Improving the
Fundamental Theorem

of Algebra

JOSEPH SHIPMAN

# he “algebraic part” of the Fundamental Theorem of
Algebra says that under certain purely algebraic hy-

& potheses, a field of characteristic 0 must be alge-
braically closed. In this article I will give a best possible ver-
sion and extend the theorem to characteristic p. I will also
give an algorithm for determining all finitary implications
between “degree axioms” of the form “every polynomial of
degree n has a root.”

The Fundamental Theorem

The “Fundamental Theorem of Algebra” is the usual name
for the theorem that the field of complex numbers is alge-
braically closed. However, all proofs of this fact involve, in
addition to algebra, a certain amount of analysis, topology,
or complex function theory. The less algebra there is in the
proof, the more of other kinds of mathematics there must
be. The more algebra there is in the proof, the more gen-
erally applicable it is and the easier the non-algebraic part
of the proof is.

The book [FR] is an excellent summary of the known
proofs of this theorem, which provides an illuminating in-
troduction to many branches of modern mathematics. Hun-
dreds of articles on the Fundamental Theorem of Algebra
have been published, almost all of which involve new
proofs or variations on old proofs.

Despite all this attention, I have something entirely new
to demonstrate. I am going to improve, not simply a proof
of the theorem, but the theorem itself assuming less, and
concluding more.

Most of the proofs in existence apply only to the com-
plex number field, and contain very little actual algebra; some
writers have therefore suggested that the theorem is mis-

named. However, Gauss’s 1815 “second proof” of the theo-
rem [G], which was the first entirely rigorous proof, justifies
the name. In this proof, Gauss showed by purely algebraic
reasoning that every real polynomial resolves into factors of
the first and second degree. A modernized and simplified
version of Gauss’s proof (due to E. Artin) is given by van
der Waerden [vdW], who states the theorem as follows:

If in an ordered field K every positive element possesses a
square root and every polynomial of odd degree at least one
root, then the field K(1) obtained by adjoining i is alge-
braically closed.

That the real field satisfies these conditions is a very easy
piece of analysis; the algebra required is much harder, but
as a reward the theorem is applicable to all “real closed”
fields, not just the real and complex numbers.

An examination of the proof in [vdW] shows that it does
not need K to be ordered, only that every element of K
have a square root in K(7) (which is an easy consequence
of K’s being ordered and having square roots for positive
elements). The proof also implicitly uses that K has char-
acteristic 0 (which follows from the original restriction to
ordered fields), by applying the Primitive Element Theo-
rem. We may therefore restate the theorem more generally:

If a field K bhas characteristic O, if all odd-degree poly-
nomials in K(x] bave roots in K, and if all elements of K

bave square roots in K(i), then K(i) is algebraically closed.

In this form, the theorem applies to fields which are not
necessarily ordered, and we have the simple corollary:
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If K bas characteristic 0, and if all polynomials whose
degree is 2 or an odd number bave roots, then K is alge-
braically closed.

But we have not gone far enough towards finding the
“algebraic essence” of the Fundamental Theorem of Alge-
bra. The hypotheses actually needed for a field to be al-
gebraically closed are much weaker; I shall optimize them.

“Degree Axioms”
Gauss proves the theorem by induction on the number of
factors of 2 in the degree of the polynomial. Given a real
polynomial f(x) of even degree d, Gauss constructs another
real polynomial of degree () = d(d — 1)/2, which has one
fewer power of 2, such that the new polynomial has a root
in the complex numbers only if fdoes. Through repetition
of the process, a polynomial of odd degree is eventually
obtained, from a root of which we may obtain a root for f
by solving a sequence of quadratic equations. From the ex-
istence of complex roots to real polynomials, we may ob-
tain roots for any complex polynomial g(x) via the real poly-
nomial g(x)g'(x), where g’ is the “complex conjugate” of g.

