
IS
SN

 2
52

1-
18

38
   

  z

Economics of adoption 
for digital automated 
technologies in agriculture
Background paper for 
The State of Food and Agriculture 2022

November 2022

FAO AGRICULTURAL DEVELOPMENT ECONOMICS  
WORKING PAPER 22–10



 

 
 



 

Food and Agriculture Organization of the United Nations 

Rome, 2022 
 
 

 
 

Economics of adoption  
for digital automated 

technologies in agriculture 
Background paper for 

The State of Food and Agriculture 2022 

 
James Lowenberg-DeBoer 

PhD, Elizabeth Creak Chair of Agri-Tech Economics, Harper Adams University 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 
 

Required citation: 

Lowenberg-DeBoer, J. 2022. Economics of adoption for digital automated technologies in agriculture. Background paper for 
The State of Food and Agriculture 2022. FAO Agricultural Development Economics Working Paper 22-10. Rome, FAO. 
https://doi.org/10.4060/cc2624en 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The designations employed and the presentation of material in this information product do not imply the expression of any 
opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or 
development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or 
boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does 
not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not 
mentioned. 

The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies 
of FAO.  

ISSN 2664-5785 [Print]  

ISSN 2521-1838 [Online]  

ISBN 978-92-5-137080-3 

© FAO, 2022 

 

Some rights reserved. This work is made available under the Creative Commons Attribution-NonCommercial-ShareAlike 
3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo/legalcode).  

Under the terms of this licence, this work may be copied, redistributed and adapted for non-commercial purposes, provided that 
the work is appropriately cited. In any use of this work, there should be no suggestion that FAO endorses any specific 
organization, products or services. The use of the FAO logo is not permitted. If the work is adapted, then it must be licensed 
under the same or equivalent Creative Commons licence. If a translation of this work is created, it must include the following 
disclaimer along with the required citation: “This translation was not created by the Food and Agriculture Organization of the 
United Nations (FAO). FAO is not responsible for the content or accuracy of this translation. The original [Language] edition 
shall be the authoritative edition.” 

Disputes arising under the licence that cannot be settled amicably will be resolved by mediation and arbitration as described in 
Article 8 of the licence except as otherwise provided herein. The applicable mediation rules will be the mediation rules of the 
World Intellectual Property Organization http://www.wipo.int/amc/en/mediation/rules and any arbitration will be conducted in 
accordance with the Arbitration Rules of the United Nations Commission on International Trade Law (UNCITRAL). 

Third-party materials. Users wishing to reuse material from this work that is attributed to a third party, such as tables, figures 
or images, are responsible for determining whether permission is needed for that reuse and for obtaining permission from the 
copyright holder. The risk of claims resulting from infringement of any third-party-owned component in the work rests solely with 
the user. 

Sales, rights and licensing. FAO information products are available on the FAO website (www.fao.org/publications) and can 
be purchased through publications-sales@fao.org. Requests for commercial use should be submitted via: www.fao.org/contact-
us/licence-request. Queries regarding rights and licensing should be submitted to: copyright@fao.org.



 

 
 

iii 

Contents	

Abstract .................................................................................................................................. v 

Acknowledgements ............................................................................................................... vi 

1 Introduction ..................................................................................................................... 1 

2 History of adoption of digital automated technologies in agriculture ............................... 4 

3 Expected benefits of digital automation in agriculture ................................................... 12 

4 Potential digital automation for agriculture in low- and middle-income countries .......... 17 

5 Broader implications of digital automated technology for the agricultural sector .......... 20 

6 Impact of digital automated technologies on income distribution .................................. 22 

7 Policy, regulatory and institutional issues ..................................................................... 24 

8 Summary and conclusions ............................................................................................ 27 

References ........................................................................................................................... 28 

Annex 1. Glossary ................................................................................................................ 36 

 

 	



 

 
 

iv 

Table	

Table 1. Selected milestones in digital automation in agriculture ........................................ 5 
 

 

Figure	

Figure 1. Percentage of American agricultural input dealerships using GNSS between 
2000 and 2017 ....................................................................................................... 7 

  



 

 
 

v 

Abstract	

The world is in the early stages of a wave of digital automation in agriculture. However, not 
all digital technologies are accessible nor worth investing by agricultural producers. 
This study investigates the appropriateness of a wide range of digital solutions, including in 
low- and middle-income countries, and, based on available evidence, summarizes the 
expected (social, economic and environmental) impacts of such technologies. The study 
further discusses the main drivers and barriers to adoption and the role of policies and 
regulations in creating an enabling environment.  

This study finds that digital automation has already been successfully used in agriculture for 
several decades (e.g. robotic milking), with many more technologies in the pipeline 
(e.g. mobile autonomous equipment). Digital automation solutions can help reduce labour 
gaps, while generating new, skilled and entrepreneurial job opportunities; increase 
productivity and efficiency; and improve environmental sustainability and resilience. They can 
also be more easily adapted to local contexts (e.g. large- vs small-scale production; small, 
irregular and hilly fields vs large, rectangular fields). 

