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Abstract: In this paper, we extend and overview wide families of Alpha-, Beta- and
Gamma-divergences and discuss their fundamental properties. In literature usually only
one single asymmetric (Alpha, Beta or Gamma) divergence is considered. We show in
this paper that there exist families of such divergences with the same consistent properties.
Moreover, we establish links and correspondences among these divergences by applying
suitable nonlinear transformations. For example, we can generate the Beta-divergences
directly from Alpha-divergences and vice versa. Furthermore, we show that a new wide class
of Gamma-divergences can be generated not only from the family of Beta-divergences but
also from a family of Alpha-divergences. The paper bridges these divergences and shows
also their links to Tsallis and Rényi entropies. Most of these divergences have a natural
information theoretic interpretation.
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1. Introduction

Many machine learning algorithms for classification and clustering employ a variety of dissimilarity
measures. Information theory, convex analysis, and information geometry play key roles in the
formulation of such divergences [1–25].

The most popular and often used are: Squared Euclidean distance and Kullback–Leibler divergence.
Recently, alternative generalized divergences such as the Csiszár–Morimoto f -divergence and Bregman
divergence become attractive alternatives for advanced machine learning algorithms [26–34]. In
this paper, we discuss a robust parameterized subclass of the Csiszár–Morimoto and the Bregman
divergences: Alpha- and Beta-divergences that may provide more robust solutions with respect to
outliers and additive noise and improved accuracy. Moreover, we provide links to new-class of robust
Gamma-divergences [35] and extend this class to so called Alpha-Gamma divergences.

Divergences are considered here as (dis)similarity measures. Generally speaking, they measure a
quasi-distance or directed difference between two probability distributions P and Q, which can also be
expressed for unconstrained nonnegative multi-way arrays and patterns.

In this paper we assume that P and Q are positive measures (densities) not necessary normalized,
but should be finite measures. In the special case of normalized densities, we explicitly refer to these
as probability densities. If we do not mention explicitly we assume that these measures are continuous.
An information divergence is a measure of distance between two probability curves. In this paper, we
discuss only one-dimensional probability curves (represented by nonnegative signals or time series).
Generalization to two or multidimensional dimensional variables is straightforward. One density Q(x)

is usually known and fixed and another one P(x) is learned or adjusted to achieve a best in some sense
similarity to the Q(x). For example, a discrete density Q corresponds to the observed data and the vector
P to be estimated, or expected data which are subject to constraints imposed on the assumed models.
For the Non-negative Matrix Factorization (NMF) problem Q corresponds to the data matrix Y and P

corresponds to estimated matrix Ŷ = AX (or vice versa) [30].
The distance between two densities is called a metric if the following conditions hold:

1. D(P ||Q) ≥ 0 with equality if and only if P = Q (nonnegativity and positive definiteness),

2. D(P ||Q) = D(Q ||P) (symmetry),

3. D(P ||Z) ≤ D(P ||Q) +D(Q ||Z) (subaddivity/triangle inequality).

Distances which only satisfies Condition 1 are not a metric and are referred to as (asymmetric)
divergences.

In many applications, such as image analysis, pattern recognition and statistical machine learning
we use the information-theoretic divergences rather than Euclidean squared or lp-norm distances [28].
Several information divergences such as Kullback–Leibler, Hellinger and Jensen–Shannon divergences
are central to estimate similarity between distributions and have long history in information geometry.

The concept of a divergence is not restricted to Euclidean spaces but can be extended to abstract spaces
with the help of Radon–Nikodym derivative (see for example [36]). Let (X,A, µ) be a measure space,
where µ is a finite or a σ-finite measure on (X,A) and let assume that P and Q are two (probability)
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measures on (X,A) such that P << µ, Q << µ are absolutely continuous with respect to a measure
µ, e.g., µ = P + Q and that p = dP

dµ
and q = dQ

dµ
the (densities) Radon–Nikodym derivative of P and

Q with respect to µ. Using such notations the fundamental Kullback–Leibler (KL) divergence between
two probabilities distributions can be written as

DKL(P ||Q) =

∫
X

p(x) log

(
p(x)

q(x)

)
dµ(x) (1)

which is related to the Shannon entropy

HS(P) = −
∫
X

p(x) log(p(x))dµ(x) (2)

via

DKL(P ||Q) = VS(P,Q)−HS(P)

where

VS(P,Q) = −
∫
X

p(x) log(q(x))dµ(x)

is the Shannon’s cross entropy, provided that integrals exist. (In measure theoretic terms, the integral
exists if the measure induced by P is absolutely continuous with respect to that induced by Q). Here
and in the whole paper we assume that all integrals exist.

The Kullback–Leibler divergence has been generalized by using a family of functions called
generalized logarithm functions or α-logarithm

log α(x) =
1

1− α
(x1−α − 1) (for x > 0) (3)

which is a power function of x with power 1 − α, and is the natural logarithm function in the limit
α → 1. Often, the power function (3) allows to generate more robust divergences in respect to outliers
and consequently better or more flexible performance (see, for example, [37]).

By using this type of extension, we derive and review three series of divergences, the Alpha,
Beta- and Gamma- divergences all of which are generalizations of the KL-divergence. Moreover, we
show its relation to the Tsallis entropy and the Rényi entropy (see Appendixes A and B). It will be
also shown how the Alpha-divergences are derived from the Csiszár–Morimoto f -divergence and the
Beta-divergence form the Bregman divergence by using the power functions.

Similarly to work of Zhang [22–24] and Hein and Bousquet [21] one of our motivations is to show
the close links and relations among wide class of divergences and provide an elegant way to handle
the known divergences and intermediate and new one in the same framework. However, our similarity
measures are different from these proposed in [21] and our approach and results are quite different to
these presented in [22].

It should be mentioned that there has been previous attempts of unifying divergence functions,
(especially related to Alpha-divergence) starting from the work by Zhu and Rohwer [10,11],
Amari and Nagaoka [3], Taneya [38,39], Zhang ([22] and Gorban and Judge [40]. In particular,
Zhang in ([22], and in subsequent works [23,24] investigated the deep link between information
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geometry and various divergence functions mostly related to Alpha-divergence through a unified
approach based on convex functions. However, the previous works have not considered explicitly
links and relationships among ALL three fundamental classes (Alpha-, Beta, Gamma-) divergences.
Moreover, some their basic properties are reviewed and extended.

The scope of the results presented in this paper is vast since the class of generalized (flexible)
divergence functions include a large number of useful loss functions containing those based on the
relative entropies, generalized Kullback–Leibler or I-divergence, Hellinger distance, Jensen–Shannon
divergence, J-divergence, Pearson and Neyman Chi-square divergences, Triangular Discrimination and
Arithmetic-Geometric divergence. Moreover, we show that some new divergences can be generated.
Especially, we generate a new family of Alpha-Gamma divergences and Itakura–Saito like distances
with the invariant scaling property which belongs to a wider class of Beta-divergences. Generally, these
new scale-invariant divergences provide extension of the families of Beta- and Gamma- divergences. The
discussed in this paper divergence functions are flexible because they allow us to generate a large number
of well known and often used particular divergences (for specific values of tuning parameters). Moreover,
by adjusting adaptive tuning parameters, we can optimize cost functions for learning algorithms and
estimate desired parameters of a model in presence of noise and outliers. In other words, the discussed
in this paper divergences, especially Beta- and Gama- divergences are robust in respect to outliers for
some values of tuning parameters.

One of important features of the considered family of divergences is that they can give some guidance
for the selection and even development of new divergence measures if necessary and allows to unify
these divergences under the same framework using the Csiszár-Morimoto and Bregamn divergences
and their fundamental properties. Moreover, these families of divergences are generally defined on
unnormalized finite measures (not necessary normalized probabilities). This allows us to analyze patterns
of different size to be weighted differently, e.g., images with different sizes or documents of different
length. Such measures play also an important role in the areas of neural computation, pattern recognition,
learning, estimation, inference, and optimization. We have already successfully applied a subset of
such divergences as cost functions (possibly with additional constraints and regularization terms) to
derive novel multiplicative and additive projected gradient algorithms for nonnegative matrix and tensor
factorizations [30,31].

The divergences are closely related to the invariant geometrical properties of the manifold of
probability distributions [5–7].

2. Family of Alpha-Divergences

The Alpha-divergences can be derived from the Csiszár–Morimoto f -divergence and as shown
recently by Amari using some tricks also from the Bregman divergence [3,6] (see also Appendix
A). The Alpha-divergence was proposed by Chernoff [41] and have been extensively investigated
and extended by Amari [1,3,5,6] and other researchers. For some modifications and/or extensions
see for example works of Liese and Vajda [36], Minka [42], Taneja [38,39,43], Cressie–Read [44],
Zhu–Rohwer [10,11] and Zhang [22–25]. One of our motivation to investigate and explore the family
of Alpha-divergences is to develop flexible and efficient learning algorithms for nonnegative matrix and
tensor factorizations which unify and extend existing algorithms including such algorithms as EMML
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(Expectation Maximization Maximum Likelihood) and ISRA (Image Space Reconstruction Algorithm)
(see [30,45] and references therein).

2.1. Asymmetric Alpha-Divergences

The basic asymmetric Alpha-divergence can be defined as [3]:

D
(α)
A (P ||Q) =

1

α(α− 1)

∫ (
pα(x) q 1−α(x)− α p(x) + (α− 1) q(x)

)
dµ(x), α ∈ R\{0, 1} (4)

where p(x) and q(x) do not need to be normalized.
The Alpha-divergence can be expressed via a generalized KL divergence as follows

D
(α)
A (P || Q) = D

(α)
GKL(P || Q) = − 1

α

∫ (
p logα

(
q

p

)
+ p− q

)
dµ(x), α ∈ R \ {0, 1} (5)

For discrete probability measures with mass functions P = [p1, p2, . . . , pn] and Q = [q1, q2, . . . , qn],
the discrete Alpha-divergence is formulated as a separable divergence:

D
(α)
A (P ||Q) =

n∑
i=1

d
(α)
A (pi || qi) =

1

α(α− 1)

n∑
i=1

(
pαi q

1−α
i − α pi + (α− 1) qi

)
, α ∈ R\{0, 1} (6)

where d(α)
A (pi || qi) =

(
pαi q

1−α
i − αpi + (α− 1)qi

)
/ (α(α− 1)) .

