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Perception of musical consonance and
dissonance: an outcome of neural

synchronization
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While a number of theories have been advanced to account for why musical consonance is
related to simple frequency ratios, as yet there is no completely satisfying explanation. Here,
we explore the theory of synchronization properties of ensembles of coupled neural oscillators
to demonstrate why simple frequency ratios may have achieved a special status and why they
are important for auditory perception. The analysis shows that the mode-locked states
ordering give precisely the standard ordering of consonance as often listed in Western music
theory. Our results thus indicate the importance of neural synchrony in musical perception.

Keywords: consonance; dissonance; neural synchronization; mode locking;
coupled oscillator; musical interval
1. INTRODUCTION

For more than two millennia musicians and theorists
have debated those factors that tend to give rise to the
perception of musical consonance and dissonance
(Helmholtz 1877; Plomp & Levelt 1965; Roederer
1975; Tenney 1988; Hartmann 1998). Although there
is no single musical definition, consonance is usually
referred to as the pleasant, ‘stable’ sound sensation
produced by certain combinations of two tones played
simultaneously. By contrast, dissonance is the unplea-
sant grating sound heard with other sound com-
binations. The common octave, for example, is judged
as consonant, while playing two adjacent keys on the
piano together (i.e. a semitone) is perceived as
dissonant (see electronic supplementary material).
The dominating theory to explain these sensations is
attributed to Pythagoras and suggests that the simpler
the frequency ratio between two tones, the more
consonant they will be perceived; the sonority being
reflected in the resulting interval’s ‘pleasantness’
(figure 1). Consider two pure tones having frequencies
f1ZP and f2ZQ. According to the Pythagorean view,
the consonance of the two tones may be ordered by the
simplicity of their relative integer frequency ratio P : Q
(Roederer 1975; Tenney 1988). Simple integer ratios,
argued Galileo, being ‘commensurable in number, so as
not to keep the ear drum in perpetual torment’ (Tenney
1988). Thus, the consonant octave is characterized by
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a 1 : 2 frequency ratio between two tones, while the
dissonant semitone is characterized by a 15 : 16 ratio.
In Western culture, the intervals are often listed in the
decreasing order of ‘perfection’ shown in table 1.

Preference for musical intervals of simple frequency
ratios such as the octave, fifth and fourth, might simply
reflect education or immersion and exposure to
Western musical practices. Cross-cultural exami-
nations of scale structure in music shows that there is
a high preponderance of fifths (2 : 3), fourths (3 : 4) and
octaves (1 : 2; Schellenberg & Trehub 1994b). More-
over, it is well known that the simplicity of frequency
ratios has played a central role in musical theories of
intervallic consonance and dissonance (Helmholtz
1877; Tenney 1988). It has thus become a common
view that musical consonance is, to a possibly large
extent, learnt through exposure to musical culture. The
learning process might thus be chiefly responsible for
the special status of tones related by simple frequency
ratios. By contrast, Schellenberg & Trehub (1994a,b,
1996a,b) attempted to explore the possibility that the
special perceptual status of intervals with simple
frequency ratios derives from a natural or inherent
biological basis. This was achieved by evaluating
infants’ ability to detect subtle changes to patterns of
simultaneous and sequential pure tones. Their results
confirmed that simple, as opposed to complex, frequency
ratios are more readily identified by listeners and
consequently are more likely to result in a stable
perceptual representation. As this was true even for
infants, the perceptual status of these special intervals is
unlikely to be due to education or exposure to Western
musical practices.
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Figure 1. Intervals within an octave. The related frequency ratio is marked below each interval and their ordering of perfection is
numbered above each interval in Roman numerals. For simplicity, the intervals are shown relative to C4 (264 Hz) but can be
achieved for any other reference note.

Table 1. Ordering of consonances for two-tone intervals from Helmholtz (1877, pp. 183 and 194) as accepted in the Western
musical culture in decreasing order of ‘perfection’ from most consonant to most dissonant. (See also table 5.2 in Roederer (1975,
p. 141). The third column lists the frequency ratios of the two tones as set out in Helmholtz (1877). The fourth column lists DU,
the width of the stability interval (see text and figure 4), that is associated with each musical interval as determined numerically
using equations (4.1) and (4.3) with 3Z5, aZ100, t1Zt2Z1. Being dissonances, the minor second and tritone have extremely
small stability intervals making them difficult to identify.)

