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Astronomy. — “On the curvature of space”. By Prof. W. pE SiTTER.

(Communicated in the meeting of 1917, June 30).

1. In order to make possible an entirely relative conception of
inertia, EinsTery ') has replaced the original field equations of his
theory by the equations ]

G,W“'JZQINJ':_’V"T/“+ é%ng e e e (1)

In my last paper?) 1 have pointed out two different systems of
gw which satisfy these equations. The system A4 is EiNsTEIN’S, in
which the whole of space is filled with matter of the average
density @,. In a stationary state, and 1f all matter 1s at rest without
any stresses or pressure, then we have 7),,=0 with the exception
» of 7, =g,, 0, In the system B this “world-matter” does not exist:
we have ¢, =0 and consequently all 7,, = 0. The line element
the two systems was there found to be

ds* = — R*{dy* + sin® g [d* + sin* $ A} + ¢ dir, . . (24)
ds? = — R* {dw® + sin® o [dy® + sin® 3 (dW* + sin® wdI?)]} . (2B)

In the system 4 we have- '

1 -
A= E‘-T 9 xQo = 22, . B . . (SA)
and in B:
: 3
} :-ﬁ y 9“ _\—'_.0. . . . R . . (3B)

In the system Ay, 9 are real angles; in By and 9 are also
real, but o and y are imaginary. If, however, we put
sihwsmy—sing , = R§,
tan @ cos y = tan , t = Ry,

) A. Ewsteiy, Kosmologische Betrachtungen zur Allgemeinen Relatwildts-
theorse, Sitzungsber., Berlin 1917 Febr. 8, p. 142.

3) W. pE SiTrER, On the relativity of inertia, these Proceedings, 1917 March 31,
vol. XIX, p. 1217,

In the footnote to page 1220 of that paper it is stated that the four-dimensional
world of the system B car he represented as a hyperboloid of two sheets in a
space of five dimensions, which is projected on a euchidean space of four dimensions
by a “stereographic projection”. This is erroneous. The hyperboloid has only one
sheet. Its projection fills only part of the euclidean space of four dimensions;
the part outside the limiting hyperboloid 1 4 gh?=0 (which is called (@) in the
quoted footnote) is the projection of the conjugated hyperboloid (which is of
two sheets). N
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where i=1V"—1, then ¢ and % are real and (2B) beconies: _
ds* = — dr* — R* sw® % [dy* -+ sin® O O] 4 cos® E;— ¢ dt’, . (4B)
If in A we also take » = Ry, then (2 4) becomes
ds = — dr — R sin? % [dw* I sin® wdd®*] + e de*. . . . (44)

The two systems 4 and B now differ only in g,,. For the sake
of comparison we add the system C, with
=0 , eL=9%. . . . . . . (80

. 1n which the line-element is - -

ds* = — dr* — ¢* [d® 4 sn® ¢ dY*] + *dt* . . . (40)
Both 4 and B become identical with C for R = o. B
If in A the origin of coordinates is displaced to a point %, yp,, &,
and in B to a time-space point w,, %, ¥,. ¥,, then the liné-element
conserves the ftorms (2 4) and (2 B) respectively. These can then
again by the same transformations be altered to (4 4) and (4 B).
In A the variable f, which takes no part in the transformation,
remams of course the same. In B on the other hand the new
variable ¢ after the transformation is generally not the same as before
I will put, for both systems 4 and ‘B

< X=E

In the system B this ,( is not the same as m (2 B), but it is the
angle which was called § above. I will continue to use » as an-
independent variable, and not 7. ’

