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T 
he "algebraic part" of  the  Fundamenta l  Theorem of  
Algebra says that u n d e r  certain pure ly  algebraic hy- 
potheses ,  a field of  characterist ic 0 must  be  alge- 

braically closed.  In this art icle I will give a best  poss ible  ver- 
s ion and ex tend  the t h e o r e m  to characteristic p. I will also 
give an algori thm for de te rmin ing  all finitary implicat ions 
be tween  "degree  axioms" of  the  form "every polynomial  of  
degree  n has a root." 

The Fundamental Theorem 
The "Fundamenta l  T h e o r e m  of  Algebra" is the usual name  
for the t heo rem that the  f ie ld of  complex  numbers  is alge- 
braical ly closed.  H o w e v e r ,  all p roofs  of  this fact involve, in 
addi t ion to a lgebra ,  a cer ta in  amoun t  of  analysis, topology ,  
or  complex  funct ion theory .  The  less a lgebra  there is in the  
proof,  the more  of  o the r  k inds  of  mathemat ics  there must  
be. The more  a lgebra  there  is in the proof,  the more  gen- 
erally app l i cab le  it is and  the  eas ier  the non-a lgebra ic  part  
of  the p roo f  is. 

The b o o k  [FR] is an  exce l l en t  summary  of  the k n o w n  
proofs  of this theorem,  w h i c h  provides  an i l luminating in- 
t roduct ion to m a n y  b r a n c h e s  of  mode rn  mathematics .  Hun-  
dreds  of  art icles on  the Fundamen ta l  Theorem of  Algebra  
have been  pub l i shed ,  a lmos t  all of  which  involve n e w  
proofs or var ia t ions  on  o ld  proofs .  

Despi te  all this a t tent ion,  I have  someth ing  entirely n e w  
to demons t ra te .  I am go ing  to improve ,  not  s imply a p r o o f  
of  the theorem,  but  the theorem itsel F assuming less, a n d  
concluding more.  

Most of  the proofs  in ex is tence  app ly  only to the com- 
plex number  field, and  conta in  very little actual algebra; some  
writers have therefore  sugges ted  that the theorem is mis- 

named.  However ,  Gauss 's  1815 "second proof" of  the theo-  
rem [G], which  was the first ent irely rigorous proof,  justifies 
the name.  In this proof,  Gauss  s h o w e d  by  purely  algebraic  
reasoning that every real po lynomia l  resolves into factors of  
the first and second  degree.  A modern ized  and simplif ied 
vers ion of  Gauss 's  p roo f  (due  to E. Artin) is given by  v a n  

der  Wa e rde n  [vdW], w h o  states the theorem as follows: 

I f  in an ordered field K every positive element possesses a 
square root and  every polynomial of  odd degree at least one 
root, then the field K( i) obtained by adjoining i is alge- 
braically closed. 

That the real field satisfies these  condi t ions  is a very  easy  
p iece  of  analysis; the  a lgebra  r equ i r ed  is much harder ,  but  
as a r eward  the t h e o r e m  is a pp l i c a b l e  to all "real c losed" 
fields, not  just the real and  c o m p l e x  numbers .  

An examina t ion  of  the  p r o o f  in [vdW] shows  that it does  
no t  n e e d  K to be  o rde red ,  on ly  that  every e l emen t  of  K 
have  a square  root  in K(i) (wh ich  is an easy c o n s e q u e n c e  
o f  K ' s  be ing  o r d e r e d  and  having  square  roots  for posi t ive  
e lements) .  The p r o o f  also implici t ly  uses that K has char-  
acteristic 0 (which  fol lows f rom the original  restr ict ion to 
o rde r e d  fields), by  app ly ing  the Primitive Element  Theo-  
rem. We may  therefore  restate the  t heo rem more  general ly :  

I f  a field K has characteristic 0, / f  all odd-degree poly- 
nomials in K[x] have roots in K, and  if  all elements of  K 
have square roots in K(i), then K(i)  is algebraically closed. 

In this form, the t he o re m app l i e s  to fields wh ich  are  not  
necessar i ly  ordered ,  and  w e  have  the s imple corollary:  
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I f  K has characteristic O, and  i f  all polynomials whose 
degree is 2 or an odd number  have roots, then K is alge- 
braically closed. 

But we have not  gone  far enough  towards f inding the 
"algebraic essence" of the Fundamenta l  Theorem of Alge- 
bra. The hypotheses  actually needed  for a field to be al- 
gebraically closed are much  weaker;  I shall opt imize them. 

"Degree Axioms" 
Gauss proves the theorem by induct ion on  the n u m b e r  of 
factors of 2 in the degree of the polynomial .  Given a real 
polynomial  f ( x )  of even  degree d, Gauss constructs another  
real polynomial  of degree (2 d) = d ( d -  1)/2, which has one 
fewer power  of 2, such that the new  polynomial  has a root 
in the complex  number s  only  if f does. Through repetition 
of the process, a polynomial  of odd degree is eventual ly 
obtained,  from a root of which we may obtain  a root for f 
by solving a sequence  of quadratic equations.  From the ex- 
istence of complex  roots to real polynomials,  we may  ob- 
tain roots for any complex  polynomial  g(x) via the real poly- 
nomial g(x)g'(x), where  g'  is the "complex conjugate" of g. 

