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Abstract

Background: The early diagnosis of lung cancer has been a critical problem in clinical practice for a long time and
identifying differentially expressed gene as disease marker is a promising solution. However, the most existing gene
differential expression analysis (DEA) methods have two main drawbacks: First, these methods are based on fixed
statistical hypotheses and not always effective; Second, these methods can not identify a certain expression level
boundary when there is no obvious expression level gap between control and experiment groups.

Methods: This paper proposed a novel approach to identify marker genes and gene expression level boundary for
lung cancer. By calculating a kernel maximum mean discrepancy, our method can evaluate the expression differences
between normal, normal adjacent to tumor (NAT) and tumor samples. For the potential marker genes, the expression
level boundaries among different groups are defined with the information entropy method.

Results: Compared with two conventional methods t-test and fold change, the top average ranked genes selected
by our method can achieve better performance under all metrics in the 10-fold cross-validation. Then GO and KEGG
enrichment analysis are conducted to explore the biological function of the top 100 ranked genes. At last, we choose
the top 10 average ranked genes as lung cancer markers and their expression boundaries are calculated and reported.

Conclusion: The proposed approach is effective to identify gene markers for lung cancer diagnosis. It is not only
more accurate than conventional DEA methods but also provides a reliable method to identify the gene expression
level boundaries.
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Background
Small-cell lung carcinoma (SCLC) and non-small-cell
lung carcinoma (NSCLC) are two main types of lung can-
cer, comprising the majority of clinic cases [1]. As the
most common cancer, lung cancer is the leading cause
of cancer-related deaths all over the world [2, 3]. How-
ever, most lung cancer cases were diagnosed in a very late
stage when symptoms like coughing, coughing up blood,
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shortness of breath and chest pains appeared. Many early-
diagnosed lung cancer cases were detected by accident
[3, 4]. In the clinic practice, the most widely used exam-
inations for lung cancer are chest radiography and com-
puted tomography(CT), but these two methods require
visible and irreversible histological variants in human
lung, resulting in rather low sensitivity in the early stage
[5–7]. Therefore, it is a crucial issue to find more timely
and accurate approaches for lung cancer early-stage
diagnosis.

Due to the progress in molecular biology, some
molecules which play vital roles in lung cancer
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development are possible to diagnose cancer and distin-
guish the specific cancer sub-types [8–10]. Researchers
have explored to identify efficient biomarkers from these
molecules as the indicator of the pathogenic process to
improve the diagnosis sensitivity [11]. These explorations
are mainly focused on genetic mutations, DNA methyla-
tion profile, miRNA synthesis profile and especially blood
proteins [12–19]. Till now, panels of protein markers have
been identified and intensively used in clinic applications.
For example, the combinations of CEACAM, CYFRA
21-1, ProGRP, CA125, NSE (neuron-specific enolase)
and NY-ESO (cancer-testis antigen) are popular lung
cancer diagnosis markers [20–24]. Recently, researchers
also discovered that β-chain of human haptoglobin [25],
SAA (serum amyloid A) [26], APOA1 (apolipoprotein
A-1) [27] and some other proteins [28] may be potential
biomarkers. Despite the advances in protein marker
discovery, some disadvantages of protein markers are
still existing, like genetic heterogeneity of tumors, poor
reproducibility of laboratory test and low concentration
of the proteins [18, 29]. Recent years the next-generation
sequence technologies have promoted the study of
disease-related genomes. Projects like The Cancer
Genome Atlas (TCGA) [30] and the Genotype-Tissue
Expression (GTEx) [31] have collected a large number
of sequencing experiments and provided tissue-specific
gene expression data in public. As some genes have dis-
tinct expression levels between normal and tumor tissues
for the reason of disease development, they are promising
to diagnose lung cancer more timely and accurately.