Note that this form of Alpha-divergence differs slightly from the loss function given by [1], because
it was defined only for probability distributions, i.e., under assumptions that

∫
p(x)dµ(x) = 1 and∫

q(x)dµ(x) = 1. It was extended by Zhu and Rohwer in [10,11] (see also Amari and Nagaoka [3]) for
positive measures, by incorporating additional terms. These terms are needed to allow de-normalized
densities (positive measures), in the same way that the generalized Kullback–Leibler divergences
(I-divergence).

Extending the Kullback–Leibler divergence into the family of Alpha-divergence is a crucial
step for a unified view of a wide class of divergence functions, since it demonstrates that the
nonnegativity of alpha-divergences may be viewed as arising not only from Jensen’s inequality but the
arithmetic-geometric inequality. As has been pointed out by Jun Zhang this can be fully exploited as a
consequence of the inequality of convex functions or more generally by his convex-based approach [22].

For normalized densities: p̄(x) = p(x)/
∫
p(x)dµ(x) and q̄(x) = q(x)/

∫
q(x)dµ(x) the

Alpha-divergence simplifies to [1,44]:

D
(α)
A (P̄ || Q̄) =

1

α(α− 1)

(∫
p̄α(x) q̄ 1−α(x)dµ(x)− 1

)
, α ∈ R \ {0, 1} (7)

and is related to the Tsallis divergence and the Tsallis entropy [46] (see Appendix A):

H
(α)
T (P̄) =

1

1− α

(∫
p̄α(x) dµ(x)− 1

)
= −

∫
p̄α(x) log α p̄(x)dµ(x) (8)

provided integrals on the right exist.
In fact, the Tsallis entropy was first defined by Havrda and Charvat in 1967 [47] and almost forgotten

and rediscovered by Tsallis in 1988 [46] in different context (see Appendix A).
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Various authors use the parameter α in different ways. For example, using the Amari notation, αA
with α = (1− αA)/2, the Alpha-divergence takes the following form [1–3,10,11,22–25,44,48,49]:

D̃
(αA)
A (P

¯
||Q

¯
) =

4

1− α2
A

∫ 1− αA
2

p+
1 + αA

2
q − p

1− αA
2 q

1 + αA
2

 dµ(x), αA ∈ R\{±1} (9)

When α takes values from 0 to 1, αA takes values from −1 to 1. The duality exists between αA

and −αA, in the sense that D̃(αA)
A (P ||Q) = D̃

(−αA)
A (Q ||P).

In the special cases for α = 2, 0.5,−1, we obtain from (4) the well known Pearson Chi-square,
Hellinger and inverse Pearson, also called the Neyman Chi-square distances, given respectively by

D
(2)
A (P ||Q) = DP (P ||Q) =

1

2

∫
(p(x)− q(x))2

q(x)
dµ(x)

D
(1/2)
A (P ||Q) = 2DH(P ||Q) = 2

∫
(
√
p(x)−

√
q(x))2dµ(x)

D
(−1)
A (P ||Q) = DN(P ||Q) =

1

2

∫
(p(x)− q(x))2

p(x)
dµ(x)

(10)

For the singular values α = 1 and α = 0 the Alpha-divergences (4) have to be defined as limiting
cases respectively for α → 1 and α → 0. When this limit is evaluated (using the L’Hôpital’s rule) for
α→ 1, we obtain the Kullback–Leibler divergence:

DKL(P ||Q) = lim
α→1

D
(α)
A (P ||Q) = lim

α→1

∫
pαq 1−α log p− pαq1−α log q − p+ q

2α− 1
dµ(x)

=

∫ (
p log

(
p

q

)
− p+ q

)
dµ(x)

(11)

with the conventions 0/0 = 0, 0 log(0) = 0 and p/0 =∞ for p > 0.
From the inequality p log p ≥ p − 1, it follows that the KL I-divergence is nonnegative and achieves

zero if and only if P = Q.
Similarly, for α→ 0, we obtain the reverse Kullback–Leibler divergence:

DKL(Q||P) = lim
α→0

D
(α)
A (P ||Q) =

∫ (
q log

(
q

p

)
− q + p

)
dµ(x) (12)

Hence, the Alpha-divergence can be evaluated in a more explicit form as

D
(α)
A (P ||Q) =



1

α(α− 1)

∫ (
q(x)

[(
p(x)

q(x)

)α
− 1

]
− α [p(x)− q(x)]

)
dµ(x), α 6= 0, 1

∫ (
q(x) log

q(x)

p(x)
+ p(x)− q(x)

)
dµ(x), α = 0

∫ (
p(x) log

p(x)

q(x)
− p(x) + q(x)

)
dµ(x), α = 1

(13)

In fact, the Alpha-divergence smoothly connects the I-divergence DKL(P ||Q) with the reverse
I-divergence DKL(Q ||P) and passes through the Hellinger distance [50]. Moreover, it also
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smoothly connects the Pearson Chi-square and Neyman Chi-square divergences and passes through the
I-divergences [10,11].

The Alpha-divergence is a special case of Csiszár–Morimoto f -divergence [17,19] proposed later
by Ali and Silvey [20]). This class of divergences were also independently defined by Morimoto [51].
The Csiszár–Morimoto f -divergence is associated to any function f(u) that is convex over (0,∞) and
satisfies f(1) = 0:

Df (P ||Q) =

∫
q(x)f

(
p(x)

q(x)

)
dµ(x) (14)

We define 0f(0/0) = 0 and 0f(a/0) = limt→0 tf(a/t) = limu→∞ f(u)/u. Indeed, assuming
f(u) = (uα − αu+ α− 1))/(α2 − α) yields the formula (4).

The Csiszár–Morimoto f -divergence has many beautiful properties [6,17,18,20,22,36,52,53]:

• Nonnegativity: The Csiszár–Morimoto f -divergence is always nonnegative, and equal to zero
if and only if probability densities p(x) and q(x) coincide. This follows immediately from the
Jensens inequality (for normalized densities):

Df (P||Q) =

∫
qf

(
p

q

)
dµ(x) ≥ f

(∫
q(
p

q
)dµ(x)

)
= f(1) = 0. (15)

• Generalized entropy: It corresponds to a generalized f -entropy of the form:

Hf (P) = −
∫
f(p(x))dµ(x) (16)

for which the Shannon entropy is a special case for f(p) = p log(p). Note that Hf is concave
while f is convex.

• Convexity: For any 0 ≤ λ ≤ 1

Df (λP1 + (1− λ)P2 ||λQ1 + (1− λ)Q2) ≤ λDf (P1||Q1) + (1− λ)Df (P2||Q2). (17)

• Scaling: For any positive constant c > 0 we have

cDf (P||Q) = Dcf (P||Q) (18)

• Invariance: The f -divergence is invariant to bijective transformations [6,20]. This means that,
when x is transformed to y bijectively by

y = k(x) (19)

probability distribution P(x) changes to P̃(y). However,

Df (P||Q) = Df (P̃||Q̃) (20)

Additionally,

Df (P||Q) = Df̃ (P||Q) (21)
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for f̃(u) = f(u)− c(u− 1) for an arbitrary constant c, and

Df (P||Q) = Df∗(Q||P) (22)

where f ∗(u) = uf(1/u) is called a conjugate function.

• Symmetricity: For an arbitrary Csiszár–Morimoto f -divergence, it is possible to construct a
symmetric divergence for fsym(u) = f(u) + f ∗(u).

• Boundedness The Csiszár–Morimoto f -divergence for positive measures (densities) is bounded
(if limit exists and it is finite) [28,36]

0 ≤ Df (P||Q) ≤ lim
u→0+

{
f(u) + uf(

1

u
)

}
(23)

Furthermore [54],

0 ≤ Df (P||Q) ≤
∫

(p− q)f ′(p
q

)dµ(x) (24)

Using fundamental properties of the Csiszár–Morimoto f -divergence we can establish basic
properties of the Alpha-divergences [3,6,22,40,42].

The Alpha-divergence (4) has the following basic properties:

1. Convexity: D(α)
A (P||Q) is convex with respect to both P and Q.

2. Strict Positivity: D(α)
A (P||Q) ≥ 0 and D(α)

A (P||Q) = 0 if and only if P = Q.

3. Continuity: The Alpha-divergence is continuous function of real variable α in the whole range
including singularities.

4. Duality: D(α)
A (P||Q) = D

(1−α)
A (Q||P).

5. Exclusive/Inclusive Properties: [42]

• For α → −∞, the estimation of q(x) that approximates p(x) is exclusive, that is
q(x) ≤ p(x) for all x. This means that the minimization of D(α)

A (P||Q) with respect to
q(x) will force q(x) to be exclusive approximation, i.e., the mass of q(x) will lie within p(x)

(see detail and graphical illustrations in [42]).

• For α→∞, the estimation of q(x) that approximates p(x) is inclusive, that is q(x) ≥ p(x)

for all x. In other words, the mass of q(x) includes all the mass of p(x).

6. Zero-forcing and zero-avoiding properties: [42]

Here, we treat the case where p(x) and q(x) are not necessary mutually absolutely continuous. In
such a case the divergence may diverges to∞. However, the following two properties hold:

• For α ≤ 0 the estimation of q(x) that approximates p(x) is zero-forcing (coercive), that is,
p(x) = 0 forces q(x) = 0.
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• For α ≥ 1 the estimation of q(x) that approximates p(x) is zero-avoiding, that is, p(x) > 0

implies q(x) > 0.

One of the most important property of the Alpha-divergence is that it is a convex function with respect
to P and Q and has a unique minimum for P = Q (see e.g. [22]).