2. In the theory of general relativity there 15 no essential
difference between inertia and gravitation. It will, however, be
convenient to continue to make fhis difference. A field in which
the hne-element can be brought in one of the forms (4 4), (4 B) or
4 C) with the corresponding condition (3 4), (3 B), or (8 C), will be
called a field of pure inertia, without gravitation. If the g,., deviate
from these values we will say that there is gravitation. This is
produced by matter, winch I call “ordinary” or ‘“gravitating”
matter. Its density is ¢,. In the systems B and C there is no other
watter than this ordinary matter. In the system A the whole of
space is filled with matter, which, in the simple case that the line-
element is represented by (2 A) or (4 4) produces no “gravitation”,
but only ‘inertia”. This matter [-have called “world-matter”. Its
density is ¢, When taken over sufficiently large units of volume
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this ¢, is a constant. Locally bowever it may be variable the
world-matter can be condensed to bodies of greater density, or it
can have a smaller density than the average, or be absent altogether.
According lo EinsTEIN’S view we must assume that all ordinary
malter (sun, stars, nebulae ete.) consist of condensed world-matter,
and perbaps also that all world-matter is thus condensed.

8. To begin with we will neglect gravitation and consider only
the inertial field. The three-dimensional Line-element is in the two
systems A and B.

do® = dr* + R? sin? é [dy* + sin® P d9*).

If R* is positive and finite, this is the line-element of a three-
dimensional space with a constant positive curvature. There are
two forms of this, viz: the space,of RieMany?), or spherical space,
and the elliptical space, which has been investigated by NEwcoms ?).
In the spherical space all “straight”’ (1.e. geodetic) lines which start
from one point, intersect again in another point: the ‘““antipodal
pomnt”, whose distance from (the first point, measured along any
of these lines, is nR. In the elliptical space any two straight lines
have only one point in common. In both spdaces the straight line 1s
closed; in the. spherical space its total length 1s 2z R, in the ellip-
tical space it is wR. In the spherical- space the largest possible
distance _between two points is xR, m the >el]iptical space iz R.
Both spaces are finite, thongh unlimited The volume of the whole
of spherical space is 27K, of elliptical space x*R®. For values of
» which are small compared with R, the two spaces differ only inap-
preciably form the eunclidean space. ,

The existence of the antipodal point, where all rays of light
starting from a point again intersect, and where also, as
will be shown below, the gravitational action of a material point
(however small its mass may be) becomes infinite, certainly is a
drawback of the spherical space, and it will be preferable to assume
the true physical space to be elliptical.

The elliptical space ~can be projected on euclidean space by the
transfor mation

. r=Rtany . . . . . . . (8),

The line-element in the systems A and B then becomes
Yy Ueber die Hypothesen welche der Geometrie zu Grunde legen (1854),

%) Elementory theorems relating to geometry of three dimensions and of
wntform positive curvature, CRELLE’s Jownal Bd. 88, p. 293 (1877). ¢




232 .

A= — dr’rz - e dy" + s": WA L eae. . (64)
(1 + Eﬂ) 1+
b dr’r? 2 r* [d? +fi’:: was | o dt; . @B
(1 + E) 1+ 1+ 2

For r = oo in the system A all g., become zero, with the excep-
tion of ¢,,, which remains 1. In the system B g,, also becomes zero.

4. The world-lines of light-vibrations are geodetic lines (ds = 0)
m the four-dimensional time-space. Their projections on the three-
dimensional space are the rays of light. In the system 4, with the
coordinates 7,1, ¥, these light-rays are also geodetic lines of the ~
three-dimensional space, and the velocity of light is constant. In
the system 5 this is not so. The velocily of light in that system 1s,
in the radial direction, » = c cos x. It is possible, however, in B to
introduce space-coordinates, measured in which the velocity of light
shall be constant in the radial direction. If the radius-vector in this
new measure is called /4, we have -

cos f dh = dr
The integral of this'equation is ! -
- . L . 7
smzl-%_tanﬁ N ()

In the system 4 we can, of course, also perfqrm the same trans-

formation. The line-element becomes 4

j
— dh* — sink? }% [ + sin® p d9?)
ds®* = -

PR +2det . . (84)
cosh? —
R

] .
— dl* — sink? é[dw’ -+ sin® pd9?] + o der
ds* — .+ . (8B
(2
il
cosh B

The three-dimensional line-element

]
] d6"® == di* + sinh? FL [dp* + sin® 4 d97]

is that of a space of constant negative curvature: the Ayperbolical
space or space of LopaTscnuwsky. When described in the coordinates
of this space, the rays of light in the system B are straight (i.e.
geodetic) lines, and the velocity of light is constant in all directions,
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although the system of reference was determined by the condition
that it should be constant in the radial direction.