interval’s evaluation interval’s name interval’s ratio DU

absolute consonances unison 1 : 1 0.075 consonance
octave 1 : 2 0.023

perfect consonances fifth 2 : 3 0.022
fourth 3 : 4 0.012

medial consonances major sixth 3 : 5 0.010
major third 4 : 5 0.010

imperfect consonances minor third 5 : 6 0.010
minor sixth 5 : 8 0.007

dissonances major second 8 : 9 0.006
major seventh 8 : 15 0.005
minor seventh 9 : 16 0.003
minor second 15 : 16 —
tritone 32 : 45 — dissonance
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2. HELMHOLTZ’S THEORY OF BEATING
HARMONICS

A scientific basis for the phenomenon of consonance and
dissonance was established by Helmholtz (1877) and
was based on the number and strength of ‘beating’
harmonics in a pair of simultaneous complex tones
(Roederer 1975; Hartmann 1998). Helmholtz argued
that for two complex tones in unison (P : QZ1 : 1) or
an octave apart (P : QZ1 : 2), all harmonics of the
second tone are aligned and coincident in frequency
with the first, and thus the outcome is highly
consonant. However, as the frequency ratio P : Q
becomes more ‘complicated’, the two tones share
fewer common harmonics, while there is an increase of
harmonic pairs slightly mismatched in frequency.
According to Helmholtz’s (1877) linear theory, these
latter nearby harmonics interact and lead to an
unpleasant beating sensation that results in dissonance.

The beating effect may be understood mathemat-
ically by considering the linear addition of two pure sine
tones (i.e. with no harmonics) having almost the same
frequencies u1 and u2Zu1Cd, both of the same
amplitude. Summing these signals linearly gives
J. R. Soc. Interface (2008)
sinðu1tÞCsinððu1 CdÞtÞZ 2 cosðdt=2Þsinð�utÞ; ð2:1Þ
where the average frequency �uZðu1Cu2Þ=2. Thus, a

listener will not have the impression of listening to two
different frequencies but instead will hear a single pure
tone with a pitch corresponding to the average
frequency �u and with loudness that varies slowly
leaving a beating sensation oscillating with an envelope
at frequency dZu2Ku1. The beating disappears only
after surpassing a sufficiently large frequency
difference, at least dO15 Hz (see Roederer 1975,
p. 28). All signs of roughness disappear when the
frequency difference surpasses ‘the critical bandwidth’,
which is approximately 10–20% of the centre frequency
�u for frequencies greater than 500 Hz, and pure tones
sound both ‘smooth’ and ‘pleasing’ (Plomp & Levelt
1965; Roederer 1975, p. 28).
3. PROBLEMS WITH HELMHOLTZ’S THEORY

Helmholtz’s (1877) theory is scientifically appealing,
but yet it remains controversial and fails to explain a
number of non-trivial aspects central to musical
psychoacoustics.
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(i) Plomp & Levelt (1965) have demonstrated that
once the frequency difference d between two
pure-tone intervals exceeds 3 semitones (i.e.
beyond the critical bandwidth), no roughness
can be experienced by the ear. However, beyond
this critical bandwidth the evaluation of con-
sonance can vary considerably and change
direction (with peaks and valleys) as d increases.
Yet, these changes of consonance occur despite
the absence of harmonics, and thus in a regime
where beats should be entirely absent. Clearly,
Helmholtz’s theory of beats is unable to explain
these consonance sensations.

(ii) When applying sequential pure tones that do not
enter the ear simultaneously, Helmholtz’s
theory would no longer seem applicable. Never-
theless, sequential pure-tone intervals with
simple (as opposed to complex) frequency ratios
were found to be more ‘readily processed by
listeners’ (Schellenberg & Trehub 1996a). Here,
ease of processing a tone pattern referred to
enhanced discrimination of that pattern in
experiments. This suggests a special perceptual
status for intervals with simple frequency ratios.

(iii) Experimental studies have shown that patients
with auditory cortex lesions lack the ability to
evaluate consonance in a similar manner to
normal patients (Peretz et al. 2001; Tramo et al.
2001). This raises the question as to whether the
source of musical perception is governed by peri-
pheral mechanisms in the inner ear as held by
Helmholtz. Rather it suggests the existence of
specific neural pathways that are devoted to diss-
onance computation and that can be disrupted
selectively by brain damage (Tramo et al. 2001).