2.2. Alpha-Rényi Divergence

It is interesting to note that the Alpha-divergence is closely related to the Rényi divergence. We define
an Alpha-Rényi divergence as

D
(α)
AR(P ||Q) =

1

α(α− 1)
log
(

1 + α(α− 1)D
(α)
A (P||Q

)
=

1

α(α− 1)
log

(∫ (
pαq1−α − αp+ (α− 1) q

)
dµ(x) + 1

)
, α ∈ R \ {0, 1}

(25)

For α = 0 and α = 1 the Alpha-Rényi divergence simplifies to the Kullback–Leibler divergences:

DKL(P ||Q) = lim
α→1

D
(α)
AR(P ||Q) = lim

α→1

1

2α− 1

∫
(pαq 1−α(log p− log q)− p+ q)dµ(x)∫
(pαq 1−α − αp− (α− 1)q)dµ(x) + 1

=

∫ (
p log

(
p

q

)
− p+ q

)
dµ(x)

(26)

and

DKL(Q||P) = lim
α→0

D
(α)
AR(P ||Q) =

∫ (
q log

(
q

p

)
− q + p

)
dµ(x) (27)

We define the Alpha-Rényi divergence for normalized probability densities as follows:

D
(α)
AR(P̄ || Q̄) =

1

α(α− 1)
log

(∫
p̄αq̄1−αdµ(x)

)
=

1

α− 1
log

(∫
q̄

(
p̄

q̄

)α
dµ(x)

) 1
α

(28)

which corresponds to the Rényi entropy [55–57] (see Appendix B)

H
(α)
R (P̄) = − 1

α− 1
log

(∫
p̄α(x)dµ(x)

)
(29)

Note that we used different scaling factor than in the original Rényi divergence [56,57]. In general,
the Alpha-Rényi divergence make sense only for the (normalized) probability densities (since, otherwise
the function (25) can be complex-valued for some positive non-normalized measures).

Furthermore, the Alpha-divergence is convex with respect to positive densities p and q for any
parameter of α ∈ R, while the Alpha-Rényi divergence (28) is convex jointly in p and q for α ∈ [0, 1]

and it is not convex for α > 1. Convexity implies that D(α)
AR is increasing in α when p and q are fixed.

Actually, the Rényi divergence is increasing in α on the whole set (0,∞) [58–60].
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2.3. Extended Family of Alpha-Divergences

There are several ways to extend the asymmetric Alpha-divergence. For example, instead of q, we
can take the average of q and p, under the assumption that if p and q are similar, they should be “close”
to their average, so we can define the modified Alpha-divergence as

D
(α)
Am1(P || Q̃) =

1

α(α− 1)

∫ (
q̃

[(
p

q̃

)α

− 1

]
− α (p− q̃)

)
dµ(x) (30)

whereas an adjoint Alpha-divergence is given by

D
(α)
Am2(Q̃ ||P) =

1

α(α− 1)

∫ (
p

[(
q̃

p

)α
− 1

]
+ α (p− q̃)

)
dµ(x) (31)

where Q̃ = (P + Q)/2 and q̃ = (p+ q)/2.
For the singular values α = 1 and α = 0, the Alpha-divergences (30) can be evaluated as

lim
α→0

D
(α)
Am1(P ||Q̃) =

∫ (
q̃ log

(
q̃

p

)
+ p− q̃

)
dµ(x) =

∫ (
p+ q

2
log

(
p+ q

2p

)
+
p− q

2

)
dµ(x)

and

lim
α→1

D
(α)
Am1(P || Q̃) =

∫ (
p log

(
p

q̃

)
− p+ q̃

)
dµ(x) =

∫ (
p log

(
2p

p+ q

)
+
q − p

2

)
dµ(x)

As examples, we consider the following prominent cases for (31):

1. Triangular Discrimination (TD) [61]

D
(−1)
Am2(Q̃ ||P) =

1

4
DTD(P ||Q) =

1

4

∫
(p− q)2

p+ q
dµ(x) (32)

2. Relative Jensen–Shannon divergence [62–64]

lim
α→0

D
(α)
Am2(Q̃ ||P) = DRJS(P ||Q) =

∫ (
p log

(
2p

p+ q

)
− p+ q

)
dµ(x) (33)

3. Relative Arithmetic-Geometric divergence proposed by Taneya [38,39,43]

lim
α→1

D
(α)
Am2(Q̃ ||P) =

1

2
DRAG(P ||Q) =

∫ (
(p+ q) log

(
p+ q

2p

)
+ p− q

)
dµ(x) (34)

3. Neyman Chi-square divergence

D
(2)
Am2(Q̃ ||P) =

1

8
Dχ2(P ||Q) =

1

8

∫
(p− q)2

p
dµ(x) (35)

The asymmetric Alpha-divergences can be expressed formally as the Csiszár–Morimoto
f -divergence, as shown in Table 1 [30].



Entropy 2010, 12 1542

Table 1. Asymmetric Alpha-divergences and associated convex Csiszár-Morimoto
functions [30].

Divergence D(α)
A (P||Q) =

∫
qf (α)

(
p

q

)
dµ(x) Csiszár function f (α)(u), u = p/q



1

α(α− 1)

∫ (
q

[(
p

q

)α
− 1

]
− α(p− q)

)
dµ(x),∫ (

q log
q

p
+ p− q

)
dµ(x),∫ (

p log
p

q
− p+ q

)
dµ(x).



uα − 1− α(u− 1)

α(α− 1)
, α 6= 0, 1

u− 1− log u, α = 0,

1− u+ u log u, α = 1.



1

α(α− 1)

∫ (
p

[(
q

p

)α
− 1

]
+ α(p− q)

)
dµ(x),∫ (

p log
p

q
− p+ q

)
dµ(x),∫ (

q log
q

p
+ p− q

)
dµ(x).



u1−α + (α− 1)u− α
α(α− 1)

, α 6= 0, 1,

1− u+ u log u, α = 0

u− 1− log u, α = 1.



1

α(α− 1)

∫ (
q

(
p+ q

2q

)α
− q − αp− q

2

)
dµ(x),∫ (

q log

(
2q

p+ q

)
+
p− q

2

)
dµ(x),∫ (

p+ q

2
log

(
p+ q

2q

)
− p− q

2

)
dµ(x).



(
u+ 1

2

)α
− 1− α

(
u− 1

2

)
α(α− 1)

, α 6= 0, 1,

u− 1

2
+ log

(
2

u+ 1

)
, α = 0,

1− u
2

+
u+ 1

2
log

(
u+ 1

2

)
, α = 1.



1

α(α− 1)

∫ (
p

(
p+ q

2p

)α
− p+ α

p− q
2

)
dµ(x),∫ (

p log

(
2p

p+ q

)
− p− q

2

)
dµ(x),∫ (

p+ q

2
log

(
p+ q

2p

)
+
p− q

2

)
dµ(x).



u

(
u+ 1

2u

)α
− u− α

(
1− u

2

)
α(α− 1)

, α 6= 0, 1,

1− u
2
− u log

(
u+ 1

2u

)
, α = 0,

u− 1

2
+

(
u+ 1

2

)
log

(
u+ 1

2u

)
, α = 1.


1

α− 1

∫
(p− q)

[(
p+ q

2q

)α−1

− 1

]
dµ(x),∫

(p− q) log

(
p+ q

2q

)
dµ(x).


(u− 1)

[(
u+ 1

2

)α−1

− 1

]
α− 1

, α 6= 1,

(u− 1) log

(
u+ 1

2

)
, α = 1.


1

α− 1

∫
(q − p)

[(
p+ q

2p

)α−1

− 1

]
dµ(x),∫

(q − p) log

(
p+ q

2p

)
dµ(x).


(1− u)

[(
u+ 1

2u

)α−1

− 1

]
α− 1

, α 6= 1,

(1− u) log

(
u+ 1

2u

)
, α = 1.
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2.4. Symmetrized Alpha-Divergences

The basic Alpha-divergence is asymmetric, that is, D(α)
A (P ||Q) 6= D

(α)
A (Q ||P).

Generally, there are two ways to symmetrize divergences: Type-1

DS1(P ||Q) =
1

2
[DA(P ||Q) +DA(Q ||P)] (36)

and Type 2

DS2(P ||Q) =
1

2

[
DA

(
P || P + Q

2

)
+DA

(
Q || P + Q

2

)]
(37)

The symmetric Alpha-divergence (Type-1) can be defined as (we will omit scaling factor 1/2

for simplicity)

D
(α)
AS1(P ||Q) = D

(α)
A (P ||Q) +D

(α)
A (Q ||P) =

∫
(pα − qα) (p1−α − q1−α)

α(1− α)
dµ(x) (38)

As special cases, we obtain several well-known symmetric divergences:

1. Symmetric Chi-Squared divergence [54]

D
(−1)
AS1 (P ||Q) = D

(2)
AS1(P ||Q) =

1

2
Dχ2(P ||Q) =

1

2

∫
(p− q)2(p+ q)

pq
dµ(x) (39)

2. Symmetrized KL divergence, called also J-divergence corresponding to Jeffreys entropy
maximization [65,66]

lim
α→0

D
(α)
AS1(P ||Q) = lim

α→1
D

(α)
AS1(P ||Q) = DJ(P ||Q) =

∫
(p− q) log

(
p

q

)
dµ(x) (40)

An alternative wide class of symmetric divergences can be described by the following symmetric
Alpha-divergence (Type-2):

D
(α)
AS2(P ||Q) =D

(α)
A

(
P || P + Q

2

)
+D

(α)
A

(
Q || P + Q

2

)
=

1

α(α− 1)

∫ (
(p1−α + q1−α)

(
p+ q

2

)α
− (p+ q)

)
dµ(x)

The above measure admits the following prominent cases

1. Triangular Discrimination [30,38]

D
(−1)
AS2 (P ||Q) =

1

2
DTD(P ||Q) =

1

2

∫
(p− q)2

p+ q
dµ(x) (41)

2. Symmetric Jensen–Shannon divergence [62,64]

lim
α→0

D
(α)
AS2(P ||Q) = DJS(P ||Q) =

∫ (
p log

(
2p

p+ q

)
+ q log

(
2q

p+ q

))
dµ(x) (42)
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It is worth mentioning, that the Jensen–Shannon divergence is a symmetrized and smoothed
variant of the Kullback–Leibler divergence, i.e., it can be interpreted as the average of the
Kullback–Leibler divergences to the average distribution. For the normalized probability densities
the Jensen–Shannon divergence is related to the Shannon entropy in the following sense:

DJS = HS((P + Q)/2)− (HS(P) +HS(Q))/2 (43)

where HS(P) = −
∫
p(x) log p(x)dµ(x)

3. Arithmetic-Geometric divergence [39]

lim
α→1

D
(α)
AS2(P ||Q) =

∫
(p+ q) log

(
p+ q

2
√
pq

)
dµ(x) (44)

4. Symmetric Chi-square divergence [54]

D
(2)
AS2(P ||Q) =

1

8
Dχ2(P ||Q) =

1

8

∫
(p− q)2(p+ q)

pq
dµ(x) (45)

The above Alpha-divergence is symmetric in its arguments P and Q, and it is well-defined even if P

and Q are not absolutely continuous. For example, for discrete D(α)
AS2(P||Q) is well-defined even if, for

some indices pi, it vanishes without vanishing qi or if qi vanishes without vanishing pi [54]. It is also
lower- and upper-bounded, for example, the Jensen–Shannon divergence is bounded between 0
and 2 [36].

