Memory Safety Without Runtime Checks or Garbage Collection *

Dinakar Dhurjati

Sumant Kowshik

Vikram Adve Chris Lattner

University of lllinois at Urbana-Champaign

{dhurjati,kowshik,vadve,lattner}@cs.uiuc.edu

ABSTRACT

Traditional approaches to enforcing memory safety of pro-
grams rely heavily on runtime checks of memory accesses
and on garbage collection, both of which are unattractive for
embedded applications. The long-term goal of our work is
to enable 100% static enforcement of memory safety for em-
bedded programs through advanced compiler techniques and
minimal semantic restrictions on programs. The key result
of this paper is a compiler technique that ensures memory
safety of dynamically allocated memory without program-
mer annotations, runtime checks, or garbage collection, and
works for a large subclass of type-safe C programs. The
technique is based on a fully automatic pool allocation (i.e.,
region-inference) algorithm for C programs we developed
previously, and it ensures safety of dynamically allocated
memory while retaining explicit deallocation of individual
objects within regions (to avoid garbage collection). For a
diverse set of embedded C programs (and using a previous
technique to avoid null pointer checks), we show that we are
able to statically ensure the safety of pointer and dynamic
memory usage in all these programs. We also describe some
improvements over our previous work in static checking of
array accesses. Overall, we achieve 100% static enforcement
of memory safety without new language syntax for a signif-
icant subclass of embedded C programs, and the subclass is
much broader if array bounds checks are ignored.

Categories and Subject Descriptors

C.3 [Computer Systems Organization]: Special-Purpose
and Application-based Systems; D.3 [Software]: Program-
ming Languages; D.4.6 [Software]: Operating Systems—
Security and Protection

Keywords

Embedded systems, compilers, programming languages, static
analysis, security, region management, automatic pool allo-
cation.

*This work has been sponsored by the NSF Embedded Sys-
tems program under award CCR-02-09202 and supported in
part by an NSF CAREER award, ETA-0093426.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

LCTES 03, June 11-13, 2003, San Diego, California, USA.

Copyright 2003 ACM 1-58113-647-1/03/0006 ...$5.00.

1. INTRODUCTION

Current and future embedded systems demand increas-
ing software flexibility, including the ability to upgrade or
introduce software modules into existing applications both
offline and during active operation. Such software upgrades
are becoming increasingly common for small consumer de-
vices, and are expected to be important even for more con-
strained systems such as embedded control systems [23, 24]
and sensor networks [20]. One of the key requirements for
enabling dynamic software upgrades is to ensure that new
software modules or applications do not compromise the safe
and correct functioning of an embedded device. One part
of this problem is ensuring the memory safety of embedded
software, i.e., to guarantee that an upgraded software mod-
ule cannot corrupt the code or data of its host application.
(The term “memory safety” is defined in Section 2.)

Unfortunately, it appears that current language or system
approaches for ensuring memory safety require significant
overheads in terms of runtime checks and garbage collec-
tion. Safe languages like Java [10], Modula-3, ML, Safe-
C [1], Cyclone [13] and CCured [22] use a variety of runtime
checks before individual memory operations such as bounds
checks for array references, null pointer references, and type
conversions, and they rely on garbage collection to ensure
the safety of references to dynamically allocated memory.
The overheads of runtime checking are quite significant: lan-
guages like SafeC, CCured, Cyclone and Vault have reported
slowdowns ranging from 20% up to 3x for different applica-
tions [1, 22, 11, 7].

Many types of embedded software must operate under
stringent energy, memory, and processing power limitations,
and often under hard or soft real-time constraints as well.
The runtime overheads of safety checks and both the over-
heads and the potential unpredictability of garbage collec-
tion are unattractive for such software [4].

The long-term goal of our work is to ensure memory safety
for embedded software while eliminating or greatly mini-
mizing the need for runtime checks and garbage collection.
Because this goal is impossible with ordinary language fea-
tures such as arbitrary dynamic memory allocation, aliases,
and array references, our strategy is to impose (minimal)
semantic restrictions on programs necessary to achieve this
goal with existing compiler technology, and to reduce these
restrictions by developing new compiler techniques.

In previous work, we addressed the limited class of real-
time control applications (which typically use very simple
data structures and memory management) by designing a
restricted subset of the C language appropriate for such pro-

grams. This language, which we called Control-C, imposed
onerous restrictions on dynamic memory allocation, pointer
usage, and array usage [15]. We showed that with these
restrictions, ezisting compiler technology can permit 100%
static checking of memory safety for this language. Unlike
real-time control codes, however, other kinds of embedded
applications use dynamically allocated memory and arrays
in much more complex ways, and the restrictions in Control-
C would preclude writing such applications.

A major technical challenge for broader classes of embed-
ded applications is allowing flexible dynamic memory allo-
cation and deallocation without runtime checks or garbage
collection. Proving statically that a general C program (for
example) never dereferences a freed pointer (the “dangling
pointer” problem) is undecidable.

Several recent languages including Real-time Java [4],
Cyclone [13], Vault [7], and others [26, 9, 5] have intro-
duced language mechanisms for region-based memory man-
agement. In this approach, the heap is partitioned into sep-
arate regions and deallocation is only permitted on an entire
region at once. These mechanisms guarantee the safety of
pointer-based accesses to region data without garbage col-
lection, but have two key disadvantages:

(1) Converting programs to use region-based mechanisms
demands significant manual effort, typically requiring
region annotations on pointer variables, function in-
terfaces, and allocation sites.

(2) These region management schemes disallow explicit
deallocation of individual objects, so data structures
that must shrink and grow frequently (and have ob-
jects with non nested life times) have to fall back on
a separate garbage-collected heap [4, 11] to avoid po-
tentially unbounded growth in unused memory.

Automatic region inference algorithms have been devel-
oped that solve the first issue completely or partially, but
only for languages with no explicit deallocation such as
ML [25] and Cyclone [11] (i.e., languages which would oth-
erwise require garbage collection).

Recently, we developed a fully automatic region inference
algorithm called Automatic Pool Allocation that works cor-
rectly for C programs with explicit malloc and free (in-
cluding non-type-safe programs) [17]. The transformation
solves both the problems above because it is fully automatic
and retains explicit deallocation of individual objects within
regions. Each pool holds objects of a single size, thus elimi-
nating fragmentation within pools and enabling very fast al-
location and deallocation. Unfortunately, allowing individ-
ual object deallocation means that the transformation does
not ensure memory safety (it makes no attempt to eliminate
or restrict dangling pointers).

The main result of the current work is to extend Au-
tomatic Pool Allocation to ensure memory safety without
requiring runtime checks, while retaining the performance
and memory benefits of the original algorithm (including
fully automatic region management without language anno-
tations, and explicit deallocation of objects within regions).
The key to our approach is that we do not prevent uses of
dangling pointers to freed memory (e.g., a read, write, or
free on an already freed storage location); instead, we en-
sure statically that such operations cannot cause violations
of type safety or memory safety.

The specific contributions of this paper are as follows:

(a) We show how to use the Automatic Pool Allocation
transformation to ensure the safety of references to
dynamically allocated memory. We use an interpro-
cedural flow analysis of the compiler-generated pool
operations to pinpoint data structures for which our
approach could lead to increased memory consumption
by the program. The analysis also identifies pools for
which individual object deallocation can be completely
eliminated, without increasing memory consumption.

(b) We extend our previous program restrictions and com-
piler analysis for ensuring array access safety in order
to support some common features that were disallowed
before, including string manipulation, standard I/O
operations, and argument vectors.

