
Vo). XI, No. 1 JOURNAL of PHYSICS 1 9  4 7

ON THE THEORY OF SUPERFLUIDITY *
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This paper presents an attempt of explaining the phenomenon of superfluidity on the basis 
of the theory of degeneracy of a non-perfect Bose-Einstein gas.

By using the method of the second quantization together with an approximation procedure 
we show that in the case of the small interaction between molecules the low excited states of the 
gas can be described as a perfect Bose-Einstein gas of certain “quasi-particles”  representing 
the elementary excitations, which cannot be identified with the individual molecules.

The special form of the energy of a quasi-particle as a function of its momentum is shown to be 
connected with the superfluidity.

The object of this paper is an attempt to 
construct a consistent molecular theory explain
ing the phenomenon of superfluidity without 
assumptions concerning the structure of the 
energy spectrum.

The most natural starting point for such 
a theory seems to be the scheme of a non
perfect Bose-Einstein gas with a weak inter
action between its particles.

It should be noted that similar attempts 
•were done some time ago by Tisza and London 
to explain the phenomenon of superfluidity 
on the basis of the degeneracy of a perfect 
Bose-Einstein gas, but these attempts raised 
a counterblast of objections.

It has been pointed out, for example, that 
helium II has nothing to do with a perfect 
gas, because of the strong interaction between 
its molecules. However, this objection cannot 
be regarded as an essential one. Indeed, it 
is clear that a rigorous theoretical computa
tion of the properties of a real liquid is hope
lessly beyond the reach of a pure molecular 
theory based on usual “ m icroscopic”  equations 
of quantum mechanics. A ll we can require 
from a molecular theory of superfluidity, at 
least at the first stage of investigation, is to 
be able to account for the qualitative picture

* Presented to the Session of the Physical Mathe
matical Department of the Academy of Sciences of the 
USSR on October 21, 1946.

of this phenomenon being based on a certain 
simplified scheme.

A  really essential objection one can make 
against this idea is the following one. The 
particles of a degenerate perfect Bose-Einstein 
gas in the ground state cannot possess the 
property of superfluidity, since nothing pre
vents them from exchanging their momenta 
with excited particles colliding with them, 
and, therefore, from friction in their move
ment through the liquid.

In the present paper we try to overcome 
this d ifficu lty  and to show that under cer
tain conditions the “ degenerate condensate”  
of a “nearly perfect”  Bose-Einstein gas can 
move without any friction with respect to 
the elementary excitations, with an arbit
rary, sufficiently small velocity . It is to be 
pointed out that the necessity of considering 
the collective elementary excitations rather 
than individual molecules was suggested by 
L . Landau in his well known paper “Theory 
of Superfluidity of Helium II”  where he, by 
postulating their existence in form of pho- 
nons and rotons, was enabled to explain the 
property of the superfluidity.

In our theory the existence and the pro
perties of the elementary excitations follow  
directly from the basic equations describing 
the Bose-Einstein condensation of non per
fect gases.

—  23 —
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1. Let us consider a system of N iden
tical monoatomic molecules enclosed in a cer
tain macroscopic volume V and subjected to 
Bose statistics.

Suppose the Hamiltonian of our system to 
be, as usually, of the form:

я== 2  T ( p ^ +  2  ф (1
(1<J

where

T ( p . ) = ’ p"  =  УKPl) 2 rn Jd 2m

represents the kinetic energy of the ith mo
lecule and Ф (| Qj— q] |) — the mutual poten
tial energy of the pair (it /) .

Applying then the method of second quan
tization, let us present the basic equation in 
the form:

+  5 Ф(1 ? - ? ' ! ) * * ( 9 ' ) ( 1 )
whereby

/ f 
Here a,ff a* are conjugated operators with 
commutation rules of the well-known type:

ajaf, — af,df =  0;

* * _ л  _  \ * ’ / = = / ' 
atar' af ,a1 — /' | 0( /  ф  f

and {<pf (q)} is a complete orthonormal set 
of functions:

^ 9f{Q)?t. {Q)d4=bt ,r-

For the sake of sim plicity, we shall fur
ther employ the system of eigenfunctions of 
the momentum operator of a single particle:

? / ( ? ) =  i e l _ ? r ; ( / -9 )= =  2
(l<$a<3)

the operator Nf =  a*af then representing the 
number of molecules with momentum / .  For 
finite V vector f  is obviously quantized. For 
example, under usual boundary conditions of 
the periodicity type,

4a__2nn«%
I — г ,

where {n19 n2, n3) are integers, and I denotes 
the side of a cube of the volume V .