3. Family of Beta-Divergences

The basic Beta-divergence was introduced by Basu et al. [67] and Minami and Eguchi [15] and many
researchers investigated their applications including [8,13,30–34,37,37,68–72], and references therein.
The main motivation to investigate the beta divergence, at least from the practical point of view, is
to develop highly robust in respect to outliers learning algorithms for clustering, feature extraction,
classification and blind source separation. Until now the Beta-divergence has been successfully
applied for robust PCA (Principal Component Analysis) and clustering [71], robust ICA (Independent
Component Analysis) [15,68,69], and robust NMF/NTF [30,70,73–76].

First, let us define the basic asymmetric Beta-divergence between two unnormalized density
functions by

D
(β)
B (P || Q) =

∫ (
p(x)

pβ−1(x)− qβ−1(x)

β − 1
− pβ(x)− qβ(x)

β

)
dµ(x), β ∈ R \ {0, 1} (46)

where β is a real number and, for β = 0, 1, is defined by continuity (see below for more explanation).
For discrete probability measures with mass functions P = [p1, p2, . . . , pn] and Q = [q1, q2, . . . , qn]

the discrete Beta-divergence is defined as

D
(β)
B (P || Q) =

n∑
i=1

d
(β)
B (pi || qi) =

n∑
i=1

(
pi
pβ−1
i − qβ−1

i

β − 1
− pβi − q

β
i

β

)
β ∈ R \ {0, 1} (47)
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The Beta-divergence can be expressed via a generalized KL divergence as follows

D
(β)
B (P || Q) = D

(β−1)
GKL (Pβ || Qβ) = − 1

β

∫ (
pβ log( 1

β
)

(
qβ

pβ

)
+ pβ − qβ

)
dµ(x) β ∈ R\{0, 1} (48)

The above representation of the Beta-divergence indicates why it is robust to outliers for some values of
the tuning parameter β and therefore, it is often better suited than others for some specific applications.
For example, in sound processing, the speech power spectra can be modeled by exponential family
densities of the form, whose for β = 0 the Beta-divergence is no less than the Itakura–Saito
distance (called also Itakura–Saito divergence or Itakura–Saito distortion measure or Burg cross
entropy) [12,13,30,76–79]. In fact, the Beta-divergence has to be defined in limiting case for β → 0

as the Itakura–Saito distance:

DIS(P ||Q) = lim
β→0

D
(β)
B (P ||Q) =

∫ (
log

q

p
+
p

q
− 1

)
dµ(x) (49)

The Itakura and Saito distance was derived from the maximum likelihood (ML) estimation of speech
spectra [77]. It was used as a measure of the distortion or goodness of fit between two spectra and
is often used as a standard measure in the speech processing community due to the good perceptual
properties of the reconstructed signals since it is scale invariant, Due to scale invariance low energy
components of p have the same relative importance as high energy ones. This is especially important
in the scenario in which the coefficients of p have a large dynamic range, such as in short-term audio
spectra [30,76,79].

It is also interesting to note that, for β = 2, we obtain the standard squared Euclidean (L2-norm)
distance, while for the singular case β = 1, we obtain the KL I-divergence:

DKL(P ||Q) = lim
β→1

D
(β)
B (P ||Q) =

∫ (
p log

p

q
− p+ q

)
dµ(x) (50)

Note, that we used here, the following formulas limβ→0
pβ−qβ
β

= log(p/q) and limβ→0
pβ−1
β

= log p

Hence, the Beta-divergence can be represented in a more explicit form:

D
(β)
B (P ||Q) =



1

β(β − 1)

∫ (
pβ(x) + (β − 1)qβ(x)− βp(x)qβ−1(x)

)
dµ(x), β 6= 0, 1∫ (

p(x) log(
p(x)

q(x)
)− p(x) + q(x)

)
dµ(x), β = 1∫ (

log(
q(x)

p(x)
) +

p(x)

q(x)
− 1

)
dµ(x), β = 0

(51)

We have shown that the basic Beta-divergence smoothly connects the Itakura–Saito distance and the
squared Euclidean L2-norm distance and passes through the KL I-divergence DKL(P ||Q). Such a
parameterized connection is impossible in the family of the Alpha-divergences.

The choice of the tuning parameter β depends on the statistical distribution of data sets. For example,
the optimal choice of the parameter β for the normal distribution is β = 2, for the gamma distribution
it is β = 0, for the Poisson distribution β = 1, and for the compound Poisson distribution β ∈ (1, 2)

[15,31–34,68,69].
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It is important to note that the Beta divergence can be derived from the Bregman divergence. The
Bregman divergence is a pseudo-distance for measuring discrepancy between two values of density
functions p(x) and q(x) [9,16,80]:

dΦ(p||q) = Φ(p)− Φ(q)− (p− q)Φ′(q) (52)

where Φ(t) is strictly convex real-valued function and Φ′(q) is the derivative with respect to q. The total
discrepancy between two functions p(x) and q(x) is given by

DΦ(P||Q) =

∫
[Φ(p(x))− Φ(q(x))− (p(x)− q(x))Φ′(q(x))] dµ(x) (53)

and it corresponds to the Φ-entropy of continuous probability measure p(x) ≥ 0 defined by

HΦ(P) = −
∫

Φ(p(x))dµ(x) (54)

Remark: The concept of divergence and entropy are closely related. Let Q0 be a uniform distribution
for which

Q0(x) = const (55)

(When x is an infinite space Rn this might not be a probability distribution but is a measure). Then,

H(P) = −D(P||Q0) + const (56)

is regarded as the related entropy. This the negative of the divergence form P to the uniform distribution.
On the other hand, given a concave entropy H(P), we can define the related divergence as the Bregman
divergence derived from a convex function Φ(P) = −H(P).

If x takes discrete values on a certain space, the separable Bregman divergence is defined as
DΦ(P||Q) =

∑
i=1 dΦ(pi||qi) =

∑n
i=1 [Φ(pi)− Φ(qi)− (pi − qi)Φ′(qi))], where Φ′(q) denotes

derivative with respect to q. In a general (nonseparable) case for two vectors P and Q, the Bregman
divergence is defined as DΦ(P||Q) = Φ(P)−Φ(Q)− (P−Q)T∇Φ(Q), where∇Φ(Q) is the gradient
of Φ evaluated at Q.

Note that DΦ(P||Q) equals the tail of the first-order Taylor expansion of Φ(P) at Q. Bregman
divergences include many prominent dissimilarity measures like the squared Euclidean distance, the
Mahalanobis distance, the generalized Kullback–Leibler divergence and the Itakura–Saito distance.

It is easy to check that the Beta-divergence can be generated from the Bregman divergence using the
following strictly convex continuous function [36,81]

Φ(t) =


1

β(β − 1)

(
tβ − βt+ β − 1

)
, β 6= 0, 1

t log(t)− t+ 1, β = 1

t− log(t)− 1, β = 0

(57)

It is also interesting to note that the same generating function f(u) = Φ(t)|t=u

(with α = β) can be used to generate the Alpha-divergence using the Csiszár–Morimoto f -divergence
Df (P||Q) =

∫
q f(p/q) dµ(x).
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Furthermore, the Beta-divergence can be generated by a generalized f -divergence:

D̃f (P||Q) =

∫
qβf(p/q) dµ(x) =

∫
qβ f̃

(
pβ

qβ

)
dµ(x) (58)

where f(u) = Φ(t)|t=u with u = p/q and

f̃(ũ) =
1

1− β

(
ũ

1
β − 1

β
ũ+

1

β
− 1

)
(59)

is convex generating function with ũ = pβ/qβ .
The links between the Bregman and Beta-divergences are important, since the many well known

fundamental properties of the Bregman divergence are also valid for the Beta-divergence [28,82]:

1. Convexity: The Bregman divergence DΦ(P||Q) is always convex in the first argument P, but is
often not in the second argument Q.

2. Nonnegativity: The Bregman divergence is nonnegative DΦ(P||Q) ≥ 0 with zero P = Q.

3. Linearity: Any positive linear combination of Bregman divergences is also a Bregman
divergence, i.e.,

Dc1Φ1+c2Φ2(P||Q) = c1DΦ1(P||Q) + c2DΦ2(P||Q) (60)

where c1, c2 are positive constants and Φ1,Φ2 are strictly convex functions.

4. Invariance: The functional Bregman divergence is invariant under affine transforms
Γ(Q) = Φ(Q) +

∫
a(x − x′)q(x′)dx′ + c for positive measures P and Q to linear and arbitrary

constant terms [28,82], i.e.,

DΓ(P||Q) = DΦ(P||Q) (61)

5. The three-point property generalizes the “Law of Cosines”:

DΦ(P ||Q) = DΦ(P ||Z) +DΦ(Z ||Q)− (P− Z)T (
δ

δQ
Φ(Q)− δ

δZ
Φ(Z)) (62)

6. Generalized Pythagoras Theorem:

DΦ(P ||Q) ≥ DΦ(P ||PΩ(Q)) +DΦ(PΩ(Q) ||Q) (63)

where PΩ(Q) = arg min
ω∈Ω

DΦ(ω||Q) is the Bregman projection onto the convex set Ω and P ∈ Ω.

When Ω is an affine set then it holds with equality. This is proved to be the generalized Pythagorean
relation in terms of information geometry.

For the Beta-divergence (46) the first and second-order Fréchet derivative with respect to Q are given
by [28,76]

δD
(β)
B

δq
= qβ−2(q − p), δ2D

(β)
B

δq2
= qβ−3((β − 1)q − (β − 2)p) (64)

Hence, we conclude that the Beta-divergence has a single global minimum equal to zero for P = Q and
increases with |p− q|. Moreover, the Beta divergence is strictly convex for q(x) > 0 only for β ∈ [1, 2].
For β = 0 (Itakura–Saito distance), it is convex if

∫
q−3(2p− q)dµ(x) ≥ 0 i.e., if q/p ≤ 2 [78].
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3.1. Generation of Family of Beta-divergences Directly from Family of Alpha-Divergences

It should be noted that in the original works [15,67–69] they considered only the Beta-divergence
function for β ≥ 1. Moreover, they did not consider the whole range of non-positive values for parameter
β, especially β = 0, for which we have the important Itakura–Saito distance. Furthermore, similar to
the Alpha-divergences there exist an associated family of Beta-divergences and as special cases a family
of generalized Itakura–Saito like distances. The fundamental question arises: How to generate a whole
family of Beta-divergences or what is the relationships or correspondences between the Alpha- and
Beta-divergences. In fact, on the basis of our considerations above, it is easy to find that the complete set
of Beta-divergences can be obtained from the Alpha-divergences and conversely the Alpha-divergences,
can obtained directly from Beta-divergences.

