
Everscale
Lite Paper

Version 1.01 December 2021

Introduction
A decentralized global blockchain network, Everscale was launched on May 7, 2020.

On November 10, 2021 by the decision of its community it was given its current

name. The backbone of the Everscale blockchain is the Ever Operating System.

Ever OS is distributed and decentralized, that is to say, operating over the internet,

through many computer machines. While we will discuss its architecture in further

detail later, let us first establish some basics.

A blockchain is a network which needs to execute blockchain programs, called

smart contracts, and programs are always executed on a processor. Typically they

are found in your PC or on a server, and blockchain programs operate by the same

principle, in a virtual way. However, there is one fundamental difference: every

program that runs on this virtual processor is also run by many other processors

across the network. The result of the execution of the program is compared, and

only if all of the network processors agree upon the result of the execution of the

program is this execution written into the shared memory across all participating

devices, in a ‘block,’ forming the blockchain.

Once this is written, the execution becomes immutable, a function guaranteed by

the immutability of the whole blockchain. The most important property of this

immutability is decentralization. If the network is not decentralized, it means some

party controls most of the servers executing the program. If they don’t like

something, or have any reason at all to change it, they can alter the record of the

program execution or the execution itself. This means it cannot be immutable. In the

blockchain world, combating this is called censorship resistance; meaning no single

party, however powerful, can alter anything about the execution of a blockchain

program after it has been completed.

These are important concepts that form the foundation upon which the blockchain

is built, and without which there can be no blockchain. We will talk about this further.

We will also talk about the architecture of this processor; the consensus protocols

of the network, and how we guarantee that it is really decentralized; about how the

programs are organized; the underlying economy behind it all, together with its

importance; and about the community and its system of governance, created for the

sustainability of the decentralized global computer. Oh yes, because in talking about

all this, we are talking about building a decentralized global computer.

This is the Everscale lite paper in plain English for the layman by Mitja and Luca

Goroshevsky. For a precise and thoughtful description of Everscale’s technical

design, please read the Everscale WhitePaper

Everscale Lite Paper. Introduction 2 page

https://mitja.gitbook.io/papers/v/everscale-white-paper/

Chapter I.

The Proof-of-Stake
and a Validator
The Everscale blockchain is a proof of stake blockchain. Proof of stake is a system

where people called Validators ensure the correctness of the blockchain by

validating blocks. They put down a stake which they would be afraid of losing if they

fail to do this, and earn a fee if they succeed. The stake, therefore, is a bond which

guarantees their behavior. Conceptually, it’s quite simple, but when it comes to the

implementation of such a system, it’s deceptively so. Let us begin at the beginning.

To become a validator of Everscale, you need a computer and you need to have a

stake. The Validator puts a stake as collateral and the computer is used to validate

blocks. Because Everscale has a high throughput demand it should be a pretty

powerful server, but even powerful servers don’t cost too much these days, with

prices of around €300 a month being common. The server then runs the blockchain

programs, and compares the results of these executed programs with other

validators. They then need to agree on the results of these executed programs with

each other, or in other words, about a common state of the blockchain. They need to

have a consensus. We’ll talk about how the consensus protocol in Everscale works

later.

So going back to becoming an Everscale validator, a user needs to deploy a special

smart contract and use it to stake some tokens. Then the server we mentioned

previously needs to sign a special message and send it to the smart contract saying

that this computer is ready to be a validator for that stake. The stake required could

be pretty high (right now it runs at around 350,000 Evers and increasing).

Obviously we don't want to exclude people from validation, people who don't have

these amounts, and want someone with as little as 10 Evers to participate in the

network security. So how can they do that? Well, they can deploy a smart contract,

put down their stake of 10 Evers, and then ask someone who has a server to

Validate their stake.

Everscale Lite Paper. Chapter I. The Proof-of-Stake and a Validator 3 page

Let's say there is a market where they can ask some professional validator who runs

servers to validate on their behalf, or more precisely, on behalf of their stake. While

there are risks associated with this, the protocols described in this paper are

precisely there to eliminate them. Nevertheless, always choose your validators

wisely.

The validators servers (called nodes) can validate for many such stakes

simultaneously. Once the stake has been accepted they are included into a

‘validator set’ by all of the existing validators. If the Validator server is new to the

network it will be asked to validate some blocks in advance so other validators can

be sure that the server is functioning properly. This is called “qualification mode.”

Once they pass that process the new validator can accept real blocks for validation

on behalf of any stakes.

Everscale Lite Paper. Chapter I. The Proof-of-Stake and a Validator 4 page

Chapter II.