In this system of reference also all g,, are zero at infinity in the
system B, and in 4 all ¢g,, exeepting ¢,,, which remains 1.

To h= o corresponds =14 n I. The whole of elliptical space
is therefore by the transformation (7) projected on the whole of
hyperbolical space. For values of 7 exceeding } aR, £ becomes
negative. Now a point (—/4, %, 9) is the same as (h, x —, a4 9).
The projection of the spherical space therefore fills the hyperbolical
space twice. The same thing is true of the projection, by (5), of
the elhiptical and spherical spaces on the euclidian space.

-

5. Let the sun be placed in the origin of coordinates, and let
the distance from the sun to the earth be a. We still neglect all
gravitation. .

In the system 4 the rays of light are straight lines, when de-
scribed in the“coordinates r, W, &, 1. e. in the elliptical or spherical
space.

In the system B the same is true for the coordinates %, v, &
(hyperbolical space).

In the system A, consequently to triangles formed by rays of
light, the ordinary formulas of spherical trigonometry are applicable.
The parallax p of a star whose distance from the sun is 7, is thus
given by the formula .

. a 2
tan p :smﬁcot—,

R
The square of a/R being neghgible, we can write this

LI 94
p_l—%wR—r""""()

In the system B we have similarly, in the coordinates A,w, 9

a 3
tan p = sinh I coth —,

R
or

Q h a a r? -
:—-'tl—:-—————:—-l/l £ .. @B
L e R T (5)

In the system 4 we have consequently p =0 for » =1 xR, ie.
for the largest distance which is possible in the elliptical space. If
we admitted still larger distances, which are only possible in the
spherical space, then p would become negative, and for » = xR
we should find p = — 90°.

16

Pioceedings Royal Acad. Amsterdam. Vol XX.

1y
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In the system B p has a minimum value

a

pozR’

which it reaches for &= o, i.e. 7= 4 #R. For values of r exceeding
this distance p increases again, and for r=aR we should find
p = 90°. )

Already in 1900 ScmwarzscHILD') gave a discussion of the possible
curvature of space, starting from the formulae (94) and 9B) For
the system B we ¢an from the observed parallaxes?) derive a lower
limit for R. Scawarzscaip finds B > 4.10° astronomical units. In
the system A the measured parallaxes cannot give a limit for E.

In both systems we can, of course, derive such a limit from~
distances which have been determined, or estimated, otherwise than
from the measured parallaxes. These distances must, in the elliptical
space, be smaller than }aRE. This undoubtedly leads to a much
higher limit, of the order of 10'° or more.

6 The straight line being closed, we should, at the point of
the heavens 180° from the sun, see an image of the back side of
the sun. This not being the case, practically all the Light must be
absorbed on the long ‘“voyage round the universe”. SCHWARZSCHILD
estimates that an absorption of 40 magnitudes would be sufficient *).
If we adopt the result found by SHAPLRY?), viz. that the absorption
in intergalacﬁé space 18 smaller than 0m.01 in a distance of 1000
parsecs, then for an absorption of 40 mags we need a distance of
7.10'* astronomical units. In the elliptical space we have thus
B>1.10".

In the system A we can suppose that this absorption is produced

1) Ueber das zulassige Krimmungsmaoass des Raumes, Vierteljahrsschrift der
Astron Gesellschaft, Bd. 356 p. 337.

2) The meaning is of course actually measured parallaxes, not parallaxes derived -
by the formula p=a/r from a distance which is determined from other sources
(comparison of rad al and transversal velocity, absolule magmtude, etc.). SCHWARZ-
SCHILD assumes that there are certainly stars having a paiallax of 0”7 05. All
parallaxes measured since then are relative parallaxes, and consequently we must
at the present time still use the same limit.

