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1 Conditioning

Frequently in probability and (especially Bayesian) statistics we wish to find
the probability of some event A or the expectation of some random variable
X, conditionally on some body of information— such as the occurance of
another event B or the value of another random variable Z (or collection of
them {Zα}). In elementary probability we encounter the usual formulas for
conditional probabilities and expectations

P[A | B] =
P[A ∩ B]

P[B]
E[X | Z] =















R

x f(x,Z) dx
R

f(x,Z)dx
X,Z jointly cont.

P

x f(x,Z)
P

f(x,Z) X,Z discrete.

but this notion breaks down either for distributions which are not jointly
absolutely continuous or discrete, and also when we wish to condition on the
value of infinitely-many (even uncountably-many) random variables {Zα},
as we will when we consider stochastic processes— there is no joint density
function for {X,Zα} even if each finite set has an absolutely continuous joint
distribution.

Since information in probability theory is represented by σ-algebras (here
σ {B} or σ {Zα}), what we need are ways to express, interpret, and compute
conditional probabilities of events and expectations of random variables,
given σ-algebras. As a bonus, this will unify the notions of conditional
probability and conditional expectation, for distributions that are discrete
or continuous or neither. First, a tool to help us.
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1.1 Lebesgue’s Decomposition

Let µ and λ be two positive σ-finite measures on the same meaurable space
(Ω,F). Call µ and λ equivalent, and write µ ≡ λ, if they have the same
null sets— so the notion of “a.e.” is the same for both. More generally, we
call λ absolutely continuous (AC) w.r.t. µ, and write λ ≪ µ, if µ(A) = 0
implies λ(A) = 0, i.e., if every µ-null set is also λ-null (so λ ≡ µ if and only
if λ ≪ µ and µ ≪ λ). We call µ and λ mutually singular, and write µ ⊥ λ,
if for some set A ∈ F we have µ(Ac) = 0 and λ(A) = 0, so µ and λ are
“concentrated” on disjoint sets.

For example— if λ(A) =
∫

A f(x)µ(dx) for some non-negative function f ∈
L1(Ω,F , µ) then λ ≪ µ; if f > 0 µ-a.s., then also µ(A) =

∫

A f(x)−1λ(dx)
and µ ≡ λ. If for some other measure ν and some f, g ∈ L1(Ω,F , ν) with

µ(A) =

∫

A
f(x)ν(dx) λ(A) =

∫

A
g(x)ν(dx)

then µ ⊥ λ if f(x)g(x) = 0 for ν-a.e. x ∈ Ω.

Theorem 1 (Lebesgue Decomposition) Let µ, λ be two σ-finite mea-

sures on (Ω,F). Then there exist a unique pair λa, λs of σ-finite measures

on (Ω,F) and a unique function Y ∈ L1(Ω,F , µ) such that:

λ = λa + λs

λa ≪ µ, λs ⊥ µ

λa(A) =

∫

A
Y (ω)µ(dω), A ∈ F .

Proof Sketch. Set

H = {h ∈ L1(Ω,F , µ) : h ≥ 0, (∀A ∈ F)

∫

A
hdµ ≤ ν(A)

Show that H is closed under maxima, then find {hn} such that

sup

{
∫

hndµ : n ∈ N

}

= sup

{
∫

hdµ : h ∈ H

}

and set h := suphn, Y = h1{h<∞}, and verify the statement of the Theorem.

If µ(dx) = dx is Lebesgue measure on R
d, for example, then this de-

composes any probability distribution λ into an absolutely continuous part
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λa(dx) = Y (x) dx with pdf Y and a singular part λs(dx) (the sum of the
singular-continuous and discrete components). When λ ≪ µ (so λa = λ and

λs = 0) the Radon-Nikodym derivative is often denoted Y = dλ
dµ or λ(dω)

µ(dω) ,
and extends the idea of “density” from densities with respect to Lebesgue
measure to those with respect to an arbitrary “reference” (or “base” or
“dominating”) measure µ. For example, the pmf f(x) = P[X = x] of an
integer-valued random variable X may now be viewed as its pdf with re-
spect to counting measure on Z, so families of discrete distributions now
have pdf’s (if they take values in a common countable set), and random
variables with mixed distributions (truncated normals, for example) have
density functions with respect to a dominating measure that includes point
masses where the distributions have atoms, and Lebesgue measure where
they are absolutely continuous.

To further explore conditioning we apply Lebesgue’s decomposition in a
quite different way, with µ = P a probability measure on (Ω,F ,P) and
λ(dω) = X dP for some X ∈ L1 a σ-finite measure to prove the important:

1.2 The Radon-Nikodym Theorem

Theorem 2 (Radon-Nikodym) Let (Ω,F ,P) be a probability space, X ∈
L1(Ω,F ,P), and G ⊂ F a sub-σ-algebra. Then there exists a unique Y ∈
L1(Ω,F ,P), which we will denote Y = E[X | G] and call the “conditional

expectation of X, given G,” that satisfies for every G ∈ G:

(∀G ∈ G) E Y 1G = E X1G

Proof. First take X to be non-negative, X ≥ 0. Define a measure λ on G
(not on all of F) by

λ(G) := EX 1G =

∫

G
X(ω)P(dω).