The only propert ies  of the real numbers  that Gauss used 
were the existence of roots for equat ions  of odd degree, 
and  the existence of square roots for non-nega t ive  num-  
bers. This "algebraic" proof  is more useful than the proofs 
involving analysis or topology, because it applies to many  
more fields. Artin and  Schreier's theory of "real closed fields" 
is built on  this foundat ion .  A field K is said to be  "formally 
real" if - 1 is not  a sum of squares.  Such K can be ordered,  
and  have characteristic 0. K is "real closed" if every odd- 
degree po lynomia l  has a root in K and  every positive ele- 
ment  has a square  root. (The defini t ion still applies to fields 
with no def ined order  relation, if - 1 is not  a sum of squares  
and  every e l emen t  is a square  or the negative of a square.)  

These assumpt ions  are all expressible in the first-order 
language of fields. It follows from the work of Tarski {T] 
that all real closed fields satisfy the same first-order sen- 
tences, and  the following axiomatization characterizes real 
closed fields: 

Group i) AOF: The con junc t ion  of the s tandard axioms 
for ordered fields. 

Group ii) Axiom about  existence of square roots: 

SR: Vxo 3 X  1 ( ( X  1 * X 1 = X O) o r  ( ( x  1 �9 X l )  + x 0 = 0 ) ) .  

Group iii) Degree Axioms (one  for each odd  integer):  

[11: Vxo ~]X 1 ((Xo -4- X l )  = O) 

[3]: VXo VXl VX2 22]X 3 ((Xo "}- (X  3 * (Xl  Jr" (X 3 * 

(X 2 + .3~3))))) = O) 

[5]: VXo VXl Vx2 Vx3 Vx4 3x5 ((xo + (x5 �9 (Xl + (x5 �9 
(x2 + (x5 �9 (x3 + (x5 �9 (x4 + xs))))))))) = o) 
Etc. 

Each "degree axiom" asserts the existence of roots for 
all polynomials  of a g iven degree. Note that the first de- 
gree axiom [1] merely  restates the existence of additive in- 
verses and  is true in all fields. Note also that the degree  
axiom [n] implies [d] for any  d dividing n, because  we  can 
construct a rootless po lynomia l  of degree n by taking a 
power  of a rootless po lynomia l  of degree d. 

Since - 1  is no t  a square  in an ordered field, the poly- 
nomial  (x 2 + 1) has no  roots. If there were a po lynomia l  
of odd degree d > 1 with no  roots, then we could multi-  
ply it by powers  of (x  2 + 1) to construct rootless po lyno-  
mials of degrees d + 2, d + 4, etc. Therefore, ANY infinite 
subset of Group iii) suffices to axiomatize real closed fields 
(together with the axioms AOF and  SR). 

This is as far as we  can w e a k e n  the assumpt ions  for an  
ordered field to be  real closed. But the situation is m u c h  
more interesting w h e n  we start with a field which is no t  
necessarily "real." 

In the preceding section, we saw that Gauss's proof, as 
adapted by Artin a nd  van  der Waerden,  has the corollary 

I f  K has characteristic O, and  i f  all polynomials whose 
degree is 2 or an odd number  have roots, then K is alge- 
braically closed. 

This leads to a comple te  axiomatizat ion for algebraically 
closed fields of characteristic 0 (all of which satisfy the same 
sentences as the complex  numbers) :  

Group i) AF: The con junc t ion  of the standard axioms for 
fields. 

Group ii) Axioms for characteristic 0 (one for each prime): 

C02:--(1 + 1 = 0) 
C03: - - ( 1 +  1 +  1 = 0 )  
C05: - - ( 1 +  1 + 1 + 1 + 1 = 0 )  
C07:--(1 + 1 + 1 +  1 +  1 + 1 +  1 = 0 )  
C011: - - ( 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 0 )  
Etc. 
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Group iii) Degree Axioms ([2] and one for each odd integer) 

[21: Wvo Vx~ =ix, ((xo + (x2 * (Xl + x2))) = 0) 
[3]: VXo V& Vx2 3x~ ( ( ~  + (x3 * (Xl + (x3 * 

(%, + x3))))) = 0) 
[5]: Vx0 Vxl Vx2 Vx~ Vx~ 3xs ((Xo + (x~ �9 (x~ + (xs �9 

(x~ + (x5 �9 (x3 + (x~ �9 (x4 + xs))))))))) = 0 
[7]: Vxo Vxa Vx2 Vx 3 Vx4 Vx5 Vx, Ha> ((Xo + (x7 * (& + 

(x7 �9 (x2 + (x7 �9 (.x3 + (x7 �9 (x., + (x7 �9 (x5 + (x7 �9 (&, + 
x7))))))))))))) = 0) 

[9]: Va~ V& Vx, Vx 3 Vx4 Vx5 Vx,, Vx7 Vx,,~ =I.vo ((ab + 

(oa) �9 (xj  + Oa) * (x2 + (~a) �9 (x~ + (3a) �9 (x4 + (x~) �9 (x5 + 
(oa) �9 (ab + Cv) * (x7 + Oa) * (x~ + )a)))))))))))))))))) = O) 

Etc. 