% It might be argued that we should not see the back of the actual sun but
of the sun as it was when the Light left it. We could thus do without absorption,
if the ume taken by light to traverse the distance n.E exceeded the age of the
sun. With any reasonable estimale of this age, we should thus be led to still
larger values of R.

4 Contribulions from the Mount Wilson Solar Observatory Nrs. 115-117.

J
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by the world-matter. It is about */,, of the absorption which Kine ')
used in his calculation of the density of matter in interstellar space.
The density of the world-matter would thus be about !/;, of the
density found by Kine, or ¢, =4 -10—1¢ in astronomical units.
The corresponding value of R (see art. 8) is B =2"10. The total
absorption in the distance w R would then be only 3.6 magnitudes.
To get the required absorption of 40 magnitudes we must increase
0,, and consequently diminish K. We then find o, =2 10—12,
R=2-10". This value of course has practically no weight, as 1t
1s very doubtful whether the considerations by which Kine derived
the density from the coefficient of absorption are applicable to the
world-matter. -

The whole argument is inapplicable to the system B, since in
this system the light requires an infinite time for the “voyage round
the world” One half of this time 1s

Yo <R

1
T— | —dr,
v
0

and, since v =¢ cos %, we find T'= o. "~

7. In the system A g,, is constant, in B ¢,, diminishes with
increasing r. Consequently in B the lines is the spectra of very
distant objects must appear displaced towards the red. This dis-
placement by the inertial field is superposed on the displacement
produced by the gravitational field of the stars themselves. It is
well known that the Helium-stars show a systematic displacement
corresponding to a radial velocity of + 4.3 Km/sec. If we assume
that about '/, of this is due to the gravitational field of the stars
themselves *), then there remains for the displacement by the inertial
field about 3 Km/sec. We should thus have, at the average distance
of the Helium stars

»
=1—2.10-0%=¢os* —.
f cos %

If for this average distance we take r =3 10" (corresponding
to a parallax of 0" 007 by the formula » = a/r), this gives R = % .10
‘Also for the M-stars, whose average distance is probably the largest
after that of the Helium-stars, Camppery ) finds a systewnatic dis-
placement of the same order. The other stars, whose average dis-

!) Nature, Vol. 95, p. 701 (Aug. 26, 1915).

?) Gf. pE S1TTER, On LINSTEIN's theory of graviiation and its astronomical
consequences, Monthly notices, Vol. 76, p. 719.

%) Lick Bulletin, Vol. 6, p. 127. 4

16%*
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tances are smaller, also have a much smaller systematic displacement -
towards the red, which can very well be explained by the gravita-
tional field of the stars themselves.

Lately some radial velocities of nebulae) have been observed,
which are very large; of the order of 1000 Km/sec. If we take
600 Km/sec., ~and explain this as a displacement towards the red
produced by the inertial field, we should, with the above value
of R, find for the distance of these nebulae » =4 - 10 = 2000
parsecs. It is probable that the real distance is much larger. ?)

About a systematic displacement towards the red of the spectral
lines of nebulae we can, however, as yet say nothing with certainty.
If in the future it should be proved that very distant objects have
systematically positive apparent radial velocities, this would be an
indication that the system B, and not 4, would correspond to the
truth. If such a systematic displacement of spectral lines should be
shown not to exist, this might be interpreted either as pointing to
the system A in preference to B, or as indicating a still larger
value of R in the system .

8. In the paper which has already repeatedly been quoted,
ScrwarzscHILD determined the value of R for elliptical space by the
condition that space should be large enough to contain the whole
of our galactic system, the star-density being taken constant and
equal to the value near the sun. This reasoning cannot be applied
to the system A, since the field-equations give a relation between
M and o, which contradicts SchwarzscHILD’s condition.

We have - .

2
®Q, = R

The volume of the elliptical space is a? R®. The tolal mass is

therefore a* R®g,, or I

1) NG.C. 4594 \g Pease 4 1180 km/sec.
SvipeER + 1190
SvtregER 1100
Peasz ~ 4 766 , . .
Moore -+ 910 .
The nebula in Andromeda however appears to have a considerable negative
velocity, viz. : ’ '

N.G.C. 1068

Prase —829 ,

gWRIGHT — 304 kw/sec.

