
TAIKO: A DECENTRALIZED ETHEREUM-EQUIVALENT ZK-ROLLUP

1.2.2 (March 28, 2023)

TAIKO LABS (INFO@TAIKO.XYZ)

Abstract. An Ethereum-equivalent ZK-Rollup allows for scaling Ethereum without sacrificing security or compatibility.
Advancements in Zero-Knowledge Proof cryptography and its application towards proving Ethereum Virtual Machine
(EVM) execution have led to a flourishing of ZK-EVMs, now with further design decisions to choose from. Taiko aims
to be a decentralized ZK-Rollup, prioritizing Ethereum-equivalence. Supporting all existing Ethereum applications,
tooling, and infrastructure is the primary goal and benefit of this path. Besides the maximally compatible ZK-EVM
component, which proves the correctness of EVM computation on the rollup, Taiko must implement a layer-2 blockchain
architecture to support it. This architecture seeks to be as lightweight, decentralized, and permissionless as possible, and
consists of Taiko nodes, provers, and smart contracts. Taiko nodes construct rollup blocks from users’ L2 transactions
and propose them to L1. Provers generate ZK-SNARK proofs asserting the validity of L2 transactions and blocks. A
set of smart contracts deployed on Ethereum L1 acts as the data availability mechanism and verifier of the ZKPs.

1. Introduction

Ethereum is well on its way into executing its rollup-
centric roadmap to achieve scalability[1]. This progress
has been shared by the independent rollup projects, as well
as Ethereum itself which has coordinated to accommodate
rollup-friendly upgrades.

At its base layer, facing the blockchain trilemma,
Ethereum has always been unwilling to sacrifice decentral-
ization or security in favour of scalability. These principles
have made it the most compelling network to secure value.
Its popularity, however, has often congested the network,
leading to expensive transaction fees and crowding out cer-
tain users and use cases. To serve as the world’s settlement
layer for an internet of value, the activity that Ethereum
settles will increasingly be executed on rollups - layer-2
scaling environments tightly coupled to and secured by
Ethereum.

Rollups have shifted the tradeoff space: scaling to serve
all users who seek to transact on Ethereum - and enabling
lesser-value, non-financial applications - without subor-
dinating Ethereum’s strong claim of credible neutrality.
There now exists new tradeoff space among different rollup
constructions, and there exists a hope to again shift the
solution curve, rather than move along it. Taiko attempts
to do exactly that, by implementing a ZK-Rollup that
stays as true to the EVM and Ethereum specifications as
possible, while mitigating drawbacks of non-ZK-optimized
facets of the specifications.

Taiko aims for full Ethereum-equivalence, allowing our
rollup to support all existing Ethereum smart contracts
and dapps, developer tooling, and infrastructure. Com-
plete compatibility benefits developers who can deploy
their existing solidity contracts as is, and continue using
the tools they are familiar with. This compatibility also
extends to network participants and builders of Taiko’s
L2 blockchain, who can, for example, run Taiko nodes
which are minimally modified Ethereum execution clients
like Geth, and reuse other battle-hardened infrastructure.
Finally, it extends to end-users, who can experience the
same usage patterns and continue using their preferred
Ethereum products. We have seen the strong demand for

cheaper EVM environments empirically, with dapp and
protocol developers as well as users often migrating to
sidechains or alternative L1s which run the EVM, even if
it meant much weaker security guarantees.

To be Ethereum-equivalent means to emulate Ethereum
along further dimensions, too. Prioritizing permissionless-
ness and decentralization within the layer-2 architecture
ensures there is no dissonance between the environments,
and that the Ethereum community’s core principles are up-
held. With calldata cost reductions in the past[2], and EIP-
4844[3] and other mechanisms in the future, Ethereum’s
commitment to rollups is strong and credible; rollups’ com-
mitment to Ethereum ought to be the same.

2. Previous Work

The Ethereum ecosystem began looking towards layer-
2 solutions for scaling beginning in 2017 with Plasma[4].
Layer-2s move computation off-chain, and keep data either
on Ethereum, or also off-chain.

Rollups, which put some compressed data per trans-
action on Ethereum, emerged as the leading scalability
path for Ethereum over the past four years or so, drawing
more interest and excitement versus other layer-2 solutions
(Plasma and State Channels) due to the strong security
guarantees they offer, as well as the broader range of appli-
cations they can support. Initially designed and proposed
by Vitalik Buterin[5] and Barry Whitehat[6] and other
Ethereum researchers in 2018, ZK-Rollups were imple-
mented on Ethereum mainnet since 2019, beginning with
Loopring.

A drawback of ZK-Rollups back then was that due
to constraints on ZKP capability, they were application-
specific and not generalizable, thus precluding many
Ethereum use cases and composability. The full power
of the EVM could not be wielded within such an envi-
ronment. A different form of rollup, Optimistic rollups,
such as those implemented by Optimism and Arbitrum
in 2021, were able to achieve EVM-compatibility, relying
on cryptoeconomic games to verify state transitions with
fraud proofs, as opposed to validity proofs. Among the
drawbacks of relying on fraud proofs instead of validity

Date: March 28, 2023.

1



TAIKO: A DECENTRALIZED ETHEREUM-EQUIVALENT ZK-ROLLUP 1.2.2 2

proofs are 1) reliance on network participants to find in-
correct state as opposed to reliance on cryptography, and
2) a relatively lengthy time to finality, which can delay
moving assets out of the L2, as well as hinder cross-rollup
composability.

The holy grail was widely recognized to be the best
of both worlds: EVM rollups, with computation verified
by ZK proofs. These ZK-EVMs have been in the works
for a few years, with projects such as zkSync, Starkware,
Polygon, and Scroll building implementations, and the
Ethereum Foundation playing a critical role in R&D, with
their Privacy and Scaling Explorations unit[7]. Advance-
ments by other projects and researchers, such as ZCash and
Aztec have also greatly advanced the ZK proving systems
required. The differences in implementations mainly exist
in how closely the rollups will support the EVM, versus
make adjustments towards a ZK-favourable VM. The pri-
mary trade-off today is thus between EVM-compatibility,
and ZK-efficiency for proof generation. Taiko’s aim is
to prioritize EVM-equivalence down to the opcode level,
and Ethereum-equivalence at the broader systems level,
while mitigating any proving performance drawbacks via
protocol design, which we describe in the rest of this paper.

3. Design Principles

Taiko’s ZK-Rollup design follows a few principles:

(1) Secure. The design should prioritize security
above all else.

(2) Minimal. The design should be simple and focus
only on the core ZK-Rollup protocol, not its up-
gradeability, governance, low-level optimizations,
non-core bridging functionality, etc.