However, since we are going to deal 
with thermodynamic volume properties of the 
system, we have to bear in mind a limiting 
process, such that when jV—>oo, the boundary 
of the container tends to infinity, V—>oo, 
but the volume per molecule v =  VIN remains 
constant. Therefore, we shall‘pass over in the 
final results to a continuous spectrum, replac
ing the sums ^F(f)  by integrals 

/

Equations (1) are the exact equations of 
the problem of N  bodies. It becomes, therefore, 
a necessity in order to push forward the in
vestigation of the motion of the considered 
system, to apply some approximation method 
based on a supposition that the energy of 
interaction is sufficiently small. According 
to this supposition, the potential function 
Ф(г) is assumed to be proportional to a certain 
small parameter s.

Later on we shall see what dimensionless 
quantity-can be chosen for s. For the present 
it suffices to notice that the above supposition, 
strictly speaking, corresponds to a neglection 
of the finiteness of molecular radius, since we 
do not take into account the intensive increa
se of <P(r) for small r, which causes the impe
netrability of molecules. W e shall see, how
ever, that the results, which w ill be obtained, 
can be generalized so as to include the case 
of a finite molecular radius.

Now let us turn to the formulation of an 
approximate method. If there be no interaction 
at all, i. e. if a be exactly zero, we could put 
at zero temperature: N 0 — N,  Nf =  0 (/=£0).

But in the case under consideration, when 
s is small and the gas is in a weakly excited 
state, these relations are valid approximately, 
which means that the momenta of the over
whelming majority of molecules approach zero. 
Of course, the fact, that zero momentum is the 
limiting one for particles in the ground state, 
is due to a specific choice of the coordinate 
system: namely, we choose the system wTith 
respect to which our “ condensate”  is at rest.

Our approximation method, based on the 
above considerations, runs as follows.

1) Since iV0 =  a\aQ is very large as compared 
with unity, the expression:

M o  ^y
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is small as compared with al, a0 themselves, 
which enables us to treat them as ordinary 
numbers* neglecting their non-commutability.

2) Let us put
Af-d)

>== 7 f  2  aie
* (/¥=0)

and consider & as a “ correction term of the 
first order” . Neglecting all the terms in equa
tion (1), involving the second and higher po
wers of this being permissible since the 
excitations are supposed to be weak, we obtain 
the follow ing basic approximate equations:

l%dt =
Jil до. _i_ On ф j j .
2m V

+тг $ +

(2)

where

__ ф  
at v  0 09

In order to pass from the operator wave 
function & to operator amplitudes let us 
apply Fourier’s expansion;

. (f-q-q')
Ф(|я — ?'|) =  2 г в' % (3)

From the radial symmetry of the poten
tial function it follows that the amplitudes 
of this expansion:

, u-q)
v ( / ) =  $[ф(|?|)е_< ft dq,

depend upon the length |/| of vector /  only.
The substitution of (3) into equation (2) 

gives:

i%d- £ = [ T { f )  +  E0 +  f v t / ) } « / +

al
+  у  v (/) aif\

E  = - ° -  Ф^0 у  ^0»

whence on setting
E  о 4 ° f .6/; a0 =  e1'  ̂ b (4)

we get: 
db.

(5)

~  ^  ~дГ =  y (/) /̂ +  {  ^ ( /)  +  ~7°'v (/) | blf .

Solving this system of two differential 
equations with constant coefficients, we find 
that the operators bff b* depend upon the 
time by means of a linear combination of 
exponentials possessing the form

where *

(6)

Now let us observe that the inequality:

v (0 )=  \ <£(\q\)dq>0,  (7)

implies the positiveness of the expression 
under the sign of the radical (6) since e is 
considered to be sufficiently small; thus bh 
bf prove to be periodical functions of time. 
On the contrary, if v (0) <  0, this expression 
is ^negative for small momenta and, there
fore, E  (/) receives complex values. As a 
consequence, bf , b} w ill involve a real expo
nential increasing with time, whence it fo l
lows that the states with small Nf =  b*bf are 
unstable.

In order to be sure in the stability of the 
excited states, let us restrict the class of pos
sible types of interaction forces, supposing 
inequality (7) to be satisfied for all types 
we shall consider. It is interesting to note 
that the inequality (7) just represents the 
condition of thermodynamic stability of a 
gas at absolute zero.