The key observat ion for improving the Fundamenta l  The- 
orem of Algebra is that each degree axiom [d], w h e n  d is 
an even  n u m b e r  >2,  is a c o n s e q u e n c e  of finitely many of 
the degree axioms {[i] i i = 2 or an odd  integer}, together 
with AF and  the axioms for characteristic 0. This follows 
(nonconstruct ively)  from the Compactness  Theorem for 
first-order logic, but  Gauss 's  proof  provides an explicit re- 
duction: [d] follows from [2] and  [(J)] = [ d ( d -  1)/'2]. 

Thus, we  can prove [6] from [2] and  [15]. To prove [8] 
we can use [2] and [28], and  to get [28] we use [2] and [378], 
and  to get [378] we use [2] and  [71253]. 

We will f ind a necessa ry  and  sufficient  cond i t ion  for 
a set of degree  ax ioms to imply  ano the r  degree  axionl. 
This will a l low us to f ind an op t imal  ax iomat iza t ion  of 
a lgebra ica l ly  c losed  fields, where  each axiom is inde- 
p e n d e n t  of the others.  As a b o n u s ,  it will turn  out  that 
the s t r e n g t h e n e d  t heo rem is t rue in fields of all charac- 
teristics. 

Degree Axioms and Galois Groups 
Fix a field K. For now, require K to be of characteristic 0. 
For every po lynomia l  f ( x )  in K[x], there is an associated 
splitting field L and an associated finite Galois group G. 
S u p p o s e f h a s  degree  d and  roots q, r2, . . . , r~l (multiple 
roots appear ing the appropria te  n u m b e r  of times with dif- 
ferent labels). G acts on  the set {rl, Q . . . . .  rd}, and this 
act ion has a f ixed-point  i f f f h a s  a root in K. If the degree 
axiom [d] is true, then  subgroups  of Sa which act without 
f ixed-points on  the roots are ruled out as possible Galois 
groups  for polynomials  of degree d. 

O n  the other  hand,  if [d] is false, then  there is a poly- 
nomial f ( x )  of degree at, with irreducible factors f ,  ./~ . . . . .  
of degrees dj, ~ . . . . .  with each d i >  1 and  dj + ~ + 
. . . .  d. Since degrees of irreducible polynomials  corre- 
spond  to degrees of field extensions,  there is a sequence 
of ex tens ion  fields K1, /s . . . .  which cor respond to sub- 
groups  G1, G2, . . . of the Galois g roup  G o f f ,  where  di is 
the degree of K, over  K and  also the index of Gi in G. This 
restricts the possible G to groups  such that d can be ex- 
pressed as the sum of indexes  of p roper  subgroups  of G. 

Denote  by <a,b,c, . . . > the additive semigroup gen- 
erated by the positive integers a,b,c, . . . .  

For any finite group G, let < G >  denote  the additive semi- 
group generated by the indexes in G of its proper subgroups. 

We are nov,  ready for a sufficient condi t ion  for impli- 
cations be tween  "degree axioms." 

THEOREM 1 The statement 

(*) ( [ i l ] & [ i z l & . . .  &[i,,,1) ~ [hi 

is true in all f ields of  characteristic 0 i f  
(**) .for every subgroup G of  S,, which acts without f ixed-  
points on {1,2, . . . , n}, semigroup < G> contains one of  
the i/. 

Note that the condi t ion  in (**) is obv ious ly  computab le .  

PROOF.  Assume the condit ion (**) is true for i1,i2, . . .im, n. 
Choose a field K of characteristic 0, and suppose  there is a 
polynomial  f in K[x] of degree n with no  roots in K; since 
degree axiom In] fails, we now need  to falsify one  of the de- 
gree axioms [~]. 

The Galois g roup  G of the splitt ing field of f over  K acts 
without  f ixed-points  on  the roots o f f ( i f  f has mult iple  roots, 
we add extra copies  of the roots of f to the set G is acting 
on  to get a f ixed-point-free act ion on  a set of  size n). Every 
subg roup  of index h cor responds  to a field ex t ens ion  of K 
of degree  h; in characteristic 0, these ex tens ions  have prim- 
itive e lements ,  so we can get i r reducible po lynomia l s  of all 
those degrees,  and  mult iply them together  to get rootless 
po lynomia l s  of all degrees con ta ined  in the semigroup  
< G > .  By assumpt ion ,  ~ is in the semigroup  for some  j in 
{ 1 , . . .  m}, and  the cor responding  rootless po lynomia l  coun-  
terexemplifies [~.], as required. [] 

COROLLARY 1 [n] follows from the conjunction of[p] for  
primes dividing n with [m] for  any sufficiently large m. 