The only properties of the real numbers that Gauss used
were the existence of roots for equations of odd degree,
and the existence of square roots for non-negative num-
bers. This “algebraic” proof is more useful than the proofs
involving analysis or topology, because it applies to many
more fields. Artin and Schreier’s theory of “real closed fields”
is built on this foundation. A field K is said to be “formally
real” if —1 is not a sum of squares. Such K can be ordered,
and have characteristic 0. K is “real closed” if every odd-
degree polynomial has a root in K and every positive ele-
ment has a square root. (The definition still applies to fields
with no defined order relation, if —1 is not a sum of squares
and every element is a square or the negative of a square.)

These assumptions are all expressible in the first-order
language of fields. It follows from the work of Tarski [T}
that all real closed fields satisfy the same first-order sen-
tences, and the following axiomatization characterizes real
closed fields:

Group 1) AOF: The conjunction of the standard axioms
for ordered fields.

Group ii) Axiom about existence of square roots:

SR: Vo Fogy (e + 2 = ) or (g * x1) + a5 = 0)).

Group iii) Degree Axioms (one for each odd integer):

(1l Vo Axy (g + ) = 0)

[3): Vg Voo Voo, Fogs (g + (o = (o + (o =
(g + x3)))) =0

[5): V.Xb V.X] V.X'z V.X'S V.X'4 BXS ((.X'O + (.X's * (.X'] + (.X'S *
(0 + (x5 = (s + (55 + (xg + 2000000 = O
Etc.

Each “degree axiom” asserts the existence of roots for
all polynomials of a given degree. Note that the first de-
gree axiom [1] merely restates the existence of additive in-
verses and is true in all fields. Note also that the degree
axiom [#] implies {d] for any d dividing »n, because we can
construct a rootless polynomial of degree n by taking a
power of a rootless polynomial of degree d.

Since —1 is not a square in an ordered field, the poly-
nomial (x? + 1) has no roots. If there were a polynomial
of odd degree d > 1 with no roots, then we could multi-
ply it by powers of (x? + 1) to construct rootless polyno-
mials of degrees d + 2, d + 4, etc. Therefore, ANY infinite
subset of Group iii) suffices to axiomatize real closed fields
(together with the axioms AOF and SR).

This is as far as we can weaken the assumptions for an
ordered field to be real closed. But the situation is much
more interesting when we start with a field which is not
necessarily “real.”

In the preceding section, we saw that Gauss’s proof, as
adapted by Artin and van der Waerden, has the corollary

If K bas characteristic 0, and if all polynomials whose
degree is 2 or an odd number bave roots, then K is alge-
braically closed.

This leads to a complete axiomatization for algebraically
closed fields of characteristic 0 (all of which satisfy the same
sentences as the complex numbers):

Group 1) AF: The conjunction of the standard axioms for
fields.

Group ii) Axioms for characteristic 0 (one for each prime):

CO: ~(1+1=0)

CO;: ~1+1+1=0)

Cos: ~(1+1+1+1+1=0)

COy: ~(1+1+1+1+1+1+1=0

COyp: ~A+1+1+14+14+14+1+1+14+1+1=0)
Etc.
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Group iii) Degree Axioms ([2] and one for each odd integer)

[2]: Vo Vo Foe (g + (o = (6 + 20))) = 0)

[3]: Vou Vo Voo Jxs (g + oz + (o + (g =
(o + x),))))) =0)

[5]: Vaxy Vaxp Voo Yooy Vo Fos (g + (s« (o + (x5 #
(e + (x5« (G + (x5« (g + xsDDNN) =0

[7): Vo, Vo, Vi Vi Voo Vs Vg Foe (G + (o = (o +
(.X7 * (.Xz + (x— * (X5 + (X7 * (.XL, + (.X‘7 * (-XS + (.X'7 * (XG +
DDNNNN) = 0)

[9]: Vg Vo, Voo, Voo Vo Vs Vg, Vi Vo o (g +
(= (0 + (g » (o + (= (a5 + (i » (g + (o + (05 +
(Ko *+ (X + (o * (x5 + (g * (xg + 2)DDINONN) = 0)

Etc.