* A  similar procedure was used by Dirac in his 
book “ The Principles of Quantum Mechanics”  (second 
edition), cf . the end. of § 63: Waves and Bose-Einstein 
particles.

i Journal of Physics V ol. X I , N o. 1

* W e may remark that if we form the correspond
ing frequency o> =  & £ ( /)  and put: Tv -> 0, f / %  =  k -  
=  const we obtain the classical formula for the 
dispersion of the frequency deduced by A . V 1 a- 
s o v , cf. Journal of Physics, 9, 25 (1945).
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Indeed, at absolute zero the free energy 
coincides with the mean energy. The main 
term of the latter has the form

E =  ~ r \ b { \ q \ ) d q ,

since the correction terms (for instance, the 
mean kinetic energy) are proportional to 
higher powers of s.

Therefore, the pressure P is expressed by 
the following formula:

where p =  Nm/V represents the density of 
the gas.

This proves that the inequality (7) is 
equivalent to the condition of thermodyna
mic stability:

£ > 0 .

Finally, let us note that we can write 
instead of (6), with the same degree of ac
curacy:

£ ( / ) = /  2 T (/)  ~p v (/) +  Тг (f) =

=  /
I / 1* v 7 /)T T /f

+ ( 6 ')

E { f ) =  [ / VJ£>
mo I / | ( i +  • • • )—

E(f) =  c\ f \( i +  . . . ) ,

E{f) Ъп

T (/)  of a single molecule for sufficiently 
large momenta.

Returning now to equations (5), let us 
introduce new mutually conjugated operators 
с/, If instead of fy, Щ by means of the fol
lowing relations

bf-Lfb^  

/ 1-1 Lf |2
b+ — L+b_f bf f f

/ 1 - 1  Lf \* ’
(10)

where Lf are numbers determined by the 
equalities:

Fb2

so that

r ) ’ =E V )  +  T O )  +  ( N 0/ V H f )

i _ i l  i2 = __________2EA0.__________
14 \  E ( , )  +  T  ( / )  +  ( J V , / F ) v ( / )

(H)

Reversing (10) we obtain:

4 + LK T

bt - vV l- I Lf г

C +  Lfh*=  .:/ !  -L-----
f

(12)

since we take into account the main terms 
only; it follows from (6 ') for small momenta:

The substitution of these expressions into 
equations (5) gives:

i n d±  =  E { W f  - i h d- ^  =  E { № *  (13)

where by dots are denoted the terms vanish
ing together with / .

In what follows we shall attribute the 
positive sign to each square root we shall 
deal with. We thus have for small momenta:

It can be immediately verified that the 
new operators satisfy the same commutation 
relations as the operators af, a*f \

0; Щ.  — i f  ̂  =  Дл ; (14)

(8)

where с denotes the velocity of sound at 
absolute zero.

On the contrary, for sufficiently large 
momenta E{f)  can be expanded in powers 
of s:

(9)

Since v (/)  tends to zero with increasing |/|, 
E  (/)  is seen to approach the kinetic energy

This alone suffices to conclude that the 
excited states of the given assemblage of 
molecules can be treated as a perfect gas 
composed of “ elementary excitations”  —  “quasi- 
particles”  with energy depending on the mo
mentum by means of the relation: E =  E (f). 
These quasi-particles are described by the 
operators in the same way as molecu
les were described by the operators â , a*, 
and, therefore, they are also subjected to 
Bose statistics. The operator
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represents the number of quasi-particles with the momentum / .
The above conclusion becomes quite clear if we consider the total energy

Я =  Я к1п +  Я pot

where

H  ot = ~   ̂ф (I q — q’ I) (?) (?') ^ (?)(?' )  dqdq' =

= 2f 2  ê'  ̂(q ')dqdq'•

For the kinetic energy we obtain

Hbin = '2lT(f)a}af = '2iT(f)b}bh
f f

In order to compute the potential energy with the assumed degree of accuracy, we shall 
disregard in the expression:

W'(q)W*(q') 4'{q) V (q’) =  ( ^ =  +  Г  ( ? ) )  ( ^  +  » + ( ? ' ) )  ( 7 7 +  °  ( ? ) )  ( ] 7 f +  & ( ? ' } )  '

all terms of the third and higher order with respect to 0, &\ This gives

tfpot = Фо {i  ^  + T22  b]b,} +£ 2 vW 6-> + 1ПГ 2  vM6/6-/ + T 2  v ̂  6/6/.
/¥=0 (фО (ФО }ф0