PROOF. For any finite g roup  G, for each p r ime  p dividing 
[GI, G 's  Sylow-p subgroups  have indexes  no t  divisible by 
p. If '~G! is not  a pr ime power,  then  the gcd of these in- 
dexes  is 1, and  < G >  contains  all sufficiently large integers; 
on ly  finitely m a n y  G are relevant, so any sufficiently large 
m causes  (**) to be  satisfied for all those G. If G is a p- 
g roup  and  p doesn ' t  divide n, t hen  G can ' t  act wi thout  
f ixed-points  on  {1, . . . , n}, because  all orbits mus t  have 
size 1 or a p o w e r  of p, so (**) is vacuous ly  satisfied. If p 
does divide n, then  we already have [p] on  the lef t -hand 
side of (**); this suffices, because  p-groups  have  subgroups  
of index  p, so < G >  = < p > .  [] 

The Fundamental Theorem of Algebra, Improved 
These ideas make  possible  much  better  vers ions  of the Fun-  
damenta l  T h e o r e m  of Algebra: not  on ly  do fields of char- 
acteristic 0 no  longer  need  degree axioms for compos i te  
degrees,  but  the theorem n o w  appl ies  to fields of all char- 
acteristics. 

COROLLARY 2 I f  a f ie ld  K has characteristic O, i f  all odd- 
prime-degree polynomials in K[x] have roots in K, and  i f  all 
elements of  K have square roots in K(i), then K(i)  is alge- 
braically closed. 

PROOF. We are able to replace "odd" with "odd prime" by 
applying Corollary 1: for any odd composi te  [d], the primes 
dividing d are odd and  there is a sufficiently large odd  prime. 

�9 2007 Springer Science+Business Media, Inc., Volume 29, Number 4, 2007 '1 1 



For  comple t enes s ,  I give an  a r g u m e n t  w h i c h  does  not 
d e p e n d  o n  the p r o o f  in [vdW]. A s s u m e  K(i) has square 
roo t s  for  all e l e m e n t s  and  K has  roo ts  for p o l y n o m i a l s  of 
o d d  p r i m e  degree�9  App ly ing  Corol lary  1, all o d d - d e g r e e  
p o l y n o m i a l s  have  roots. If f in K[x] has  even  degree ,  its 
Ga lo i s  g r o u p  G has  o rde r  2rm for  m odd.  Cor respond ing  
to the  2-Sylow subgroup ,  w h i c h  has  i ndex  m, is an  exten-  
s ion  o f  d e g r e e  m; but  there  are  no  i r reduc ib le  po lynomi -  
als o f  o d d  degree ,  so m = 1 a n d  IGI = 2 r Since p-groups  
have  s u b g r o u p s  o f  index  p, w e  can  bu i ld  a cha in  o f  ex- 
t e n s i o n s  of  d e g r e e  2 to reach  the  spl i t t ing f ie ld of  f ;  but 
s ince  K(i) has square  roots  for all e lements ,  each  ex tens ion  
c o m e s  f rom a degree -2  p o l y n o m i a l  wi th  coeff ic ients  in K, 
so  f s p l i t s  into l inear  and  quadra t ic  factors. Any  po lynomia l  
in K(i)[x] can b e  mul t ip l i ed  b y  its "conjugate"  to get  a poly-  
n o m i a l  in K[x], and  from the resul t ing fac tor iza t ion  into lin- 
ea r  a n d  quadra t i c  factors w e  can  get  a c o m p l e t e  spli t  into 
l inea r  factors  in K(i)[x]. [] 

T H E O R E M  2 Anyfield which satisfies [p] for  allprimesp sat- 
isfies [n] for  all natural numbers n. 

PROOF. If the  f ie ld K has character is t ic  0, this fo l lows di- 
rec t ly  f rom Corol lary  1 and  the ex i s t ence  of  infini tely many 
pr imes .  The  on ly  p lace  w h e r e  the  a s s u m p t i o n  of  charac- 
ter is t ic  0 was  n e e d e d  in the  p r o o f  o f  T h e o r e m  1 was  to ob- 
ta in  pr imi t ive  e l emen t s  for a lgebra ic  ex tens ions  of  K; but  
w e  have  [p] for  all p r imes  p, so eve ry  e l e m e n t  of  K has a 
p - t h  roo t  i n / (  this ho lds  in par t icu la r  for the  characterist ic  
of  the  field,  so  K is a per fec t  field, and  all a lgebra ic  ex- 
t ens ions  are  s epa rab l e  and  they  have  pr imit iv  e e lements  
anyway .  [] 

T h e o r e m  2 a l lows us to de le t e  all a x i o m s  [n] for com- 
pos i t e  n f rom our  ax iomat iza t ion  of  a lgebra ica l ly  c losed 
f ields.  Can w e  go  further? No! 

THEOREM 3 Theorem 2 is not true i f  we omit any single 
pr ime f rom the hypothesis. 