(3) Robust. The design should not depend on
game theory for security. All security assump-
tions should be directly or indirectly enforced by
Ethereum and the protocol. For example, there
should be no need to use a Proof-of-Stake-like
system to slash participants for bad behavior.

(4) Decentralized. The design should encourage a
high degree of decentralization in terms of block
proposing and proving. No single party should be
able to control all transaction ordering or be solely
responsible for proving blocks. Being sufficiently
decentralized implies that the protocol should keep
working in a reliable manner in adversarial situa-
tions.

(5) Permissionless. Anyone willing should be able
to join and leave the network at any time, without
causing significant disturbance to the network or
being detrimental to the party in question. No
single entity should have the power to allowlist or
blocklist participants.

(6) Ethereum-Aligned. The goal is to help
Ethereum scale in the best possible way. Ether is
used to pay the L2 transaction fees.

(7) Ethereum-Equivalent. The design should stick
to the design of Ethereum as closely as possible,
not only for compatibility reasons but also for the
expectations and demands of users of Ethereum
L2 solutions.

With these principles, our objective is to design and
implement a fully Ethereum-equivalent (type-1) ZK-Rollup

[8]. This not only means that Taiko can directly interpret
EVM bytecode, but also uses the same hash functions, state
trees, transaction trees, precompiled contracts, and other
in-consensus logic. We do however disable certain EIPs in
the initial implementation[9] that will be re-enabled later
(see Section B).

4. Overview

Taiko aims to build a secure, decentralized and permis-
sionless rollup on Ethereum. These requirements dictate
the following properties:

(1) All block data required to reconstruct the post-
block state needs to be put on Ethereum so it
is publicly available. If this would not be the
case, Taiko would not only fail to be a rollup but
would also fail to be fully decentralized. This data
is required so that anyone can know the latest
chain state and so that useful new blocks can be
appended to the chain. For the decentralization
of the proof generation Taiko requires an even
stronger requirement: all block data needed to be
able to re-execute all work in a block in a step-by-
step fashion needs to be made public. This makes
it possible for provers to generate a proof for a
block using only publicly known data.

(2) Creating and proposing blocks should be a fast
and efficient process. Anyone should be able to
add blocks to the chain on a level playing field,
having access to the same chain data at all times.
Proposers, of course, should be able to compete
on e.g. transaction fees and Maximal Extractable
Value (MEV) [10].

We achieve this by splitting the block submission pro-
cess in two parts:

Block proposal: When a block gets proposed the
block data is published on Ethereum and the block
is appended to the proposed blocks list stored in
the TaikoL1 contract. Once registered, the proto-
col ensures that all block properties are immutable.
This makes the block execution deterministic: the
post-block state can now be calculated by anyone.
As such, the block is immediately verified. This
also ensures that no one knows more about the
latest state than anyone else, as that would create
an unfair advantage.

Block verification: Because the block should al-
ready be verified once proposed, it should not be
possible for the prover to have any impact on how
the block is executed and what the post-block
state is. All relevant inputs for the proof gen-
eration are verified on L1 directly or indirectly
to achieve deterministic block transitions. As all
proposed blocks are deterministic, they can be
proven in parallel, because all intermediate states
between blocks are known and unique. Once a
proof is submitted for the block and its parent
block, we call the block on-chain verified.

5. The Taiko Blockchain

The Taiko blockchain is, as you’d expect, made up of
blocks. A block is a collection of transactions that are
executed sequentially with some shared property values as



TAIKO: A DECENTRALIZED ETHEREUM-EQUIVALENT ZK-ROLLUP 1.2.2 3

described in Section 5.2.2. New blocks can be appended to
the chain to update its state, which can be calculated by
anyone by following the protocol rules for the execution of
the transactions.

5.1. Core Contracts. The Taiko ZK-Rollup protocol has
two major smart contracts deployed on L1 and L2, respec-
tively.

5.1.1. TaikoL1. Deployed on Ethereum. This contract on
L1 is used to propose, prove, and verify L2 blocks. TaikoL1
maintains the following state variables:

numProposedBlocks: The total number of pro-
posed blocks, and the ID for the next proposed
block, formally Ri.

proposedBlocks: The list of proposed blocks, for-
mally Rb.

lastVerifiedBlockId: The ID of the last verified
block, formally Rf .

forkChoices: The mapping from proposed block
IDs to their Fork Choices, formally Rf . The fork
choices for the i-th block is Rf [i]. Fork Choices
are discussed in detail in Section 5.5.

5.1.2. TaikoL2. Deployed on Taiko. This contract on L2
allows us to reuse the programmability of the EVM to en-
force certain protocol properties without having to extend
other Taiko subsystems. This contract currently facilitates:

(1) Anchoring, an important concept in Taiko’s design,
which is discussed in Section 5.4.

(2) Proving that a proposed block is invalid, which is
explained in Section 5.5.1.

5.2. Proposing Blocks. Any willing entity can propose
new Taiko blocks using the TaikoL1 contract. Blocks are
appended to a list in the order they come in (which is
dictated by Ethereum). Once the block is in the list it
is verified and nodes can apply its state to the latest L2
state (see Section 4). Certain blocks however are deemed
invalid by the protocol and these blocks will be ignored
(see Section 5.5.1).

5.2.1. Proposed Block. A proposed block in Taiko is the
collection of information (known as the block’s Metadata),
C, and a list of transactions, L, (known as the block txList).

Formally, we can refer to a proposed block as Ḃ:

Ḃ ≡ (ḂC, ḂL) ≡ (C,L)(1)

5.2.2. Block Metadata. The block metadata, C, is a tuple
of 9 items comprising:

id: A value equal to the number of proposed blocks.
The genesis block has an id of zero; formally Ci.

beneficiary: The 20-byte address to which all trans-
action fees in the block will be transferred; formally
Cc.

gasLimit: The total gas limit used by the block;
formally Cl.

timestamp: The timestamp used in the block, set
to the enclosing L1 timestamp; formally Cs.

mixHash: The mixHash value used in the block, set
to the enclosing L1 mixHash; formally Cm.

extraData: The extraData value for the L2 block.
This must be 32 bytes or fewer; formally Cx.

txListHash: The Keccak-256 hash of this block’s
txList; formally Ct.

l1Height: The enclosing L1 block’s parent block
number; formally Ca.

l1Hash: The enclosing L1 block’s parent block hash;
formally Ch.

5.2.3. txList. The txList is the RLP-serialised list of all
the transactions in an L2 block. As future improvements
like data sharding (see Section 9.1) and compression (see
Section 9.4) will make this data less accessible from L1
smart contracts, we make sure not to depend on the actual
data itself (except currently to calculate its hash). This
will allow us to easily switch to other, more efficient, meth-
ods of storing this data on Ethereum. It is likely that it
will be difficult to even bring this data back to an L1 smart
contract because this is severely limited by the transaction
data gas cost and the Ethereum block gas limit.