During the past years, gene differential expression anal-
ysis (DEA) has been extensively applied in the preprocess
of high-throughput profiling data collected from microar-
rays [32–34]. Based on statistical models, researchers
developed tools to identify genes which had distinct
expression levels between different experiment groups.
Compared with the microarray data, the RNA-seq raw
data comes with the unique feature of discrete reads
which should be analyzed under an appropriate statisti-
cal hypothesis [35]. According to the statistical hypothesis,
the existing RNA-seq analysis models can be categorized
into Poisson model, negative binomial model, beta-
binomial model, and Bayesian model [36, 37]. These mod-
els can tell whether the gene expression levels are the
same between experiment groups and calculate a confi-
dence coefficient scores (also named p-value) suggesting
the magnitude of expression difference.

In cancer studies, the histologically normal tissue adja-
cent to tumor is usually used to compare with the tumor
tissue under the assumption that they are the same with
real healthy tissues This approach allows researchers to
compare samples from the same patient and reduce the
individual specific effects. However, recent studies have
deepened our understanding about NAT tissue, indicating

that NAT is not exactly equal to the real healthy tis-
sue [38]. In NAT tissues, the specific micro-environment
surrounding tumor makes the change of gene expression
in various pathways that are related to disease develop-
ment. In order to identify efficient and meaningful marker
genes, we proposed to detect differentially expressed
genes(DEGs) from real normal, NAT and tumor tissues.

Here, we present a novel approach to identify genes
markers for lung cancer with kernel maximum mean
discrepancy (MMD) and Information Entropy. As men-
tioned above, the conventional DEA methods can calcu-
late a p-value to evaluate the expression difference based
on certain statistical hypothesis, but it’s hard to decide
which distribution assumption is correct before calcu-
lation. Inspired by the distribution measure method of
transfer learning, we use the kernal MMD to detect DEGs
between tumor, NAT and normal tissues. This method
can output the maximum mean discrepancy score which
indicates the degree of differential expression which does
not require a statistical hypothesis on data distribution.
Besides, although the p-value of conventional techniques
can identify DEGs, it is essential to define a thresh-
old of expression level to distinguish different types of
tissue. Commonly, Researchers would like to take the
upper boundary of lower expressed tissue or lower edge
of higher expressed tissue as the threshold when there
is a distinct expression gap. But this kind of gap is not
always existing and then the threshold is hard to define.
As the gene expression level is continuous data and how
to choose a definite threshold point is a tough task. Here
we applied the information theory to solve this problem.

In this paper, we firstly evaluate the expression level
difference of 23368 genes in normal, normal adjacent
tumor and tumor tissues with the kernel maximum mean
discrepancy. Then the top-ranked genes selected by ker-
nel MMD method are compared with genes selected by
two conventional DEA methods, t-test and fold change.
Then GO and KEGG pathway enrichment analysis are
conducted to analyze the top 100 genes ranked by aver-
age MMD scores. Lastly, the top 10 genes are selected
as marker genes for lung cancer and their expression
boundaries between normal, NAT and tumor tissues are
identified by the proposed information theory method.

Methods
Dataset
Three gene expression datasets used in this paper are
collected from different tissue types in reference [38], con-
taining the expression data of 23368 genes. Dataset 1
includes the gene expression data of 373 normal healthy
samples. The raw reads file of dataset 1 is obtained
from the GTEx program (phs000424.v6.p1, 18 November
2015). Dataset 2 has 59 NAT tissues, while dataset 3 has
541 lung cancer tumor tissues. Their raw feature counts
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and FPKM values are original from NCBI Gene Expres-
sion Omnibus (GEO) [39]. Since the raw values are from
different data sources, the RNA-sequencing raw reads
files were processed and normalized with the Rsubread
package and aligned to the UCSC hg19 reference genome
with the same pipeline. The processed GTEx expres-
sion profiles of dataset 1 are available in GEO under an
accession number GSE86354 and other two datasets are
deposited as GSE62944.

Gene marker identification framework
With the above three datasets, we apply a novel approach
to detect DEGs and determine the expression boundaries
between normal, NAT and tumor cells as the criterion of
lung cancer diagnosis.