PROOF. Let K be  the field gene ra t ed  by  all a lgebraic  num- 
bers  w h o s e  degree  over  Q is not  divisible by  a g iven prime 
p. This K contains  no  numbers  of  deg ree  p over  Q, because  
w e  can  wri te  K as an expand ing  un ion  of  fields of  finite de- 
g ree  over  Q, w h e r e  each field is ob ta ined  f rom the previous 
one  by  adjoining the "next" a lgebraic  n u m b e r  w h o s e  degree 
is no t  divisible  by  p---at  each  stage w e  have  a finite exten- 
s ion  w h o s e  degree  over  Q is not  divisible b y  p, so no  num- 
b e r  of  deg ree  p can ever  get  in. Therefore  there  are polyno-  
mials  of  deg ree  p in Q[x] ( and  so also in K[x])  wi th  no  roots 
in K For  any o ther  pr ime q, every  po lynomia l  in K[x] of de- 
g ree  q has an i rreducible factor of  deg ree  not  divisible by p, 
a n d  so has a root  r w h o s e  degree  over  K is not  divisible by 
p. But r has the same degree  over  the  subf ie ld  of  K gener- 
a t ed  b y  the coefficients of  its i r reducible  polynomial ,  which 
has  a finite deg ree  over  Q that is not  divisible  by  p;  so r also 
has  such  a degree  and is therefore  in K by  construction. []  

W e  have  thus  o b t a i n e d  an "opt imal"  ax iomat iza t ion  for 
a lgebra ica l ly  c losed  fields: ACF = {AF, [2], [3], [5], [7], [11], 

�9 . . }, w h e r e  each  a x i o m  is i n d e p e n d e n t  o f  the  others.  
Adding  the ax ioms  {C02, C03, C05, C07, . . . } gives an  op-  
timal ax iomat iza t ion  for a lgebra ica l ly  c losed  fields of  char- 
acteristic 0, whi le  add ing  the single a x i o m  --COp gives an 
opt imal  ax iomat iza t ion  for a lgebra ica l ly  c losed  fields of  
characterist ic p. 

However ,  omit t ing any  set of  p r imes  is no  worse  than  
omit t ing one,  as long as w e  still have  inf ini tely many  "good  
degrees"  for wh ich  all po lynomia l s  have  roots:  

THEOREM 4 For any field K, i f  there are arbitrarily large 
"good degrees" d such that all polynomials of  degree d have 
roots, then either K is algebraically closed, or there is exactly 
one "bad prime" which is the degree of  a rootless polynomial, 
and a degree is "good" i f  and  only if  it is not a multiple of  that 
prime. 

PROOF. We k n o w  there  can  be  at mos t  o n e  "bad prime,"  
because  if two  pr imes  we re  bad  then  all sufficiently large 
degrees  cou ld  b e  e x p r e s s e d  as a sum of  those  pr imes  and  
so w o u l d  have  a root less  po lynomia l ,  cont rad ic t ing  the as- 
sumpt ion  of  arbitrari ly large "good  degrees ."  Corol lary i im- 
pl ies that if infini tely m a n y  pr imes  are  "good  degrees"  then 
any n u m b e r  only  divis ible  by  "good  pr imes"  is a "good  de-  
gree." If there  are  no  b a d  pr imes,  the  p r o o f  goes  th rough  
t o  show that  K is a lgebra ica l ly  closed.  [ ]  

Sufficiency for Characteristic p 
T h e o r e m  1 gives us the  bes t  poss ib l e  vers ion  of  the Fun- 
damenta l  T h e o r e m  of  Algebra ,  but  it can itself be  made  
stronger:  the sufficient cond i t ion  is also necessary,  and  the 
characterist ic  0 a s sumpt ion  can be  d r o p p e d .  

First, let 's  l ook  at some  examples .  Suppose  n is odd.  We 
k n o w  the a l ternat ing g r o u p  An is a poss ib le  Galois  group,  
and  it conta ins  s u b g r o u p s  of  index  n, (~), ('~) . . . .  , (~), 
w h e r e  d = (n  - 1)/2. These  subg roups  are intransit ive and  
arise from par t i t ioning {1, . . . , n} into two  pieces.  W h e n  
n = 2k is even,  there  is also a transit ive impr imi t ive  sub- 
g roup  of  index  (~,)/2 conta in ing  those  even  permuta t ions  
which  pe rmu te  {1, . . . ,  k} a n d  {k + 1, . . . , n} i ndepen -  
den t ly  OR switch the  two  blocks .  It is not  difficult to p rove  
(see  [DM, sec t ion  5.2]) that, wi th  a few small  excep t ions  
w h e r e  n < 10, any  o the r  s u b g r o u p  of  A n is smal ler  than 
these  or  is con t a ined  in one  of  them. 