However, realizing these benefits depends on the availability of appropriate digital 
infrastructure in rural areas, appropriate legal and regulatory frameworks, an enabling 
environment and on the digital and technical capacity of agricultural producers. 

 

Keywords: digital technology, automation, sustainability, labour, income distribution. 

JEL codes: Q16, Q18, J24, O15. 
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1 Introduction	

The world is in the early stages of a wave of digital automation in agriculture. This technology 
wave includes growing use of robots in crops and livestock production, global navigation satellite 
systems (GNSS), on-the-go variable rate input application and operator assistance systems 
which optimize combine (and other machine) settings based on sensor output (see Annex 1). 
Digital automation goes beyond previous mechanical technology by automating some of the 
decision making as well as the physical work. As with previous waves of agricultural technology, 
farmers and agribusinesses are in the process of identifying which digital automation 
technologies are worthwhile. The general objective of this study is to describe the economic 
potential for widespread adoption of that technology worldwide including low- and middle-
income countries. The study is of interest to farmers, agribusinesses, agricultural researchers, 
manufacturers, policymakers and the general public who have an interest in food security, the 
environment and rural livelihoods. 

Innovations in agricultural technology have the potential to improve food security, reduce the 
environmental footprint of agriculture and help societies achieve food sovereignty goals. 
However, technology will only be adopted if they bring substantial benefits to farmers, including 
financial benefits but also reduced workload, increased flexibility in work schedules, risk 
mitigation and improved nutrition and wellbeing. With every new wave of agricultural technology, 
farmers and agribusinesses must differentiate between those technologies that help them solve 
their problems from those that solve the problems of others. Technologies may be introduced 
for a wide range of reasons. Researchers and technology developers often innovate to solve 
farmers’ problems or to achieve their notions of public good. Governments and non-
governmental civil society organizations may advocate, subsidize and promote new 
technologies to achieve public goods, which may or may not advantage farmers. Manufacturers 
and retailers usually introduce new technologies to increase their profits. Farmers and 
agribusinesses use many sources of information – research, press and social media, field days 
and farm show, (governmental and non-governmental) extension programmes and discussions 
with friends, family and neighbours – to identify and test the performance of technologies on the 
farm. It is the professional responsibility of agricultural economists, rural sociologists and other 
social scientists to provide information to help farmers, agribusinesses and those who advise 
them to sort through the flood of new technology.  

Agricultural work is often perceived as physically challenging drudgery. Consequently, 
automation has been a goal from the earliest days of agriculture. Tools and machines were 
developed to make work easier and more effective. The first step of that process were manual 
tools (e.g. hoes, shovels, rakes). Subsequent steps included machines (e.g. ploughs, seeders, 
harrows) pulled by traction animals (e.g. horses, cattle, donkeys, camels) and more complex 
mechanical equipment powered by internal combustion engines (e.g. tractors, combine 
harvester). In the future, that mechanical equipment might be powered by electricity generated 
from wind and solar installations, hydrogen, methane or other renewable power sources. For the 
purpose of this study, agricultural automation can be defined as a general technology category 
in which human physical work and human decision-making are substituted for machinery and 
equipment to perform agricultural operations, reduce or eliminate human direct intervention and 
improve their precision.  

Sensors, computers and other electronic technology created the possibility of automating some 
agricultural decisions, as well as the physical work of tilling soil, sowing seeds, removing weeds 
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and harvesting. In farming beyond the gardening scale, mundane decisions such as sowing 
depth by soil texture, distinguishing between weeds and crop plants, and selective harvesting 
of mature products, can become a special kind of drudgery. With computerization came the 
vision of making agriculture more site-specific instead of implementing one-size-fits-all crop 
management. This vision was labelled precision agriculture. A similar vision of making livestock 
management more specific to individual animals was labelled precision livestock farming. In the 
earliest stages of precision agriculture, computers and sensors were often used to collect data, 
which was then analysed by a human manager who would create a prescription map or other 
instructions for human operators or machines. But from the beginning the idea of on-the-go 
decision-making by computer algorithms was part of the vision (Mulla and Khosla, 2016). Initially 
that decision-making was by deterministic algorithms using programmed decision rules but, in 
the future, those decisions will incorporate learning from data collected by the machine via 
artificial intelligence (AI; see Annex 1). This study focuses on agricultural digital automation 
technologies that both automate physical work and some of the decision-making. 

Technology choice is a long-term interest to those who studied agricultural economics as far 
back as eighteenth century France, who compared the benefits of oxen and horses for tillage 
(Neill, 1948). There is a rich literature analysing agricultural technology choices (Cochrane, 
1958; Doss, 2006; Feder, Just and Zilberman, 1985; Feder and Umali, 1993; Lee, 2005). 
Microeconomic theory has argued that the choice of production technology in any sector should 
be utility maximizing (Henderson and Quandt, 1958), and farm management experts have 
agreed (Boehlje and Eidman, 1984; Kay, Edwards and Duffy, 2020). Choosing technology to 
maximize profit is usually the easiest analysis to implement, but utility theory indicates that there 
are many other factors (e.g. value of leisure time, risk, capital and other resource constraints, 
transactions costs). While most new technology must at least cover costs to be widely adopted, 
in some cases those other sources of utility are more important than profit maximization.  