In our method, there are mainly four steps: First, the ker-
nel Maximum Mean Discrepancy is used to identify DEGs
between two types of tissues respectively and genes are
ranked by the MMD values; Second, the genes with top
average MMD rankings are selected from all genes; Third,
genes selected from the previous step are put into KEGG
pathway analysis and GO enrichment analysis to validate
the efficiency of those gene markers; Last, we define the
gene expression boundaries for the top 10 marker genes
with information gain theory. The whole framework of the
proposed approach is illustrated in Fig. 1.

Kernel maximum mean discrepancy
The problem of comparing the probability distribution
between two sample groups, also referred to as two-

sample problem, widely exists in data science areas. In
bioinformatics field, this problem is extensively existing
in micro-array data analysis, database attribute matching,
data integration from different platforms and so on. The
key point of two-sample problem is how to determine if
two groups of observations are from the same distribution
and some statistical test methods were applied to address
that in previous researches.

However, these methods have different statistical mod-
elings based on specific assumptions of data distribu-
tion, which is commonly unknown before calculation in
practical use. In some previous studies, researchers have
explored to using the kernel Maximum Mean Discrep-
ancy (MMD) method to test the distribution difference
in RNA-Transcript expression and pathway differential
expression and achieved better performance than tradi-
tional statistical tests [40, 41].Here, we adopt kernal MMD
to identify the DEGs in lung cancer gene expression data.

Give F to be a class of functions f : χ → R. Two sam-
ples X = {x1, x2, . . . xm} and Y = {

y1, y2, . . . yn
}

are drawn
form two probability distribution p and q, respectively.
The empirical estimation of MMD value is as following
[42]:

MMD[ F , p, q] := sup
f ∈F

(
Ep[ f (x)] −Eq[ f (y)]

)
(1)

MMD[ F , p, q] := sup
f ∈F

(
1
m

m∑

i=1
F(xi) − 1

n

n∑

i=1
F(yi)

)

(2)

Fig. 1 Gene marker identification framework
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As the definition above, if the function class F is rich
enough, the value of MMD will be zero if and only if p=q.
But a too rich F will lead to that MMD differs from zero
for most finite sample estimates. Thus some restrictions
ought to be placed on the function class. One trade-off
way is to set F as the unit ball in a universal reproduc-
ing kernel Hilbert space H, defined on the compact metric
space χ . Since H is a complete inner product space of
functions f : χ → R , the function mapping f →
f (x) can be expressed as an inner product via f (x) =〈
f , φ(x)

〉
H ,where φ : χ → H is the feature space map from

x to H. Then MMD can be rewritten as:

MMD[ F , p, q] = sup
‖f ‖H≤1

Ep[ f (x)] −Eq[ f (y)]

= sup
‖f ‖H≤1

Ep
[〈

f , φ(x)
〉
H

] − Eq
[〈

f , φ(y)
〉
H

]

= sup
‖f ‖H≤1

〈
μp − μq, f

〉
H

= ∥∥μp − μq
∥∥

H
(3)

Then we can calculate like the following function:

MMD2 = 〈
μp − μq, μp − μq

〉
H

= 〈
μp, μp

〉
H + 〈

μq, μq
〉
H − 2

〈
μp, μq

〉
H

= Ep
〈
φ(x), φ(x′)

〉
H + Ep

〈
φ(y), φ(y′)

〉
H

− 2Ep,q
〈
φ(x), φ(y)

〉
H

(4)

As the inner product can be replaced by Gaussian ker-
nel k(x, x′) = exp(− ∥∥x − x′∥∥2

/(2σ 2)),the value of MMD2

can be figured out as:

MMD2 = 1
m(m − 1)

m∑

i�=j
k(xi, xj) − 2

mn

m,n∑

i,j=1
k(xi, yj)

+ 1
n(n − 1)

m∑

i�=j
k(yi, yj)

(5)

In our method, the minimum variance unbiased esti-
mate of MMD value is obtain according to the above
functions based on Shogun package in python [43]. The
computational complexity of MMD method is O(n2). The
MMD score can evaluate the gene expression difference
between different sample types, while a higher MMD
score means greater gene expression level difference.