The key observation for improving the Fundamental The-
orem of Algebra is that each degree axiom [d], when d is
an even number >2, is a consequence of finitely many of
the degree axioms {{d] i = 2 or an odd integer}, together
with AF and the axioms for characteristic 0. This follows
(nonconstructively) from the Compactness Theorem for
first-order logic, but Gauss’s proof provides an explicit re-
duction: [d] follows from [2] and ()] = [d(d — 1)/2].

Thus, we can prove (6] from (2] and {15]. To prove (8]
we can use (2] and [28], and to get [28] we use [2] and [378],
and to get [378] we use [2] and [71253].

We will find a necessary and sufficient condition for
a set of degree axioms to imply another degree axiom.
This will allow us to find an optimal axiomatization of
algebraically closed fields, where each axiom is inde-
pendent of the others. As a bonus, it will turn out that
the strengthened theorem is true in fields of all charac-
teristics.

Degree Axioms and Galois Groups

Fix a field K. For now, require K to be of characteristic 0.
For every polynomial f(x) in K[xI, there is an associated
splitting field L and an associated finite Galois group G.
Suppose f has degree d and roots n, 7, . . ., 7y (multiple
roots appearing the appropriate number of times with dif-
ferent labels). G acts on the set {r, r, . . ., 7y}, and this
action has a fixed-point iff fhas a root in K. If the degree
axiom [d] is true, then subgroups of S,; which act without
fixed-points on the roots are ruled out as possible Galois
groups for polynomials of degree d.

On the other hand, if [d] is false, then there is a poly-
nomial f(x) of degree d, with irreducible factors fi, £, . . .,
of degrees dy, d>, . . ., with each d;,>1 and d, + d, +

- = d. Since degrees of irreducible polynomials corre-
spond to degrees of field extensions, there is a sequence
of extension fields Ki, K5, . . . which correspond to sub-
groups Gy, Go, . . . of the Galois group G of f, where d; is
the degree of K; over K and also the index of G;in G. This
restricts the possible G to groups such that d can be ex-
pressed as the sum of indexes of proper subgroups of G.

Denote by <a,b,c, . . . > the additive semigroup gen-
erated by the positive integers a,b,c, . . . .

For any finite group G, let <G> denote the additive semi-
group generated by the indexes in G of its proper subgroups.

We are now ready for a sufficient condition for impli-
cations between “degree axioms.”

THEOREM 1 The statement

is true in all fields of characteristic O if

(**) for every subgroup G of S, which acts without fixed-

points on {12, . . ., nl, semigroup <G> contains one of
Note that the condition in (**) is obviously computable.

PROOF. Assume the condition (**) is true for i1,i5, . . . ipn.
Choose a field K of characteristic 0, and suppose there is a
polynomial fin Kx] of degree n with no roots in K; since
degree axiom [#] fails, we now need to falsify one of the de-
gree axioms {3].

The Galois group G of the splitting field of fover K acts
without fixed-points on the roots of f(if fhas multiple roots,
we add extra copies of the roots of fto the set G is acting
on to get a fixed-point-free action on a set of size »n). Every
subgroup of index b corresponds to a field extension of K
of degree b; in characteristic 0, these extensions have prim-
itive elements, so we can get irreducible polynomials of all
those degrees, and multiply them together to get rootless
polynomials of all degrees contained in the semigroup
<G>. By assumption, i; is in the semigroup for some j in
{1, ... m}, and the corresponding rootless polynomial coun-
terexemplifies [4], as required. O

COROLLARY 1 [#n] follows from the conjunction of | p] for
primes dividing n with {m) for any sufficiently large m.