In order to obtain a Beta-divergence from the corresponding (associated) Alpha-divergence, we need
to apply the following nonlinear transformations:

p→ pβ, q → qβ and α = β−1 (65)

For example, using these transformations (substitutions) for a basic asymmetric Alpha-divergence (4)
and assuming that α = (β)−1, we obtain the following divergence

D
(β)
A (P ||Q) = β2

∫ (
−βp qβ−1 + pβ + (β − 1) qβ

β(β − 1)

)
dµ(x) (66)

Observe that, by ignoring the scaling factor β2, we obtain the basic asymmetric Beta-divergence
defined by Equation (46).

In fact, there exists the same link between the whole family of Alpha-divergences and the family of
Beta-divergences (see Table 2).

For example, we can derive a symmetric Beta-divergence from the symmetric Alpha-divergence
(Type-1) (38):

D
(β)
BS1(P ||Q) = D

(β)
B (P ||Q) +D

(β)
B (Q ||P)

=
1

β − 1

∫ (
(p− q)(pβ−1 − qβ−1)

)
dµ(x)

It is interesting to note that, in special cases, we obtain:
Symmetric KL of J-divergence [65]:

D
(1)
BS1 = lim

β→1
D

(β)
BS1 =

∫
(p− q) log

(
p

q

)
dµ(x) (67)

and symmetric Chi-square divergence [54]

D
(0)
BS1 = lim

β→0
D

(β)
BS1 =

∫
(p− q)2

pq
dµ(x) (68)

Analogously, from the symmetric Alpha-divergence (Type-2), we obtain

D
(β)
BS2(P ||Q) =

1

β − 1

∫ (
pβ + qβ − (pβ−1 + qβ−1)

(
pβ + qβ

2

) 1
β

)
dµ(x) (69)
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Table 2. Family of Alpha-divergences and corresponding Beta-divergences. We applied the
following transformations p → pβ, q → qβ, α = 1/β. Note that D(1)

A (P||Q) = D
(1)
B (P||Q) and

they represents for α = β = 1 extended family of KL divergences. Furthermore, Beta-divergences
for β = 0 describe the family of generalized (extended) Itakura–Saito like distances.

Alpha-divergence D(α)
A (P||Q) Beta-divergence D(β)

B (P||Q)



1

α(α− 1)

∫ (
pα q1−α − αp+ (α− 1) q

)
dµ(x),∫ (

q log

(
q

p

)
+ p− q

)
dµ(x), α = 0∫ (

p log

(
p

q

)
− p+ q

)
dµ(x), α = 1



1

β(β − 1)

∫ (
pβ + (β − 1) qβ − β p qβ−1

)
dµ(x),∫ (

log

(
q

p

)
+
p

q
− 1

)
dµ(x), β = 0∫ (

p log

(
p

q

)
− p+ q

)
dµ(x), β = 1



∫ (
(
p+ q

2
)αq1−α − α

2
p+ (

α

2
− 1) q

)
dµ(x)

α(α− 1)
,∫ (

q log

(
2q

p+ q

)
+
p− q

2

)
dµ(x), α = 0∫ (

p+ q

2
log

(
p+ q

2q

)
− p− q

2

)
dµ(x), α = 1



∫ (
pβ + (2β − 1)qβ − 2βqβ−1

(
pβ + qβ

2

) 1
β

)
dµ(x)

β(β − 1)
,∫ (

log(
q

p
) + 2(

√
p

q
− 1)

)
dµ(x), β = 0∫ (

p+ q

2
log

(
p1 + q

2q

)
− p− q

2

)
dµ(x), β = 1



1

α− 1

∫
(p− q)

[(
p+ q

2q

)α−1

− 1

]
dµ(x),∫

(p− q)2

p+ q
dµ(x), α = 0∫

(p− q) log

(
p+ q

2q

)
dµ(x), α = 1



1

β(β − 1)

∫
(pβ − qβ)

(
1− 2

β−1
β qβ−1

(pβ + qβ)
β−1
β

)
dµ(x),∫ (√

p

q
− 1

)
log

(
p

q

)
dµ(x), β = 0∫

(p− q) log

(
p+ q

2q

)
dµ(x), β = 1


1

α(α− 1)

∫ (
pαq1−α + p1−αqα − p− q

)
dµ(x),∫

(p− q) log

(
p

q

)
dµ(x), α = 0, 1



1

β − 1

∫ (
pβ + qβ − pqβ−1 − pβ−1q

)
dµ(x),∫

(p− q)2

pq
dµ(x), β = 0∫

(p− q) log

(
p

q

)
dµ(x), β = 1



1

1− α

∫ (
p+ q

2
−
(
pα + qα

2

) 1
α

)
dµ(x),∫ (√

p−√q)2

2

)
dµ(x), α = 0

HS

(
P + Q

2

)
− HS(P) +HS(Q)

2
, α = 1



1

β(β − 1)

∫ (
pβ + qβ

2
−
(
p+ q

2

)β)
dµ(x),∫

log

(
p+ q

2
√
pq

)
dµ(x), β = 0

HS

(
P + Q

2

)
− HS(P) +HS(Q)

2
, β = 1



∫ (
(p1−α + q1−α)

(
p+ q

2

)α
− p− q

)
dµ(x)

α(α− 1)
,∫ (

p log

(
2p

p+ q

)
+ q log

(
2q

p+ q

))
dµ(x), α = 0∫

(p+ q) log

(
p+ q

2
√
pq

)
dµ(x), α = 1



1

β − 1

∫ (
pβ + qβ − (pβ−1 + qβ−1)

(
pβ + qβ

2

) 1
β

)
dµ(x),∫ (√

p

q
+

√
q

p
− 2

)
dµ(x), β = 0∫

(p+ q) log

(
p+ q

2
√
pq

)
dµ(x), β = 1
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It should be noted that in special cases, we obtain:
The Arithmetic-Geometric divergence [38,39]:

D
(1)
BS2 = lim

β→1
D

(β)
BS2 =

∫
(p+ q) log

(
p+ q

2
√
pq

)
dµ(x), (70)

and a symmetrized Itakura–Saito distance (called also the COSH distance) [12,13]:

D
(0)
BS2 = lim

β→0
D

(β)
BS2 =

∫ (√
p

q
+

√
q

p
− 2

)
dµ(x) =

∫
(
√
p−√q)2

√
pq

dµ(x) (71)

4. Family of Gamma-Divergences Generated from Beta- and Alpha-Divergences

A basic asymmetric Gamma-divergence has been proposed very recently by Fujisawa and
Eguchi [35] as a very robust similarity measure with respect to outliers:

D
(γ)
G (P ||Q) =

1

γ(γ − 1)
log


(∫

pγ(x)dµ(x)

)(∫
qγ(x)dµ(x)

)γ−1

(∫
p(x) q γ−1(x)dµ(x)

)γ
 (72)

The Gamma-divergence employs the nonlinear transformation (log) for cumulative patterns and the terms
p, q are not separable. The main motivation for employing the Gamma divergence is that it allows “super”
robust estimation of some parameters in presence of outlier. In fact, the authors demonstrated that the
bias caused by outliers can become sufficiently small even in the case of very heavy contamination and
that some contamination can be naturally and automatically neglected [35,37].

In this paper, we show that we can formulate the whole family of Gamma-divergences generated
directly from Alpha- and also Beta-divergences. In order to obtain a robust Gamma-divergence from an
Alpha- or Beta-divergence, we use the following transformations (see also Table 3):

c0

∫
p c1(x) q c2(x) dµ(x)→ log

(∫
p c1(x) q c2(x) dµ(x)

)c0
(73)

where c0, c1 and c2 are real constants and γ = α.
Applying the above transformation to all monomials to the basic Alpha-divergence (4), we obtain a

new divergence referred to as here the Alpha-Gamma-divergence:

D
(γ)
AG(P||Q) = log

(∫
pγ(x)q1−γ(x) dµ(x)

) 1
γ(γ−1)

− log

(∫
p(x)dµ(x)

) 1
γ−1

+ log

(∫
q(x)dµ(x)

) 1
γ

=
1

γ(γ − 1)
log

( ∫
pγ(x)q1−γ(x)dµ(x)(∫

p(x)dµ(x)
)γ (∫

q(x)dµ(x)
)1−γ

)
The asymmetric Alpha-Gamma-divergence has the following important properties:

1. D(γ)
AG(P ||Q) ≥ 0. The equality holds if and only if P = cQ for a positive constant c.

2. It is scale invariant for any value of γ, that is, D(γ)
AG(P ||Q) = D

(γ)
AG(c1P || c2Q), for arbitrary

positive scaling constants c1, c2.
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3. The Alpha-Gamma divergence is equivalent to the normalized Alpha-Rényi divergence (25), i.e.,

D
(γ)
AG(P||Q) =

1

γ(γ − 1)
log


∫
pγ(x) q1−γ(x)dµ(x)(∫

p(x)dµ(x)

)γ (∫
q(x)dµ(x)

)1−γ


=

1

γ(γ − 1)
log

(∫
p̄γ(x) q̄1−γ(x)dµ(x)

)
=

1

γ − 1
log

(∫
q̄(x)

(
p̄(x)

q̄(x)

)γ
dµ(x)

) 1
γ

= D
(γ)
AR(P̄||Q̄)

for α = γ and normalized densities p̄(x) = p(x)/
∫

(p(x)dµ(x) and q̄(x) = q(x)/
∫

(q(x)dµ(x).

4. It can be expressed via generalized weighted mean:

D
(γ)
AG(P||Q) =

1

γ − 1
log

(
Mγ

{
q̄;
p̄

q̄

})
(74)

where the weighted mean is defined as Mγ

{
q̄;
p̄

q̄

}
=

(∫
q̄(x)

(
p̄(x)

q̄(x)

)γ
dµ(x)

) 1
γ

.