Boundary discovery method
As a biomarker, there should be an expression threshold
for the marker gene as the indicator for disease diagno-
sis. If the gene expression level is proved to be different

in normal and tumor tissues, it is necessary to define a
threshold of expression level as the boundary. When the
gene expression level has a distinct gap between normal
and tumor samples, the threshold is commonly the lower
or upper boundary of this gap. However, the expression
level does not have that kind of obvious gap all the time,
thus how to define a reliable boundary is challenging in
these cases.

Here we propose to identify the threshold with infor-
mation theory which has been widely used in decision
tree algorithms for classification problems. According to
the information theory, the change of information entropy
which is also named information gain can evaluate the
classification efficiency of a threshold point. If there is the
expression data of a gene from m normal samples and n
tumor samples in dataset D, pm and pn refer to the pro-
portions of normal and tumor samples in all samples, then
the original entropy of D is defined as:

Ent(D) = −
∑

k=m,n
pk log2 pk (6)

In the boundary identification, all samples are re-
classified by the gene expression level with a split point of
x and Dv denotes the new dataset re-classed by x. Then the
information gain of this split point can be computed as:

Gain(D, x) = Ent(D) −
2∑

v=1

|Dv|
|D| Ent

(
Dv) (7)

Different from discrete data, the expression level is con-
tinuous and it is inappropriate to use the expression level
values in samples as the split points. Besides, as the distri-
bution of the expression level is also unknown, we cannot
use the probability function to calculate the entropy. To
address this problem, we propose to deal with contin-
uous data like discrete data: First, the expression level
values are sorted from small to large and the middle points
between two expression level values are taken as the split
points; Second, we calculate the information gain of the
split points respectively and choose the point that has the
highest information gain as the boundary. The algorithm
of expression boundary identification with information
theory is illustrated in Algorithm S1 in Additional file 2.

GO and KEGG enrichment analysis
The GO enrichment analysis is the major gene-annotation
analysis method based on the Gene Ontology resource,
describing the gene function at a molecular level. The
Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way enrichment analysis has been widely used to model
and simulate the molecular interactions and reaction net-
works in system biology. In this paper, these two methods
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are applied to figure out the molecular functions of iden-
tified potential marker genes and validate whether these
genes are related to lung cancer. Here the enrichment
analysis methods are both implemented based on the R
package called ClusterProfiler developed by Guangchuang
Yu’s team [44]. The GO terms and enriched pathways are
all filtered with the p-value <0.05.

Conventional DEA method and machine learning
evaluation
In this work, two conventional differentially expressed
gene analysis methods, t-test and fold change, are com-
pared with the proposed kernel MMD. The t-test is com-
pleted based on a python package called ’Scipy’ [45]. The
fold change is calculated as below:

FoldChange =
∣∣∣∣log2(

E1
E2

)

∣∣∣∣ (8)

Where E1 and E2 are the average of gene expression
level in two different issue types. The p-value, fold change
value and MMD score are calculated for every single gene
in our datasets. Then genes are ranked with the same
strategy and top ranking genes are regarded as potential
markers. Here a 10-fold cross validation based on the ran-
dom forest classifier is applied to evaluate the efficiency of
these top genes under four frequently used metrics: recall,
F1-score, accuracy and Matthews correlation coefficient
(MCC).

Results
In the first part, we present the genes ranking with kernel
MMD score and analysis the gene expression difference
between different issue types. Then the top ranked genes
are reported and compared with those genes identified by
conventional t-test and fold change methods. The third
part shows the results of GO and KEGG pathway anal-
ysis of the top ranked genes. At last, we choose the top
ten genes of average ranking as marker gene and identify

the expression boundaries of these gene markers with
information gain theory.