(iv) The EEG responses of subjects to pairs of pure
tones show that neural processing of consonance
depends on higher associative processing of pitch
relationships in the cerebral cortex (Itoh et al.
2003). That is, consonance is not just the absence
of roughness but determined by neural processing
in the auditory cortex. Itoh et al. (2003) reached
this conclusion by studying the auditory evoked
potentials indicative of cortical activity response.
Of the intervals studied (1, 4, 6, 7, 9 semitones),
they found that in all cases the evoked potentials
were at their highest (in terms of voltage) for
two pure tones separated by a perfect fifth
(7 semitones) when compared with other inter-
vals. These results provide electrophysiological
evidence that matches behavioural preference for
simple frequency ratios. Given that pure tones
only were made use of in the experiments, this
preference has nothing to do with the beating of
harmonics which forms the basis of Helmholtz’s
theory (1877).
4. COUPLED OSCILLATOR MODEL OF
AUDITORY PERCEPTION

We are thus led to ask, over and above Helmholtz’s
beating phenomena, why do some combinations of
tones sound more pleasant than others? The answer to
J. R. Soc. Interface (2008)
this question may well have to do with the nonlinear
dynamics of auditory perception, in contrast to
Helmholtz’s solely linear framework. Consider then,
two coupled ‘integrate and fire’ neural oscillators that
in the absence of coupling have distinct frequencies u1

and u2 and a relative frequency ratio UZu1/u2. Each
oscillator might typically represent a neuron, or a
population of neurons. Such signals are processed in the
auditory cortex within the right superior temporal
gyrus that is believed to be involved in the analysis of
pitch and timbre (Samson & Zatorre 1994; Zatorre et al.
1994; Blood et al. 1999). In response to a specific
auditory tone frequency stimulating the cochlea, such
an oscillator would fire at a given frequency. For
modelling simplicity, firing frequencies may be the
same as the driving frequencies, but in reality may be
scaled-down versions of them, since neurons cannot fire
at rates much beyond a kilohertz.

A simple scheme of two mutually coupled oscillators
that captures the generic behaviour consists of two
voltage variables x1, x2 as follows (Coombes & Lord
1997):

dx1
dt

ZK
x1
t1

CI1 C3$E1ðtÞ;

dx2
dt

ZK
x2
t2

CI2 C3$E2ðtÞ:

9>>=
>>;

ð4:1Þ

Here t1, t2 are decay constants; E1(t) represents the
effect of neuron-2 on neuron-1 and vice versa; I1 and I2
represent the external input that x1 and x2 receive,
respectively; and 3 represents the strength of coupling
between the neurons.

The first oscillator (x1) increases in voltage and
‘fires’ only when it reaches a fixed threshold (x1Z1).
After firing, the oscillator is instantaneously reset to
zero (x1Z0), while the voltage of the second oscillator is
instantaneously increased by 3E2(t), i.e.

x2/x 2 C3E2ðtÞ:

The strength of coupling between the oscillators is thus
determined by 3. One of the simplest coupling schemes
assumes that communication between the neurons is
via a sharp infinitesimal pulse, such as the Dirac
d-function (Mirollo & Strogatz 1990),

E 2ðtÞZ
XN
jZKN

d tKTj
1

� �
;

where Tj
1 denotes the j th firing time of oscillator-1. The

firing of neuron x1 thus results in an increase by an
amount 3 in the voltage of oscillator-2.

The simple Dirac d-function pulse is only a first
approximation. In reality, the effective input to the
neuron has a longer temporal duration due to the
synaptic transmission process. One particular pulse
shape that approximates the rise and fall time of real
synaptic currents in a realistic fashion is of the following
form (Jack et al. 1975):

aðtÞZa2teKat$QðtÞ: ð4:2Þ

Here a(t) represents the exponential rise (and fall) of
the synapse of x as shown in figure 2, and Q(t) is a step
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Figure 2. The function a(t) (equation (4.2)) representing the
exponential rise and fall time of synaptic input currents (Jack
et al. 1975). The final input to the neuron is a sum of these
functions with distributed delay as given by equation (4.3).
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Figure 3. Time series of oscillators 1 and 2 (equations (4.1)
and (4.3) with 3Z8, aZ100, t1Zt2Z1), in a 2 : 3 mode-
locked state. The common time frame ‘T ’ is marked with grey
and white bands. Note that oscillators x1 (top graph) fires two
spikes for every tree spikes of oscillator x2 (bottom graph) so
that oscillator x1 has a two-cycle attractor while oscillator x2
has a three-cycle attractor.
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Figure 4. Devil’s staircase structure, for a given value of 3Z8,
aZ100, t1Zt2Z1, u1/u2 that varies from 0.3 to 1.1. The
stability interval of 1 : 1 is marked by DU1, 1 : 2 by DU2 and
2 : 3 by DU3. To enhance visualization of the staircase
structure, the figure has been generated at relatively large
coupling (3Z8) thereby highlighting the mode-locked states;
this explains why, in the case of 1 : 1 synchronization, the
width of the mode-locked state may appear exaggerated.
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function such that