Noticing here that

2ь;ь/=2лг/=л“ -̂
1ф0 )фц

we can write with the same degree of accuracy:
1 N* N 0 v  _  l N*
T  7 ~ + T Z b> bt~ Y 7  •

/=*0
Hence

#=IPф»+1? 2 v w w -f+^  2 v w bib-t+T 2 v w 6/ + 2 71 w/¥=0 /̂ 0 /̂ 0 /

Replacing here the operators bj.t bf by the operators £/, £/ with the aid of relations (12), 
we obtain finally

я  =  я 0 + 2  £ ( / ) * / ;  nt =  W4> (15)
{фЧ

where
# 0 =  1 71 !ф о +  2  =

/^ 0

“ ¥ T *- + i(SS?$ <16>
Thus we see that the total energy of the considered non-ideal gas consists of the energy 

of the ground state and* the individual energies of each of the quasi-particles. It means 
that the quasi-particles do not interact with each other and thus form a perfect Bose-Ein
stein gas. The absence of interaction between the quasi-particles is evidently caused by the 
admitted approximation, namely by neglecting the terms of the third and higher order with
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respect to i+f involved in the expression for energy. Therefore, the above results are 
valid for weakly excited states only.

On having taken into account the disregarded third-order terms in the expression for 
energy or the second-order terms in equations (13) which are to be considered as a small 
perturbation, we could discover a weak interaction between the quasi-particles. This in
teraction enables the assemblage of quasi-particles to attain the state of statistical equi
librium. Proceeding to the study of this state, let us first observe that the total momentum 
of quasi-particles: 2  f nf> conserved. To prove this consider the components of the 

/
total momentum. From

2  pi =  5 ¥+ (?) { — in \ d4 = 2  ^ a*ai= 2 f*bibf 
(1 q f f

it follows, according to the transformation relations (12), that

The invariance of L), Lf with respect to the replacement of /  by — /  implies:

T * ~  f ту  /« CzllL =  V  =  0
> 1 - 1  Lf ? jmi i — \Lf \* ’

V _ V fa I Lf I2 !) _ V fa
Z t 1 \-\Lf\* Z i '  “  Z k ’  l —i Lr\;- •

Hence we conclude that

2  я = 2 ? л/ ’

i . e. that the total momentum of the assem
blage of molecules is equal to that of the 
assemblage of quasi-particles. Since the for
mer is conserved, the sum 2  fnf proves to
be conserved too.

It is also easy to see that the total num
ber of quasi-particles 2  nf ri0t invariant;
quasi-particles can appear and disappear.

For this reason we obtain in the usual 
way the following formula for average occu
pation numbers nf ( f  Ф  0) in the state of 
statistical equilibrium:

nf =  | A exp E 11 i; A = i 9 (17)

where 0  is the temperature modulus, while 
и denotes an arbitrary vector. However, the 
length of this vector must have an upper

lim it. In fact, since all average occupation 
numbers have to be positive, the inequality

and, therefore, the inequality 
E{ f )>\f \ - \u\  

is satisfied for all f ф 0 .
But from the above properties of E  ( /)  it 

follows that the ratio
EJJ)

"I/I
is a continuous positive function of j / [ .  
This function is equal to с >  0 at |/| =  0 
and is increasing as |/|2/2m, for | / 1 — > o o ; 
therefore, the minimum value of the consi
dered ratio is essentially positive. Hence the 
condition for the positiveness of is equi
valent to inequality

\ u \ ^  m in  ~ y ~  . (1 8 )

If the decrease of E  (/)  for small momenta 
be proportional not to the momentum itself, 
but to its square (as it is the case for tЫ 
kinetic energy of a molecule), the right 
hand side of the obtained inequality would
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be equal to zero, this value being the only 
possible one for u. But in the case under 
consideration the vector и can be chosen 
arbitrarily, provided that its length is suf
ficiently small.

Now let us note that from the momentum 
distribution over the gas, composed of 
quasi-particles, given by  formula (17), it 
follows that this gas is moving as a whole 
with the velocity u. At first, we have chosen 
such a coordinate system with respect to which 
the condensate (i. e. the assemblage of mole
cules in the ground state) is at rest. Inversely, 
by transition to a coordinate system with res
pect to which the quasi-particle gas, as a whole, 
is at rest, we can discover the motion of the 
condensate with the velocity и .

This relative motion goes on stationarily 
in the state of statistical equilibrium without 
any external forces. Hence we see that it is 
not accompanied by friction and thus repre
sents the property of superfluidity*.

