SMI suppression behavior of Intel TXT has
changed over time. However we would argue that the
behavior on the newest CPUs of not suppressing SMIs
is highly detrimental. While it does negate the Sand-
man attack, this benefit is far outweighed by the negation
of tools like Copernicus 2 in order to obtain trustworthy
BIOS measurements. That leaves us in a situation where
currently there is no trustworthy software way to perform
BIOS measurements to check for the presence of attack-
ers on currently shipping systems. We plan to address
this in the future by applying our work in Timing-Based
Attestation[10][3] to Copernicus 2, creating Copernicus
3. However we would urge Intel to change the behavior
of the SINIT module to retain SMI suppression upon en-
try to the MLE. It is entirely within their power to fix this
behavior on all shipping systems with a simple software
fix. We would also urge all Intel customers who want to
have trustworthy BIOS measurement capabilities to con-
tact us, so that we can provide you Intel contact informa-
tion where you can also convey your desire for Intel to
provide this fix.

7 Acknowledgements

Thanks to an anonymous Intel employee who, having
seen the Copernicus 2 presentation, made it clear that
we were not properly taking into consideration “newer
CPU” TXT behavior, and the damaging security impli-
cations that has.

References

[1] Copernicus: Question your assumptions about
bios security. http://www.mitre.
org/capabilities/cybersecurity/
overview/cybersecurity-blog/
copernicus-question-your-assumptions-about.
Accessed: 10/01/2013.

[2] Intel TXT software developer’s guide.
http://www.intel.com/content/dam/
www/public/us/en/documents/guides/
intel-txt-software-development-guide.
pdf. Accessed: 10/01/2014.

[3] J. Butterworth, C. Kallenberg, X. Kovah, and
A. Herzog. BIOS chronomancy: Fixing the static
core root of trust for measurement. In Proceedings
of the 2013 ACM SIGSAC Conference on Computer
& Communications Security.

[4] Intel Corporation. Intel 64 and IA-32 Ar-
chitectures Software Developer Manual,
Vol. 3b, Part 2. http://www.intel.
com/content/dam/doc/manual/
64-ia-32-architectures-software_
developer-vol-3b-part-2-manual.
pdf. Accessed: 11/01/2012.

[5] C. Kallenberg, J. Butterworth, X. Kovah, and
C. Cornwell. Defeating Signed BIOS Enforcement.
In EkoParty, Buenos Aires, 2013.

[6] C. Kallenberg, C. Cornwell, X. Kovah, and J. But-
terworth. Setup For Failure: More Ways to Defeat
SecureBoot. In Hack In The Box Amsterdam, Am-
sterdam, 2014.

[7] X. Kovah. Low level PC attack papers timeline.
http://timeglider.com/timeline/
5ca2daa6078caaf4. Accessed: 10/01/2014.

[8] X. Kovah. Playing hide and seek with
BIOS implants. http://www.mitre.
org/capabilities/cybersecurity/
overview/cybersecurity-blog/
playing-hide-and-seek-with-bios-implants.
Accessed: 10/01/2014.

4



[9] X. Kovah, J. Butterworth, C. Kallenberg, and
S. Cornwell. Copernicus 2: SENTER the dragon.
In CanSecWest, Vancouver, Canada, 2013.

[10] X. Kovah, C. Kallenberg, C. Weathers, A. Her-
zog, M. Albin, and J. Butterworth. New results
for timing-based attestation. In Proceedings of the
2012 IEEE Symposium on Security and Privacy.

[11] J. M. McCune, B. Parno, A. Perrig, Michael K. Re-
iter, and Hiroshi Isozaki. Flicker: An execution in-
frastructure for tcb minimization. In Proceedings
of the ACM European Conference in Computer Sys-
tems (EuroSys), April 2008.

[12] R. Wojtczuk and J. Rutkowska. Attacking In-
tel TXT. In BlackHat Federal, Washington D.C.,
USA, 2009.

[13] Rafal Wojtczuk and Joanna Rutkowska. Attacking
smm memory via intel cpu cache poisoning.
http://invisiblethingslab.com/
resources/misc09/smm_cache_fun.
pdf. Accessed: 02/01/2011.

5