5. As γ → 0, the Alpha-Gamma-divergence becomes the Kullback–Leibler divergence:

lim
γ→0

D
(γ)
AG(P ||Q) = DKL(P̄ || Q̄) =

∫
p̄(x) log

p̄(x)

q̄(x)
dµ(x) (75)

6. For γ → 1, the Alpha-Gamma-divergence can be expressed by the reverse Kullback–Leibler
divergence:

lim
γ→1

D
(γ)
AG(P ||Q) = DKL(Q̄ || P̄) =

∫
q̄(x) log

q̄(x)

p̄(x)
dµ(x) (76)

In a similar way, we can generate the whole family of Alpha-Gamma-divergences from the family of
Alpha-divergences, which are summarized in Table 3.

It is interesting to note that using the above transformations (73) with γ = β, we can generate another
family of Gamma divergences, referred to as Beta-Gamma divergences.

In particular, using the nonlinear transformations (73) for the basic asymmetric Beta-divergence
(46), we obtain the Gamma-divergence (72) [35] referred to as here a Beta-Gamma-divergence
(D(γ)

G (P||Q) = D
(γ)
BG(P||Q))

D
(γ)
BG(P ||Q) =

1

γ(γ − 1)

[
log(

∫
pγdµ(x)) + (γ − 1) log(

∫
qγdµ(x))− γ log(

∫
p qγ−1dµ(x))

]

= log


(∫

p q γ−1dµ(x)

) 1
1−γ

(∫
pγdµ(x)

) 1
γ(1−γ)

(∫
qγdµ(x)

)−1
γ


=

1

1− γ
log

(∫
q̃ γ(x)

(
p̃(x)

q̃(x)

)
dµ(x)

)
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where

p̃(x) =
p(x)(∫

pγ(x)dµ(x)
) 1
γ

, q̃(x) =
q(x)(∫

qγ(x)dµ(x)
) 1
γ

(77)

Analogously, for discrete densities we can express the Beta-Gamma-divergence via generalized power
means also known as the power mean or Hölder means as follows

D
(γ)
BG(P ||Q) = − log

(
n∑
i=1

pi q
γ−1
i

) 1
γ−1

(
n∑
i=1

pγi

) 1
γ(γ−1)

(
n∑
i=1

qγi

) 1
γ

(78)

Hence,

D
(γ)
BG(P ||Q) = − log

(
n∑
i=1

pi
qi
q γi

) 1
γ−1

( n∑
i=1

pγi

) 1
γ


1

γ−1 ( n∑
i=1

qγi

) 1
γ

= − log


1

n

n∑
i=1

pi
qi
q γi(

1

n

n∑
i=1

pγi

) 1
γ

( 1

n

n∑
i=1

qγi

) 1
γ

γ−1



1
γ−1

and finally

D
(γ)
BG(P ||Q) =

1

1− γ
log

1

n

n∑
i=1

pi
qi
q γi

Mγ{pi} [Mγ{qi}]γ−1 (79)

where the (generalized) power mean of the order-γ is defined as

Mγ{pi} =

(
1

n

n∑
i=1

pγi

) 1
γ

(80)

In the special cases, we obtain standard harmonic mean (γ = −1), geometric mean (γ = 0), arithmetic
mean(γ = 1), and squared root mean γ = 2 with the following relations:

M−∞{pi} ≤M−1({pi}) ≤M0{pi} ≤M1{pi} ≤M2{pi} ≤M∞{pi}, (81)

with M0{pi} = limγ→0Mγ{pi} = (
∏n

i=1 pi)
1/n, M−∞{pi} = mini{pi} and M∞{pi} = maxi{pi}.
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Table 3. Family of Alpha-divergences and corresponding robust Alpha-Gamma-divergences;
p̄(x) = p(x)/(

∫
p(x)dµ(x)), q̄(x) = q(x)/(

∫
q(x)dµ(x)). For γ = 0, 1, we obtained a

generalized robust KL divergences. Note that Gamma divergences are expressed compactly via
generalized power means. (see also Table 4 for more direct representations).

Alpha-divergence D(α)
A (P||Q) Robust Alpha-Gamma-divergence D(γ)

AG(cP||cQ)



1

α(α− 1)

∫ (
pαq1−α − αp+ (α− 1)q

)
dµ(x),∫ (

q log

(
q

p

)
+ p− q

)
dµ(x), α = 0∫ (

p log

(
p

q

)
− p+ q

)
dµ(x), α = 1



1

γ − 1
log

(∫
q̄

(
p̄

q̄

)γ
dµ(x)

) 1
γ

,∫
q̄ log

(
q̄

p̄

)
dµ(x), γ = 0∫

p̄ log

(
p̄

q̄

)
dµ(x), γ = 1



1

α(α− 1)

∫ (
p1−αqα + (α− 1)p− αq

)
dµ(x),∫ (

p log

(
p

q

)
− p+ q

)
dµ(x), α = 0∫ (

q log

(
q

p

)
+ p− q

)
dµ(x), α = 1



1

γ − 1
log

(∫
p̄

(
q̄

p̄

)γ
dµ(x)

) 1
γ

,∫
p̄ log

(
p̄

q̄

)
dµ(x), γ = 0∫

q̄ log

(
q̄

p̄

)
dµ(x), γ = 1



∫ ((
p+ q

2

)α
q1−α − α

2
p− (1− α

2
) q

)
dµ(x)

α(α− 1)
,∫ (

q log

(
2q

p+ q

)
+
p− q

2

)
dµ(x), α = 0∫ (

p+ q

2
log

(
p+ q

2q

)
− p− q

2

)
dµ(x), α = 1



1

γ − 1
log

[(∫
qdµ(x)∫
pdµ(x)

) 1
2
(∫

q̄

(
p+ q

2q

)γ
dµ(x)

) 1
γ

]
∫ (

(q̄ log

(
2q

p+ q

))
dµ(x), γ = 0∫ (

p̄+ q̄

2
log

(
p+ q

2q

))
dµ(x), γ = 1


1

α− 1

∫ [(
p+ q

2q

)α−1

− 1

]
(p− q)dµ(x),∫

(p− q) log

(
p+ q

2q

)
dµ(x), α = 1


log


∫

(p̄

(
p+ q

2q

)γ−1

)dµ(x)∫
(q̄

(
p+ q

2q

)γ−1

)dµ(x)


1

γ−1

∫
(p̄− q̄) log

(
p+ q

2q

)
dµ(x), γ = 1


1

α(α− 1)

∫ (
pαq1−α + p1−αqα − p− q

)
dµ(x),∫

(p− q) log

(
p

q

)
dµ(x), α = 0, 1


1

γ − 1
log

[∫
q̄

(
p

q

)γ
dµ(x)

∫
p̄

(
q

p

)γ
dµ(x)

] 1
γ

∫
(p̄− q̄) log

(
p

q

)
dµ(x), γ = 0, 1



∫ (
(p1−α + q1−α)

(
p+ q

2

)α
− p− q

)
dµ(x)

α(α− 1)
,∫ (

p log

(
2p

p+ q

)
+ q log

(
2q

p+ q

))
dµ(x), α = 0∫

(p+ q) log

(
p+ q

2
√
pq

)
dµ(x), α = 1



1
γ−1 log

[∫
p̄

(
p+ q

2p

)γ
dµ(x)

∫
q̄

(
p+ q

2q

)γ
dµ(x)

] 1
γ

∫ (
p̄ log

(
2p

p+ q

)
+ q̄ log

(
2q

p+ q

))
dµ(x), γ = 0∫

(p̄+ q̄) log

(
p+ q

2
√
pq

)
dµ(x), γ = 1.
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Table 4. Basic Alpha- and Beta-divergences and directly generated corresponding
Gamma-divergences (see also Table 3 how the Gamma-divergences can be expressed by power
means).

Divergence D(α)
A (P||Q) or D(β)

B (P||Q) Gamma-divergence D(γ)
AG(cP||cQ) and D(γ)

BG(cP||cQ)

1

α(1− α)

∫ (
αp+ (1− α) q − pα q1−α) dµ(x) − log

(∫
pγ q1−γdµ(x)

) 1/(γ(1−γ))

(∫
pdµ(x)

)1/(1−γ) (∫
qdµ(x)

)1/γ

1

β(β − 1)

∫ (
pβ + (β − 1) qβ − β p qβ−1

)
dµ(x) − log

(∫
p qγ−1dµ(x)

) 1/(γ−1)

(∫
pγdµ(x)

)1/(γ(γ−1)) (∫
qγdµ(x)

)1/γ

1

α(1− α)

∫ (
p+ q − pα q1−α − p1−α qα

)
dµ(x)

−1

γ(1− γ)
log

(∫
pγ q1−γdµ(x)

) (∫
p1−γ qγdµ(x)

)
∫
pdµ(x)

∫
qdµ(x)

1

β − 1

∫ (
pβ + qβ − p qβ−1 − pβ−1 q

)
dµ(x)

−1

γ − 1
log

(∫
p qγ−1dµ(x)

)(∫
pγ−1 qdµ(x)

)
(∫

pγdµ(x)

)(∫
qγdµ(x)

)

∫ (
α

2
p+ (1− α

2
) q −

(
p+ q

2

)α
qα−1

)
dµ(x)

α(1− α)

−1

γ(1− γ)
log

∫ (
p+ q

2

)γ−1

qγ−1dµ(x)(∫
pdµ(x)

)γ/2 (∫
qdµ(x)

)1−γ/2

1

1− α

∫
(p− q)

(
1− p+ q

2q

)α−1

dµ(x)
1

1− γ
log

∫
pdµ(x)

∫
q

(
p+ q

2q

)γ−1

dµ(x)∫
qdµ(x)

∫
p

(
p+ q

2q

)γ−1

dµ(x)

∫ (
p+ q − (p1−α + q1−α)

(
p+ q

2

)α)
dµ(x)

α(1− α)
log


∫
p1−γ

(
p+ q

2

) γ

dµ(x)

∫
q1−γ

(
p+ q

2

) γ

dµ(x)∫
pdµ(x)

∫
qdµ(x)


1

γ(γ−1)
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The asymmetric Beta-Gamma-divergence has the following properties [30,35]:

1. D(γ)
BG(P ||Q) ≥ 0. The equality holds if and only if P = cQ for a positive constant c.

2. It is scale invariant, that is, D(γ)
BG(P ||Q) = D

(γ)
BG(c1P || c2Q), for arbitrary positive scaling

constants c1, c2.