5.2.4. Proposed Block Intrinsic Validity. The proposed
block must pass an Intrinsic Validity test before it is
accepted by the TaikoL1 contract.

We are able to define the Intrinsic Validity function as:

V b(Ḃ) ≡ V b(C,L)(2)

≡ Ri ≤ Rf +KMaxNumBlocks ∧
∥L∥ > 0 ∧
∥L∥ ≤ KTxListMaxBytes ∧
Cc ̸= 0 ∧
Ci = Ri ∧
Cs = TIMESTAMP ∧
Cm = DIFFICULTY ∧
Ct ̸= 0 ∧
Ct = KEC(L) ∧
Ca = NUMBER− 1 ∧
Ch = BLOCKHASH(Ca)

After passing the test, the proposed block is appended
to the proposed block list Rb and Ri is incremented by
one.

5.3. Block Validation and Mapping. The protocol
filters proposed blocks using a txList Intrinsic Validity
Function V l on each block’s txList L. If V l(L) returns
False, the proposed block is dropped and ignored by L2
nodes; otherwise, the proposed block will map to an actual
Taiko L2 block using the Block Mapping Function M(Ḃ).

5.3.1. Validation. The txList Intrinsic Validity function
requires:

(1) The txList is RLP decodable into a list of transac-
tions, and;

(2) The number of transactions is no larger than the
protocol constant KBlockMaxTxs, and;

(3) The sum of all transactions’ gasLimit is no larger
than the protocol constant KBlockMaxGasLimit, and;

(4) Each and every transaction’s signature is valid, i.e.
it does not recover to the zero address.



TAIKO: A DECENTRALIZED ETHEREUM-EQUIVALENT ZK-ROLLUP 1.2.2 4

Formally, V l(L) is defined as:

V l(L) ≡ NOERR(T ≡ RLP
′(L)) ∧(3)

∥T∥ ≤ KBlockMaxTxs ∧

(

∥T∥−1∑
j=0

T [j]g) ≤ KBlockMaxGasLimit ∧

∥T∥−1∏
j=0

(T [j]g ≥ KTxMinGasLimit) ∧

∥T∥−1∏
j=0

(NOERR(ECRECOVER(T [j]) ̸= 0))

Where NOERR(S) is a catch-error function that returns
False if statement S throws an error; RLP′ is the RLP
decoding function; Tg is a transaction’s gasLimit;

The txList Intrinsic Validity function will be called on
L2 and not on L1 because of the reasons explained in
Section 5.2.3.

5.3.2. Mapping. A proposed block where both V b(Ḃ) and

V l(ḂL) hold true will map to an actual Taiko block.
Taiko blocks are identical to Ethereum blocks, as defined

by the Ethereum Yellow Paper[11]:

BH ≡ (Hp, Ho, Hc, Hr, Ht, He, Hb, Hd,(4)

Hi, Hl, Hg, Hs, Hx, Hm, Hn)

BU ≡ [](5)

B ≡ (BH , BT , BU )(6)

Where Hp is the block’s parentHash, Ho is the ommer-
sHash, Hc is the beneficiary, Hr is the stateRoot, Ht is
the transactionsRoot, He is the receiptsRoot, Hb is the
logsBloom, Hd is the difficulty, Hi is the block number, Hl

is the gasLimit, Hg is the gasUsed, Hs is the timestamp,
Hx is the extraData, Hm is the mixHash, Hn is the nonce;
BT a series of the transactions; and BU is a list of ommer
block headers but this list will always be empty for Taiko
because there is no Proof-of-Work.

Transactions are identical to Ethereum transactions as
defined by the Ethereum Yellow Paper[11]. However, only
type 0 (legacy) transactions will be supported initially
while EIP-1559 is disabled (but will be enabled in future
versions).

A proposed block can only be mapped to a Taiko block
in a Mapping Metadata which is the world state σ:

σ ≡ (δ, h[1..256], d, i, θ)

Where δ is the state trie, h[1..256] are the most recent
256 ancestor block hashes, d is Taiko’s chain ID, θ is the
anchor transaction, and i is the block number.

Now we can define the block mapping function M as:

M(B) ≡ M(H,T, U),(7)

≡ M(δ, h[1..256], d, i, θ, Ḃ, )

≡ M(δ, h[1..256], d, i, θ, C, L)

such that:

CHAINID = ∧(8)

NUMBER = i ∧
U = [] ∧
T = θ :: V t(RLP′(L)) ∧
Hp = h(1) ∧
Ho = KEmptyOmmersHash ∧
Hc = Cc ∧
Hd = 0 ∧
Hi = i ∧
Hl = Cl +KAnchorTxGasLimit ∧
Hs = Cs ∧
Hx = Cx ∧
Hm = Cm ∧
(Hr, Ht, He, Hl, Hg) = Π(σ, (T0, T1, ...))

Where Π is the block transition function; :: is the list
concatenation operator; V t is the “Initial Tests of Intrinsic
Validity” function defined in the Transaction Execution
section of the Ethereum Yellow Paper. To avoid confu-
sion, in this document, we call V t the Metadata Validity
function.

V t(RLP′(L)) yields a list of transactions that pass the
tests; transactions that don’t pass the tests are ignored
and will not be part of the actual L2 block. Note that it
is perfectly valid for V t(RLP′(L)) to return an empty list.

5.4. Anchor Transaction. The anchor transaction is a
way for the protocol to make use of the programmability
of the EVM (which we already need to be able to proof) to
enforce certain protocol behavior. We can add additional
tasks to anchor transactions to enrich Taiko’s functionali-
ties by writing standard smart contract code (instead of
requiring more complicated changes to Taiko’s ZK-EVM
and node subsystems).

The anchor transaction is required to be the first trans-
action in a Taiko block (which is important to make the
block deterministic). The anchor transaction is currently
used as follows:

(1) Persisting l1Height Ca and l1Hash Ch, data inher-
ited from L1, to the storage trie. These values can
be used by bridges to validate cross-chain messages
(see Section 7).

(2) Comparing ρi−1, the public input hash stored by
the previous block, with KEC(i − 1, d, h[2..256]).
The anchor transaction will throw an exception
if such comparison fails. The protocol requires
the anchor transaction to execute successfully
and will not accept a proof for a block that
fails to do so. Note that the genesis block has
ρ0 ≡ KEC(0, d, [0, ..., 0]).

