Probing the Hot and Energetic Universe: X-rays and Astrophysics

Physics of the Cosmos mini-symposium X-ray Science Interest Group

Meeting of the American Physical Society Washington, DC

Jan 29, 2017

R. Kraft¹, M. Bautz², J. Tomsick³

¹Harvard/Smithsonian Center for Astrophysics ²MIT Kavli Institute for Astrophysics and Space Research ³Berkeley Space Sciences Laboratory

The X-ray Universe

A giant cosmic particle accelerator – a multi-wavelength study of the merging galaxy clusters Abell 3411/3412 (van Weeren+2017, Nature)

•Cluster radio relics – ultra-relativistic electron plasma in galaxy clusters

•At least two possible origins:

•Turbulent acceleration from thermal pool •Re-acceleration of radio jet plasma

•Key outstanding issue in our understanding of formation of structure.

•Multi-wavelength study of Abell 3411 has resolved this issue

 Merger shocks seen overrunning plasma tail of infalling radio galaxy → relics must originate in re-acceleration of aged radio plasma

Blue – X-ray (Chandra), Red – Radio (GMRT), White – Optical (Subaru)

X-ray Follow-up of Gravitational Wave Sources

- ALIGO detections^{*} of BH-BH mergers GW150914 and GW151226 have energized the physics/astrophysics communities!
- Electromagnetic follow-up can provide a wealth of information about compact object mergers:
 - sGRB have short (2 s) burst of high energy emission and longer panchromatic afterglow[†]
 - Combination of GW and EM signals provide mass, distance, inclination, luminosity, redshift, and duration constrain energetics and (potentially) cosmology

*Abbott + (2016); *Metzger & Berger (2012); *Evans+ (2016)I; *Connaughton+ (2016)

SWIFT unsuccessfully searched for EM counterpart to GW150914 event[‡]

Fermi GBM reported event within 0.4s of GW150914[§]

Future X-ray mission concepts are being developed with optimized follow-up capabilities

Nuclear Spectroscopic Telescope Array (NuSTAR)

•NuSTAR mosaic of nearest large spiral galaxy M31 (Wik+2016, Maccarone+2016)
 •Excess of sources in M31 over Milky Way after scaling for stellar mass and star formation rate
 •Two GC X-ray sources believed to be BH primaries are more likely to be neutron stars

Hitomi Observations of Perseus Cluster

Chandra image of Perseus cluster (Fabian+2005)

- Nearby massive cool core cluster
- Observed with Hitomi SXS through Be filter (Hitomi Collaboration+2016, Nature)
- Calorimeter resolution ~4.8 eV (CCD resolution 120 eV)
- First direct measuremnt of plasma motions: d 164 ±10 km s⁻¹ line width -> turbulent pressure ~4% of thermal pressure
- Need aggressive lab astrophysics program to interpret data from future instruments!

NICER: Neutron Star Interiors from the International Space Station

- NICER will determine precise (5%) radii of msec pulsars from spectrallyresolved X-ray pulse profiles (4 objects)
- Radii + (known) masses yield powerful constraints on EOS of ultra-dense matter in neutron star interiors
- NICER launch to International Space Station expected in April 2017

X-rav SIG/M.

IXPE: Imaging X-ray Polarimetry Experiment

- Small Explorer (SMEX) just funded
- 3 Gas Pixel Detectors behind 3 X-ray telescopes
- 100 times more sensitive than OSO-8
- PI: M. Weisskopf (MSFC)
- 2 year baseline mission

Key Science Objectives

- •Measure black hole spin
- Determine geometry and B-field of magnetars
 Outburst history of Sgr A*
- •Dutbulst history of synchrotron
- B-field structure of synchrotron-emitting sources
 Geometry and origin of X-ray emission from pulsars (isolated and accreting)

X-ray Astronomy Recovery Mission

- JAXA has proposed an X-ray Astronomy Recovery Mission (XARM) to recover the science lost with Hitomi
 - JAXA has invited NASA's participation as a key partner in XARM
 - JAXA target launch : March 2021
- XARM recommended by NASA Astrophysics Subcommittee, NASA Science Committee, and NASA Advisory Council
 - NASA developing plan for funding NASA contribution from existing budget with minimal impact to other planned activities
- NASA and JAXA are developing a notional joint implementation plan for NASA participation in XARM

Athena (Astrophysics of the Hot and Energetic Universe)

•ESA L class mission with substantial international contributions

•Primary science themes:

•How does ordinary matter assemble into the structures that we see today?

•How do black holes form and grow?