Gene differential expression between different tissue types
For the three mentioned datasets, kernel MMD values are
calculated on each two of them respectively to discover
DEGs. For every single gene, we calculate three MMD
values which are from Normal-NAT, Normal-Tumor and
NAT-Tumor groups. The MMD scores indicate the differ-
ence of expression levels among three types of samples.
The top 10 ranked genes in each group are shown in
Table 1. As illustrated in the table, the top MMD scores
in Normal-Tumor group are over 200, which are much
higher than the other two groups. The Normal-NAT
group has comparable MMD scores with NAT-Tumor
group. It is clear that gene expression level difference
in normal-tumor group is much greater than other two
groups.

In addition, the NAT samples have different expression
profiles from not only tumor samples but also the real
healthy samples. Since the NAT samples are always con-
sidered as healthy samples in the state-of-art researches,
we test the top 10 ranked genes selected by NAT-Tumor
group, Normal-Tumor group and their average ranking
to explore the influence of regarding NAT as real normal
samples. To evaluate the effectiveness of selected genes,
the expression data of the top genes above is applied to
classify tumor samples from other samples via 10-fold
cross-validation. The results of the 10-fold cross valida-
tion are reported in Table 2.

As shown in Table 2, the selected genes from each group
can classify tumor samples from other samples. How-
ever, the performance of the three groups of genes varies
greatly. When considering normal samples and NAT sam-
ples together, the top average ranked genes have the best
scores under all metrics with an accuracy of 0.9907. The
highest F1 score of 0.9914 implies that these genes also
have a better classification balance. The results show that

Table 1 Top ranking differentially expressing genes between each two tissue types (NAT: Normal Adjacent Tumor)

Ranking Normal-NAT MMD scores Normal-Tumor MMD scores NAT-Tumor MMD scores

1 LOC442459 81.56 LOC442459 300.89 RS1 67.06

2 DOM3Z 70.85 LOC100132831 293.86 C10orf67 58.85

3 LOC100132831 68.89 LOC401127 288.92 ODAM 57.90

4 LOC401127 67.45 PIN1P1 265.11 LOC100128164 57.16

5 CSNK1A1P1 67.02 CSNK1A1P1 264.75 SH3GL3 56.96

6 MKRN9P 66.54 WNT2B 248.53 JPH4 56.68

7 TPI1P2 65.14 LOC100287632 247.69 SGCG 56.56

8 CYP2D7P1 64.72 CSNK1A1L 247.45 GYPE 55.70

9 CSNK1A1L 63.69 LOC100507373 244.54 LOC643650 53.05

10 PIN1P1 62.24 AOC4 240.66 IHH 52.79
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Table 2 Cross Validation Performance of Top Ten genes from
different groups (NAT: Normal Adjacent Tumor)

Group Recall F1 Accuracy MCC

Normal-Tumor 0.9857 0.9540 0.9476 0.8659

NAT-Tumor 0.9534 0.9670 0.9640 0.9279

Average 0.9885 0.9914 0.9907 0.9816

the real normal samples and NAT samples are not exactly
the same. Researchers should take both of them into con-
sideration in cancer study rather than simply replacing
real normal samples with NAT samples. The detailed
results of differential expressing gene identification con-
ducted by MMD and other two conventional methods are
listed in Additional file 1.

Identify marker genes for lung cancer development
In this work, two conventional DEA methods t-test and
fold change are compared with our approach. T-test and
fold change methods are both applied to identify DEGs
between different tissue types. The p-value of t-test and
fold change value are calculated to evaluate the gene
expression difference. Since the ability to detect tumor
samples is more significant in clinical application, the top
10 genes of average rankings from Normal-Tumor group
and NAT-tumor group selected by t-test and fold change
are compared with the genes selected by our method.
Another 10-fold cross validation is conducted and the
results are reported in Table 3.