(3) Persisting a new public input hash

ρi ≡ KEC(i, d, h[1..255])

to the storage trie for the next block to use.
This allows transactions, in the current and all
following blocks, to access these public input data
with confidence as their values are now covered by
ZK-EVM’s storage proof.



TAIKO: A DECENTRALIZED ETHEREUM-EQUIVALENT ZK-ROLLUP 1.2.2 5

With anchoring, the block mapping function M can be
simplified to:

B ≡ (H,T, U),(9)

≡ M(δ, θ, Ḃ, )

≡ M(δ, θ, C, L)

5.4.1. Construction of Anchor Transactions. All anchor
transactions are signed by a Golden Touch address with a
revealed private key.

Anchor transactions are constructed by Taiko L2 nodes
as follows:

θx = 0 ∧(10)

θn = δ[KGoldenTouchAddress]n + 1 ∧
θp = 0 ∧
θg = KAnchorTxGasLimit ∧
θt = KGoldenTouchAddress ∧
θv = 0 ∧
θd = KAnchorTxSelector :: Ca :: Ch ∧
(θr, δs) = K1ECDSA(δ,KGoldenTouchPrivateKey)

Where K1ECDSA is the ECDSA[12] signing function with
the internal variable k set to 1, which guarantees the trans-
action’s signature to only depend on the transaction data
itself and is therefore deterministic.

According to the ECDSA’s spec, when k is 1, θr must
equal Gx, the value of the x-coordinate of the base point
on the SECP-256k1 curve. The TaikoL1 contract verifies
this assertion.

5.5. Proving Blocks. A proof needs to be submitted to
Ethereum so that a block can be on-chain verified. We
stress again that all proposed blocks are verified immedi-
ately because proposed blocks are deterministic and cannot
be reverted. The prover has no impact on the post-block
state. The proof is only required to prove to the TaikoL1
smart contract that the L2 state transitions and the rollup
protocol rules are fully constrained. These on-chain veri-
fied L2 states are made accessible to other smart contracts
(and indirectly to other L2s) so they can have access to the
full L2 state, which is critical for e.g. bridges (see Section
7).

Blocks can be proven in parallel and so proofs may
be submitted out-of-order. As a result, when proofs are
submitted for blocks where the parent block is not yet
verified, we cannot know if the proof is for the correct state
transition. A proof on its own can only verify that the
state transition from one state to another state is done
correctly, not that the initial state is the correct one. As
such, proving a block can create a Fork Choice which is
an attestation that the block in question transits from a
prover-selected parent block to a correctly calculated new
world state. It is important to note that there is only
a single valid fork choice per block: the fork choice that
transitions from the last on-chain verified block to the
next valid proposed block. All other fork choices use an
incorrect pre-block state.

A Fork Choice is a tuple of 3 elements:

E ≡ (Hp, Hh, [(a1, p
z
1, [p

m1
1 , ...]), ...])(11)

where Hp is the block’s parent hash, Hh ≡ KEC(RLP(H))
is the hash of the proposed block, and (ai, p

z
i , [p

m1
i , ...])

are the i-th prover’s address and the proofs. pz is a proof
that shows the state transition from the parent hash to
the block hash is correct, and [pm1 ,...] are Merkle proofs
in the storage, transaction, and/or receipt trie that prove
the anchor transaction has been executed successfully as
the first transaction of the L2 block.

Taiko accepts up to KMaxProofsPerForkChoice proofs per
fork choice. Proofs for the correct fork choice will be el-
igible for compensation. No limit is set on the number
of fork choices as the protocol does not know which fork
choice for a block is the correct one until the parent block
is on-chain verified.

5.5.1. Invalid Blocks. If a block fails to pass the Intrinsic
Validity Function V l, the block can be proven to be invalid
using a valid throw-away L2 block Ḃ whose first transac-
tion is an invalidateBlock transaction on the TaikoL2
smart contract with the target block’s txList as the sole
input. invalidateBlock will emit an BlockInvalidated

event with the target block’s txList hash as a topic. On
L1, we only need to verify that:

(1) The throw-away block Ḃ is valid, and;
(2) The first event emitted in the block is a

BlockInvalidated event with the expected txList
hash.

The Fork Choice for an invalid block is:

E ≡ (Hp, Hh, [(a1, p
z
1, p

m
1 ), ...])(12)

Hh ≡ KBlockDeadEndHash(13)

Where KBlockDeadEndHash is a special value marking this
Fork Choice is for an invalid block; pz and pm prove the
throw-away block is invalid, not the target proposed block.

It’s important to note that these throw-away blocks
are never a part of the Taiko chain. The only purpose of
the block is to be able reuse the EVM proving subsystem
so that we can create proofs for blocks with unexpected
transaction data.

5.6. On-chain Verification of Blocks. Assuming the
j-th block is the last verified valid block. The i-th block
(i > j) can be verified if 1) the (i− 1)-th block has been
verified, and 2) the i-th block has a Fork Choice E whose
parent block hash E(Hp) equals the j-th block’s hash.

If Hh equals KBlockDeadEndHash, the i-th block is marked
as verified but j is not updated (otherwise j changes to i
and so the i-th block would become the last verified valid
block while the block is not valid). So on L1, because each
block needs to handled, valid or invalid, all blocks are part
of the block chain through the Fork Choices. In Taiko
nodes invalid blocks can be immediately dropped and are
never part of Taiko’s canonical chain.

6. ZK-EVM Circuits

The ZK-EVM circuits is the core subsystem which al-
lows Taiko to prove an Ethereum-equivalent chain in sub-
linear time. This key property allows Taiko to be a scal-
ability solution for Ethereum without additional security
assumptions, except that the cryptography and code used
in the implementation is secure.



TAIKO: A DECENTRALIZED ETHEREUM-EQUIVALENT ZK-ROLLUP 1.2.2 6

6.1. Proof Generation. The proof computation function

Ĉ for address a is defined as:

pz(a) ≡ Ĉ(a,H, θ, L,∆(θ :: V t(L)), κz)(14)

Where H is the block header, θ is the anchor transaction,
L is the block’s RLP-encoded txList, ∆ is the EVM trace
logs generated from running θ and all transactions in L
that the Contextual Validity V t function returns True, and
κz is ZK-EVM’s proving key.

We assume:

(1) The ZK-EVM always generates a different proof
if an input is changed.

(2) The ZK-EVM is unable to generate a proof if the
txList fails to pass the Block Intrinsic Validity test
or any transaction (including the anchor trans-
action) fails to pass the transaction Contextual
Validity test.

(3) The ZK-EVM disables the same set of Ethereum
upgrades listed in Appendix B

By making the prover address a an input we can en-
sure a proof is directly linked to a specific address. This
prevents proofs from being stolen while their enclosing
transactions are pending in Ethereum’s mempool as chang-
ing the address requires regenerating the complete proof.