This is bounded (since X ∈ L1(Ω,F ,P)) and positive (since X ≥ 0), so by
Theorem 1 we can write λ = λa + λs with λa ≪ P, λs ⊥ P, and λa(G) =
∫

G Y dP for some Y ∈ L1(Ω,G,P). But λ ≪ P by construction, so λs = 0
and the Corollary follows.

For general X, consider separately the positive and negative parts X+ :=
max(X, 0) and X− := max(−X, 0) and set Y := Y+ − Y−.

For events A ∈ F and sub-σ-algebras G ⊆ F we denote the contitional
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probability of A, given G by

P[A | G] = E [1A | G] ,

a G-measurable random variable taking values in the interval [0, 1].

Of course X itself has the property that its integrals over events G ∈ G
coincide with those of X— the point is that Y = E[X | G] is a G-measurable

approximation to X (i.e., one that depends only on the “information” en-
coded in G) with this property. As we’ll see below, if F ⊆ G (or, more
generally, if X is G-measurable, so σ(X) ⊆ G) then the best G-measurable
approximation is E[X | G] = X itself; at the other extreme, if X is indepen-
dent of G, then one can do no better than the constant E[X | G] ≡ EX.

1.2.1 Key Example: Countable Partitions

If G = σ{Λn} for a finite or countable partition {Λn} ⊂ F (so Λm ∩ Λn = ∅
for m 6= n and Ω = ∪Λn), then for any X ∈ L1(Ω,F ,P),

E[X | G] =
∑

1Λn
EΛn

[X] =
∑

1Λn
(ω)

1

P[Λn]
E[X 1Λn

]

is constant on partition elements and equal there to the P-weighted average
value of X (omit from the sum any term with P[Λn] = 0).

In particular— let (Ω,F ,P) be the unit interval with Lebesgue measure, and
let Gn = σ{(i/2n, j/2n]}, 0 ≤ i < j ≤ 2n. Note that Gn ⊂ Gm for n ≤ m and
that F =

∨

Gn. Then for any X ∈ L1(Ω,F ,P),

Xn = E[X | Gn] = 2n

∫ (i+1)/2n

i/2n

X dP, i/2n < ω ≤ (i + 1)/2n.

This is our first example of a margingale, a sequence of random variables
Xn ∈ L1(Ω,F ,P) with the property that Xn = E[Xm | Gn] for n ≤ m; we’ll
see more soon. What happens as n → ∞?

1.2.2 Properties:

• If X = 1A and if G = σ{B} for some A,B ∈ F with 0 < P[B] < 1,

P[A | G](ω) = E[1A | σ(B)](ω) =

{

P[A ∩ B]/P[B] ω ∈ B

P[A ∩ Bc]/P[Bc] ω /∈ B

Thus, conditional expectation (given a σ-algebra G) generalizes the
notion of the contitional probability of one event A given another B.
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• More generally, If X ∈ L1 and if G = σ{Gi} for some (finite or count-
able) measurable partition {Gi} ⊂ F , then

E[X | G](ω) =
∑

1Gi
(ω)

1

P(Gi)

∫

Gi

X(ω)P (dω),

the weighted average of X over the partition element that contains ω.

• If X,Y ∼ f(x, y) are jointly absolutely-continuous and if G = σ(Y ),

E[X | σ(Y )] =

∫

xf(x, Y ) dx
∫

f(x, Y ) dx
.

Thus, conditional expectation (given a σ-algebra G) generalizes the
elementary notion of contional expectation (given an RV Y ). What if
X and Y are both discrete? What if just one is discrete? What if Y
is a vector?

To prove this property, first show that any event G is σ(Y )-measurable
if and only if 1G = φ(Y ) a.s. for some Borel measurable φ (use a π−λ
argument), then extend from 1G to arbitrary σ(Y )-measurable random
variables.

• If X ∈ L1(Ω,F ,P) and if X ⊥⊥ G then

E[X | G] ≡ EX.

In particular, E[X | {Ω, ∅}] = EX. Thus, conditional expectation
(given a σ-algebra G) generalizes the elementary notion of expectation.

• If X ∈ L1(Ω,F ,P) and if H ⊂ G ⊂ F , then

E[X | H] = E
[

E[X | G]
∣

∣H
]

This is called the “tower” (or sometimes “smoothing”) property of
conditional expectation. It’s especially useful when we have entire
nested families (called filtrations) of σ-algebras {Fn} with n < m ⇒
Fn ⊆ Fm; for example, Fn = σ{Xj : j ≤ n} for a family {Xn} of
(non-necessarily-independent) random variables.