(c) We evaluate how effective the new techniques in this
paper (and other compiler safety checks retained from
the previous work) are in permitting static checking
of memory safety, using a diverse collection of embed-
ded programs from two widely used benchmark suites,
MiBench [12] and MediaBench [19].

Our experimental results show that we are able to stati-
cally ensure the safety of pointer and dynamic memory us-
age in all these programs. Our compiler analysis identifies
specific data structures in two of these programs where our
memory management strategy could lead to some (probably
small) potential increase in memory consumption. Overall,
the approach promises safe dynamic memory management
without the overheads of runtime checks, and with negligible
manual programmer effort. We believe that this is a major
step towards achieving our long-term goal of 100% static
enforcement of memory safety for embedded programs.

Our results also show that two other essential techniques
developed in our previous work are adequate for the pro-
grams studied here: a novel memory initialization strategy
to eliminate runtime checks for null pointer references un-
der a specific system assumption, and a compiler analysis for
lifetimes of stack-allocated data. The former is sufficient for
all our programs (and necessary for most), while the latter
works successfully for 16 out of 17 programs. Proving the
safety of array references, however, remains a major chal-
lenge in achieving our long-term goal. With the extensions
above, we are able to prove the safety of array references in 8
out of 17 of these programs. We draw some ideas for future
language and compiler mechanisms that might succeed for
the other programs.

The rest of this paper is organized as follows. The next
section defines what we mean by memory safety and static
checking, briefly describes our previous work on static safety
checking for real-time control systems, and summarizes the
assumptions we make about programs and systems in our
current work. Section 3 describes the language restrictions
and compiler techniques for ensuring safety of pointer ref-
erences and heap management. Section 4 does the same
for array references. Section 5 describes our experiments
evaluating the effectiveness of our techniques in supporting
different classes of embedded applications. Section 6 com-
pares our work with previous work on providing program
safety through static techniques. Section 7 concludes with
a summary of our results and suggests directions for further
research.

2. DEFINITIONS, PRIOR WORK, AND AS-
SUMPTIONS

For the purposes of this work, we define a software entity
(a module, thread, or complete program) to be memory-
safe if (a) it never references a memory location outside the
address space allocated by or for that entity, and (b) it never
executes instructions outside the code area created by the
compiler and linker within that address space. In practice,
to enable static enforcement of the above requirements, we
must enforce stronger restrictions, e.g., strict type rules for
all operations, limited type conversions, and in-bounds array
accesses. The stronger restrictions also help to detect many
kinds of errors at compile-time rather than at runtime.

By “static enforcement” or “static checking” of memory
safety, we mean that the compiler must ensure memory
safety without relying on garbage collection and without
introducing any runtime checks before program operations
(e.g., null pointer, array bounds, or type conversion checks).
Some runtime support is still necessary, especially initializa-
tion of global or dynamically allocated storage, and some
system assumptions for error recovery described later.

Many ordinary constructs in modern languages (particu-
larly array accesses and complex pointer-based data struc-
tures) make it impossible to ensure memory safety via static
checking alone. We therefore choose to impose some restric-
tions on programs to make static checking possible. To make
it as simple as possible to modify existing embedded code to
conform to our restrictions, we avoid adding any new lan-
guage mechanisms or syntax. Instead, we impose usage (i.e.,
semantic) restrictions that can be defined within the frame-
work of an existing language, and checked by a compiler.

Although our experiments focus on C programs in this
paper, our semantic restrictions are defined in low-level
language-independent terms, and our safety checking com-
piler is implemented entirely in a language-independent
compiler infrastructure called LLVM (Low Level Virtual
Machine) [16]'. These features, together with the lack of any
new source-level constructs, imply that our safety-checking
strategy can be used for programs in any source-level lan-
guage compiled to LLVM object code.

2.1 Control-C: Memory Safety for Real-Time
Control Codes

The Control-C language defined in our previous work [15]
imposed many semantic restrictions on C programs, and
added one new language mechanism for manual region al-
location (described below). The goal was to enable 100%
static checking of memory safety for real-time control codes
using ezxisting compiler techniques. We briefly describe that
language to provide a basis for understanding how new com-
piler techniques in the current work can eliminate the need
for some of these restrictions.

There were 3 classes of restrictions in Control-C:

e Type safety: Input programs had to be strongly typed.
These restrictions are retained in our current work.

o Affine Expressions for Accessing Arrays: Control-C
imposed restrictions on array index expressions and

'LLVM defines a simple, fully typed instruction set based on
Static Single Assignment (SSA) form as the input code rep-
resentation in order to enable compile-time, link-time and
runtime optimization of programs. See 1lvm.cs.uiuc.edu.

loop bounds so that the net effect is to produce an
affine relationship between the effective address ex-
pression and the size expression for each array dimen-
sion. It also disallowed most common library func-
tions and string operations. The affine requirement is
retained in this work but a number of trusted library
functions and string operations are now permitted.

o Single-Region Dynamic Memory Allocation: Control-
C imposed onerous restrictions on dynamic memory
allocation and pointer usage, all of which have been
eliminated in the current work:

— Heap allocation was restricted to a single region
at a time, and the entire region (i.e., all heap 0b-
jects) had to be deallocated simultaneously.

— Every time the region was freed, all scalar point-
ers variables (local and global) had to be re-
initialized before their next use.

— Structures or arrays containing pointers had to
be allocated dynamically, either on the heap or
on the stack using C’s alloca intrinsic.

We showed that these restrictions are adequate for many
real-time control algorithms, which tend to use very simple
data structures and memory management. They are clearly
inadequate for broader classes of embedded programs. Elim-
inating these restrictions and retaining static checking of
memory safety requires new compiler techniques, particu-
larly for array bounds checking and for heap and pointer
safety. The current work primarily focuses on the latter,
while making some simple improvements to the former.

2.2 Assumptions of this Work

The system assumptions of the current work, plus the
basic language restrictions for type safety and pointer safety
are summarized below. The language restrictions for array
safety are described in later sections.

First, we make some assumptions about the runtime en-
vironment. We assume that certain runtime errors are safe,
i.e., the runtime system can recover from such errors by
killing the applet, thread, or process executing the untrusted
code. We assume a safe runtime error is generated if either
the stack or the heap grows beyond the available address
space. We assume the system has a reserved address range
and any access to these addresses causes a safe runtime error,
typically triggered by a page fault handler or by a reserved
address range in hardware on systems without virtual mem-
ory management.> If this is not available, some null pointer
checks must be inserted in the code, as described later.

We assume that certain standard library functions and
system calls are trusted and can be safely invoked by the
untrusted code (calls whose arguments must be checked are
discussed in Section 4). We assume (and check) that the
source code of all other functions is available to the compiler.
We also require that the program be single-threaded.

We retain the basic type rules of Control-C, summarized
informally below. We assume a low-level type system in-
cluding a set of primitive integer and floating point types,
arrays, pointers, user-defined records (structures), restricted
union types, and functions.

2For example, in standard Linux implementations, the high
end of the process address space is reserved for the kernel,
typically 1 GB out of 4 GB.

(T1) All variables, assignments, and expressions must be
strongly typed.

(T2) Casts to a pointer type from any other type are disal-
lowed. (Certain pointer-to-pointer casts for compati-
ble targets are considered safe, however.)

(T3) A union can only contain types that can be cast to
each other, e.g., a union cannot include a pointer and
a non-pointer type.

Enforcing the above rules is trivial in LLVM [16], where all
operations are typed and only an explicit cast instruction
can be used to perform any type conversion.