What  deg ree  ax ioms  do  w e  n e e d  to ensure  [15]? The 
largest  s u b g r o u p s  of  A15 have  indexes  15, 105, 455, 1365, 
3003, 5005, 6435. The  s e m i g r o u p  <A15 > is therefore  gen-  
e ra ted  by  these  n u m b e r s  plus  some  others  larger  than 6435. 
However ,  it is no t  ha rd  to see  that  <15,  455, 3003> in- 
c ludes  105, 1365, 5005, 6435, and  all larger  indexes  of  sub- 
g roups  of  A15, so <A15> = <15,  455, 3003>.  This means  
that to der ive  the  d e g r e e  ax iom [15], w e  will  n e e d  ei ther  
[15k] for  some  k, or  at least  [455]. And  [455] by  itself isn't  
enough ,  b e c a u s e  it only  e l iminates  the  poss ibi l i ty  of  A15 as 
a Galo is  g roup ,  but  w e  also n e e d  to get  rid of  the p r ime  
3. It turns out  (I omit  the  detai ls  of  the  der iva t ion  from The- 
o r e m  1) that [15] fo l lows f rom any  set of  deg ree  axioms 
w h e r e  the  de g re e s  inc lude  a mul t ip le  of  3, a mul t ip le  of  5, 
and  an e l e me n t  of  the  s e m i g r o u p  <15,  455, 3003> (of 
which  3533 is the  first pr ime) .  
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N o w  let 's see  if  the  p r o o f  o f  T h e o r e m  1 can  fail in char-  

acteristic p. If a " d e g r e e  impl ica t ion"  [il]& . . �9 &[ira] ~ In] 
ho lds  in charac ter i s t ic  0, w e  k n o w  that it ho lds  in charac-  

teristic p a lso  if p d iv ides  o n e  o f  the  /i, b e c a u s e  the  p r o o f  
fails on ly  in the  case  o f  " insepa rab le  extens ions ,"  w h i c h  can-  

no t  occur  in charac ter i s t ic  p w h e n  eve ry  e l e m e n t  has  a p- th 
root.  But  if p d o e s  n o t  d iv ide  any  of  the  9, it doe sn ' t  d iv ide  
n ei ther ,  for  in the  p r e c e d i n g  sect ion,  "The F u n d a m e n t a l  The-  
o r e m  of  Algebra  I m p r o v e d , "  w e  cons t ruc ted  a characterist ic-  
0 f ie ld  in w h i c h  [n] w a s  t rue  iff n was  no t  a mu l t ip l e  o f p .  

So w e  m a y  a s s u m e  p d o e s  n o t  d iv ide  n. If n d iv ides  any  
of  t he  9, t he  d e g r e e  i m p l i c a t i o n  is tr ivially true,  so  w e  m a y  
rule  ou t  this poss ib i l i ty .  Pure ly  i n sepa rab l e  e x t e n s i o n s  h a v e  
d e g r e e s  that  a re  p o w e r s  o f  the  character is t ic ,  w h i c h  m e a n s  
w e  m a y  a s s u m e  the re  is an  i r r educ ib le  p o l y n o m i a l  o f  de -  
g r e e  p r  for  s o m e  r;  f u r t h e r m o r e ,  pr m u s t  b e  < n if w e  are  

g o i n g  to h a v e  a d e g r e e - n  p o l y n o m i a l  g ive  an  i n sepa rab l e  
ex tens ion .  So if t h e r e  is a c o u n t e r e x a m p l e ,  w e  h a v e  root-  
less p o l y n o m i a l s  o f  d e g r e e  pr  a n d  d e g r e e  n. This  m e a n s  
w e  can  c o n s t r u c t  r oo t l e s s  p o l y n o m i a l s  o f  all d e g r e e s  in <pr, 
n > ,  a n d  s ince  p d o e s n ' t  d iv ide  n, this s e m i g r o u p  inc ludes  
all sufficiently large degrees ,  in particular, all degrees  n (n  - 1) 
or  greater.  If n is even ,  t h e n p  r is odd,  and  <.Or, n >  includes 

n ( n  - 1)/2 as wel l ,  b e c a u s e  n (n  - 1)/2 = (n /2 ) . ( n  - 1) = 
( n / 2 ) . ( n -  3) + n = ( n / 2 ) . ( n  - 5) + 2n  . . . . .  ( n / 2 ) * p r  + 
( (n  + 1 - p r ) / 2 ) ,  n. 

But  w e  s a w  a b o v e  that,  for  n > 9, the  smal les t  e l e m e n t  
o f  < A , >  that  is n o t  a m u l t i p l e  o f  n is n ( n -  1)/2,  if n is 
e v e n ,  a n d  for  o d d  n is at leas t  (~) = n ( n -  1 ) ( n -  2)/6, 
w h i c h  is g r e a t e r  t h a n  n ( n  - 1) s ince  n > 9. The re fo r e ,  < p r  
n >  con ta ins  t he  en t i r e  s e m i g r o u p  <An>, so  at leas t  o n e  
o f  t he  1). m u s t  b e  in < p r  n >  a n d  the re  is a roo t l e s s  po ly -  
n o m i a l  o f  that  d e g r e e .  Thus  w e  can ' t  ge t  a c o u n t e r e x a m -  
p ie  to ou r  d e g r e e  imp l i ca t ion ,  b e c a u s e  o n e  o f  the  d e g r e e  
a x i o m s  on  the  l e f t - h a n d  s ide  mus t  fail. 