SLIPHER — 300

%) EppingTon (Monthly Notices, Vol. 77, p. 375) estimates + > 100000 parsecs.
This, combined with an apparent velocity of + 600 km/sec., would give B > 3.101%.

~
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If we take for M the mass of our galactic system, which can be
estimated ) at § - 10 (sun = 1), then the last formula gives R = 41,
or only about 1'/, times the distance of Neptune from the sun. This,
of course, is absurd. If we use the other formula we can take for-
0, the star-density in the immediate neighbourhood of the sun, which
we estimate at 80 stars per unit of volume of Kapreyn (cube of
10 parsecs side), or @, = 10—17 in astronomical units. We then find
R=09-10". The total mass then becomes M — 710", and con-
sequently the galactic system would only represent an entirely
negligible portion of the total world-matter.

It appears probable for many different reasons that outside our
galactic system there are many more similar systems, whose mutual
distances are large compared with their dimensions. If we take for
the average mutual distance 10'° astronomical units, then an elliptical
space with R =9-10" could contain 7-J0° galactic systems, of
which of course only a small number are known to us by direct
observation. If, however, they all actually existed, and their average
mass were the same .as of our own galaxy, then their combined
mass would be about 2-10', and consequently only one three-
thousandth part of the world-matter would be condensed to “ordinary”
matter. It is very well possible to construct a world in which the
whole of the world-matter would, or at least could, be thus condensed.
We must then for ¢, take the density not within the galactic
system, bul the average density over a unit of volume which is
large compared with the mutual distances of the galactic systems.
With the numerical data adopted above, this leads to B =15"10",
and there would then be more than a billion galactic systems.

All this of course is very vague and hypothetical. Observation
only gives us certainty about the existence of our own galactic
system, and probability about some hundreds more. All beyond this
is extrapolation.

i}

9. We now come to the case that there is gravitation, which is
produced by “ordinary”’ matter, with the density o,. I will consider
the field produced by a small sphere at the origin of the system
of coordinates, which I will call the “sun”. Its radius is .

In the system 4 the world-matter has thus everywhere the
constant density o, except for values of » which are smaller than

M= .R.

) Communicated by Prof. KapiryN,

-

-10 -
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R, i.e. within the sun. There the density ') is ¢ = ¢, + 0,. In the
system B, we have ¢ — ¢,, and this is zero except for » <=r.
The line-element then has the form
ds* = — adr® — b|d* + sin® P d9°] + fe'dt®
and 1n a stationary state a, 6, f are functions of r only. The equations
become somewhat simpler 1f we introduce '
l=Ilga, m=lgb . n=Ilgj.
If differential coefficients with respect to r are indicated by accents
we find ’
Go=m"+ "+ §m' (W — 1) 4 La' (' —1),
a

> an—-:— 4+ im" 4t (@ 4 ' —1),

’ ——%Guzén"—{—in'@m'+n’—l’), ,
Gy =P G,,.

In ovder to write down the equations (1) we must know the values
of 7. If all matter is at rest, and if there is no pressure or stress
in it, these are: T, =g,, 0, all other T,, = 0. These values I call
T.°. If we adopt these, then the equations (1) become, after a simple
reduction

bR bn — ) =a(o—24), . . . (10)
m' 4 ym'(n —n —l)=-—axg, . . . . . (11)

—s bW gm)=—al . . . . ... (19

It is easily verified that these are satisfied if we take ¢ =g,,
and for g,, we take the values corresponding to one of the forms
(44), (4B), or (4C) of the line-element, with the conditions (34),
(3B), or (3C) respectively. Similarly for (64), (6B) and (84), (8B),
if the accents in (10), (11), (12) denote differential coefficients with
respect to r, or A respectively. Consequently in the field of pure
inerha we have T,,— T°, i.e. by the action of inertia alone there
are produced no pressnres or stresses in the world-matter.