6.2. Proof Verification. To verify a validity proof pz

generated by address a for the i-th block, we have the
verification function defined as:

V̂ (pz, a, h[i], KEC(L), κv)(15)

Where h[i] is the block’s block hash, κv is ZK-EVM’s
verification key.

7. Cross-Chain Communication

Taiko enables third parties to develop cross-chain
bridges. To facilitate this, the protocol ensures that a
subset of L1 block hashes are accessible from L2 smart con-
tracts and a subset of L2 block hashes are also accessible
from the TaikoL1 smart contract. These block hashes can
be used to verify the validity of cross-chain messages in
standard smart contracts. Taiko does not have to provide
any bridging solutions itself, as the supporting core func-
tionality are ready for others to build upon. An exception
to this is the Ether bridge which requires special handling
(see Section 7.1).

On Ethereum, the TaikoL1 contract persists the height
and hash of the L2 blocks. On Taiko, the anchor function
in the TaikoL2 contract is used to persist the height and
block hash of the previous Ethereum block (from when the
L2 block was proposed), as well as the previous L2 block
hash (which allows L2 smart contracts to easily fetch the
full history of L2 block hashes).

7.1. Ether on L2. The Taiko Ether bridge will allow
users to bridge Ether from and to Taiko. 2128 Ether is
minted to a special vault contract called the TokenVault
in the genesis block. When a user deposits Ether to L2,
the same amount of Ether will be transferred from the
TokenVault to the user on L2. When a user withdraws
some Ether from L2, Ether on L2 will be transferred back
to TokenVault (no L2 Ether will ever be burnt).

A small amount of Ether will also be minted to a few
EOAs to bootstrap the L2 network, otherwise nobody
would be able to transact. To make sure the Ether bridge
is solvent, a corresponding amount of Ether will be de-
posited to the Ether bridge on L1.

8. Fees and Rewards

Taiko users pay Ether (ETH) as their transaction fees;
block proposers receive all the transaction fees in every
block they successfully propose and in return, they need to
burn a certain amount of Taiko Token (TKO) to propose
the blocks to the protocol and pay Ether to Ethereum
validators for their block proposals to be included in L1
blocks. When L2 blocks are verified by block provers, the
protocol mints additional TKO tokens to reward the proofs.
The TKO token is transparent to L2 users, which allows
the same user experience as on the Ethereum chain.

Figure 1. The flow of payments, fees
and rewards.

8.1. Motivation. We design price dynamics that evolve
with respect to a number of different factors (without the
use of any price oracles):

(1) The L2 block space. Although block space is much
cheaper than on L1, it is still necessary to adjust
its price in a way to avoid L2 space being abused.
We will enable EIP-1559 on Taiko L2 to dynami-
cally adjust the block space price in a later release
(see Section 9.6).

(2) Protection against external factors, such as TKO
token price fluctuations and competing L2 solu-
tions, that can deter proposer and prover engage-
ment with the protocol. Our design enables a
dynamic system that introduces fee discounts and
reward premiums as incentives, when current en-
gagement falls below average proposal/proof delay
statistics.

(3) The current number of unverified blocks. The
Taiko protocol has a fixed number of slots, nslot,
for block proposals to allow for parallel proof com-
putation. When there are more unverified blocks
occupying the available slots, fees (and rewards)
will increase to adjust for the competition within
the group of proposers (and similarly for provers).

(4) A system that benefits early adopters, working as
base discounts for proposal fees that diminish over
time, as proposers may be more vulnerable at the
initial stages of the protocol compared to provers.

At the time of submission of a proposal or a proof,
referred to as t, a proposal fee f(t) or a proof reward
r(t) respectively, is calculated as a product of a base fee
fbase, time-based incentive multipliers, α+(t) and α−(t),



TAIKO: A DECENTRALIZED ETHEREUM-EQUIVALENT ZK-ROLLUP 1.2.2 7

and slot-availability multipliers, β+(n) and β−(n), that are
based on the number of unverified blocks n.

f(t) = fbase · α+(t) · β+(n)(16)

r(t) = fbase · α−(t) · β−(n)(17)

Although t is determined from the moment of submis-
sion of a proof, similar to a proposal, the actual moment
of issuing the reward to a prover is potentially much later,
when the proof is validated through a series of other proofs
that connect it to the genesis block. In other words, proof
rewards are determined at the time of submission and
minted at the time of validation.

Throughout the rest of the section, we will use the su-
perscript + for constants, variables and functions specific
to proposals (which add new unverified blocks) and − for
constants, variables and functions specific to proofs (which
remove unverified blocks).

8.2. State Variables. Taiko protocol maintains a num-
ber of internal state variables (n, fbase, t

+
ave, t

−
ave, t

+
last, t

−
last)

that get updated after every successful block proposal or
validated proof.

• n is the current number of unverified blocks. Ini-
tially, n is set to 0.

• fbase is the base fee, computed as a moving average
of its product with incentive multipliers. Initially
fbase is set to a constant finit.

• t+ave is the average duration between proposal sub-
missions conditioned on that they are successful.
Initially, t+ave is set to K+

max.
• t−ave is the average duration between proof sub-

missions conditioned on that they are eventually
validated. Initially, t+ave is set to K−

max.
• t+last is the submission time of the last successful

proposal. Initially t+last is set to 0.

• t−last is the submission time of the last validated

proof. Initially t−last is set to 0.

We discuss the state update at the end of the section, after
discussing fee and reward computations in a particular
state (see Section 8.6).

8.3. Incentive Multipliers. Given a constant Kinc > 1,
α+(t) : R+ → [1/Kinc, 1] and α−(t) : R+ → [1,Kinc] are
time sensitive multipliers that can decrease fees and in-
crease rewards.

Their purpose is to incentivize (to a certain degree) pro-
posals and proofs when there are unpredictable deterrents
acting against the engagement of proposers or provers,
such as imbalances in the pricing that favor one side of the
protocol at the expense of the other (internal); competing
L2 marketplaces that offer better deals at the moment or
price fluctuations of the TKO token (external).

Incentive multipliers can gradually change the state
variable fbase, as will be explained in Section 8.6.

8.3.1. Intermediate Time Variables. Given constants
Kgrace ≥ 0, Kactivation > 0, K+

max > 0, K−
max > 0 and

state variables, we can compute the following intermediate
time variables, tgrace and tactivation:

t+grace ≡ Kgrace ·min(t+ave,K
+
max)(18)

t−grace ≡ Kgrace ·min(t−ave,K
−
max).(19)

tgrace is the grace period starting at tlast (omitting the
superscript) in which there are no incentives yet.

t+activation ≡ Kactivation ·min(t+ave,K
+
max)(20)

t−activation ≡ Kactivation ·min(t−ave,K
−
max).(21)

tactivation is the time period after which incentives reach
their maximum effects from the time they first start to
take effect at tlast + tgrace (omitting the superscripts).