3. As γ → 1, the Gamma-divergence becomes the Kullback–Leibler divergence:

lim
γ→1

D
(γ)
BG(P ||Q) = DKL(P̄ || Q̄) =

∫
p̄ log

p̄

q̄
dµ(x) (82)

where p̄ = p/
∫
pdµ(x) and q̄ = q/

∫
qdµ(x).

4. For γ → 0, the Gamma-divergence can be expressed as follows

lim
γ→0

D
(γ)
BG(P ||Q) =

∫
log

q(x)

p(x)
dµ(x) + log

(∫
p(x)

q(x)
dµ(x)

)
(83)

For the discrete Gamma divergence we have the corresponding formula

D
(0)
BG(P ||Q) =

1

n

n∑
i=1

(
log

qi
pi

)
+ log

(
n∑
i=1

pi
qi

)
− log(n) = log

1

n

n∑
i=1

pi
qi(

n∏
i=1

pi
qi

)1/n
(84)

Similarly to the Alpha and Beta-divergences, we can also define the symmetric
Beta-Gamma-divergence as

D
(γ)
BGS(P ||Q) = D

(γ)
BG(P ||Q)+D

(γ)
BG(Q ||P) =

1

1− γ
log


(∫

pγ−1 q dµ(x)

)(∫
p qγ−1 dµ(x)

)
(∫

pγdµ(x)

)(∫
qγdµ(x)

)


The symmetric Gamma-divergence has similar properties to the asymmetric Gamma-divergence:

1. D(γ)
BGS(P ||Q) ≥ 0. The equality holds if and only if P = cQ for a positive constant c, in

particular, p = q, ∀i.

2. It is scale invariant, that is,

D
(γ)
BGS(P ||Q) = D

(γ)
BGS(c1P || c2Q) (85)

for arbitrary positive scaling constants c1, c2.

3. For γ → 1, it is reduced to a special form of the symmetric Kullback–Leibler divergence (also
called the J-divergence)

lim
γ→1

D
(γ)
BGS(P ||Q) =

∫
(p̄− q̄) log

p̄

q̄
dµ(x) (86)

where p̄ = p/
∫
pdµ(x) and q̄ = q/

∫
qdµ(x).
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4. For γ = 0, we obtain a simple divergence expressed by weighted arithmetic means

D
(0)
BGS(P ||Q) = log

(∫
w
p(x)

q(x)
dµ(x)

∫
w
q(x)

p(x)
dµ(x)

)
(87)

where weight function w > 0 is such that
∫
wdµ(x) = 1.

For the discrete Beta-Gamma divergence (or simply the Gamma divergence), we obtain divergence

D
(0)
BGS(P ||Q) = log

(
n∑
i=1

pi
qi

n∑
i=1

qi
pi

)
− log(n)2

= log

((
1

n

n∑
i=1

pi
qi

)(
1

n

n∑
i=1

qi
pi

))

= log

(
M1

{
pi
qi

}
M1

{
qi
pi

})
It is interesting to note that for n → ∞ the discrete symmetric Gamma-divergence can be
expressed by expectation functions D(1)

BGS(P ||Q) = log(E{u} E{u−1}), where ui = {pi/qi}
and u−1

i = {qi/pi}.

5. For γ = 2, the asymmetric Gamma-divergences (equal to a symmetric Gamma-divergence) is
reduced to Cauchy–Schwarz divergence, introduced by Principe [83]

D
(2)
BG(P ||Q) =D

(2)
BG(Q ||P) =

1

2
D

(2)
BGS(P ||Q) =

1

2
DCS(P ||Q)

=− log

∫
p(x) q(x) dµ(x)(∫

p2(x)dµ(x)

)1/2(∫
q2(x)dµ(x)

)1/2

It should be noted that the basic asymmetric Beta-Gamma divergence (derived from the
Beta-divergence) is exactly equivalent to the Gamma divergence defined in [35], while Alpha-Gamma
divergences (derived from the family of Alpha-divergences) have different expressions but they are
similar in terms of properties.

5. Relationships for Asymmetric Divergences and their Unified Representation

The fundamental relationships and analogies for the generalized divergences discussed in this paper
are summarized in Table 5.

The basic difference among Alpha- Beta and Gamma divergences is their scaling properties

D
(α)
A (cP || cQ) = cD

(α)
A (P ||Q) (88)

D
(β)
B (cP || cQ) = c βD

(β)
B (P ||Q) (89)
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Table 5. Fundamental asymmetric divergences and their relationships. We can obtain the
Beta-divergence from the Alpha-divergence via transformations p→ pβ, q → qβ and α = β−1

and the Alpha-divergence from the Beta-divergence via dual transformations: p → pα, q →
qα and β = α−1. Furthermore, we can generate the Gamma-divergences from the Alpha- and
Beta- divergences via transformations c0

∫
p c1(x) q c2(x) dµ(x) → c0 log

∫
p c1(x) q c2(x) dµ(x).

Moreover, we can generate Beta-Gamma divergences from the Alpha-Gamma divergence via
transformations: p→ pγnew , q → qγnew and γ = γ−1

new.

Divergence name Formula

Alpha D
(α)
A (P||Q) =

∫
(pα q1−α − α p+ (α− 1) q)dµ(x)

α(α− 1)

Beta D
(β)
B (P||Q) =

∫
(pβ + (β − 1) qβ − β p qβ−1)dµ(x)

β(β − 1)

Gamma D
(γ)
AG(P||Q) =

log (
∫
pγ q1−γdµ(x))− γ log (

∫
pdµ(x)) + (γ − 1) log (

∫
qdµ(x))

γ(γ − 1)

=
1

γ − 1
log

(∫
q̄

(
p̄

q̄

)γ
dµ(x)

) 1
γ

D
(γ)
BG(P||Q) =

log (
∫
pγdµ(x)) + (γ − 1) log (

∫
qγdµ(x))− γ log (

∫
p qγ−1dµ(x))

γ(γ − 1)

=
1

1− γ
log

(∫
q̃ γ
(
p̃

q̃

)
dµ(x)

)
))

Alpha-Rényi D
(α)
AR(P||Q) =

log(
∫

(pαq 1−α − αp+ (α− 1) q)dµ(x) + 1)

α(α− 1)

Bregman DΦ(P||Q) =

∫ (
Φ(p)− Φ(q)− δΦ

δq
(p− q)

)
dµ(x), (see Eqation(57))

Csiszár-Morimoto Df (P||Q) =

∫
qf

(
p

q

)
dµ(x), (see Equation (57)) for f(u) = Φ(t)|t=u)
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D
(γ)
G (cP || cQ) = D

(γ)
G (P ||Q) (90)

for any c > 0.
Note that the values of all Alpha-divergences are proportional to a scaling factor and this scaling is

independent of the parameter α, while for all Beta-divergences this scaling factor is dependent on the
value of the parameter β exponentially. Only in a special case for β = 0 (Itakura–Saito distance), the
Beta-divergences are invariant to a scaling factor, while the Gamma-divergences is invariant to a scaling
factor for any value of the parameter γ.

On the basis of our analysis and discussion in the previous sections, we come to conclusion that the
wide class of asymmetric divergences can be described by the following generalized function:

D
(α,β,r)
AC (P||Q) =

1

α(β − 1)λ r

[(
D̃

(α,β)
AC + 1

)r
− 1
]

(91)

where r > 0 and

D̃
(α,β)
AC (P‖Q) =

∫ (
αpλ + (β − 1)qλ − λpαqβ−1

)
dµ(x) (92)

with α 6= 0, β 6= 1 and λ = α + β − 1 6= 0.
Note that such defined function has similar structure to generalized logarithm (3). Moreover, it

should be noted that the above function is a divergence only for such set of parameters for which
D̃

(α,β)
AC (P‖Q) ≥ 0 and equals zero if and only if P = Q.
In the special cases, we obtain the following divergences:

• For r = λ = 1 and α + β = 2, we obtain the Alpha-divergence (4)

• For r = 1 and α = 1 (β = λ), we obtain the Beta-divergence (46)

• For r → 0 and α + β = 2 (λ = 1), we obtain the Alpha-Rényi divergence (25), which for
normalized probabilities densities: p̄ = p/(

∫
pdµ(x)) and q̄ = q/(

∫
qdµ(x)) reduces to the

Alpha-Gamma divergence.

• And finally, for r → 0 and α = 1 (β = λ = γ) and the normalized densities:
p̃ = p/(

∫
pγdµ(x))1/γ and q̃ = q/(

∫
q γdµ(x))1/γ , we obtain the Gamma divergence

(referred in this paper as the Beta-Gamma divergence) (72), proposed recently by Fujisawa and
Eguchi [35].

The function (91) has many interesting general properties. However, this is out of the scope of
this paper.

Duality
Note that we can easily establish the following dualities for the Alpha and Alpha-Gamma divergences:

D
(α)
A (P ||Q) = c−1D

(1−α)
A (cQ || cP), D

(γ)
AG(P ||Q) = D

(1−γ)
AG (c1Q || c2P) (93)
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However, in order to establish duality for the Beta-divergence, we need represent it in slightly more
general form as two set parameters divergence:

D
(β1,β2)
AB (P ||Q) =

1

β1 β2(β1 + β2)

∫ (
β1 p

β1+β2 + β2 q
β1+β2 − (β1 + β2)pβ1qβ2

)
dµ(x) (94)

In this case, we can express a duality of the Beta-divergence as

D
(β)
B (P ||Q) = D

(1,β−1)
AB (P ||Q) = c−βD

(β−1,1)
AB (cQ || cP) (95)

or more generally

D
(β1,β2)
AB (P ||Q) = c−(β1+β2)D

(β2,β1)
AB (cQ || cP) (96)

Analogously, we define family of the asymmetric Gamma divergences in more general form as a two-set
parameter divergence:

D
(γ1,γ2)
ABG (P‖Q) = log

(∫
pγ1+γ2dµ(x)

) 1
γ2(γ1+γ2)

(∫
qγ1+γ2dµ(x)

) 1
γ1(γ1+γ2)

(∫
pγ1qγ2dµ(x)

) 1
γ1γ2

(97)

Hence, we express duality property for the Beta-Gamma (basic Gamma) -divergence as follows

D
(γ)
BG(P ||Q) = D

(1,γ−1)
ABG (P ||Q) = D

(γ−1,1)
ABG (c1 Q || c2 P) (98)

or more generally

D
(γ1,γ2)
ABG (P ||Q) = D

(γ2,γ1)
ABG (c1Q || c2P) (99)

5.1. Conclusions and Discussion

The main goal of this paper was to establish and widen bridges between several classes of
divergences. The main results are summarized in Tables 2–5. We have extended and unified several
important classes of divergence and provided links and correspondences among them. The parametric
families of the generalized divergences presented in this paper, especially the Alpha-, Alpha-Rényi
and Beta-divergences, enable us to consider smooth connections of various pairs of well-known
and frequently used fundamental divergences under one “umbrella”. For example, the family of
Beta-divergences smoothly connects the squared Euclidean distance (L2-norm) with a generalized
extended version of Itakura–Saito like distances and through the the generalized KL I-divergences.
In fact, we have shown how to generate the whole family of the extended robust Itakura–Saito like
distances from Beta-divergences for β = 0, which are scale invariant and can be used in many potential
applications, especially in speech processing.