PROOF. For any finite group G, for each prime p dividing
|G|, G’s Sylow-p subgroups have indexes not divisible by
p. If ‘,Gl is not a prime power, then the gcd of these in-
dexes is 1, and <G> contains all sufficiently large integers;
only finitely many G are relevant, so any sufficiently large
m causes (**) to be satisfied for all those G. If G is a p-
group and p doesn’t divide #, then G can’t act without
fixed-points on {1, . . . , n}, because all orbits must have
size 1 or a power of p, so (**) is vacuously satisfied. If p
does divide #n, then we already have [p] on the left-hand
side of (**); this suffices, because p-groups have subgroups
of index p, so <G> = <p>. (]

The Fundamental Theorem of Algebra, Improved
These ideas make possible much better versions of the Fun-
damental Theorem of Algebra: not only do fields of char-
acteristic 0 no longer need degree axioms for composite
degrees, but the theorem now applies to fields of all char-
acteristics.

COROLLARY 2 If a field K bas characteristic O, if all odd-
prime-degree polynomials in Klx] bave roots in K, and if all
elements of K have square roots in K(i), then K(i) is alge-
braically closed.

PROOF. We are able to replace “odd” with “odd prime” by

applying Corollary 1: for any odd composite [d], the primes
dividing d are odd and there is a sufficiently large odd prirme.
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For completeness, I give an argument which does not
depend on the proof in [vdW]. Assume K(9) has square
roots for all elements and K has roots for polynomials of
odd prime degree. Applying Corollary 1, all odd-degree
polynomials have roots. If fin K[x] has even degree, its
Galois group G has order 2"m for m odd. Corresponding
to the 2-Sylow subgroup, which has index m, is an exten-
sion of degree m; but there are no irreducible polynomi-
als of odd degree, so m =1 and |G| = 27. Since p-groups
have subgroups of index p, we can build a chain of ex-
tensions of degree 2 to reach the splitting field of f; but
since K(?) has square roots for all elements, each extension
comes from a degree-2 polynomial with coefficients in K,
so fsplits into linear and quadratic factors. Any polynomial
in K(9lx] can be multiplied by its “conjugate” to get a poly-
nomial in K[x], and from the resulting factorization into lin-
ear and quadratic factors we can get a complete split into
linear factors in K(i)[x]. O

THEOREM 2 Any field which satisfies| p) for all primes p sat-
isfies [n) for all natural numbers n.

PROOF. If the field K has characteristic 0, this follows di-
rectly from Corollary 1 and the existence of infinitely many
primes. The only place where the assumption of charac-
teristic 0 was needed in the proof of Theorem 1 was to ob-
tain primitive elements for algebraic extensions of K; but
we have [p] for all primes p, so every element of K has a
pth root in K; this holds in particular for the characteristic
of the field, so K is a perfect field, and all algebraic ex-
tensions are separable and they have primitive elements

anyway. O

Theorem 2 allows us to delete all axioms [#] for com-
posite 7 from our axiomatization of algebraically closed
fields. Can we go further? No!

THEOREM 3 Theorem 2 is not true if we omit any single
prime from the hypotbesis.

PROOF. Let K be the field generated by all algebraic num-
bers whose degree over Q is not divisible by a given prime
p. This K contains no numbers of degree p over Q, because
we can write K as an expanding union of fields of finite de-
gree over Q, where each field is obtained from the previous
one by adjoining the “next” algebraic number whose degree
is not divisible by p—at each stage we have a finite exten-
sion whose degree over Q is not divisible by p, so no num-
ber of degree p can ever get in. Therefore there are polyno-
mials of degree p in Qlx] (and so also in K{x]) with no roots
in K For any other prime ¢, every polynomial in K[x] of de-
gree ¢ has an irreducible factor of degree not divisible by p,
and so has a root r whose degree over X is not divisible by
p. But 7 has the same degree over the subfield of K gener-
ated by the coefficients of its irreducible polynomial, which
has a finite degree over Q that is not divisible by p; so ralso
has such a degree and is therefore in K by construction. [J

We have thus obtained an “optimal” axiomatization for
algebraically closed fields: ACF = {AF, (2], [3], I5], [7], [11],
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. . .}, where each axiom is independent of the others.
Adding the axioms {C0,, C03, COs, CO5, . . . } gives an op-
timal axiomatization for algebraically closed fields of char-
acteristic 0, while adding the single axiom ~C0,, gives an
optimal axiomatization for algebraically closed fields of
characteristic p.