As we have seen, the energy of a quasi- 
particle is asymptotically equal to c\f\ for 
small momenta, с being the velocity of sound. 
Therefore, a quasi-particle for small momenta 
is just a phonon. When the momentum is 
increasing, the kinetic energy becomes large 
as compared with the binding energy of a 
molecule, and the energy of a quasi-particle 
tends continuously toward the individual 
energy of a molecule T (/).

Thus we see that no division of quasi-par
ticles into two different types, phonons and 
rotons, can even be spoken of.

2. Now let us consider the distribution of 
momenta over an assemblage of molecules, 
m the state of statistical equilibrium. We 
introduce a function W  ( /)  defined in such 
a way that N W  (/) df represents the ave
rage number of molecules whose momenta 
belong to an elementary volume df of the 
momentum space. This function is seen to 
be normalized by means of

^ W ( f ) d f  =  1. (19)

* By using the argument pointed out by Landau 
in §4 of his paper “ Theory of Superfluidity of Helium  
II”  it may be noted that the existence of superfluidity 
is directly evident from the above mentioned pro
perties of the function E  (f), following from the in
equality: v (0) >  0. This inequality can thus be consi
dered as the condition ot superfluidity.

Suppose, further, F  (/) to be an arbitrary 
continuous function of the momentum. For 
the mean value of a dynamical variable

2  P M ’
(i < ^ N )

we then obtain obviously:

N   ̂ F ( f ) W  (/) df. (20)

On the other hand, we have for the same 
mean value:

(21)f
Thus the comparison of expressions (20), (21) 
gives:

whence we obtain, by expressing bf, bf through
5/,

W{f)  =

_  „ nf + \ L f \*(n_f + l )

(2rcft)3 \ — \Lf I2 ’ ^ >

where, in virtue of (17)

nj =  |exp ( / )~ ( / -'-ц))  — 1 j " 1. (23)

Expression (22), obtained for the distribution 
function, holds evidently only for f  Ф 0. 
Therefore, the complete expression for the 
momentum distribution function is seen to 
be, in virtue of the normalization condi
tion (19):

w (; ) - 6 o ( / ) + ( W -------— ’ (24)

where 3 (/) is Dirac’ s о-function, and the num-
ber С is determined by the equation:

с  — 1----------[ nr + \Lf\2(n-f+l ) df (oK\
(2rt)8 J 1 -1  £/> I2 h ' '

С is obviously equal to N 0jN since CN re
presents the average number of molecules 
with zero momentum.
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It follows from (11) that

4 —  I Ist

4 Я ( / )  +  Г ( / )  +  ^ у ( / )

2 £ ( / )

Hence the momentum distribution function 
at absolute zero is of the form:

+

W(f)  =  C 4 f )  +

whereby

(2«b )3

1— C =

( t ^ y

2 E U ) h ( f )  +  T
d f .  (27)

’ ( / ) = 3 V >  ( Щ г ) >

Transforming (27) to the dimensionless va
riables and reducing the three-dimensional 
integral to the one-dimensional one, we get:

N - N 9 _ _ v  1 7  
(26) • jy ‘(2*)aJ

7]Cl)2 (#) X dx
N  

where

a {x) {ха (#) + я24- 4<*> («)> , (28)

a (#) =  \r x2 +  2t]cd (x) ; 
_ ( « 7 ) Ф ,  (#■?/*) Ф.

Ъ,г/2тг%

Now it is be easy to see that for small 
values of rj the integral in (28) is of the 
order of у  v\, and hence the condition of the 
validity of our method may be represented 
by the inequalities:

r0

i. e.

2 mrl (29)

W e thus see that even at 0  =  0 only a 
fraction of molecules possesses momenta which 
are exactly zero, the rest being continuously 
distributed over the whole momentum spec
trum .

As we have pointed out, our approxima
tion method holds only when (N— N 0)jN =  
=  1 — C <  1, and, therefore, the interaction 
of molecules must be sufficiently small in 
order to secure the smallness of the inte
gral (27).

We can now make clear the meaning of 
the assumed smallness of the interaction.

Les us put Ф {г) =  ФтР (r/r0)f where F  (p) 
is a function assuming together with its de
rivatives the values of the order of unity 
for p ~ l  and rapidly approaching zero as 
[j — > o o . Then

For 0  >  0 an analogous consideration of 
the general formula (24) leads us to a sup
plementary condition of the weakness of the 
excitation which requires the temperature 
to be small as compared with the X-point 
temperature.