Sharding and
Multithreading
Everscale is the only blockchain which operates through both sharding and

multithreading. Let’s see how it works.

So if many validators have just joined the network, they need to validate something.

So each validator is assigned a chain to validate on. These can be MasterChain or

WorkChains. All these chains are separate blockchains, containing many other

separate blockchains, as we will see. The difference between MasterChains and

WorkChains is that all block proofs from all chains are submitted into the

MasterChain. All blocks in a given MasterChain are collections of proofs that the

WorkChains connected to it are working correctly. This part of the design is similar

to Ethereum 2.0 or Polkadot for instance, but here the similarities end.

Validators are assigned to one of the chains, and they can see all its associated

data; they download, store, and change the state of all the programs and some

other parameters of this particular chain. This is sharding. Sharding is a separation

of data, and the term comes from the database world. And that means that these

validator servers do not store the state data of another chain, it’s therefor sharded.

Everscale Lite Paper. Chapter II. Sharding and Multithreading 5 page

Yet just to shard the data is not enough to ensure scalability, because sharding of

data does not provide the network with the ability of parallel execution of smart

contracts that need to be executed on a particular chain at a high enough speed.

There is also a need for a parallel program execution on top of sharded data to

ensure true scalability. There are two things that constrain scalability. The first is

when there is a need to send a lot of messages between servers: at a certain point

the internet connection simply runs out. Once that issue is solved with sharding it's

the processing power that starts running out. The solution to this conundrum is

something we call multithreading or, basically, parallel execution.

All our modern computers run multi core processors simply because single core

cannot execute all the programs in parallel because they just hit certain limitations,

namely, the laws of physics. Everscale does the same thing for its virtual processor.

That is done with each validator of the same WorkChain being assigned a thread.

So there are groups of validators that execute different sets of smart contracts,

which are separated by accounts. That's precisely why we have infinite scalability:

because we can now add these validators linearly, as more programs we need to

execute.

Everscale Lite Paper. Chapter II. Sharding and Multithreading 6 page

We can add more WorkChains and more threads. And all of that happens

dynamically. When we don't need to execute too many programs, there will be fewer

threads, and just on the one WorkChain, for example. But once the number of smart

contracts which are executed grows and there is a need for more and more

processing resources and disc space, more chains and threads will be added.

And, that's how it scales. And that's why it ever scales. And, as long as you don’t run

out of all servers in the world and all the internet capacity in the world, Everscales.

Everscale Lite Paper. Chapter II. Sharding and Multithreading 7 page

Chapter III.

Soft Majority Fault
Tolerance
Now let's talk about security guarantees. If there is one chain where all the

validators validate everything, then obviously the security guarantee for this

network is the combined stake of all of its validators. Basically a lot of validators

equals a lot of security guarantees. If, however, we start dividing them by segments

such guarantees decrease.

And if these segments are split into even smaller ones, the security guarantees

decrease to unsustainable levels, which means that corrupting the block becomes

financially viable for scammers and rogue validators. The corruption will go

undetected for some time because other validators will not run this computation. So

they won't know a scam has taken place.

The proposed way to deal with this was — let's have fishermen.

What fishermen do is they validate some blocks. And then one of them may detect

that the wrong block was produced, which they can actually prove. With this proof,

they can get some reward and the network can slash the validators. But there was

a problem with that approach. When the fisherman finds this wrong block, it may be

just too late. The rogue validators can submit a very large fake transaction, and then

do something with that transaction before anyone has noticed. So for example, they

can double spend: create tokens out of thin air, send this money to some smart

contract of some exchange and sell the tokens to those of another network, before

running off with the money. And they can do all that before fishermen will ever know

and catch the block. This is because fishermen are probabilistic. They do not

validate every block; submitting the proof and slashing the validator will take time

and will not reverse everything the validator did. And the scam will, of course, be

much more valuable than all the combined stakes of all validators that will be

slashed later on. And that can have catastrophic consequences on the network.

Simply put, we can not rely on fishermen. And it doesn't matter if the blocks are

corrected afterwards, because someone already suffered a lot of losses, for

example, the exchange or the bridge.

So what can we do in order to verify any wrong block before it will ever be

submitted to the network? In Everscale there is a protocol we call “Soft majority

fault tolerance” SMFT for short. And we'll describe it very simply now.