1) This, of course, is not strictly in accordance with Envsten's hypothesis, by which

. the condensation of the world-matter in the sun should be compensated by a

rarefying, or entire absence, of it elsewheire. The mass of the sun however is
extremely small compared with the total mass in a unit of volume of such extent
as must be taken in order to treat the density of the world-matter as constant.
Therefore, if we neglect the compensation, the mass present in the unit of volume
containing the sun is only very litle in excess of that present in the other units.
In the real physical world such small deviations from perfect homogeneity must
always be considered as possible, and they must produce only small differences in
the gravitational field.

~

-11 -
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If however the mass of the sun is nof neglected, then a stationary
state of equilibrinm, with all matter at rest, cannot exist without
internal forces within this matter. The 7),, are then different from
T,,. If the world-matter is considered as a continuous “fluid”, then
this fluid can only be at rest if there is in it a pressure or siress.
If it is considered as consisting of separated materal points then
these cannot be at rest. The difference 7),,— 7,,° vanishes with o,
for if p=0, both 7, and 7). are zero. This difference, therefore, is
of the form &.9, & being of the order of the gravitation produced by
the sun. The right-hand-members of the equations (1), and therefore
also of (10), (11), (12) require corrections of the order x.s.9. If
these are neglected, the equations are no longer exact.

10. The mass of the sun being small, the values of a, b, f will
not differ much from those of the inertial tield. We can then, in
the system 4, and for the coordinates r, ¥, 9, put

a=1+a , b=Rsin* v (1 + B) ) =141y,
and in a first approximation we can neglect the squares and products
of @, 3, v..The equations then became:

2
b v eti=are, . . . . . . . (18)
" cot ) ) ) 2¢
B+ @ —d =)+ m=—axne . . (14
cotx__

Bcoseo’x—acot’x-}—(ﬁ’—}-y’)w__o. . . (18)

From (13) we find, remembering that the accents denote differen-
tiations with respect to r= K.y
v sin® y = |axo, sin® 3 dr
0

Outside the sun we have g, =0. Thus if we put -
R .

a—= R’faxg, sin® ydr
0
then outside the sun

from which

y:—;—acotx:—i:-. . N § 1))

-12 -
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For r=4%x R, ie. for the largest distance which is possible in
the elliptical space, we have thus y = 0. For still larger distances,
which are only possible in the spherical space, y becomes positive,
and finally for r=ns R we should have g,, = oo, however small
the mass of the sun may be, as has already been remarked above
(art. 3). .

If now from (14) and (15) we endeavour to determine « and 3,
we are met by difficulties. 1t appears that the equations (13), (14), (15)
are contradictory to each other. If we make the combination
d (15)

dr ’

(18) + (14) — 2. (15) — Rtany

we find

Ytany =10, . . . . .-. . . (17
which is absurd. If the equations were exact, they should, in con-
sequence of the invariance, be dependent on each other. They are

" however not exact, since on the right-hand-sides terms of the order

of &.x¢ have been neglected, & being of the order of «, 8, v. In
the world-matter we have') » ¢ —= % 9, = 22, and these corrections
can only be neglected if 2 is also of the order e This has not been
assamed in the equations (13), (14), (15). If we wish to assume it,
then we must also develop in powers of 2. We can then use the
coordinates r, W, 9. We put thus
a=1l+4ea , b=t +8) , f=1 +y.

The equations, in which now the accents denote differentiations

with respect to r, then become, to the first order

" 2 I
Y +TY = %0y

L8, 1
\ B+ =8 ——(d +7)=—xp, — 22,

B—atr@+7y)=—a,
which are easily verified to be dependent on each other.
We can thus add an arbitrary condition. If we take e.g.
a = 2p,
then we find, to the first order, outside the sun

a a a
a=-22r" +— , f=—21r"+ L~ , Y=~ —,
r ] r r

1) Of course, if beside the world matter there is also “ordinary matter”, 1. e.
if the density of the world matler is not constant, this relation is also only
approximatively true, and requires a correction of the order A, . (See also art. 11),