• A common use of the tower property is the calculation for G-measurable
Y ∈ L1,

E[XY ] = E

[

E[XY | G]
]

= E

[

E[X | G] Y
]
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• If X ∈ L2(Ω,F ,P) and {Yn} ⊂ L2(Ω,F ,P) then E[X | σ{Yn}] is the
orthogonal projection of X onto the linear span of {Yn} in the Hilbert
space L2(Ω,F ,P). Thus, conditional expectation (given a σ-algebra G)
generalizes the notion of orthogonal projection. This is the best way
to compute conditional expectations in multivariate normal examples.

• Let {Xn}
iid
∼ L1(Ω,F ,P) with means µ = E[Xn] and set Sn =

∑

j≤n Xj ,
Gn = σ{X1, ...,Xn}. Then for n < m,

E[Sm | Gn] = Sn + (m − n)µ;

in particular, Sn is a martingale if µ = 0. If σ2 = VXn < ∞, check
that (Sn − nµ)2 − nσ2 is also a martingale.

• All the usual integration tools and inequalities— DCT, MCT, Fatou,
Jensen, Hölder and Minkowski, Markov, Chebychev, etc.— hold for
conditional expecatations as well. For example,

φ
(

E[X | G]
)

≤ E[φ(X) | G] a.s.

for convex functions φ(·) (note both sides are G-measurable random

variables now, not constants as in the familiar Jensen inequality, so
the “almost surely” qualification is needed). If Xn → X in probability,
for another example, then

E[Xn | G] → E[X | G] a.s.

if |Xn| ≤ Y ∈ L1 is dominated in L1 or if convergence 0 ≤ Xn ր X is
monotone, and also E[|Xn − X| | G] → 0 a.s..

1.3 Borel’s Paradox

Let (X,Y ) be the longitude, 0 ≤ X < 2π)) and latitude, −π/2 ≤ Y ≤ π/2,
of a point drawn uniformly from a sphere S (perhaps the globe). What is its
conditional distribution of (X,Y ), given that it lies on a great sircle C? This
famously ill-posed question helps motivate a careful consideration of condi-
tioning. If the “great circle” is the equator Y = 0, the answer is the (perhaps
expected) uniform distribution, with latitude X ∼ Un

(

[0, 2π)
)

. But if the
great circle is, say, the prime meridian X = 0, then the point is much more
likely to be near the equator (where an interval of Y = 0± 1 degree latitude
has a large area) than near either pole (where it doesn’t); in that case the
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conditional distribution of Y has density f(y | x) = 1
2 cos(y)1[−π/2,π/2](y)

for any 0 ≤ x < 2π.

We simply cannot meaningfully condition on the null event that (X,Y ) lies
on a set of zero probability, such as a great circle. We can condition on
events of positive probability, or on the σ-algebra generated by a random
variable.

In Radon spaces (which include R
d and all complete separable metric spaces)

these notions are closely related; in particular, we can always compute a ver-
sion of the conditional expectation of one random-variable X given another
Z as E[X | Z] = φX(z) for the limit

φX(z) = lim sup
ǫ→0

E[X | {|Z − z| < ǫ} ].

Let’s use this to try to answer the question: What is the conditional dis-
tribution of the horizontal component X of a point drawn from the unit
square, given that the point lies on the bottom edge? Let (X,Y ) be the
coordinates of a point drawn uniformly from the unit square and 0 < ǫ < 1.
For 0 < x < 1 we can compute

P[X ≤ x | 0 ≤ Y ≤ ǫ] =
ǫx

ǫ
= x

and conclude (taking ǫ → 0) that the conditional distribution of X, given
Y = 0, is the standard uniform, and hence the conditional expectation
E[X | Y = 0] = 1/2. Similarly if we let R = Y/X be the ratio of Y to X,
we can also compute

P[X ≤ x | 0 ≤ R ≤ ǫ] =
ǫx2/2

ǫ/2
= x2,

so the conditional distribution of X, given R = 0, is Be(2, 1), with con-
ditional mean E[X | R = 0] = 2/3. Note that both of these “events” on
which we condition are the null event that (X,Y ) lies on the bottom edge
of the square— another example of Borel’s paradox. Really these two dif-
ferent results were answers to different questions: one found the values of
P[X ≤ x | σ{Y }] and E[X | σ{Y }], the other found P[X ≤ x | σ{R}] and
E[X | σ{R}]. Geometrically, what do events in σ{Y } and those in σ{R} look
like in the square? For an arbitrary density f(x) on the unit interval, can
you find a random variable Z (a function of X and Y ) such that {Z = 0} is
the bottom edge of the square and the conditional distribution of X given
Z = 0 is f(x) dx? Are any conditions on f(x) needed?
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