However, omitting any set of primes is no worse than
omitting one, as long as we still have infinitely many “good
degrees” for which all polynomials have roots:

THEOREM 4 For any field K, if there are arbitrarily large
“good degrees” d such that all polynomials of degree d have
roots, then eitber K is algebraically closed, or there is exactly
one “bad prime” which is the degree of a rootless polynomial,
and a degree is “good” if and only if it is not a multiple of that
prime.

PROOF. We know there can be at most one “bad prime,”
because if two primes were bad then all sufficiently large
degrees could be expressed as a sum of those primes and
so would have a rootless polynomial, contradicting the as-
sumption of arbitrarily large “good degrees.” Corollary 1 im-
plies that if infinitely many primes are “good degrees” then
any number only divisible by “good primes” is a “good de-
gree.” If there are no bad primes, the proof goes through
to show that K is algebraically closed. a

Sufficiency for Characteristic p

Theorem 1 gives us the best possible version of the Fun-
damental Theorem of Algebra, but it can itself be made
stronger: the sufficient condition is also necessary, and the
characteristic 0 assumption can be dropped.

First, let’s look at some examples. Suppose 7 is odd. We
know the alternating group A4,, is a possible Galois group,
and it contains subgroups of index », (5), (5, . . ., (P,
where d = (n — 1)/2. These subgroups are intransitive and
arise from partitioning {1, . . . , 7} into two pieces. When
n= 2k is even, there is also a transitive imprimitive sub-
group of index (})/2 containing those even permutations
which permute {1, . . ., B and {k+ 1, .. . | »n} indepen-
dently OR switch the two blocks. It is not difficult to prove
(see [DM, section 5.2]) that, with a few small exceptions
where 7 < 10, any other subgroup of A, is smaller than
these or is contained in one of them.

What degree axioms do we need to ensure [15]? The
largest subgroups of A;s have indexes 15, 105, 455, 1365,
3003, 5005, 6435. The semigroup <A;s> is therefore gen-
erated by these numbers plus some others larger than 6435.
However, it is not hard to see that <15, 455, 3003> in-
cludes 105, 1365, 5005, 6435, and all larger indexes of sub-
groups of Ajs, 50 <A;5> = <15, 455, 3003>. This means
that to derive the degree axiom [15], we will need either
(154 for some k, or at least [455]. And [455] by itself isn’t
enough, because it only eliminates the possibility of 4,5 as
a Galois group, but we also need to get rid of the prime
3. It turns out (I omit the details of the derivation from The-
orem 1) that [15] follows from any set of degree axioms
where the degrees include a multiple of 3, a multiple of 5,
and an element of the semigroup <15, 455, 3003> (of
which 3533 is the first prime).



Now let’s see if the proof of Theorem 1 can fail in char-
acteristic p. If a “degree implication” [4)& . . . &li,] = (7]
holds in characteristic 0, we know that it holds in charac-
teristic p also if p divides one of the i; because the proof
fails only in the case of “inseparable extensions,” which can-
not occur in characteristic p when every element has a pth
root. But if p does not divide any of the 4, it doesn’t divide
n either, for in the preceding section, “The Fundamental The-
orem of Algebra Improved,” we constructed a characteristic-
0 field in which [#7] was true iff n was not a multiple of p.