We also retain some rules required for ensuring pointer
safety, which are discussed in Section 3:

(P1) Every local pointer variable must be initialized before
being referenced, i.e., before being used or having its
address taken.

(P2) Any individual data type (i.e., not an array) should be
no larger than the size of the reserved address range.

(P3) The address of a stack location cannot be stored in a
heap-allocated object or a global variable, and cannot
be returned from a function.

3. SAFETY OF POINTER REFERENCES

In a language without garbage collection, and with the
type restrictions T1 — T3 above, there are three key ways
in which pointer usage can lead to unsafe memory behavior:
(a) Uninitialized pointer variables (either scalars or elements
of aggregate objects) could be used to access invalid memory
addresses. (b) A pointer into the stack frame of a function
that is live after the function returns could be used to access
an object of a different type (i.e., to violate type safety). (c)
A pointer to a freed memory object (a “dangling pointer”)
could be used to access an object of a different type allocated
later.

These three problems must be detected and disallowed at
compile-time or safely tolerated at runtime without intro-
ducing checks for individual memory references. We exam-
ine each of these conditions in turn in the following subsec-
tions.

3.1 Uninitialized pointers

Our compiler prevents the first error above (due to unini-
tialized pointer values) in the same way as in our previous
work, through a combination of static analysis and mini-
mal runtime support [15]. We describe this briefly here for
completeness.

First, we use a standard global dataflow analysis to
check rule P1 above, which requires that all automatic
scalar pointers must be initialized within their parent func-
tion explicitly before they are dereferenced or their address
taken [15].

Detecting uninitialized values for global variables and for
pointers within dynamically allocated data (e.g., structure
fields or arrays), is difficult at compile-time. In order to
avoid runtime null pointer checks, we initialize all uninitial-
ized global scalar pointers and all pointer fields in dynami-
cally allocated data structures at allocation time to point to
the base of the reserved address range (analogous to the ini-
tialization of fields in Java). Pointer fields in stack-allocated

variables of aggregate types are also initialized to the same
value. Finally, the constant 0 used in any pointer-type ex-
pression is replaced with the same value. Rule P2 above
specifies that the size of any individual structure type® can-
not exceed the size of the reserved address range. With this
rule, the above initialization ensures that the effective ad-
dress for the load of any scalar variable or structure field
using an uninitialized pointer will fall within the reserved
address range, thus triggering a safe runtime error. If a
reserved address range is unavailable or the structure size
restriction above is unacceptable, then runtime checks for
null pointer references would be required.

3.2 Stack safety

Problem (b) above potentially arises when the address of
a local variable (i.e., a pointer into the current stack frame)
is made accessible after the function returns. To avoid this
problem, many type-safe languages like Java disallow taking
the address of local variables. We choose to be less restric-
tive: we only disallow placing the address of a stack location
in any heap location or global variable, or returning it di-
rectly from a function (rule P3 above).

Enforcing this rule requires sophisticated compiler tech-
nology, but no more than that required to perform Auto-
matic Pool Allocation for enforcing heap safety. In par-
ticular, we use Data Structure Analysis, a flow-insensitive,
context-sensitive (but very fast), interprocedural analysis
that computes a Data Structure Graph for each proce-
dure [18]. This is a directed graph of all the memory objects
accessible within a procedure, along with their types, their
storage class (stack, heap, global, formal parameter, return
value, or local scalar temporaries), and the “points-to” links
between them. The graph for each function includes reach-
able objects passed in from callers or returned from callees.

Rule P3 can now be enforced using a simple traversal
of the Data Structure Graph for each function, checking
whether any stack-allocated object is reachable from the
function’s pointer arguments, return node or globals.

3.3 Heap Safety

The third error above, that of detecting unsafe accesses
to freed memory, is a particularly challenging problem for a
language with explicit memory deallocation. The example
in Figure 1 illustrates the challenges. Function f calls g,
which first creates a linked list of 10 nodes, initializes them,
and then calls h to do some computation. g then frees all
of the nodes except the head and then returns. £ then uses
a dangling pointer reachable from the head. In such code,
it is extremely hard for any compiler to statically identify
which references (if any) may be unsafe and which are not.
Moreover, consider h(), which allocates one node and frees
one node of the list 10* times. Eliminating explicit frees
by using region allocation (such as in Control-C, Cyclone,
or other languages with nested regions) would increase the
instantaneous memory consumption of the program by 10*
* sizeof (struct s) bytes because the region holding list
items can be freed only after exiting the function f.

The key principle underlying our approach is the follow-
ing: (Type homogeneity principle) If a freed memory block

3An array does not need this size restriction. An uninitial-
ized pointer used as an array reference will be caught by the
array bounds checker since the array will have no known size
expression.

10 1 g(struct s *p) {

create_10_Node_List(p);
initialize(p);

h(p);
free_all_but_head(p);

gp);
// p->next is dangling
p->next->val = ... ;

¥ }

h(struct s *p) {
for (j=0; j < 100000; j++) {
tmp = (struct s*) malloc(sizeof(struct s));
insert_tmp_to_list(p,tmp);
q = remove_least_useful_member(p);
free(q);
}
}

Figure 1: Pointer safety and pool allocation example

holding a single object were to be reallocated to another object
of the same type and alignment, then dereferencing dangling
pointers to the previous freed object cannot cause a type vi-
olation. This principle implies that to guarantee memory
safety, we do not need to prevent dangling pointers or their
usages in the source — we just need to ensure that they
cannot be dereferenced in a type unsafe manner. The prin-
ciple allows correct programs (i.e. programs with no uses of
dangling pointers), to work correctly without any runtime
overhead. Programs with dangling pointer errors will exe-
cute safely but we cannot (and do not need to) prevent such
errors for these programs.

Using the above principle directly, one simple but imprac-
tical solution is to separate the heap into disjoint pools for
distinct data types and never allow memory used for one
pool to be reused later for a different pool. This is imprac-
tical because it can lead to large increases in the instanta-
neous memory consumption. The worst-case increase for a
program with N pools would be roughly a factor of N — 1,
when a program first allocates data of type 1, frees all of it,
then allocates data of type 2, frees all of it, and so on.

Our solution is essentially a more sophisticated applica-
tion of this basic principle, using Automatic Pool Allocation
to achieve type-homogeneous pools with much shorter life-
times in order to avoid significant memory increases as far
as possible.

3.3.1 Background: The Automatic Pool Allocation
Transformation

The Automatic Pool Allocation transformation was de-
veloped as a general compiler technique for enabling macro-
scopic optimizations on logical data structures [17]. This
transformation introduces pool-based memory management
for a subset of the disjoint data structures in an ordinary im-
perative program that uses explicit allocation (e.g. malloc)
and deallocation (e.g., free). It rewrites the allocation and
deallocation operations to use separate pools of memory for
each logical data structure instance (e.g., a particular linked
list or a graph) that is not exposed to unknown external
functions. A pool is created before the first allocation for
its data structure instance and destroyed at a point where
there are no accessible references to data in the pool.

We use a pool allocation library with five simple op-
erations: (a) poolinit(Pool** PP, TypeDesc* TD) cre-
ates a new pool for objects of the specified type. (b)
pooldestroy(Pool# PP) destroys a pool and releases its re-

maining memory back to the system heap. (c) poolalloc
(Pool* PP) and poolallocarray(Pool* PP, int N) allo-
cate a single object or an array of N objects in the pool.
(d) poolfree (Pool* PP, T* ptr) deallocates an object
within the pool by marking its memory as available for real-
location by poolalloc or poolallocarray. The pool library
internally uses ordinary malloc and free to obtain memory
from the system heap and return it when part of a pool
becomes unused or the pool is destroyed.
The pool allocation transformation operates as follows:

1. Identify data structure (DS) instances: We traverse
the Data Structure Graph of each function (described
in Section 3.2) to identify maximal connected sub-
graphs containing only heap nodes. Each such sub-
graph represents a distinct heap-allocated data struc-
ture.