QðtÞZ 1 tO0;
0 otherwise:

�

The maximal synaptic response occurs at a time aK1

after the arrival of an action potential (Coombes &
Lord 1997). In practice, the final input to the neuron is a
sum of distributed delays represented by alpha func-
tions, which gives (Coombes & Lord 1997)

EðtÞZ
X
k2Z

a2ðtKkÞeKaðtKkÞ$QðtKkÞ

Z
a2eKat

ð1KeKaÞ tC
eKa

ð1KeKaÞ

� �
; t 2 ½0; 1Þ: ð4:3Þ

The above formula makes allowance for the fact that
the voltage of the oscillator is increased by an amount
calculated over the weighted sum of all past firings of its
neighbouring coupled oscillator. (For a/N, the simple
case of coupling via a d-function is retrieved.)

The frequency ui of oscillator-i when uncoupled is
found by solving the differential equation

dx

dt
ZK

x

ti
CIi

to obtain Kti ln jxK tiIijZ tCKti ln jtiIij, given the
initial conditions xZ0 at tZ0. Note that one firing
occurs in the time frame ðTn

i ;T
nC1
i Þ, where xZ0

changes to xZ1 at tZTnC1
i . The period tZTnC1

i KTn
i

of the oscillator’s firing cycle can be calculated by
inserting xZ1 in the above equation giving
tZti ln jtiIi=ð1K tiIiÞj. Thus, the natural firing fre-
quency of the oscillator when uncoupled is

ui Z 1=t Z ti ln
tiIi

1K tiIi

����
����

� �K1

:

5. SYNCHRONIZATION AND SIMPLE
FREQUENCY RATIOS

By virtue of the coupling, the two oscillators are able to
synchronize or ‘mode lock’ (Schuster 1995; Coombes &
Lord 1997) so that their firing patterns repeat with the
same fixed period. Figure 3 shows time series of the two
J. R. Soc. Interface (2008)
oscillators in a 2 : 3 mode-locked state. To understand
the subtleties of mode locking in more detail, one needs
to compare the ratio of the observed oscillator frequen-
cies when coupled D1/D2 to the ratio of the oscillator’s
natural intrinsic frequencies UZu1/u2. The oscillators
tend to mode lock to a simple firing ratio P : QZD1/D2

which is close but not necessarily equal to the ratio of
the oscillator’s intrinsic frequencies UZu1/u2. The
beauty of the synchronization is that the mode-locked
state (e.g. 1 : 2) is stable to small changes in the
frequencies u1 or u2 and thus U. In practice this means
that should the intrinsic frequencies of the oscillators
change slightly, the system’s synchronized solution will
nevertheless remain unaffected. This is demonstrated
graphically in figure 4, where UZu1/u2 is varied; yet
there are horizontal plateaus where the system’s
synchronized solution P : QZD1/D2 stays unchanged.
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Figure 4 gives simulation results showing the width
of the interval DU for which the ratio UZu1/u2 may be
changed while the mode-locked state P : Q remains
constant. The vertical axis in figure 4 corresponds to the
ratio of the observed frequencies of the coupled
oscillators, namely P : QZD1/D2, while the horizontal
axis corresponds to the ratio UZu1/u2. The stability
interval of 1 : 1 is marked by DU1, 1 : 2 by DU2 and 2 : 3
by DU3. The complete set of mode-locked states is
referred to as a Devil’s staircase (Schuster 1995) and is a
universal feature of driven coupled oscillators. Note that
the width of the mode-locked interval DU should be
considered as an indicator of the structural stability of
the synchronization. The wider the interval, the
stronger the structural stability. Thus, for example,
the unison (1 : 1) might be considered a more stable
synchronization than the octave (1 : 2) since DU1ODU2.
This correspondence between musical intervals and
mode-locked states was previously sketched out in
Stone (2000).