Figure 2. The graph of trel (red) with
respect to time t given tlast, tgrace,
tactivation (omitting the superscripts).

Two functions of note are t+rel(t), t
−
rel(t) : R+ → [0, 1]

and they are defined as

t+rel(t) = min

(
max

(
0,

t− (t+last + t+grace)

t+activation

)
, 1

)
(22)

t−rel(t) = min

(
max

(
0,

t− (t−last + t−grace)

t−activation

)
, 1

)
.(23)

trel indicates relative normalized time, and determines
the activation point of time-based incentives, where trel
becomes greater than 0, and the saturation point of incen-
tives, where trel becomes equal to 1 (see Figure 2).

Figure 3. The graphs of α+(t) (blue)
and α−(t) (red), which are multiplicative
inverses of each other if t+rel(t) = t−rel(t).

8.3.2. Multipliers. Given the constant Kinc and the rel-
ative normalized time functions t+rel(t), t

−
rel(t) established

using state variables, we compute incentive multipliers
α+(t), α−(t) as

α+(t) = 1/1+(Kinc−1)·t+
rel

(t)(24)

α−(t) = 1 + (Kinc − 1) · t−rel(t).(25)

As shown in Figure 3, the incentive multiplier for proof
rewards, α−(t), cannot exceed Kinc and the incentive mul-
tiplier for proposal fees, α+(t), cannot be less than 1/Kinc.



TAIKO: A DECENTRALIZED ETHEREUM-EQUIVALENT ZK-ROLLUP 1.2.2 8

8.4. Slot-availability Multipliers. Slot-availability mul-
tipliers are computed solely from the current number of
unverified blocks n and they are independent of time given
a particular state.

These multipliers capture the idea of offering the low-
est fees and rewards when there are only a few unverified
blocks and a surplus of available slots, nslots − n. In this
case, parallel proof computation can accommodate many
proposers, which leads to low competition and consequently
lower fees. Further, there is a shortage of unverified blocks
to prove, which means that provers must compete with
each other to get the rewards (which allows lower rewards).

In the opposite case, the level of competition for pro-
posers and provers are reversed when there are many un-
verified blocks. As the number of available slots, nslots −n,
decrease, competition for the remaining slots increase for
proposers, which leads to higher fees. Further, since there
are many unverified blocks, competition for provers is low,
which results in higher rewards.

Therefore, fees and rewards increase as the number
of unverified blocks grow, through multipliers β+(n) and
β−(n) respectively, which are governed by a pricing mech-
anism used in Uniswap V1, described below.

Given a smoothing constant Kslot ≥ 1 that determines
how slowly the slot-availability multipliers increase as n
grows, we define β+(n) : {n ∈ Z | 0 ≤ n < nslots} → R+

and β−(n) : {n ∈ Z | 0 < n ≤ nslots} → R+ as,

n′
slots = nslots +Kslot(26)

β+(n) =
(n′

slots − 1) · n′
slots

(n′
slots − n− 1) · (n′

slots − n)
(27)

β−(n) =
(n′

slots − 1) · n′
slots

(n′
slots − n+ 1) · (n′

slots − n)
.(28)

It is easy to see that for n = 0, which corresponds to the
case of not having any unverified blocks, the multiplier for
fees is

β+(0) =
(n′

slots − 1) · n′
slots

(n′
slots − 1) · n′

slots

= 1.(29)

In this case, the overall fee simplifies to

f(t) = fbase · α+(t).(30)

Further, if n = nslots − 1 (only one slot is available), the
multiplier for fees takes its maximum value,

β+(nslots − 1) =
(nslots − 1 +Kslot) · (nslots +Kslot)

Kslot · (1 +Kslot)
.

(31)

Finally, we note that for all valid inputs {n ∈ Z | 0 ≤
n < nslots},

β−(n+ 1) = β+(n)(32)

which ensures that the multiplier of the reward for a proven
block equals the multiplier for its fee when it was proposed.

Figure 4. Progression of the multiplier
for fees β+(n) (blue) and the multi-
plier for rewards β−(n) (red), when
nslots = 50 and Kslot = 10. The
maximum value of the multiplier is
(nslots−1+Kslot)·(nslots+Kslot)

Kslot·(1+Kslot)
= 32.182.

Finally, in Figures 4 and 5, we demonstrate that the
smoothing term Kslot can be increased to attenuate the
maximum value of slot-availability multipliers.

Figure 5. Progression of the multiplier
for fees β+(n) (blue) and the multi-
plier for rewards β−(n) (red), when
nslots = 50 and Kslot = 20. The
maximum value of the multiplier is
(nslots−1+Kslot)·(nslots+Kslot)

Kslot·(1+Kslot)
= 11.5.

8.5. Bootstrap Discount Multipliers. Unlike block
provers, proposers are directly affected by the number of
active L2 users, as well as ETH fees they need to pay to
the L1-layer validators. This makes them vulnerable at
the initial stages of the protocol when there are not many
L2 users engaging it with their transactions, which makes
it hard for proposers to create larger and more profitable
blocks with many transactions in them.

Figure 6. Graph of discount function
d(t).



TAIKO: A DECENTRALIZED ETHEREUM-EQUIVALENT ZK-ROLLUP 1.2.2 9

Given an initial discount rate constant Kdisc ∈ (0, 1]
and a halving period constant KHalving > 0, we can com-
pute a discount function d(t) and a discount multiplier for
fees γ+(t) as functions of time:

d(t) = Kdisc · (1/2)⌊t/KHalving⌋(33)

γ+(t) = 1− d(t).(34)

As time passes, this multiplier approaches 1, which
means that its effects diminish over time.

The discount multiplier is applied to the overall proposal
fee computation as follows:

f(t) = fbase · α+(t) · β+(n) · γ+(t)(35)

Bootstrapping support is applicable only to proposer
fees in order to safeguard the normal market order condi-
tions between proposers and provers.