Everscale Lite Paper. Chapter III. Soft Majority Fault Tolerance 8 page

A Validator who proposes a new block is called a Collator. The Collator will produce

a block and send it not only to thread validators but to all validators. And that's

normal because we remember the data here is the same. So now all of the

validators have all of the blocks, even if they don't all validate them. Then, through

the wonders of algorithmic science, each and every validator will run a calculation

on that block hash. Through this, a few out of all validators will now need to validate

this block in addition to those traditionally in their purview. We call these validators

— Verifiers. The function that calculates who the verifier is, is random. The collator

can never know which of the other validators will be verifiers. As a result, they can

neither cheat, nor collude because they will need to collude with at least 51% of the

network. And if 51% of the network agree to collude, it's no longer an attack. It's the

correct network. If 49% think that the block is wrong and 51% think that this block is

correct: this block is correct by definition. Therefore the chances of the collator to

predict the identity of the verifier (even if the collator is in cahoots with 50% minus

one validator of the network) are so small, the attack is never probabilistically

successful. Thus the collator will never propose a wrong block because the

collator's chances of succeeding with this attack is mathematically lower than in

trying to corrupt Bitcoin.

Everscale Lite Paper. Chapter III. Soft Majority Fault Tolerance 9 page

Of course there's one small problem: we need to be sure that this block has, in fact,

been transmitted to all the validators. In order to ensure that there is another

protocol, which proves the block propagation and it's called Broadcast Protection

Protocol. This protocol ensures that we can prove that a block has been transmitted

to at least 51% of all the validators. Once we know that, we know that the attacker

can never be able to predict, with a high enough chance, who the verifier is within

51% of the validators. If the Verifier finds a rogue block there is a procedure on how

this block will be stopped and checked by a lot of other validators to be really sure

that this block is wrong or correct. Now, we also ensure that post factum we know

who the verifiers of the previous blocks are, and if the verifiers did not perform their

job will slash them as well. So they will be penalized if they didn't verify the block. So,

the collator cannot also assume that verifiers will be lazy enough to not validate

blocks.

Not magic: because it is impossible to know which validator will be chosen to verify the block and because

there was a proof that the block was indeed sent to everybody on the network, the Collator will never try to

send wrong block because their chances to succesfully lie about it are less than that of in Bitcoin after 6

blocks confirmation

Everscale Lite Paper. Chapter III. Soft Majority Fault Tolerance 10 page

Chapter IV.

Reliable External
Messaging Protocol
When we post a picture on Facebook we don't expect the process to take minutes,

or even half a minute. We, more or less, expect it to happen instantly; two, three

seconds, after that our patience wanes. However, in blockchains today, when a

transaction is sent, the wait is long; half a minute, many minutes etc. We want to

ensure that the user has the same experience working with the blockchain as with

other modern IT systems like Facebook or Instagram. The problem, of course, is that

when users send the message, it sends a message to some smart contract, which

then needs to be executed, and the validators need to validate the execution. This

process takes time. How can we decrease the time that it takes users to see the

result of the execution of their message on the blockchain?

In answering that we must address the other problems which need to be tackled in

this paradigm: replay attacks, DDOS and front running attacks. A replay attack is

when the smart contract is fed the same messages, to execute the same

transaction, several times, instead of only once. Protection against the replay attack

now needs to happen inside the smart contract, which takes execution time, which

takes Gas and so on. And then there is a DDoS, this is when the users can just load

the network with many external messages, millions of messages, for free, and make

a server halt. This, incidentally, happens often on blockchains. Front running attacks

are where, for example, a trade has to be made and a message is sent with a trade

order, someone else sees it, and they send another message, which then reorders

into being higher than the original message and it can take advantage of it.

REMP solves these problems.

If a REMP validator accepts a message and sends an acceptance confirmation to

the user, then this message will most certainly be included into the block. The

validator then sends status about what happened to the message to the user along

the road. The message will be included into the block in the order it was received by

the validator, meaning that, even if the block collation failed, it will be included into

the next block in the same order. This is protection against front running attacks.

And it also ensures it will be included only once which is a protection against Replay

attack.

Everscale Lite Paper. Chapter IV. Reliable External Messaging Protocol 11 page

As was previously explained, the collated block has an extremely low chance of

being wrong, meaning that the user can assume that once the acknowledged

message from the validator is received via REMP, the message will be included in

the block; that the transaction is executed correctly and the user can close the

application. In terms of the User Experience that means a sub-second finality (the

message to and from the REMP takes around 50-100 ms., while the REMP

processing takes another 500 ms. on average. All in all, less than a second.)

REMP also has a built-in DDOS protection which ensures that if the user sends a lot

of messages, which are failing on execution then this user that sends those

messages will be banned for ever increasing periods of time.

So again, REMP protocol ensures sub-second finality, replay protection, DDoS

protection, and front running protection.

Users sends a message to smart contract it wants to be executed to all

validators of a Ever OS thread responsible for the execution of that smart

contract at that time. Message is proccessed by a special protocol called

REMP to ensure that the message is certainly included in the block if

accepted and executed once one.