2. Identify where to create/destroy pools: For each pro-
cedure, the DSG can be used to identify those data
structures that are not accessible after the procedure
returns (i.e., do not “escape” from the procedure to its
callers). For each such data structure, we insert calls
to create and destroy pools of memory (one pool per
data type used in the data structure) at the entry and
exit of the procedure.? In our running example, the
linked list does not escape from the procedure £() to
its callers and so we create and destroy the pool for
the list in procedure f (), as shown in Figure 2.

3. Transform (de)allocation operations and function in-
terfaces: We transform all malloc and free calls in
the original program to use the pool allocation ver-
sions, as illustrated in function h(). For any function
containing such operations on a pool created outside
the function, we add extra arguments to pass the ap-
propriate pool pointers into the function (and do the
same for possible callers of such functions, and their
callers and so on).® This is illustrated by the functions
g() and h() and their invocations in Figure 2.

The result of this transformation for type-safe programs
is that all heap-allocated objects are assigned to type-
homogeneous pools, disjoint data structure instances (as
defined above) are assigned to distinct sets of pools, and
individual items are allocated and freed from the individ-
ual pools at the same points that they were before. A pool
is destroyed when there are no more live (i.e., reachable)
references to the data in the pool.

Note that the transformation as described so far does not
ensure program safety. Explicit deallocation via (poolfree)
can return freed memory to its pool and then back to the
system, which can then allocate it to a different pool. Dan-
gling pointers to the freed memory could violate type safety.

3.3.2 Exploiting Pool Allocation for Heap Safety

The basic principle of type homogeneity mentioned ear-
lier can be applied to ensure program safety after the pool

40ur pools do not require nested lifetimes. We could move
poolinit later in the function and move the pooldestroy
earlier or into a callee using additional flow analysis, but we
do not do so currently.

®Data Structure Analysis also identifies the targets of func-
tion pointers and constructs a call graph, allowing us to
handle programs with indirect calls and recursion.

£0O {
Pool *PP;
poolinit(PP, struct s);

g(struct s *p, Pool *PP) {
create_10_Node_List(p, PP);
initialize(p);
h(p, PP);
free_all_but_head(p, PP);

}

g(p, PP);
// p->next is dangling
p—->next->val = ... ;
pooldestroy(PP);

}

h(struct s *p, Pool *PP) {
for (j=0; j < 100000; j++) {
tmp = poolalloc(PP);
insert_tmp_to_list(p, tmp);
q = remove_least_useful_member(p);
poolfree(PP, q);
T
}

Figure 2: Example after pool allocation transforma-
tion

allocation transformation. Since our pools are already type-
homogeneous, we simply need to ensure that the memory
within some pool P is not used for any other dynamically
allocated data (either another pool P> or heap allocations
within trusted libraries) until P; is destroyed. This can be
done easily by modifying the runtime library so that mem-
ory of a pool is not released to the system heap except by
pooldestroy. This change can have the same disadvantage
as the naive type-based pools — the memory requirement of
the program could increase significantly.

Note, however, that our pools are much more short-lived
than in the naive approach and are tied to dynamic data
structure instances in the program, not static types. We
expect, therefore, that during the lifetime of a pool, the
most important reuse of memory (if any) is within the pool
rather than between the pool and other pools. Only the
latter causes any potential increase in memory consumption.
Nevertheless, any such increases are likely to be of significant
concern to programmers of embedded systems.

The goal of our further analysis is to distinguish the sit-
uations outlined above, and inform the programmer about
data allocation points where potential memory increases can
occur. We can classify each pool P into three categories:

Case 1 (No reuse): Between any poolfree for pool P
and the pooldestroy for P, there are no calls to poolalloc
from any pool including P itself. In this case, there is no
reuse of P’s memory until P is destroyed. Figure 3(a) illus-
trates this situation. Note that all poolfree calls to P can
be eliminated as a performance optimization. This is essen-
tially static garbage collection for the pool since its memory
is reclaimed by the pooldestroy introduced by the compiler.

Case 2 (Self-reuse): Between any poolfree operation
on pool P and the call to pooldestroy for P, the only
poolalloc operations are to the same pool P. In this case,
the only reuse of memory is within pool P, and the explicit
deallocation via poolfree ensures that no increase in the
program’s memory consumption will occur. This is illus-
trated in Figure 3(b): after the first poolfree on pil there
are new allocations in pool p1 (via the function addItems),
but not by any other pool.

Case 3 (Cross-reuse): Between the first poolfree op-
eration on P and the pooldestroy for pool P. there are
poolalloc operations for other pools. Pool pl in Figure 3(c)

falls in this category because there are allocations from pool
p2 via the call to addItems(p2,t). Our transformation in this
case may lead to increased memory consumption, and we re-
quire this to be approved by the programmer via a compiler
option. In such situations, a programmer should be able
to estimate the potential memory increase through manual
analysis or profiling. In practice, we expect the amount of
memory released by one pool and used by another, before
the first pool is destroyed, will be relatively small.

Note that the pool in our running example of Figure 2 has
only self-reuse, and we can guarantee memory safety without
any increase in memory consumption. Our experiments in
Section 5 have produced very few instances of case 3, and
in only 2 out of the 17 embedded codes we examined.

3.3.3 Compiler Implementation

The compiler first applies the type checking, stack safety,
and array safety analyses to the original program. It then
applies Automatic Pool Allocation to transform the program
as described earlier. We have modified our runtime pool al-
location library so it does not release free memory in a pool
back to the system heap until the pool is destroyed. The
key goal of the new compiler analysis is to identify situa-
tions where this can lead to a potential increase in memory
consumption by categorizing pools as described above.

Categorizing pools requires analyzing the potential order
of execution of pool operations across the entire program,
using an interprocedural control flow analysis. Automatic
Pool Allocation records information about the pools used
in each function and the locations of calls to poolalloc,
poolfree and pooldestroy inserted for each pool. Pool
pointers are passed between procedures but they are not
otherwise copied and their address is never taken, so each
pool pointer variable within a function identifies a unique
pool. Our current pool allocation transformation places the
calls to pooldestroy at the end of the function containing
the call to poolinit for that pool.®

The algorithm for identifying and categorizing reuse within
and across pools is shown in Figure 4. We say a func-
tion F (or a call site C) indirectly calls a pool operation
(e.g., poolfree) if it calls some function that may directly
or indirectly call that operation. The sets FreeSites(F,P)
and AllocSites(F,P) respectively identify the call sites
within function F' that directly or indirectly invoke poolfree
and poolalloc on pool P. The sets PoolsFreed(F) and
PoolsAlloced(F) respectively are sets of incoming pools
(i.e., formal pool pointer arguments to function F') for which
F may directly or indirectly call poolfree or poolalloc.

Consider first a single-procedure program containing calls
to poolfree, poolalloc and pooldestroy. The analysis
then traverses paths from a poolfree for a pool to the
unique pooldestroy of that pool, looking for all calls to
poolalloc that appear on such a path. This is shown as
routine AnalyzeFunction in Figure 4. (It is easy to handle
all pools in a single linear-time traversal of the Control Flow
Graph, but the version in the figure is much easier to un-
derstand.) Each pool is then categorized according to what
instances of poolalloc, if any, are found on such paths.