-13 -
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R
wherea=— |x ¢, 1*dr. If a is neglected these are the terms of ithe

0
first order in the development of (6 4) in powers of 4 ="/R"

11. Consider again the equations (10), (11), (12). If these were
exact, they would be dependent on each other. They are, however,
not exact, and consequently they are contradictory. 1f we make
the combination: \

d(12)

2, —
dr

L2 m — I (12) — [m' + 7. (11) — m'. (10),

we find?)
0=n'axg. . . . - .+ . . (18)

Consequently the equations are dependent on each other, i.e. a
stationary equilibrium, all matter being at rest without internal forces,
is only possible, when either ¢ =0 or n’ =0, i.e. g,, = constant.
In the system 4 ¢ is never zero, since outside the sun ¢ =9, A
stationary equilibrinm is then only possible if g,, is constant, i.e.
if no “ordinary” matter exists, for all ordinary matter will, by the
mechanism of the equation (10) or (13) produce a term ¢ in ¢,,
which is not constant. If ovdinary or gravitating matter does exist
then not only in those portions of space which are occupied by it,
but throughout the whole of the world-matter 7, will differ from
7,.°. We can e.g. consider the world-matter as an adiabatic incom-
pressible fluid. It this is supposed to be at rest, we have

] To=—gup » T =900
where p is the pressure in the world-matter. I then tind
1
p= (— —_ 1)
90 ‘/f

"and, to the first order, and for the coordinates 7, v, 9:

cos 29 1
@=f=- Y_a'(Rsinx +1_?,>’

%0, = 24 — 3-}%: 24 (l —%%)

For our sun a/R is of the order of 10-20.
For y—=1a we have y =0, and for y=a we should find

Y It is easily verified that (18) becomes identical with (17) if all terms of
higher orders than the first are neglected.
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. y==0, as in the approximate solution (16), in which p was neglected.
For the planetary motion we must go to the second order. I
find a motion of the perihelion amounting to
06 = —3la’nt. . . . . . . . (19
which is of course entirely negligible on account of the smallness
of 2a’. In my last paper?) it was stated that there is no motion
of the perhelion. In that paper the values 7,.° were used, i.e. the
pressure p was neglected. The motion (19) can thus be said to be
produced by the pressure of the world-matter on the planet. It will
disappear if we suppose that in the immediate neighbourhood of the
sun the world-matter is absent. .

12. In the system B outside the sun we have ¢ =0, and the
equations are dependent on each other and can be integrated.

Within the sun n’ax¢, must be of the second order, and conse-
quently n’ must be of the first order. If we put

S=rcos* y (1 4 7),

!

2 t
then n’:—ﬁ tan y +iy+—y’ thus _“_Z_X must be of the first order.

Since y=17/R we find that 1/R* must be of the first order, as in
system A. .
Developing f in powers of 1/R we find, to the first order

le;';_,‘*‘}'v

In the first approximation we find for y the same value as in
the systems A and C, viz: y = — a/r. Here however we have also
the term —7*/gs. Thus classical mechanics according to NEwTON’s
law can only be used as a first approximation if this term, and
consequently also 2 —="/g is of the second order. Investigating the
effect of this term on planetary motion, we find a motion of the peri-
helion *) amounting to

- 3a®
dw—_ﬁnt'

1) These Proceedings, Vol. XIX, page 1224.

2) In my last paper (these Proceedings Vol. XIX, p. 1224) I found

3a® . cnt?

— it — ——-.
4a R* 2R?

The difference is due to the use of a different system of reference, with a
different time and different radius-vector, in the two cases, the formulas for the
transformation of the space-variables (especially the radius-vector) from one system
to the other depending on_the time.

Jé
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From the condition that this shall for the earth not exceeds ay

2" per century we find
R>10%

Then '/p<{10—16 is actually of the second order compared with
2= 25-10-% This limit of R is still considerably lower than the
value which was found above from the displacement of the spectral
lines. For the planetary motion — and generally for all mechanical
problems which do not involve very large values of » — we can
therefore in both systems A and B neglect the effect of A entirely.
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