Table 1 shows a more detailed summary of the
ordering of the stability index of the mode-locked states
and reveals a correspondence with the theoretical
ordering of musical intervals according to their
consonance evaluation. The ordering corresponds to
ratio simplicity discussed in Schellenberg & Trehub
(1994b), where the simplest ratios (e.g. 1 : 1, 1 : 2, 2 : 3)
are the most consonant. The ordering corresponds to
that given in Helmholtz (1877, pp. 183 and 194) and
Roederer (1975, p. 141, table 5.2) who regard it as
having been accepted in the Western musical culture.

Theoretical arguments from a study of the generic
‘circle map’ also lead us to expect the relationship
between the simplicity of the frequency ratio P : Q, and
the width of the stability interval DU (Cvitanović et al.
1985). The relationship has been connected to a
mathematical construct, the ‘Farey tree’, which orders
all rational fractions P/Q in the interval [0,1] according
to their increasing denominators Q (Cvitanović et al.
1985). As the circle map is a paradigmatic model for a
large class of coupled oscillators the ordering of
intervals by the stability index should be considered
parameter independent in general.
6. DISCUSSION

It should be noted that there may be more than one
neural source that contributes to our perception of
consonance and dissonance. Neural processing of audi-
tory stimuli is complex, and it is possible that some
combination of physical properties at the ear, primary
auditory processing and secondary or associative proces-
sing play a role in this perception. Synchrony effects
underlying these layers of complexity nevertheless may
hold important clues in any attempt to explain
consonance. Indeed, Cartwright et al. (2001) have
explored a similar dynamical systems approach whereby
the synchrony characteristics of three coupled oscillators
(three frequency resonances), may resolve the puzzling
perception of the ‘missing fundamental’. Their theory
accounts for the manner in which a fundamental is
mysteriously perceived in a set of tones played simul-
taneously, even though it is absent.
J. R. Soc. Interface (2008)
Having presented a theory of consonance and
dissonance, it is important to emphasize that the effects
we describe are intended to deal solely with pure-tone
intervals outside of any musical context. This is to
deliberately exclude the emotional component that is
evoked when listening to harmonic musical progressions.
Thus, the jazz musicianmight love hearing dissonance in
music, but this phenomenon falls outside the scope of the
theory presented here.

A selection of examples of consonant and dissonant
sounds may be found in the electronic supplementary
material.

Although Helmholtz’s theory of beating harmonics is
a delightful explanation for consonance and dissonance
perception, as shown above, it nevertheless fails to
account for many phenomena well known in the
literature. In such cases, other explanations are needed.
Partly owing to this, neural synchrony has in the past
been postulated as an important mechanism in audi-
tory perception (Boomsliter & Creel 1961; Palisca &
Moore 2001). Palisca & Moore (2001) justify their
‘explanation in terms of the synchrony of neural
impulses . [since it] is supported by the observation
that both our sense of musical pitch and our ability to
make octave matches largely disappear above 5 kHz,
the frequency at which neural synchrony no longer
appears to operate’ (Palisca & Moore 2001). The model
presented here serves to extend their argument since it
explains why human preference for simple frequency
ratios in pure tones may be a natural consequence of
neural synchronization.
7. GLOSSARY

Pure tone is a single frequency tone with no harmonic
content (no overtones). This corresponds to a sine
wave. It is characterized by the frequency—the number
of cycles per second and the amplitude of the cycles.

Complex tone is a combination of the fundamental
frequency tone together with its harmonic components
(its overtones). For a sine wave, the harmonics are
integer multiples of the fundamental frequency of the
wave. For example, if the fundamental frequency is f,
the harmonics have frequency 2f, 3f, 4f, etc. Sounds
produced from musical instruments are complex tones.

Pitch. A pitch is the perceived fundamental fre-
quency of a tone.

Interval. In music theory, the term interval describes
the difference in pitch between the fundamental
frequencies of two notes. Intervals may be labelled
according to the ratio of frequencies of the two pitches.
Important intervals are those using the lowest integers,
such as 1 : 1 (unison), 1 : 2 (octave), 2 : 3 (perfect fifth),
3 : 4 (perfect fourth), etc. as shown in table 1.

The ‘just intonation’ tuning (in which the frequen-
cies of notes are related by ratios of integers) is the basic
scaling method, but due to practical implementation
difficulties on some musical instruments, the ‘equal
temperament’ tuning was introduced (in which the
octave (1 : 2) is divided into a series of equal steps).
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Sonority is a term that refers to the quality of a
musical tone. In particular, it refers to the resonance,
richness or fullness of tone.
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