W e  can  d e a l  w i t h  t he  r e m a i n i n g  cases  n < 10 by  d i rec t  
ca lcula t ion .  W h e n  n is p r ime ,  the  on ly  va l id  d e g r e e  impl i -  
ca t ions  h a v e  a m u l t i p l e  o f  n o n  the  l e f t -hand  side,  a n d  t h e y  
are  trivially va l id  in all character is t ics .  For  n = 4, 6, 8, 9, 
w e  ca lcu la te  t he  f o l l o w i n g  s e m i g r o u p s :  

< A 4 >  = < 3 ,  4 >  
< A 6 >  = < 6 ,  10, 1 5 >  

< A s >  = < 8 ,  15, 28, 3 5 >  
< A 9 >  = < 9 ,  84, 280> .  

In e a c h  case ,  for  a n y  p r i m e  p o w e r  pr less t h a n  n and  n o t  
d iv id ing  n, t h e  g e n e r a t o r s  o f  the  s e m i g r o u p  ( a n d  so the  
w h o l e  s e m i g r o u p )  a re  in < p r  n > ,  so  w e  can ' t  ge t  a c o u n -  

t e r e x a m p l e  to t he  d e g r e e  impl ica t ion .  T h e r e f o r e  the  char-  
acter is t ic  0 a s s u m p t i o n  in T h e o r e m  1 can  be  e l imina ted .  

COROLLARY 3 ([3]&[10]) ~ [6] is true in all fields. 

COROLLARY 4 ([2]&[15]) =:~ [8] is true in allfields. 

PROOF OF NECESSITY. Reve r s ing  the  d i rec t ion  o f  T h e o r e m  
1 is tr ickier.  S u p p o s e  (**) is false,  so w e  h a v e  G act ing o n  
<1 ,  . . . , n >  w i t h  n o n e  o f  t he  fs  in < G > .  W e  n e e d  to  
falsify (*), so  w e  m u s t  c o n s t r u c t  a f ie ld  w h e r e  [il] . . . .  [4,] 
are  t rue  b u t  [hi is false.  

Begin  by  cons t ruc t ing  fields K and  L such that L is the  
splitting field o v e r  K of  a p o l y n o m i a l  f ( x )  of  d e g r e e  n, wi th  
Galois  g r o u p  G a l ( L / K ) =  G. (This can  be  d o n e  so  K a n d  L 
are  bo th  a lgebra ic  o v e r  Q.) Let z be  a pr imit ive e l e m e n t  for 
this ex tens ion ,  so  L = K(z) a n d  z satisfies an  i r reducible  poly-  

nomia l  o f  d e g r e e  IGI o v e r  K. Let Knox be  a maximal  alge- 
braic ex t ens ion  o f  K wi th  the  p rope r ty  that Lmax = Kmax(Z) 
has d e g r e e  IGi o v e r  Kmaa- (We  can const ruct  this by  succes-  
s ively adjo in ing  a lgebra ic  n u m b e r s  that don ' t  kill any  o f  G, 
because  there  is an  e n u m e r a t i o n  o f  the algebraic  n u m b e r s . )  

Since  w e  h a v e n ' t  d i s t u r b e d  G, f ( x )  still has  G as its Ga-  
lois  g r o u p ,  a n d  n o  roo t s  in Kmax , but  any  fu r ther  a lgeb ra i c  
e x t e n s i o n  o f  Kma x wil l  fail to e x t e n d  Lm,x by  the  s a m e  de-  

g r e e - t h a t  is, for  any  n e w  a lgebra ic  n u m b e r  y, Kmax(Y,Z) = 
Lmax(y) has  a d e g r e e  o v e r  Kmax(Y) that  is sma l l e r  t h a n  IG[. 
W e  n e e d  to s h o w  that  all the  d e g r e e  a x i o m s  [h], �9 . �9 [ i ~  
are  t rue  for  Kmax--then, s ince  f ( x )  is still roo t less ,  [n] is 

false and  thus  (*) is a l so  false,  as r equ i r ed .  
So s u p p o s e  that  w e  h a v e  a p o l y n o m i a l  g(x)  of  d e g r e e  

1). o v e r  Kmax, w h e r e  by  a s s u m p t i o n  ij is no t  in t he  semi -  
g r o u p  < G > .  g is a p r o d u c t  o f  i r r educ ib le  p o l y n o m i a l s ,  a n d  
at least  o n e  o f  t h e s e  m u s t  no t  h a v e  a d e g r e e  in < G >  (for  
if t hey  all did,  the i r  p r o d u c t  w o u l d ) .  So w e  n o w  h a v e  an  
i r r educ ib le  p o l y n o m i a l  h(x)  w h o s e  d e g r e e  i is n o t  in < G > .  