As shown in Table 3, the proposed kernel MMD method
outperforms other two conventional methods under all
metrics with the recall of 0.9885, F1 score of 0.9914,
accuracy of 0.9907 and MCC of 0.9816. The fold change
method has the worst performance and the selected genes
by fold change method are not efficient enough to classify
tumors from other samples. The t-test has a comparable
result with MMD method. Since the t-test and fold change
methods have been widely used, the kernel MMD method
is promising to improve the differential gene analysis
efficiency in practical use.

From Table 1, we can see there are some overlapping
genes like LOC442459, LOC100132831, LOC401127,
CSNK1A1P1, CSNK1A1L and PIN1P1 in Normal-NAT
group and Normal-Tumor group. These genes can dis-
tinguish normal samples from not only NAT samples,
but also tumor samples. Inspired the previous part, the

Table 3 Cross Validation Performance of top ten genes selected
by different DEA methods

Method Recall F1 Accuracy MCC

Fold Change 0.7044 0.7992 0.8048 0.6382

T-test 0.9796 0.9815 0.9794 0.9582

Kernel MMD 0.9885 0.9914 0.9907 0.9816

average ranking of all groups can help to identify more
significant genes. Thus, the gene average ranking of the
three groups is calculated and top genes of average
ranking are chosen to be potential marker genes to diag-
nose lung cancer. In Fig. 2, expression levels in normal,
NAT and tumor samples of the top 4 genes of average
ranking are presented. From the figure, the four genes
exactly have distinct expression levels in different types of
tissues.

GO and KEGG pathway enrichment
From the average ranking gene list, we choose the top
100 genes to conduct the GO and KEGG pathway enrich-
ment analysis. In the GO enrichment analysis, we select
’Biology Process’ as the enrichment target, and there are
12 GO terms with p-value <1.0e-04 and count ≥5. As
shown in Table 4, the top two terms, ’GO:0051480’ and
’GO:0007204’, are both related to the regulation factors of
cytosolic calcium ion concentration while term No.5 and
No.6 are also involved in cellular calcium ion homeosta-
sis. The influence of calcium ion channels on lung cancer
has been studied for a long time [46–48], and the cellular
calcium ion level change has been explored in lung cancer
development [48]. It is suggested that these calcium ion
regulation related genes are significant in lung cancer.

The results of KEGG pathway enrichment analysis are
illustrated in Fig. 3. There are 20 pathways with a p-value
below 0.05 and count number over 2. The adrenergic
signaling pathway and the cGMP-PKG signaling path-
way are the most significant pathways. Currently, the role
of adrenergic signaling pathways plays in lung cancer
development have not been fully studied. However, the
β-adrenergic signaling have been found to be a possible
novel cancer therapy in tumor cells [49]. Besides, some
researches have made some explorations about that [50].
The second top significant pathway is the cGMP-PKG
signaling pathway which mediates the action of cellular
ion concentration and sensitivity, influencing cell prolif-
eration. The regulation relationship between cGMP-PKG
signaling pathway and lung cancer has been studied in
[51]. The results of GO and KEGG pathway enrichment
analysis show that the top gene selected by MMD method
is indeed highly related to lung cancer.

Expression boundary identification
Although the conventional methods can detect the dif-
ferential expressed gene, they can only manually define
the expression boundary when there is a distinct expres-
sion level gap. After selecting lung cancer marker genes,
we identify the expression boundaries between nor-
mal,NAT and tumor with the mentioned information
theory method. Here the top 10 genes in MMD average
ranking list are chosen as the lung cancer marker genes
and the expression boundaries of them are illustrated in
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Fig. 2 Box-plot of Gene Expression levels in three tissue types.The X-axis is the FPKM expression level; the Y-axis is the tissue type

Table 5. The identified expression boundaries of all genes
are reported in Additional file 1.