8.6. State Update. Given a momentum constant 0 ≤
µ ≤ 1, we update state variables in the following order
after each successful block proposal submitted at time t:

n ≡ n+ 1(36)

fbase ≡
µ− 1

µ
· fbase +

1

µ
· fbase · α+(t)(37)

t+ave ≡
µ− 1

µ
· t+ave +

1

µ
· (t− t+last)(38)

t+last ≡ t(39)

Similarly, once a proof submitted at time t is validated,
we update the state variables in the following order:

n ≡ n− 1(40)

fbase ≡
µ− 1

µ
· fbase +

1

µ
· fbase · α−(t)(41)

t−ave ≡
µ− 1

µ
· t−ave +

1

µ
· (t− t−last)(42)

t−last ≡ t(43)

The state update for fbase incorporates time-based in-
centives into a more permanent effect using a moving
average. If proposals utilize incentives more actively com-
pared to proofs, fbase decreases for future transactions. If
proofs utilize incentives more actively, fbase increases over
time.

9. Future Improvements

9.1. Ethereum Data Blobs. EIP-4844 [3] (or similar)
on Ethereum will, once enabled, allow data to be stored
on L1 in a more efficient manner. Instead of storing the
txList data in the L1 transaction data we will instead be
able to store the data in a data blob. This data will be
read directly from the KZG commitment in the ZK-EVM
circuits without ever needing to access the data in an L1
smart contract.

9.2. Block Validity Verification at Proposal Time.
Currently we accept blocks at proposal time even if the
transaction data is invalid. Afterwards, we depend on
provers to generate a proof that shows the block is invalid
(see Section 5.5.1). We do this because the work required
to verify all requirements imposed on the transaction data
is expensive to verify on L1. Instead, we can require a proof
together with the proposed block attesting that the block

data is valid. This requires computing a proof, and so the
requirement for this improvement is that this proof can be
generated efficiently enough so that it is not a potential
bottleneck for proposing blocks. Because verifying a proof
is still quite expensive, this proof should not be verified
immediately at block proposal time but should be verified
as part of the block proof.

9.3. Signature Compression. Signatures can be re-
moved from the block data as long as the proposer can
show that all transactions in the proposed block have valid
signatures. This can be achieved with the help of an ac-
companying proof when a block is proposed. As such, the
burden of having to verify the signatures is shifted solely
to the block proposer, so it needs to be possible to generate
this proof efficiently. The block prover can then simply
assume all transactions are valid and so there is no need
for the prover to know the signatures. Note that this could
have a very small impact on the transaction trie of a block
as the signature data is not part of the transaction data
anymore. If we want to keep the transaction trie the same
with the signatures included the transaction trie will also
have to be built by the block proposer.

9.4. Block Data Compression. A big part of the cost
of a rollup block is the data that is required to be stored on
L1. It has been shown that standard general compression
schemes like DEFLATE [13] work well on transaction data.
It is possible to implement these schemes efficiently in a
circuit and so the data published on L1 can be compressed
while the circuits can decompress the data again. This will
make it possible to reduce the amount of data that needs
to be published on L1, significantly reducing costs.

9.5. Batched Proof Verification. Verifying a proof on
L1 is quite expensive. Instead of verifying each proof for
each block separately we instead let block provers submit
their proof for a block to L1 without the protocol imme-
diately verifying it. Other provers can batch verify one
or more of these block proofs in another proof which can
then be submitted and verified on L1. This significantly
reduces the proof verification gas cost in exchange of the
cost of generating this extra proof and an extra delay in
on-chain finalization. Note that there is no need for the
protocol to impose any limitations on the number or the
range of block proofs being verified. Any number of blocks
at any positions in the chain are allowed to be batch ver-
ified. The proving fee system should automatically steer
provers towards a system that is the most efficient while
not significantly increasing the on-chain finalization time.

9.6. Rate Limiting using EIP-1559. Although rollups
can have significantly higher network capacity than L1s,
this capacity is not without limit. As such the protocol
needs to be able to limit how much work the L2 network
needs to do to keep up with the tip of the chain. Ethereum
already has a mechanism in place to do just that with [14]
that we can use as well.

At block proposal we keep track of how much work
(measured in gas) is required to process the block, while
subtracting the amount of work the Taiko network can han-
dle. This effectively creates a market for network capacity
(in gas) per ETH. This will impact how expensive Taiko
block space is (paid by the block proposer), the higher
the demand the higher the network fee (a fee paid to the



TAIKO: A DECENTRALIZED ETHEREUM-EQUIVALENT ZK-ROLLUP 1.2.2 10

Taiko DAO). This way, rate limiting is achieved in a way
that does not simply impose a hard and inefficient cap
on the network, instead this mechanism allows users to
utilize the network in a fair way while allowing the Taiko
network to capture the created value. And because the
same mechanism is used on Ethereum it allows Taiko to
be Ethereum-equivalent (with some small implementation
detail changes) even for this part of its network, which is
not obviously the case for L2s.

9.7. EIP-1559 Powered Prover fees. Proving blocks
requires significant compute power to calculate the proof
to submit and verify the proof on Ethereum. Provers need
to be compensated for this work as the network needs to
attract provers that are willing to do this work. How much
to pay for a proof is not obvious however:

(1) The Ethereum gas cost to publish/verify a proof
on Ethereum is unpredictable.

(2) The proof generation cost does not necessarily
match perfectly with the gas cost.

(3) The proof generation cost keeps changing as prov-
ing software is optimized and the hardware used
gets faster and cheaper.

(4) The proof generation cost depends on how fast a
proof needs to be generated.

Because the proving cost impacts the transaction fees
paid by the users, the goal is to pay only as much as re-
quired for the network to function well. This means not
underpaying provers because blocks may remain unproven,
but certainly also not overpaying provers so that it doesn’t
make sense to incur very high costs to try and generate
proofs as quickly as absolutely possible. A good balance is
key to a well working solution that takes into account the
needs of the different network participants.

It’s clear that a fixed proving fee does not work. The
protocol should also not be dependent on a single prover
for a block because this will put too much power in the
hands of a single entity that can impact the stable progress
of the chain.

It can be observed that this problem is very similar to
the rate limiting problem described in Section 9.6. The
network, somehow, has to find the correct price between
two resources where the demand/supply is ever changing.
We can model this problem as a market between the prov-
ing fee (per gas) per proof delay (per time unit), striking
a dynamic balance between proving cost and proof delay.

An additional complication is that the protocol expects
the block proposer to pay the proving fee at block proposal
time. As such, the baseFee of this model is used to charge
the proposer of a block using the total gas used in the block.
This is only an estimate of the actual cost because the
actual cost is only known when the proof is submitted. If
the estimated cost was too high the difference is returned
to the block proposer and the baseFee is decreased. If
the estimated cost was too low extra Taiko tokens are
minted to make up the difference and the baseFee is in-
creased. To lower the chance that the estimated cost is too
low and extra Taiko tokens need to be minted, a slightly
higher baseFee can be charged to the proposer than the
one predicted by the model.