Because as described earlier once the block is collated there is an extremely

low chance it is wrong, the user can assume that if the message is accepted

into REMP it will most probably be executed. For most parts this ensureas

subsecond message execution finality.

REMP has built in DDOS protection mechanism ensuring the blockchain is

never spammed with too many empty messages.

External Message

Everscale Lite Paper. Chapter IV. Reliable External Messaging Protocol 12 page

Chapter V.

Peripheral Workchains.
We’ve already established that WorkChains scale the network when more

processing power is needed. These WorkChains are called Processing WorkChains.

However, there are also Peripheral WorkChains. They operate like the peripheral

devices that you connect to your computer, for example, a printer or a hard drive.

They're like resources that your computer can use and support. Ever OS is no

different in that regard.

Let's consider one example, a DriveChain. This is a decentralized storage device for

Ever OS. It is a chain optimized for storage of large objects. DriveChains have

special smart contracts residing on them. In order to store a file in the DriveChain,

one needs to deploy the file index smart contract (like an index used in Unix or Linux

operating systems), which contains certain information allowing for storage and for

the retrieval of files and pay for that storage.

We can imagine multitudes of different Peripheral WorkChains. Perhaps ones

specially optimized for really long-term or forever storage of files. Anyone can

launch a Peripheral WorkChain at any time, while providing economic incentives for

validators to join. It can be used exactly like plugging your devices in any modern

operating system.

Everscale Lite Paper. Chapter V. Peripheral Workchains. 13 page

Chapter VI.

Distributed
programming
What is this distributed programming we’ve heard so much about? On blockchains

today wallet addresses are associated with a public key, derived from a private key.

The address can contain a smart contract code or not contain anything at all and

just be used for a native token.

On Everscale, however, the address is not associated directly with a public key, and

must instead be associated with a smart contract in order for someone to be able

to use it. Money can still be sent to any address, but those tokens will just sit there

without anyone having any possibility of doing anything with them until smart

contract code, a program that runs this money, is attached.

In that sense, Everscale is a definitive smart contract platform because every

address is a smart contract. But more interestingly, this address is a result of a

calculation which hashes the initial data and the code of a smart contract. For

example, inputting the public key along with the contract code of a wallet, will

output an address. However, if a different wallet's smart contract code is input, then

the output will be different. There are therefore infinite amounts of addresses that

can be derived for a single public key.

Everscale Lite Paper. Chapter VI. Distributed programming 14 page

This opens very interesting possibilities, and has many positive implications. Let us

take an example of how filenames run on Everscale.

Let’s say we want to resolve the name Everscale inside the Everscale blockchain.

For this we use the decentralized name service certificate smart contract (DeNS).

This is a smart contract associated with a certificate service, used to resolve

addresses, similar to how today's browsers work. However in this case it just needs

to be downloaded once, and can be used to resolve locally any name in the domain,

without a need for a server. All it takes is for this certificate to be opened in a

browser, the word ‘everscale’ to be typed and, because the address is just a function

of instant hashing, in fractions of a second, the address appears, having been

calculated on a machine locally.

This is the best decentralized name service in use today, entirely operating without

servers. When we talk about distributed computing, we think of Everscale as a sort

of a distributed decentralized key value database.

Everscale Lite Paper. Chapter VI. Distributed programming 15 page

Chapter VII.

Gas & fees
We're moving now to the question of Gas and fees, as well as, more generally,

economics. There are two types of fees. Storage fees and processing fees, called

Gas. While there are pretty complicated fee structures in Everscale, we're not going

to talk about that in all too much detail. What is important here is how much users

pay.

We know that with the number of transactions in the network increasing, the Gas

fees increase as well. This is because of network congestion. This potential for

congestion means fees cannot be arbitrarily low, to protect the network from an

attack where someone buys it and stops it entirely for a low price. So in order to

have really low transaction fees, the network has to be really scalable. That's just a

matter of arithmetic. We have such a network. So let us discuss how the fees are

going to be structured.

Let’s take a MasterChain with a WorkChain on top of it, which has threads in it. This

WorkChain has a current network capacity of around 10,000-12,000 transactions

per second. In the beginning, the gas fees are naturally going to be very low

because the volume of transactions offsets any potential congestion. However as

the network grows, and starts becoming congested, Gas prices begin to increase.

Why? Because we are already anticipating that we need new validators for new

WorkChains that we need to set up. In order to do that, we need to start collecting

fees in order to incentivize new validators to join the network.

Everscale Lite Paper. Chapter IV. Reliable External Messaging Protocol 14 page