As shown in Table 5, the ten gene markers have a
distinct expression range in normal, NAT and tumor
samples, which can be an indicator of lung cancer

development. Additionally, in practical clinic application,
the boundary between tumor and other tissues is the most
significant for disease diagnosis.The boundary between
normal samples and NAT samples also implied that there
would be some gene expression changes in the disease

Table 4 Go Function analysis for the top ranking genes(p-value <1.0e-04 and count ≥5)

No. GOBPID p-Value Count Term

1 GO:0051480 7.6032e-07 10 regulation of cytosolic calcium ion concentration

2 GO:0007204 3.0453e-06 9 positive regulation of cytosolic calcium ion concentration

3 GO:0019229 4.4969e-06 5 regulation of vasoconstriction

4 GO:0007200 6.6689e-06 6 phospholipase C-activating G-protein coupled receptor signaling pathway

5 GO:0006874 7.5060e-06 10 cellular calcium ion homeostasis

6 GO:0055074 9.4074e-06 10 calcium ion homeostasis

7 GO:0042310 1.4462e-05 5 vasoconstriction

8 GO:0072503 1.5632e-05 10 cellular divalent inorganic cation homeostasis

9 GO:0072507 2.1785e-05 10 divalent inorganic cation homeostasis

10 GO:0097756 2.3563e-05 5 negative regulation of blood vessel diameter

11 GO:0007189 6.5898e-05 5 adenylate cyclase-activating G-protein coupled receptor signaling pathway

12 GO:0019932 7.4403e-05 8 second-messenger-mediated signaling
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Fig. 3 KEGG pathway enrichment analysis for top ranking genes

development and the NAT samples may serve to detect
cell carcinogenesis, which can help to understand the lung
cancer mechanisms.

Discussion
Since the early-diagnosis of lung cancer has been a long-
term critical problem in clinical practice, researchers have
explored various types of biomarkers, like genetic muta-
tions, blood proteins. Here, this paper proposed a novel
method to identify genes markers for lung cancer. There
are two main problems in efficient gene markers identi-
fication: first, how to evaluate the gene expression differ-
ence; second, how to find the reliable expression boundary
between tumor and other samples. The most existing DEA
methods were built to solve the first problem, but they can
only give out a p-value to assess the differential express-
ing gene without defining the expression boundary. The

Table 5 Expression Boundary of Lung Cancer Biomarkers(e :
FPKM expression level)

Gene Name Normal Normal Adjacent Tumor Tumor

ACTN2 e ≥3.5247 0.7146 < e <3.5247 e ≤0.7146

MYL3 e ≥5.3223 4.9211 < e <5.3223 e ≤4.9211

AGPAT4 e ≥4.3722 2.3052 < e <4.3722 e ≤2.3052

BEST1 e ≥3.7487 1.6216 < e <3.7487 e ≤1.6216

TWIST2 e ≥4.2450 1.2030 < e <4.2450 e ≤1.2030

LINC00472 e ≥3.4721 0.8045 < e <3.4721 e ≤0.8045

MYO7B e ≥4.1723 0.7450 < e <4.1723 e ≤0.7450

CCNF e ≤16.4506 16.4506 < e <20.5656 e ≥20.5656

NECAB1 0.9961 < e <4.7770 e ≥4.7770 e ≤0.9961

NOTCH4 e ≥4.6829 1.9808 < e <4.6829 e ≤1.9808

ln of this research is to address both of the problems in
biomarker identifications.

The gene markers are given out based on the existing
lung cancer dataset. We think there are two limitations
in our work. First, a larger dataset can help to obtain
more accurate results; Second, a threshold of MMD value
to define the differentially expressed gene can be defined
with a large dataset, while here we just take the top ranked
genes as potential marker genes.

Conclusion
In this paper, we not only proposed a more efficient
method, kernel MMD, to evaluate the expression changes,
but also provide a information theory based algorithm
to identify the gene expression boundary. The experi-
ment results show our method can select more signif-
icant genes than traditional methods and give out the
expression boundary of the marker gene. Through the
GO and KEGG pathway enrichment analysis, the func-
tion of marker genes in lung cancer is studied, and these
marker genes are indeed related to lung cancer develop-
ment. In the future, we will collect more gene expression
data related to lung cancer and calculate more accurate
results. In addition, we will explore the application of our
method on biomarker discovery for other diseases.
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