•Launch date: 2028

•http://www.the-athena-x-ray-observatory.eu

Key Parameters of Athena Mission

Parameter	Requirements	Enabling technology/comments	
Effective Area	2 m² @ 1 keV (goal 2.5 m²) 0.25 m² @ 6 keV (goal 0.3 m²)	Silicon Pore Optics developed by ESA. Single telescope: 3 m outer diameter, 12 m fixed focal length.	
Angular Resolution	5" (goal 3") on-axis 10" at 25' radius	Detailed analysis of error budget confirms that a performance of 5" HEW is feasible.	
Energy Range	0.3-12 keV	Grazing incidence optics & detectors.	
Instrument Field	Wide-Field Imager: (WFI): 40' (goal 50')	Large area DEPFET Active Pixel Sensors.	
of View	X-ray Integral Field Unit: (X-IFU): 5' (goal 7')	Large array of multiplexed Transition Edge Sensors (TES) with 250 micron pixels.	
Superior	WFI: <150 eV @ 6 keV	Large area DEPFET Active Pixel Sensors.	
Resolution	X-IFU: 2.5 eV @ 6 keV (goal 1.5 eV @ 1 keV)	Inner array (10"x10") optimized for goal resolution at low energy (50 micron pixels).	
Count Rate	> 1 Crab ³ (WFI)	Central chip for high count rates without pile-up and with micro-second time resolution.	
Capability	10 mCrab, point source (X-IFU) 1 Crab (30% throughput)	Filters and beam diffuser enable higher count rate capability with reduced spectral resolution.	
TOO Response	4 hours (goal 2 hours) for 50% of time	Slew times <2 hours feasible; total response time dependent on ground system issues.	

Key Athena Science

Euclid/LSST/will constrain how dark matter structures assemble.

X-ray observations are required to understand the evolution of the baryons (Nandra+2013)

Simulated XIFU spectrum of a small region of the Perseus cluster.

Chandra ACIS-S spectrum (blue) shown for comparison.

extended Roentgen Survey with an Imaging Telescope Array (eRosita)

- X-ray instrument on Russian Spectrum Roengten Gamma (SRG) mission
- First imaging all sky survey up to 10 keV unprecedented sensitivity
 - Will detect up to 100,000 clusters of galaxies, and map diffuse filaments between clusters
 - Will detect ~3E6 AGN
 - Study in unprecedented detail the Galactic Xray source populations
- Seven Wolter-1 mirror modules and PN CCD
- Launch scheduled for March 2018

Lynx – A Major Leap in Sensitivity

Lynx Mission Concept Study		Baseline Lynx Optics Parameters		
•	One of four large mission concepts selected by NASA HO to be studied for 2020 NBC Decadal	Diameter	3 m	
	Survey.	Focal length	10 m	
•	Science and technology team – A. Vikhlinin (SAO) and F. Ozal (Arizona) co-chairs			
•	STDT will determine science priorities and	On axis HP diameter (1 keV)	0.5 arc sec	
	 Must deliver "compelling and executable concept" 	Design	Wolter-Schwarzshild	
•	Science case assumes that Athena achieves all of its science goals	FOV diameter (<1 arc sec)	15 arc min	
	<u> </u>	Mirror shells	~300	
	Lynx Instrument Capabilities	Mirrors (segmented design)	10,000 to 50,000	
 Microcalorimeter ~ 10⁵ pixels; ~ 2 eV resolution High Definition X-ray Imager – 22'x22' FOV 		Effective area @ 1 keV (mirror		
		only)	~2.5 m ²	
•X-	-ray gratings – $E/\Delta E \sim 5000+$	Nominal bandwidth	0.1 - 10 keV	

Lynx will transform our understanding of black hole formation and growth, and galaxy evolution

Find z ~10 seeds of first supermassive black holes

Comparison of survey capabilities: Flux limit vs. area for a 15 Msec program

×800 higher survey speed at the Chandra Deep Field limit

X-rays from the Epoch of Reionization

NGC3256 Hubble

Lx is due to bright high-mass X-ray binaries born within $\sim 10^7$ years of the starburst

Chandra

 $L_X = 5 \times 10^{39} \text{ergs}^{-1}$ per 1 M_{\odot}/yr of star formation in the 2-10 keV band unaffected by absorption

 4 Msec exposure detects Lx from HMXB's in a SFR = $2-20 M_{\odot}/yr$ galaxy at z = 10

~ 40 galaxies detectable in a single deep survey image

"galaxies"

Msun

Collapse of nuclear star cluster, MBH~103

Massive seeds: Direct collapse of supermassive star or a quasi-star object, MBH~10⁵ MSun

"AGNs"

For z = 10, detected photons are emitted in the 2-100 keV band unaffected by absorption

 4 Msec sensitivity corresponding to L_{Edd} for a SMBH progenitor with $M_{\rm BH} = 10.000 \, M_{\odot}$

Lynx will transform our understanding of black hole formation and growth, and galaxy evolution

Understand role of hot gas in galaxy halos, where most of a galaxy's baryons are, in galaxy formation & evolution.

X-ray Science Interest Group

Contact Information

- Mark Bautz <u>mwb@space.mit.edu</u>
- Ralph Kraft <u>rkraft@cfa.harvard.edu</u>
- John Tomsick <u>jtomsick@ssl.berkeley.edu</u>
- XRSIG website: <u>http://pcos.gsfc.nasa.gov/sigs/xrsig.php</u>
- Recent events:
 - AAS meeting, Grapevine, TX, Jan 3-7 2017
 - HEAD meeting, Naples, FL, Apr 3-7 2016
 - AAS meeting, Kissimmee, FL, Jan 4-8 2016
 - Special HEAD meeting on High Energy Missions, Chicago, IL, Jun 29 Jul 1, 2015
- Next Face-to-Face Meeting
 - HEAD meeting, Sun Valley, ID, Aug 20-24 2017