So we may assume p does not divide 7. If z divides any
of the i, the degree implication is trivially true, so we may
rule out this possibility. Purely inseparable extensions have
degrees that are powers of the characteristic, which means
we may assume there is an irreducible polynomial of de-
gree p’ for some r; furthermore, p” must be < #n if we are
going to have a degree-n polynomial give an inseparable
extension. So if there is a counterexample, we have root-
less polynomials of degree p” and degree n. This means
we can construct rootless polynomials of all degrees in <p,
n>, and since p doesn’t divide #, this semigroup includes
all sufficiently large degrees, in particular, all degrees #(n — 1)
or greater. If # is even, then p” is odd, and <p”, n> includes
n(n—1)/2 as well, because n(n— 1)/2=0/2+(n—1D =
W2x(n—3+n=/2«n—5+2n= - =/2p +
(n+1—p")/D=n.

But we saw above that, for n > 9, the smallest element
of <A,> that is not a multiple of n is n(n — 1)/2, if n is
even, and for odd n is at least () = n(n — 1)(n — 2)/6,
which is greater than n(n — 1) since n > 9. Therefore, <p’,
n> contains the entire semigroup <A4,>, so at least one
of the 4 must be in <p”, > and there is a rootless poly-
nomial of that degree. Thus we can’t get a counterexam-
ple to our degree implication, because one of the degree
axioms on the left-hand side must fail.

We can deal with the remaining cases n < 10 by direct
calculation. When # is prime, the only valid degree impli-
cations have a multiple of z on the left-hand side, and they
are trivially valid in all characteristics. For n = 4, 6, 8, 9,
we calculate the following semigroups:

<A = <3, 4>

<Ag> = <6, 10, 15>
<Ag> = <8, 15, 28, 35>
<Ay> = <9, 84, 280>.

In each case, for any prime power p” less than » and not
dividing 7, the generators of the semigroup (and so the
whole semigroup) are in <p’, n>, so we can’t get a coun-
terexample to the degree implication. Therefore the char-
acteristic 0 assumption in Theorem 1 can be eliminated.

COROLLARY 3 (3)&[10D = [6] is true in all fields.
COROLLARY 4 (21&[15) = [8] is true in all fields.

PROOF OF NECESSITY. Reversing the direction of Theorem
1 is trickier. Suppose (**) is false, so we have G acting on
<1, ..., n> with none of the /s in <G>. We need to
falsify (*), so we must construct a field where [41], . . . [7,)]
are true but [#] is false.

Begin by constructing fields K and L such that L is the
splitting field over K of a polynomial f(x) of degree n, with
Galois group Gal(Z/K) = G. (This can be done so K and L
are both algebraic over Q.) Let z be a primitive element for
this extension, so L = K(2) and z satisfies an irreducible poly-
nomial of degree |G| over K. Let Knux be a maximal alge-
braic extension of K with the property that Lygy = Kpax(2)
has degree |G| over K (We can construct this by succes-
sively adjoining algebraic numbers that don’t kill any of G,
because there is an enumeration of the algebraic numbers.)

Since we haven’t disturbed G, f(x) still has G as its Ga-
lois group, and no roots in K.y, but any further algebraic
extension of K,,,, will fail to extend L,,,. by the same de-
gree—that is, for any new algebraic number ), Kpux(3,2) =
Lax(3) has a degree over K,,.,{)) that is smaller than \Gl.
We need to show that all the degree axioms [4], . . . [i,]
are true for K,,,—then, since f(x) is still rootless, [#] is
false and thus (*) is also false, as required.