9.8. Leverage Staking Withdrawal Support for the
Ether Bridge. Once withdrawing staked Ether is sup-
ported by Ethereum we will be able to use the same infras-
tructure to bridge Ether. Although this is still a work in
progress and the final spec is still unknown, this should pro-
vide a more standard solution than the system described
in Section 7.1.

References

[1] https://ethereum-magicians.org/t/a-rollup-centric-ethereum-roadmap/4698
[2] https://eips.ethereum.org/EIPS/eip-2028
[3] https://eips.ethereum.org/EIPS/eip-4844
[4] J. Poon, V. Buterin; https://plasma.io/plasma-deprecated.pdf
[5] Vitalik Buterin; https://ethresear.ch/t/on-chain-scaling-to-potentially-500-tx-sec-through-mass-tx-validation/3477
[6] Barry Whitehat; https://ethresear.ch/t/roll-up-roll-back-snark-side-chain-17000-tps/3675
[7] https://github.com/privacy-scaling-explorations
[8] https://vitalik.ca/general/2022/08/04/zkevm.html
[9] https://github.com/taikoxyz/taiko-mono/tree/main/packages/protocol
[10] https://ethereum.org/en/developers/docs/mev
[11] https://ethereum.github.io/yellowpaper/paper.pdf
[12] https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
[13] https://en.wikipedia.org/wiki/Deflate
[14] https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1559.md
[15] https://dl.acm.org/doi/10.1145/3479722.3480987

Appendix A. Terminology

Anchor Transaction: The first transaction in every Taiko L2 block to perform data validation and L1-to-L2
communication.

Fork Choice: A data structure to capture a block’s proving result based on a prover-chosen parent block.
Golden Touch Address: An address with a revealed private key to transact all anchor transactions.
ZK-EVM: Zero-knowledge proof powered EVM proving systems. zkEVM is one of such projects initiated and

led by Privacy & Scaling Explorations (formerly known as AppliedZKP)[7] and is the one Taiko will use and
contribute to.

https://ethereum-magicians.org/t/a-rollup-centric-ethereum-roadmap/4698
https://eips.ethereum.org/EIPS/eip-2028
https://eips.ethereum.org/EIPS/eip-4844
https://plasma.io/plasma-deprecated.pdf
https://ethresear.ch/t/on-chain-scaling-to-potentially-500-tx-sec-through-mass-tx-validation/3477
https://ethresear.ch/t/roll-up-roll-back-snark-side-chain-17000-tps/3675
https://github.com/privacy-scaling-explorations
https://vitalik.ca/general/2022/08/04/zkevm.html
https://github.com/taikoxyz/taiko-mono/tree/main/packages/protocol
https://ethereum.org/en/developers/docs/mev
https://ethereum.github.io/yellowpaper/paper.pdf
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Deflate
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1559.md
https://dl.acm.org/doi/10.1145/3479722.3480987


TAIKO: A DECENTRALIZED ETHEREUM-EQUIVALENT ZK-ROLLUP 1.2.2 11

Appendix B. Ethereum Upgrades on Taiko

Name Status

EIP-606 – Hardfork Meta: Homestead Enabled
EIP-779 – Hardfork Meta: DAO Fork Disabled
EIP-150 – Gas cost changes for IO-heavy operations Enabled
EIP-155 – Simple replay attack protection Enabled
EIP-158 – State clearing) Enabled
EIP-609 – Hardfork Meta: Byzantium Enabled
EIP-1013 – Hardfork Meta: Constantinople Enabled
EIP-1716 – Hardfork Meta: Petersburg Enabled
EIP-1679 – Hardfork Meta: Istanbul Enabled
EIP-2387 – Hardfork Meta: Muir Glacier Disabled
Berlin Network Upgrade Enabled
London Network Upgrade Disabled
Arrow Glacier Network Upgrade Disabled
EIP-3675 – Upgrade consensus to Proof-of-Stake Enabled
Shanghai Network Upgrade Disabled (future)
Cancun Network Upgrade Disabled (future)

Appendix C. Protocol Constants

Name Description

KChainID Taiko’s chain ID.
KMaxNumBlocks The maximum number of slots for proposed blocks.
KMaxVerificationsPerTx The number of proven blocks that can be verified when a new block is

proposed or a block is proven.
KMaxProofsPerForkChoice The maximum number of proofs per fork choice.
KBlockMaxGasLimit A Taiko block’s max gas limit besides KAnchorTxGasLimit.
KBlockMaxTxs The maximum number of transactions in a Taiko block besides the anchor

transaction.
KBlockDeadEndHash A special value to mark blocks proven invalid.
KTxListMaxBytes A txList’s maximum number of bytes.
KTxMinGasLimit A transaction’s minimum gas limit.
KAnchorTxGasLimit Anchor transaction’s fixed gas limit.
KGracePeriod Fees and rewards grace period multiplier.
KMaxPeriod Fees and rewards max period multiplier.
KRewardMultiplier The max reward multiplier for proofs

Name Value

KAnchorTxSelector 0xa0ca2d08
KGoldenTouchAddress 0x0000777735367b36bC9B61C50022d9D0700dB4Ec
KGoldenTouchPrivateKey 0x92954368afd3caa1f3ce3ead0069c1af414054aefe1ef9aeacc1bf426222ce38
KInvalidateBlockLogTopic 0x64b299ff9f8ba674288abb53380419048a4271dda03b837ecba6b40e6ddea4a2
KEmptyOmmersHash 0x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347


	1. Introduction
	2. Previous Work
	3. Design Principles
	4. Overview
	5. The Taiko Blockchain
	5.1. Core Contracts
	5.2. Proposing Blocks
	5.3. Block Validation and Mapping 
	5.4. Anchor Transaction
	5.5. Proving Blocks
	5.6. On-chain Verification of Blocks

	6. ZK-EVM Circuits
	6.1. Proof Generation
	6.2. Proof Verification

	7. Cross-Chain Communication
	7.1. Ether on L2

	8. Fees and Rewards
	8.1. Motivation
	8.2. State Variables
	8.3. Incentive Multipliers
	8.4. Slot-availability Multipliers
	8.5. Bootstrap Discount Multipliers
	8.6. State Update

	9. Future Improvements
	9.1. Ethereum Data Blobs
	9.2. Block Validity Verification at Proposal Time
	9.3. Signature Compression
	9.4. Block Data Compression
	9.5. Batched Proof Verification
	9.6. Rate Limiting using EIP-1559
	9.7. EIP-1559 Powered Prover fees
	9.8. Leverage Staking Withdrawal Support for the Ether Bridge

	References
	Appendix A. Terminology
	Appendix B. Ethereum Upgrades on Taiko
	Appendix C. Protocol Constants