Let y be  a r o o t  o f  h. T h e n  Kmax(Y) has  d e g r e e  i o v e r  Kmax, 
s ince  h is i r reduc ib le .  C o n s i d e r  the  in te r sec t ion  M o f  Kmax(Y) 
a n d  L,,ax = Kmax(Z). Let dl b e  the  d e g r e e  o f  this f ie ld  o v e r  
Kmax. Since  M is a s u b f i e l d  o f  Lmax, the  s u b g r o u p  o f  G fix- 
ing  it mus t  h a v e  i n d e x  6/1, so  e i t he r  d l =  1 o r  dl is in < G > .  

K x(y) Lr =Kmax(z) 

L--K(z) 

K 
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But dl also divides i because  M is a subfield of Kmau(y), 
which means  we must  have d l =  1, because  we k n o w  i is 
not  in < G > .  Thus M = Kmax: the extens ion fields Kmax(y) 
and  K~ax(z) have only Kmax in common.  

But this means  that every au tomorph i sm of Lmax fixing 
Kmax extends to an au tomorph i sm of  Lmax(Y) fixing K,,ax(y), 
because  it doesn ' t  matter which  of the IGI conjugates of z 
we  use w h e n  forming K . . . .  (y,z)  = K, nax(z ,y )= L ..... (Y). 
Therefore the Galois g roup  of L,,ax(y) over Kmax(J) is still 
G; but  we constructed Kma x so that any algebraic extension 
would  collapse some of G. Therefore K,,ax(y) is not  really 
an extension: y must  already be in K,,ax, which means  that 
h(x)  is of degree 1, and  g(x)  has a root, as was to be 
shown. 

We have n o w  established Theorem 5. 

THEOREM 5- The statement 

(*) ([il]&[i2]& . . . &[im]) ~ [n] 

is true in all fields iff  
(**) f o r  every subgroup G o f  Sn which acts without.fixed-points 
on {1,2 . . . . .  n}, the semigroup < G >  contains one of  the !i. 

(Compared with Theorem 1, Theorem 5 el iminates the 
characteristic 0 hypothesis  and  works in both directions.) 

C o n c l u s i o n  
Theorems 2 and 3 establish the m i n i m u m  algebraic condi-  
t ions necessary for a field to be  algebraically closed, and 
they can therefore be said to "optimize" the Fundamenta l  
Theorem of Algebra. But each specific "degree implication" 
is a first-order c o n s e q u e n c e  of the axioms for fields, and 
could have been  discovered two centuries ago; the exis- 
tence of these finitary relat ionships appears  to have been  
unsuspec ted  by practically everyone,  with one  important  
exception. 

The inspi ra t ion  for T h e o r e m  1 was  the work  d o n e  by 
J o h n  H. Conway  on  "Finite Choice Axioms" in 1970, de- 
ta i led in [Co], Conway,  bu i l d ing  on  earlier work  of 
Mostowski  and  Tarski, ident i f ied  a necessary  and  suffi- 
c ient  condi t ion  for effective impl ica t ions  b e t w e e n  axioms 
of the form "Every co l lec t ion  of n - e l emen t  sets has a 
choice  function."  Conway ' s  group- theore t ic  cond i t ion  is 
very similar to (**), the d i f ference  be ing  that one  could  
use  the semigroup  < H >  for any  s u b g r o u p  H of a g roup  
G acting f ixed-point - f reely  o n  {1, . . . , n}, rather  than  re- 
qu i r ing  G = H. The p resen t  article also bor rows  some  ter- 
minology ,  nota t ional  conven t ions ,  and  proof  ideas from 
Conway ' s  work. 

Theorem 2 was originally proved  by a difficult combi-  
natorial a rgument  that general ized Gauss 's  original proof. 
Corollaries 3 and  4 emerged  dur ing  discussions with Con- 

way, and led ultimately to the formulat ion of Theorem 1 
(which is not hard to prove once  it is formulated just right!). 

Although Theorem 5 may appear  definitive, there are 
several directions for further investigation. 

The algorithm implicit in (**) is slow, but  it can be sped 
up by making certain assumpt ions  about  permuta t ion  
groups; however,  verifying these assumptions  will require 
careful analysis of the O 'Nan/Scot t  Theorem on  maximal  
subgroups  of A,, (see [DM]) and  the Classification of Finite 
Simple Groups. 

There is also a rich theory for several kinds of weak- 
ened degree axioms, such as 

[n]' : "all polynornials  of degree  n are reducible," or 
[nk] : "all po lynomials  of degree  n have a factor of de- 

gree k" (when  k = 1 this is the s tandard  degree axiom [n]). 
These w e a k e n e d  axioms are still expressible in the lan- 

guage of field theory, but  they translate differently into the 
language of Galois groups.  

Finally, the "finite choice axioms" deserve further inves- 
tigation. The great progress in finite group theory over the 
last 35 years ought  to make  it easier  to calculate the rela- 
t ionships be tween  these axioms, including w e a k e n e d  ver- 
sions which identify subsets  or partit ions of {1, . . . , n} in- 
stead of elements.  
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