So suppose that we have a polynomial g(x) of degree
ij over K., where by assumption  is not in the semi-
group <G>. g is a product of irreducible polynomials, and
at least one of these must not have a degree in <G> (for
if they all did, their product would). So we now have an
irreducible polynomial »(x) whose degree iis not in <G>.
Let y be a root of h. Then K,,4x()) has degree i over Ky,
since b is irreducible. Consider the intersection M of K,4x())
and L, = Kpnax(2). Let d; be the degree of this field over
Kpmax. Since M is a subfield of L,,,,, the subgroup of G fix-
ing it must have index d, so either d; = 1 or d; is in <G>,

Linax(¥)=Kmax(y.2)

a

Kmax(y) Linax=Kmax(2)

7
i\ M @
|4,
max L=K(2)
\ a
K

Fields defined in proof of Theorem 5
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But d, also divides i because M is a subfield of K, ()),
which means we must have d; = 1, because we know 7 is
not in <G>. Thus M = K, the extension fields K,,,{(»)
and K;,,,(2) have only K,,,, in common.

But this means that every automorphism of L,,,, fixing
Kyax extends to an automorphism of L,,,,(y) fixing K,,;,.(3),
because it doesn't matter which of the |G| conjugates of z
we use when forming K, (1,2) = Kinax(2,)) = Lyar().
Therefore the Galois group of L,,,(3) over K,,,,x()) is still
G: but we constructed K,,,, so that any algebraic extension
would collapse some of G. Therefore K,,,.(3) is not really
an extension: y must already be in K,,,,, which means that
b(x) is of degree 1, and g(x) has a root, as was to be
shown.

We have now established Theorem 5.

THEOREM 5. The statement
® Cid&lil& . . . &li,) = (1)

is true in all fields iff

*) for every subgroup G of S,, which acts without fixed-points

on {12, ... ,nl, the semigroup <G> contains one of the i,
(Compared with Theorem 1, Theorem 5 eliminates the

characteristic 0 hypothesis and works in both directions.)

Conclusion

Theorems 2 and 3 establish the minimum algebraic condi-
tions necessary for a field to be algebraically closed, and
they can therefore be said to “optimize” the Fundamental
Theorem of Algebra. But each specific “degree implication”
is a first-order consequence of the axioms for fields, and
could have been discovered two centuries ago; the exis-
tence of these finitary relationships appears to have been
unsuspected by practically everyone, with one important
exception.

The inspiration for Theorem 1 was the work done by
John H. Conway on “Finite Choice Axioms” in 1970, de-
tailed in [Col. Conway, building on earlier work of
Mostowski and Tarski, identified a necessary and suffi-
cient condition for effective implications between axioms
of the form “Every collection of n-element sets has a
choice function.” Conway’s group-theoretic condition is
very similar to (**), the difference being that one could
use the semigroup <<H> for any subgroup H of a group
G acting fixed-point-freely on {1, . . . | n}, rather than re-
quiring G = H. The present article also borrows some ter-
minology, notational conventions, and proof ideas from
Conway’s work.

Theorem 2 was originally proved by a difficult combi-
natorial argument that generalized Gauss’s original proof.
Corollaries 3 and 4 emerged during discussions with Con-
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way, and led ultimately to the formulation of Theorem 1
(which is not hard to prove once it is formulated just right!).

Although Theorem 5 may appear definitive, there are
several directions for further investigation.

The algorithm implicit in (**) is slow, but it can be sped
up by making certain assumptions about permutation
groups; however, verifying these assumptions will require
careful analysis of the O'Nan/Scott Theorem on maximal
subgroups of A4,, (see [DM]) and the Classification of Finite
Simple Groups.

There is also a rich theory for several kinds of weak-
ened degree axioms, such as

[#] : “all polynomials of degree n are reducible,” or

[72,] : “all polynomials of degree n have a factor of de-
gree B’ (when k= 1 this is the standard degree axiom [#]).

These weakened axioms are still expressible in the lan-
guage of field theory, but they translate differently into the
language of Galois groups.

Finally, the “finite choice axioms” deserve further inves-
tigation. The great progress in finite group theory over the
last 35 years ought to make it easier to calculate the rela-
tionships between these axioms, including weakened ver-
sions which identify subsets or partitions of {1, . . ., #} in-
stead of elements.
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