Consider next an input program without recursion. The
algorithm then makes a bottom-up traversal of the call

5The algorithms described in this section can be easily modi-
fied if poolinit and pooldestroy calls are placed differently
by Pool Allocation.

pl = poolinit(s); pl = poolinit(s);

t = makeTree(pl); t = makeTree(pl);

while(...) { while(...) {
processTree(pl,t);
freeSomeItems(pl,t);

} }
freeTree(pl,t); freeTree(pl,t);
poolDestroy(pl); poolDestroy(pl);

(a) No reuse (case 1)

processTree(pl,t);
freeSomeltems(pl,t);

addItems(pl,t); // self-reuse

(b) Self-reuse (case 2)

pl = poolinit(s);

t = makeTree(pl);

while(...) {
processTree(pl,t);
freeltems(pl,t);
addItems(pl,t);
addItems(p2,t);

// self-reuse
// cross-reuse
}

freeTree(pl,t);

poolDestroy(pl);

(c) Self- and Cross-reuse (case 3)

Figure 3: Example illustrating 3 types of reuse behavior for a pool p1.

graph, computing the four kinds of sets above for each
function. The bottom-up traversal ensures that the sets
PoolsFreed(C) and PoolsAlloced(C) will be computed for
all possible callees C' of a function F, before visiting F.
To compute the sets for F', we visit each call site S in F'
and add this call to FreeSites(F,P) if it causes an invo-
cation of poolfree(P), and to AllocSites(F,P) similarly.
We also add each pool so encountered to PoolsFreed(F) or
PoolsAlloced(F). We can now invoke AnalyzeFunction(F)

directly to classify all pools in F. Note that AnalyzeFunction (F)

makes no distinction between local and indirect calls to
poolfree/poolalloc for pool P since both kinds of call sites
are included in FreeSites(F,P) and AllocSites(F,P).

To handle recursive and non-recursive programs uni-
formly, we actually perform the bottom-up traversal on the
Strongly Connected Components (SCC’s) of the call graph.
Within each SCC, we use a simple iterative algorithm in
which the sets are propagated from a function to its call
sites within the SCC until the sets FreeSites(F,P) and
AllocSites(F,P) stabilize for all functions F in the SCC
and every pool P. Once they have stabilized, the sets can be
propagated from each function in the SCC to every call site
of that function outside the SCC. AnalyzeFunction is then
applied to each function F in the current SCC as explained
earlier.

4. ARRAY RESTRICTIONS

In general, array bounds checking in general programs is
undecidable. In our previous work [15], we designed lan-
guage restrictions on array usage (rules (A1-A3) in Fig. 5)
that enable complete symbolic checking of array accesses.
Restriction A3 says that every index expression in an array
reference must have a provably affine relationship to the al-
located array size for that dimension. We also described an
interprocedural constraint propagation algorithm that prop-
agates affine constraints on integer variables from callers to
callees (for incoming integer arguments and global scalars)
and from callees to callers (for integer return values and
global scalars), as described in [15]. We can then perform a
symbolic bounds check for each index expression using in-
teger programming (our compiler uses the Omega Library
from Maryland [14]).

For array safety, our primary goal in this work has been
to evaluate the adequacy of these rules for a broad range of
embedded programs, and to relax the rules in limited ways
that can still be checked with existing compiler and integer
programming technology. We have found (not surprisingly)
that embedded codes typically use arrays in much more com-
plex ways than the control codes studied in our previous

work, as our experimental results in Section 5 show.

One practical issue for embedded programs is that they
make significant use of I/O operations, the string library,
and command line arguments. We added rule (A4) in Fig. 5
to allow certain trusted string and I/O library routines.
The rule also specifies that the arguments to trusted library
routines must satisfy some safety preconditions, to prevent
buffer overruns within the library routines. Some library
routines also provide constraints relating the output of the
routine to its inputs which must be used by the compiler to
check buffer or string safety. For example, the expression n
= read(fd, buf, count) where buf is a character array has
the safety precondition, (buf.size >= count) and a con-
straint on the return value, (n <= count) since read can
only read up to count bytes. Some trusted library calls and
the corresponding constraints are listed in Figure 6.

Library Call Return Value Safety Pre-
Constraints conditions
n = read(fd, buf, n <= count buf.size
count) >= count
n = puts(s) - -
p = memcpy(pl, p2, p-size = pl.size | pl.size
n) >= p2.size
fp = fopen(p,m) - -
n = getc(s) - -
n = strlen(s) n < s.size -
p = strcpy(si,s2) p-size = sl.size | sl.size
>= s2.size
p = strdup(s) p.-size = s.size | -
p = strncpy(sl, s2, | p.size = sl.size | sl.size > n
n)

Figure 6: Some Trusted Library Routines with Im-
plied Constraints and Preconditions

The advantage of providing trusted routines with pre-
defined constraints (rather than including their source code
in our analysis) is two-fold. It allows the body of the li-
brary routine to use non-affine array accesses or non-type-
safe code. Also, we do not need to compute or propagate
detailed constraints from the body of the library routine,
thus speeding up the analysis.

Finally, to ensure that string routines will not read beyond
the size of the array, we always initialize the last character
in any array of characters to be null. We added rule (A5) to
require that the program must not modify the last character,
and enforce this rule by excluding the last element in the
array size expression used for safety checking.

FreeSites(F,P) : set of call sites in F that may call poolfree on pool P directly or indirectly
AllocSites(F,P): set of call sites in F that may call poolalloc on pool P directly or indirectly
PoolsFreed(F) : set of pool arguments of F that may have a poolfree in F or one of its callees
PoolsAlloced(F): set of pool arguments of F that may have a poolalloc in F or ome of its callees

AnalyzeFunction(Function F)
begin
for (each pool pointer SSA variable P in F)
for (each call site FI in FreeSites(F, P))
for (each call AI in AllocSites(F, P1) where P1 != P)
if (there exists a path from FI to AI in the Control Flow Graph)
Classify (F,P) as ‘‘Case 3’
for (each call AI in AllocSites(F, P))
if (there exists a path from FI to AI in the Control Flow Graph)
Classify (F,P) as ‘‘Case 2’
if !(Case 2 OR Case 3)
Classify (F,P) as ‘‘Case 17’
end;

// formal argument or local variable

AnalyzeProgram(Program M)
begin
for (each SCC in CallGraph of M in post-order)
while (change == true)
change = false
for (each function F in the SCC)
for (each pool pointer variable P in F) // formal argument or local variable
for (each call site CS in F that has P as an argument)
for (each function CalledF that can be called at CS)
if (CalledF is poolfree for P OR PoolsFreed(CalledF) contains P)
if (FreeSites(F,P) does not contain CS)
change = true
add CS to FreeSites(F,P)
if (P is an argument of F)
add P to PoolsFreed(F)
if (CalledF is poolalloc on P OR PoolsAlloced(CalledF) contains P)
if (AllocSites(F, P) does not contain CS)
change = true
add CS to AllocSites(F,P)
if (P is an argument of F)
add P to PoolsAlloced(F)

for (each function F in the SCC)

AnalyzeFunction(F)
end;

Figure 4: Algorithm to identify and classify potential memory reuse within and between pools

The pre-conditions and return-value constraints are di-
rectly incorporated into our existing analysis for array

control dependence graph. In our example, for array ac-
cess A[i], the constraints we generate are (A.size = 51-1)

bounds, described in [15]. We explain the basics of our ap-
proach with the help of the example in Figure 7.