It is to be pointed out that the inequalities 
(29) automatically exclude the possibility of 
accounting for the short-range repulsion for
ces, since this would require to admit the 
strong increment of <D(r) in the vicinity of 
r =  0.

It seems nevertheless possible to modify 
the obtained results in the way to get them 
extended to the more real case of a low density 
gas of molecules possessing a finite radius.

To this aim we observe that the potential 
function Ф(г) appears in our final formula 
only in the form of the expression:

(/•«)
’ ( / ) = $  ф (1 9 1) e* * dq, (30)

> (я) being a function assuming the values 
чЛ for rapidly approaching zero as proportional to the amplitude of Born’ s 

collision probability for binary collision.
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Hence, as the interaction of molecules for 
the low density gas reveals itself principally 
by means of these binary collisions, it seems 
that expression (30) is to be replaced* by the 
corresponding expression proportional to the 
amplitude of the exact probability of the 
binary collisions, calculated for the limiting 
rase of zero density, i. e. we have to put:

v (/ )=  ^Ф(|д|У<р(д,/)<* (31)

where <p(g, f) is the solution of the Schro- 
dinger equation for the relative movement 
of an isolated pair of molecules:

— -^-д? + { ф (|д1)— £ } ?  =  °,

. (/ - q)
1 —

going over into e at infinity. The repla
cement of (31) instead of (30) in the formula 
for E (/) w ill lead us to the results, referring 
to low density gases.

This being admitted we see, e. g., that the 
ondition of the superfluidity v (0) >  0 may 

be written in the form:

$ — ~t  jj ф (1 д I) G(! д l)^g. (ззу

where T is the mean kinetic energy of one 
molecule and G(r) is the molecular distribu
tion function normalized in the way that 
G{r)—> 1 as г —> oo . On the other hand, by 
using the virial theorem we see that the 
pressure P can be determined by  the formula

^ = 4 ^ - ^ Д ф ' ( ! д ! ) ! д | С ( | д | )< / д .  (34)

Let us now remark that for 0  =  0 the prin
cipal term in the expansion of the molecu
lar distribution function in powers of density 
is obviously equal to <p2 (| q |). Therefore, by 
neglecting in (33), (34) the terms of the se
cond order in density one gets:

£  =  T +  l\<S>{\q\)tf{\q\)dq-, 

P v = * T - l - \ ® '  i},q\)\q\tf{\q\)dq.

Hence, taking into account that

$ ф (|д1М |?|)< /д> о . (32)

where <p (| q |) is the radially symmetric solu
tion of the equation:

Д? +  Ф(1?1)? =  о

zoing over into unity at infinity.
In order to connect, as before, inequa

lity (32) with the condition of the thermo
dynamic stability let us compute the prin
cipal term in the expansion of the free energy 
in powers of density at the absolute zero of 
temperature. The free energy at absolute zero 
being equal to the mean energy, we have 
the following expression for this energy per 
one molecule:

we obtain the equation for the evaluation 
of the principal term in the expression for T . 
Iu this way one gets:

< £ = | $ ф (| д | Ы | д | К д  =  ^ ,  ?  =  •&>

and thus the condition of superfluidity in 
the considered case of low density gas is 
also equivalent to the usual condition of the 
thermodynamic stability at absolute zero:

It can also be seen that the energy of a 
quasi-particle goes over again into c\f\ for 
small / .

Consider now, for instance, the model o f 
hard impenetrable spheres of the radius r0/2 
and put:

* I am indebted to L, D. Landau for this impor
tant remark.

Ф(г)=+оо, r < r 0; 

Ф(г)=0, r < r 0.
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Then by simple calculation we get:

v(0) =  2rc—' 1 m

If a weak attraction between molecules is 
admitted here in the way that

Ф ( г ) = + о о ,  r < r 0;

Ф (r) =  еФ0 (r) <  0, r > r 0.

s being a small parameter, we obtain, up 
to the terms of the order of a2:

v (0) =  2k  -f- 2tc  ̂ г2Ф (г) dr.
Го

Thus, the superfluidity in the considered 
gas model is conditioned by the play of 
repulsion and attraction forces, the first 
“ encouraging”  and the latter “ hindering’ ' it .

Let us note in conclusion that the exten
sion of the present theory to the case of the 
real liquid seems possible if we be permitted 
to use such semi-phenomenological concep
tions as that of the free energy of slightly 
non-equilibrium states.