Furthermore, we have shown that two different families of Gamma-divergences can be generated
one from Beta-divergences and the other one from Alpha-divergences. The Gamma-divergences
characterized by the global scale invariance (independent of value of parameter γ) and high robustness.
We have reviewed and extended fundamental properties of the Gamma-divergences. Moreover, our
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approach allows us to generate a wide class of new divergences, especially Gamma-divergences and
family of extended Itakura–Saito like distances. Special emphasis is given to divergences for singular
values of tuning parameters 0, 1.

These families have many desirable properties such as flexibility, robustness to outliers and they
involve only one single tuning parameter (α, β, or γ). An insight using information geometry may
further elucidates the fundamental structures of such divergences and geometry [1,3,7].

In comparison to previous closely related works, we explicitly investigated three wide class of
divergences (Alpha, Beta- Gama), discussed their properties and links to Csiszár–Morimoto and
Bregman divergences. Some provided properties, especially for Gamma-divergences are new.

The properties of divergences discussed in this paper allowed us to develop a wide family of robust
algorithms for Independent Component Analysis (ICA) and Nonnegative Matrix Factorization (NMF)
presented in separated recent works [30–34,68–71]. They have great potential in many applications,
especially in blind separation of statistically dependent sparse and/or smooth sources and in feature
extractions and classification problems [30].

One of the important and still open problem (not discussed in this paper) is how to set tuning
parameters α, β and γ depending on distributions of available data sets and noise or outliers. Some
recent works address this problem [69,71,84]. Usually, there is some trade off between robustness and
efficiency [35,37,71]. For example, if the tuning parameter γ is large, then the robustness of the Gamma
divergence will be strong but the efficiency could be lower, and vice versa, if the tuning parameter has
small positive value, then the robustness of the method would be not strong but the efficiency will be
higher [35]. The relation between the efficiency and the tuning parameters was discussed by several
authors (see Jones et al. [85], Basu et al. [67], and Fujisawa and Eguchi [35]).
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Appendix A. Divergences Derived from Tsallis α-entropy

In this appendix, we presents links between the Tsallis and the Rényi entropies and
Alpha- Beta-divergences and Gamma-divergences. For simplicity of our considerations, we assume
first that

∫
p̄(x)dµ(x) = 1 and

∫
q̄(x)dµ(x) = 1, but these constraints can be relaxed.

The Tsallis entropy is defined by using the power function hα(p̄) =
∫
p̄αdµ(x),

H
(α)
T (p̄) =

1

1− α
{hα(p̄)− 1} (100)

The Rényi entropy is also written as

H
(α)
R (p̄) =

1

1− α
log {hα(p̄)} =

1

1− α
log

(∫
p̄α(x) dµ(x)

)
(101)

It is shown that the Tsallis entropy is related (corresponds) to the Alpha- and Beta-divergences, while
the Rényi entropy is related to the Gamma-divergences.

The Rényi and Tsallis entropy measures are two different generalization of the standard
Boltzman-Gibbs entropy (or Shannon’s information). In the limit as α → 1 we have
pα−1 = exp((α− 1) log p) ≈ 1 + (α− 1) log p, hence they reduce to the Shannon entropy:

HS(p̄) = −
∫
p̄(x) log(p̄(x)) dµ(x) (102)

The Tsallis entropy can also be considered as an α-deformation of the Shannon’s entropy by noting that

H
(α)
T (p̄) = −

∫
p̄α(x) logα (p̄(x)) dµ(x) =

1

1− α

(∫
p̄α(x)dµ(x)− 1

)
(103)

and by using the generalized logarithm function defined by

logα x =
1

1− α
(
x1−α − 1

)
(104)

The Tsallis relative entropy or the Tsallis divergence is defined similarly by

D
(α)
T (p̄‖q̄) = −

∫
p̄ logα

(
q̄

p̄

)
dµ(x) =

1

1− α

(
1−

∫
p̄αq̄1−αdµ(x)

)
(105)

This is a rescaled version of the Alpha-divergence,

D
(α)
T (p̄‖q̄) = αD

(α)
A (p̄‖q̄) (106)

It should be noted that the Alpha-divergence is more general since it is defined for any positive arrays P

and Q and also for any values of α including singular values of α = 0 and α = 1.
Since the Tsallis Alpha-divergence is an f -divergence, it is possible to extend it to the applicable

general cases. This is given in Appendix B, where logα(x) is replaced by another power function.
Another way of deriving a divergence is to use the convex generating functions. This has been deeply

investigated by Zhang [22].
Since

Φα(p̄) = −hα(p̄) (107)
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is a convex function, we derive a Bregman divergence associated with the Tsallis entropy,

D̃
(α)
T (p̄ ‖ q̄) =

∫ {
−p̄α + q̄α + αp̄α−1 (p̄− q̄)

}
dµ(x) (108)

This is a rescaled and simplified version of the Beta-divergence with α = β,

D̃
(α)
T (p̄ ‖ q̄) = α(1− α)D

(β)
B (p̄‖q̄) (109)

Again, note that the Beta-divergence is more general than the Tsallis divergence, since it is defined
for any positive arrays and any β including singular values of β = 0 and β = 1. We need to extend the
definition of hα(p) to obtain the whole range of the Beta-divergences.

Appendix B. Entropies and Divergences

An entropy H(p̄) is maximized at the uniform distribution. Therefore, when a divergence function is
given, we can define an entropy H(p̄) by

H(p̄) = D(p̄ ||1) + c (110)

for some constant c and normalized probability measure p̄.
In many cases, Ψ(p̄) = −D(p̄ ||1) is a convex function of p̄. For example, from the KL-divergence,

we have

HKL(p̄) = −
∫
p̄(x) log p̄(x)dµ(x) (111)

which is the Shannon entropy (neglecting a constant).
We define a power function of probabilities by

hα(p̄) =

∫
p̄α(x)dµ(x) (112)

where 0 < α < 1.
From the Alpha-divergence D(α)

A and Beta-divergence D(β)
B we have the entropies

H(p̄) = c hα(p̄) + d (113)

where c and d are constants and α = β.
Similarly, from the Gamma-divergence D(γ)

G , we have

H(p̄) = c log(hα(p̄)) + d (114)

with α = γ.
This implies that various divergence functions can generate a similar family of entropy functions. On

the other hand, there are a number of ways to generate divergences from entropy functions. A typical
way is to use the Bregman divergence derived from a convex generating function Φ(p̄) = −H(p̄),

DΦ(p̄ || q̄) =

∫ (
Φ(p̄)− Φ(q̄)− δΦ(q̄)

δq̄
(p̄− q̄)

)
dµ(x) (115)
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Appendix C. Tsallis and Rényi Entropies

It is worth mentioning that the Rényi and Tsallis α-entropies are monotonically related through

H
(α)
R (p̄) =

1

1− α
log
(

1 + (1− α)H
(α)
T (p̄)

)
(116)

or using the α-logarithm

H
(α)
T (p̄) = logα e

H
(α)
R (p̄) (117)

Ψ
(α)
R = −H(α)

R is convex function of p̄, and hence we have a corresponding divergence.
The Bregman divergence can be defined in a more general form as shown below.
If Φ(p̄) : Rn → R is a strictly convex and C1 (i.e., first-order differentiable) function, the

corresponding Bregman distance (divergence) for discrete positive measures is defined by

DΦ(p̄ || q̄) = Φ(p̄)− Φ(q̄)− (p̄− q̄)T∇Φ(q̄) (118)

where∇Φ(q̄) represents the gradient of Φ evaluated at q̄.
The Bregman divergence derived from the Rényi entropy for discrete probability densities is given by

D
(α)
R (p̄ || q̄) =

1

1− α
log

hα(q̄)

hα(p)
− α

1− α
1

hα(q̄)
(1−

∑
i

p̄i q̄
α−1
i ) (119)

The Tsallis entropy is closely related to the α-exponential family of probability distributions. A
family S = {p̄(x,θ)}, parameterized by a vector parameter θ, of probability distributions is called a
α-exponential family, when it is written as

logα p̄(x,θ) =
∑
i

θixi −Ψ(θ) (120)

where Ψ(θ) is a convex function. This is the same as the α-family defined in [6]. The set S = {p} of
discrete probability distributions is a α-exponential family for any α. To show this, we introduce random
variables x = (x),

xi = δi (121)

which is 1 when the outcome is i of which probability is p̄.
Then, the probability is written as

logα p̄(x,θ) =
∑
i

θiδi −Ψ(θ) (122)

where

θi = logα p̄i (123)

Since
∑
p̄i = 1 holds, or∑
δi = 1 (124)
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and hence free variables of θ are n − 1, say (θ1, · · · , θn−1). In this case θn is a function of the other
variables, and we get

Ψ(θ) = − logα θn (125)

We can derive a divergence from this convex function Ψ(θ). However, it is more intuitive to use the
dual of Ψ(θ), which is given by

ϕ(η) =
1

1− α

(
1

hα(p̄)
− 1

)
(126)

where η is the dual variable of θ by the Legendre transformation

η = ∇θΨ(θ) (127)

The derived divergence is

D(α)
exp(p̄ ‖ q̄) =

1

hα(p̄)
D

(α)
T (p̄ ‖ q̄) (128)

This is a conformal transformation of the Alpha-divergence [7]. A conformal transformation, also called
a conformal map or angle-preserving transformation is a transformation that preserves local angles of
intersection of any two lines or curves.
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