char A[51]; // last character is set to null

k = read(fd, A, 50); // requires A.size >= 50
if (k > 0) {
len = strlen(A); // implies len < A.size
for (i=0; i < len; i++)
if (A[i] == ’-’)
break;
// do other stuff with A, i

Figure 7: Array Usage Example

To prove the safety of any array access we first collect
constraints from the index expression and the array size ex-
pression by following SSA def-use edges, and collect branch
conditions on which those definitions depend by using the

using the def-use edges from the array declaration (note
that the last character is excluded from the size), (len
< A.size && k <= 50) using the def-use edges and return
value constraints on library functions strlen and read, and
(i < 1len & k > 0) from the control dependence graph.
Induction variable recognition allows us to generate useful
constraints about loop index variables (e.g., i >= 0), and
(together with the renaming of variables in SSA form) al-
lows us to disregard inconsistent equations like i = i + 1
for both induction variables and ordinary variables. The
complete set of constraints that we generate for this ac-
cess are (A.size = 50 && len < A.size && k <= 50 && i
< len && k > 0 & i >= 0). (Note that the interprocedu-
ral constraint propagation is not necessary in this simple
example but is essential for most realistic applications in
practice.) Finally, we add the illegal array bounds condi-
tions for the reference ((i < 0 || i >= A.size) in the ex-
ample), and then use the Omega library [14] to check if the
resulting constraint system is satisfiable. If not (as we have

On all control flow paths,

(A1) The index expression used in an array access must evaluate to a value within the bounds of the array.

(A2) For all dynamically allocated arrays, the size of the array must be a positive expression.

(A8) If an array, A, is accessed inside a loop, then

(a) the bounds of the loop must be provably affine transformations of the size of A and outer loop index variables or vice versa;

(b) the index expression in the array reference, must be a provably affine transformation of the vector of loop index variables, or

an affine transformation of the size of A; and

(c) if the index expression in the array reference depends on a symbolic variable s which is independent of the loop index variable
(i.e., appears in the constant term in the affine representation), then the memory locations accessed by that reference have

to be provably independent of the value of s.

(A4) A set of trusted library routines with specified preconditions may be used, and arguments passed to those routines must satisfy

the preconditions.

(AB) The last element of a character array cannot be modified by the program.

Figure 5: Semantic Restrictions on Array Usage

here), the constraints have been proven inconsistent and the
array access is safe.

To verify the precondition for the trusted library call read,
we simply need to check if the negation of the precondition
(A.size >= 50) along with known constraints on buf.size
and count results in an inconsistent system. Here, (A.size
< 50 && A.size = 50) trivially results in an inconsistent
system. In this manner, we generate and check the precon-
ditions for every trusted library call used by the program.

5. RESULTS

In this section, we address some of the key questions about
the effectiveness of our semantic restrictions and compiler
techniques used to check memory safety:

1. How much effort is required to convert the existing
embedded programs to conform to our semantic re-
strictions ?

2. Are the pool allocation transformation and heap safety
analysis powerful enough to enforce pointer and heap
safety statically in different embedded programs?

3. How often do we encounter pools from each of the three
categories in these programs?

4. Are the array restrictions flexible enough to permit
existing embedded codes (without extensive changes)?

5. Are the semantic restrictions and static analyses for
stack safety sufficient for existing embedded codes?

5.1 Methodology and Porting Effort

Our test codes were derived from two embedded applica-
tion benchmark suites: 13 from MiBench [12] and 4 from
MediaBench [19].” MiBench consists of embedded codes
from a variety of domains including telecommunications,
security, networking, etc. MediaBench are predominantly
multimedia codes. The program rasta use a library called
libsphere whose source was not available. The experiments
for rasta assumed that this library is safe and checked the
safety of the available source. The benchmarks, their sizes,
and our results for each are shown in Table 1.

"Other codes in the benchmarks are not accepted by the
current LLVM C front-end, but will be evaluated using a
new version of the front-end in the near future.

We found that a few lines of code had to be changed in
several benchmarks to conform to our rules, particularly for
type safety and array safety. These are shown in the third
and fourth columns of Table 1. The two largest changes
were for rule (T3) in rasta and g721, which each used a
union with a float and an array of four chars to swap the
bytes of the float value. We rewrote the code using shift
operations and eliminated the union. The other changes for
type safety were very small, e.g., initializing local pointer
variables before use within their parent function. For the
array safety rules, we had to rewrite a few lines of code in 8
programs. The changes were generally minimal and obvious.
For instance, in blowfish a command line argument was
accessed by iterating and checking if the last character was
null, which had to be rewritten to use strlen() for the loop
bound.

Besides requiring very few modifications, the changes
themselves were simple and local and in most cases obvi-
ous from reading the code or from compiler error messages.
Overall, we believe the porting effort to use our compiler for
standard C programs is small to negligible.

5.2 Effectiveness of Pointer and Heap Safety
Analysis

The Heap and Pointer Safety column in Table 1 shows
that our compiler was able to enforce safety of heap and
pointer usage for all 17 benchmarks we studied. About half
the benchmarks use no dynamic memory allocation (though
they still use pointers). For the other benchmarks, the same
column shows the different categories of pools found in each
one. The results show that we were able to prove heap
safety without increase in memory consumption (i.e., Case
1 or Case 2 pools — no reuse or only self-reuse), for all 13
MiBench benchmarks and 2 of the 4 MediaBench codes.

Only two codes, rasta and epic, have pools with cross-
reuse by other pools (Case 3), which can incur some increase
in memory consumption. We believe this is an encouraging
result. Both rasta and epic make extensive use of dynamic
memory, yet they contain very few pools that fall under Case
3: just 1 such pool out of a total of 13 pools in epic and 5
out of 14 in rasta. In fact, 3 of those 5 pools in rasta also
have self-reuse from the same pool, so that the effect of not
freeing memory to other pools is mitigated. We have also
observed that some case 3 pools (such as the one in epic)
could be converted to case 1 or 2 with more sophisticated

Benchmark Lines of | Lines of Code | Lines of Code | Array Bounds | Heap and Stack Safety

Code Modified Modified Checker Pointer Safety

for type safety | for array safety (Case)

automotive
basicmath 579 1 3 Yes Yes Yes
bitcount 17 5 0 Yes Yes Yes
gsort 156 0 1 Yes Yes Yes
susan 2122 1 0 No Yes (Case 1) Yes
office
stringsearch | 3215 | 0 3 | Yes | Yes | Yes
security
sha 269 0 1 Yes Yes Yes
blowfish 1502 1 5 Yes Yes Yes
rijndael 1773 3 6 Yes Yes No
network
dijkstra | 348 | 0 0 | No | Yes (Case 2) | Yes
telecomm
CRC 32 282 0 1 Yes Yes Yes
adpcm codes 741 0 0 No Yes Yes
FFT 469 0 0 No Yes (Case 1) Yes
gsm 6038 0 0 No Yes (Case 1) Yes
multimedia
gr21 1622 11 0 No Yes Yes
mpeg(decode) 9839 0 0 No Yes (Case 1) Yes
epic 3524 4 0 No Yes (Cases 1,3) Yes
rasta 7373 13 0 No Yes (Cases 1,3) Yes
Totals: 17 39869 39 20 8 17 16

Table 1: Benchmarks, code sizes, and experimental results

compiler analyses where the pooldestroy on a pool is moved
as close to the last poolfree on the pool as possible without
compromising safety.

Another interesting use of dynamic memory is seen in
dijkstra, where a linked list is alive throughout the pro-
gram and repeatedly allocates and deallocates memory. In
a language with explicit regions such as Cyclone [11] or RT-
Java, this list would have to go on a garbage collected heap.
Finally, there were a number of Case 1 pools, which are
amenable to the optimization of turning off individual object
frees entirely, effectively performing static garbage collection
with no increase in memory usage.

Overall, our results indicate that Case 3 occurs infre-
quently even in complex embedded codes and typically never
occurs at all in the simpler codes. This is strong empirical
evidence that our technique is powerful enough to enforce
heap safety statically in a broad range of embedded codes.

5.3 Effectiveness of Stack Safety Checks

Our stack safety check ensures that pointers to the stack
frame in a function are not accessible after that function
returns. The last column of Table 1 shows that only 1 pro-
gram (rijndael) failed this check. This occurred because
Data Structure Analysis is flow-insensitive and can yeild
false positives. In rijndael, a pointer to a local variable
is stored in a global but the global is reinitialized by a callee
of the function before the function returns. Such cases must
be handled by restructuring the program. Overall, these re-
sults indicate that stack safety should not be a significant
obstacle for static safety checking with our approach.

5.4 Effectiveness of Array Access Checks

Our array bounds checker passed 8 of the 13 benchmarks
from MiBench and none from MediaBench, after the few
changes described earlier. Interestingly, our tests detected 3
potential array bound violations in the MiBench suite and
2 in MediaBench: one each in dijkstra (both the large and
small versions) and blowfish and two violations in g721. All
of the errors except the ones in g721 were due to incorrect
assumptions on number of command line arguments. The
error in g721 was in using a fixed size buffer to copy a file
name obtained from a command line argument. This could
cause a stack corruption.

The array bounds checking algorithm failed to prove
safety for 9 of the codes. Two of these codes used non-affine
bit operations on the index variables. 5 other codes use indi-
rect indexing for arrays, e.g., A[B[j]]. One possible solution
we aim to explore is to use Ada style subrange types for
index expressions, and attempt to prove their safety when
the index values are computed.

Another two codes use memory locations in the heap to
store the size of an array, then load and use this size value
in another function, requiring the compiler to prove that the
heap location is not modified in between. We believe that
this can be handled fairly simply by interprocedural load
value numbering.

Overall, safety checking of complex array references re-
mains the most significant obstacle to our goal of 100% static
safety checking for a broad class of embedded applications.

5.5 Comparison with Control-C

All the control codes studied in our previous work on
Control-C are accepted by our new compiler fully automati-

cally, i.e., do not require the explicit use of single-region op-
erations for dynamic memory management. Perhaps more
importantly, the applications with Case 2 and Case 3 pools
(Table 1) and many of those with Case 1 pools would be
very difficult to implement with the single-region restriction
of Control-C. Moreover, since all the programs use command
line arguments and most use other strings and I/O library
calls, none of them would accepted by the array bounds
checks in Control-C. Thus, the new heap analysis and the
improved array access checks help to support a much larger
class of embedded codes than our previous work, and do so
without program annotations.

6. RELATED WORK

The broad approach of our work has been to identify
minimal semantic restrictions on imperative programs and
to develop new compiler techniques that together permit
complete static checking of memory safety, without runtime
checks or garbage collection. To our knowledge no other
programing language or compiler system achieves this goal
for any non-trivial class of programs. We believe our re-
sults show that we have achieved the goal for a significant
subclass of embedded C programs, and the subclass is quite
broad if array bounds checks are ignored.

Several alternative approaches have been taken to elim-
inate specific types of runtime overheads, and we compare
our approach with those below.

The Real-Time Specification for Java (RT Java) [4] en-
ables programmers to avoid garbage collection entirely for
subsets of the heap by providing three additional types
of MemoryAreas that are not garbage collected. Runtime
checks are required for ensuring safety of references between
the different areas. Of these, the ScopedMemory type de-
fines nested (i.e., scoped) regions for dynamic allocation. It
is much more restrictive and has more runtime overheads
than our pools: memory can only be allocated from the
current region, it requires the programmer to specify region
entry/exit points, and perhaps most importantly, it requires
runtime checks to ensure that there are no references from
objects in an outer scoped region (or from a different type
of memory area) to an inner one [4]. Finally, RT Java also
inherits the other runtime checking needs of standard Java
such as for arrays, null pointer checks and type coercions.

Real time garbage collection techniques (e.g., see [2] and
the references therein) use incremental collection methods
to reduce the unpredictability of garbage collection. Such
techniques can incur fairly high memory overhead to achieve
acceptable real time behavior, up to 2.5 times the actual
space consumption of a program in recent work [2].

As an alternative to garbage collection, several recent lan-
guages (e.g., RT Java [4], Cyclone [13, 11], and others [9, 5])
have adopted mechanisms for region-based memory man-
agement. These languages disallow direct deallocation of
items within a region in order to ensure program safety. As
discussed in the Introduction, these languages have two key
disadvantages relative to our work: (a) they generally re-
quire extensive programmer annotations to identify regions;
and (b) they provide no mechanisms to free or reuse memory
within a region, so that data structures that shrink and grow
(with non-nested object life times) must be put into a sepa-
rate garbage-collected heap or may incur a potentially large
increase in memory consumption. (e.g., Cyclone and RT
Java both include a separate garbage collected heap.) Au-

tomatic region inference [25, 11] can eliminate or mitigate
the first but not the second, and has only been successful
for type-safe languages without explicit deallocation.

In contrast to these approaches, we infer regions auto-
matically, we use no garbage collection, we permit explicit
deallocation of individual data items within regions, and we
ensure program safety through a combination of using ho-
mogeneous regions and additional static analysis. There are
two potential disadvantages in our work, however. We do
not prevent certain kinds of errors such as dangling pointer
references (this is irrelevant for correct programs). Second,
we rely heavily on interprocedural analysis (many of the an-
notations in Cyclone and other languages are designed to
avoid this need), but we retain the benefits of separate com-
pilation by performing all our analysis at link-time (a key
advantage of using the LLVM compilation framework [16]).

Boyapati et al. [5] present a static type system combining
ownership types with region types, to eliminate the run-
time checks needed for ensuring safe region deallocation in
RT Java. As a region-based language, they have the same
differences from our work as discussed above. They pro-
vide an additional mechanism based on “sub-regions” of a
region for sharing region data safely across threads, using
reference counts to reclaim the data. We do not support
multi-threaded applications so far.

Linear types and alias types [6, 28, 7, 8] have been used
to statically prove memory safety in the presence of explicit
deallocation of objects. They achieve this primarily with se-
vere restrictions on aliases in a program, which so far have
not proved practical for realistic programs. One of these
languages, Vault [7], also uses such a type system (much
more successfully) to encode many important correctness
requirements for other dynamic resources within an appli-
cation (e.g., file handles and sockets). It would be very at-
tractive to use Vault’s mechanisms within our programming
environment to statically check key correctness requirements
of system calls and trusted libraries.

A valuable strategy for compiler-based secure and reliable
systems is Proof-Carrying Code (PCC) [21]. The benefit of
PCC is that the safety checking compiler (usually a complex,
unreliable system) can be untrusted, and only a simple proof
checker (which can be made much more reliable) is required
within the trusted code base. Fundamentally, PCC does not
change what aspects of a program require static analysis and
what require runtime checking — that still depends on the
language design and compiler capabilities. Thus, PCC is
orthogonal to our work, and could be valuable for taking
our safety-checking compiler outside the trusted code base.

There has been extensive work on static elimination of ar-
ray bounds checks (e.g., see [3, 27]), but the goal of that work
is generally to eliminate a subset of bounds checks since com-
plete elimination is impossible for standard languages. In
contrast, we impose carefully chosen language restrictions to
enable compiler analysis to eliminate such checks entirely in
conforming programs. Our previous work [15] discusses how
the interprocedural bounds checking algorithm presented
there compares with related work. Wagner et al. have de-
veloped a tool for detection of buffer overrun vulnerabili-
ties in general C codes. Their analysis is necessarily impre-
cise, however, both in terms of generating constraints (flow-
insensitive) and solving them, resulting in many false pos-
itives. In contrast, we use a more precise context-sensitive
analysis and a more rigorous constraint solver.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we have described a set of semantic restric-
tions and compiler techniques that together enable 100%
static checking of memory safety for a significant class of
type-safe embedded programs. The semantic restrictions
are defined on a low-level language-independent type sys-
tem and instruction set, and implemented in a language-
independent, link-time compiler framework.

The key new result in this work is to show how an Auto-
matic Pool Allocation transformation allows us to ensure the
safety of dynamic memory management and pointer usage
using static checking alone (i.e., without garbage collection
or runtime checks on memory operations) and without any
new syntax. The compiler analysis helps to pinpoint the in-
frequent case where certain data structures could experience
an increase in memory consumption. Our results show that
these techniques allow us to check heap and pointer safety
for all 17 embedded programs we studied. Our previous
techniques for eliminating null pointer checks and for stack
safety are also very effective for nearly all these programs,
but our current analysis for checking array references can do
complete checking for only half the benchmarks we studied.

Overall, we believe that codes certified as safe by our com-
piler can execute as fast as the those compiled by a native C
compiler, while guaranteeing memory safety. Furthermore,
we usually require minimal, simple, and completely portable
rewriting of existing C programs to make them conform to
our restrictions (often improving over the original!).

There are some key steps remaining before we can achieve
our long term goal of a secure, low-overhead programming
environment based on the techniques above. First, we must
explore better language and compiler support for complex
array operations. Second, we must provide a robust and
flexible runtime environment with mechanisms to enforce
correct usage of system calls and runtime libraries. Finally,
we must develop an architecture that tolerates bugs in the
necessarily complex compiler and runtime system.

8 REFERENCES
[1] T. M. Austin, S. E. Breach, and G. S. Sohi. Efficient
detection of all pointer and array access errors. In Proc.
SIGPLAN ’9} Conf. on Programming Language Design
and Implementation, Orlando, FL, June 1994.

[2] D. Bacon, P. Cheng, and V. Rajan. A real-time garbage
collector with low overhead and consisitent utilization. In
Proc. 30th ACM Symp. Principles of Programming
Languages (POPL03), Jan. 2003.

[3] R. Bodik, R. Gupta, and V. Sarkar. ABCD: eliminating
array bounds checks on demand. In SIGPLAN Conf. on
Prog. Lang. Design and Implementation, June 2000.

[4] G. Bollella and J. Gosling. The real-time specification for
Java. Computer, 33(6):47-54, 2000.

[5] C. Boyapati, A. Salcianu, W. Beebee, and M. Rinard.
Ownership types for safe region-based memory
management in real-time java. In SIGPLAN Conference on
Programming Language Design and Implementation, 2003.

[6] K. Crary, D. Walker, and G. Morrisett. Typed memory
management in a calculus of capabilities. In Conference
Record of POPL 99: The 26th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, San
Antonio, Tezas, pages 262-275, New York, NY, 1999.

[7] R. DeLine and M. Fahndrich. Enforcing high-level protocols
in low-level software. In Proc. SIGPLAN Conf. on
Programming Language Design and Implementation,
Snowbird, UT, June 2001.

[8] M. Fahndrich and R. DeLine. Adoption and focus:

(9]

(16]

(17]

(18]

(19]

(21]

(22]

Practical linear types for imperative programming. In Proc.
SIGPLAN Conference on Programming Language Design
and Implementation, June 2002.

D. Gay and A. Aiken. Memory management with explicit
regions. In SIGPLAN Conference on Programming
Language Design and Implementation, pages 313323,
Montreal, Canada, June 1998.

J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java
Language Specification. Sun Microsystems, 2000.

D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang,
and J. Cheney. Region-based memory management in
cyclone. In Proc. SIGPLAN Conf. on Programming
Language Design and Implementation, June 2002.

M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,
T. Mudge, and R. B. Brown. Mibench: A free,
commercially representative embedded benchmark suite. In
IEEE 4th Annual Workshop on Workload
Characterization, Austin, TX, Dec. 2001.

T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney,
and Y. Wang. Cyclone: A safe dialect of c. In Proc.
USENIX Annual Technical Conference, June 2002.

W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman,
and D. Wonnacott. The Omega Library Interface Guide.
Technical report, Computer Science Dept., U. Maryland,
College Park, Apr. 1996.

S. Kowshik, D. Dhurjati, and V. Adve. Ensuring code
safety without runtime checks for real-time control systems.
In Proc. 2002 Conference on Compilers, Architecture and
Synthesis for Embedded Systems, Grenoble, Oct 2002.

C. Lattner. LLVM: An infrastructure for multi-stage
optimization. Master’s thesis, Computer Science Dept.,
University of Illinois at Urbana-Champaign, Urbana, IL,
Dec 2002. See http://1lvm.cs.uiuc.edu.

C. Lattner and V. Adve. Automatic Pool Allocation for
Disjoint Data Structures. In Proc. ACM SIGPLAN
Workshop on Memory System Performance, Berlin,
Germany, Jun 2002.

C. Lattner and V. Adve. Data structure analysis: An
efficient context-sensitive heap analysis. Tech. Report
UIUCDCS-R-2003-2340, Computer Science Dept., Univ. of
Illinois at Urbana-Champaign, Apr 2003.

C. Lee, M. Potkonjak, and W. H. Mangione-Smith.
Mediabench: A tool for evaluating and synthesizing
multimedia and communicatons systems. In International
Symposium on Microarchitecture, pages 330-335, 1997.

P. Levis and D. Culler. Mate: A tiny virtual machine for
sensor networks. In International Conference on
Architectural Support for Programming Languages and
Operating Systems, San Jose, CA, USA, Oct. 2002.

G. C. Necula. Proof-carrying code. In Proc. of the 2/th
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Langauges (POPL ’97), Paris, Jan. 1997.
G. C. Necula, S. McPeak, and W. Weimer. Ccured:
Type-safe retrofitting of legacy code. In Proc. 29th ACM
Symp. Principles of Programming Languages (POPL02),
London, Jan. 2002.

L. Sha. Dependable system upgrades. In Proceedings of
IEEE Real Time System Symposium, 1998.

L. Sha. Using simplicity to control complexity. IEEE
Software, July/August 2001.

M. Tofte and L. Birkedal. A region inference algorithm.
ACM Trans. Prog. Lang. Sys., 20(1), 1998.

M. Tofte and J.-P. Talpin. Region-based memory
management. Information and Computation, pages
132(2):109-176, Feb. 1997.

D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken. A
first step towards automated detection of buffer overrun
vulnerabilities. In Network and Distributed System Security
Symposium, pages 3-17, San Diego, CA, February 2000.
D. Walker and G. Morrisett. Alias types for recursive data
structures. Lecture Notes in Comp. Sci., vol. 2071, 2001.