An important aspect of the study of agricultural technology has been documenting the patterns 
of technology adoption. One of the first studies of agricultural technology adoption was the work 
on hybrid maize by Grilliches (1957). Subsequently, there were adoption studies of tractors 
(Clarke, 1991), conservation tillage (Nelson, 1997) and many other technologies. The adoption 
of precision agriculture technology is relatively well documented. Lowenberg-DeBoer and 
Erickson (2019) review data on the adoption of precision agriculture technologies and show that 
some, such as global navigation satellite systems (GNSS) have been among the most rapidly 
adopted agricultural technologies in history, while others, such as variable rate technology 
(VRT) for fertilizer, have lagged. Lowenberg-DeBoer (2018) argues that economic benefits have 
been a good predictor of long run adoption of PA technology, but in the shorter run adoption 
patterns are more difficult to predict because they depend on a multitude of factors including 
education level of farmers, credit availability, marketing of the technology and social pressure 
in rural communities. Tey and Brindal (2022) did a meta-analysis of precision agriculture 
adoption studies and showed that economic benefits are the most reliable predictor. Adoption 
of digital automated agricultural technologies other than those that are categorized as precision 
agriculture (e.g. GNSS, VRT) are relatively recently introduced and only sparsely documented.  

The information gap addressed by this study is the lack of a comprehensive overview of the 
economics of adoption of digital automated technologies in agriculture. While there are good 
reviews of the economics of some aspects of digital automated technologies (e.g. precision 
agriculture), most are either outdated, are now starting as technologies enter the market (e.g. 
for crop robotics, targeted pesticide application) or are non-existent (e.g. AI for adjusting 
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combine harvester settings). The general objective is to describe the economic potential for 
widespread adoption of digital automation technology in agriculture worldwide. The specific 
objectives are: 

• Review the adoption history of digital automated technology in agriculture. 

• Summarize the expected benefits from digital automated technology in agriculture, 
the experience of researchers in predicting those benefits and the link between adoption and 
estimated benefits. 

• Provide examples of the potential for adoption of digital automated technology using country 
examples that highlight what would be adopted, where and when. 

• Discuss the implications of digital automated technology for the agricultural sector, especially 
in terms of farm structure, farmer skills and agricultural institutions. 

• Identify the likely impact of digital automated technologies in agriculture for distribution of 
income and rural standards of living. 

• Summarize policy, regulation and institutional issues related to the adoption of digital 
automated technology in agriculture. 
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2 History	of	adoption	of	digital	automated	technologies	in	agriculture	

Multiyear use of a new technology is the best indicator that at least some farmers and 
agribusinesses have found it to be beneficial. Even though computerization of agriculture is 
relatively recent and the history of digital automation in agriculture even shorter, it can provide 
some insights on the economics and potential adoption patterns for the future. This section will 
provide a brief overview of adoption of digital automated technologies by farmers and 
agribusinesses.  

There is a long history of innovation by farmers, blacksmiths, engineers and scientists with the 
goal of producing more food with less human effort (Diamond, 1998; Smith and Marx, 1998; 
Tudge, 1999). In most cases, two forces have driven this innovation: the fact that the Earth’s 
resources are fixed but a growing human population requires more food, and developments in 
other human activities, which provided ideas and innovations able to be adapted for agricultural 
use. For example, the large workhorses that were the main source of agricultural power before 
motorized mechanization were originally bred in the late middle age for military use. With the 
development of crossbows and guns, knights needed heavier armour and consequently 
stronger horses to carry it. Only later did farmers realize that those large horses also enabled 
them to do more work in a day than the oxen, smaller horses and ponies that they previously 
used. The growth of manufacturing in the nineteenth century increased the demand for labour, 
increased wage rates and, as workers migrated to the cities, made it harder to find agricultural 
workers. The steam and internal combustion engines developed for industrial purposes were 
adapted to make the remaining few, better paid farm workers more productive.  

Digital automation in agriculture is largely built on technologies developed for space and military 
use. For example, the ideas for GNSS grew out of the space programme of the United States 
of America and were developed by the military before being released for civilian use. Similarly, 
uncrewed aerial vehicles (UAVs) and satellite remote sensing were first developed for military 
use. The motivation for adapting these technologies for agricultural use is familiar from earlier 
waves of agricultural innovation, namely that farmers needed to produce more food with fewer 
workers and less resources. However, with digital automation the environmental motivation has 
become more urgent. Using fewer resources in production is not just cost saving, but also 
reduces the environmental burden on the planet.  

Because data on the use of digital automation technologies in agriculture is sparse, it provides 
at best an impressionistic view of adoption patterns. No country or international organization 
systematically collects data on the use of digital automated technologies in agriculture. There 
are a few precision agriculture adoption studies using standard sample survey methods 
(e.g. Australia, Denmark, United Kingdom of Great Britain and Northern Ireland and the United 
States of America) and many studies of a broader range of technologies using less robust 
methods (e.g. internet surveys, interviews with participants in farm machinery shows, data 
collected for marketing purposes). Understanding of digital automated technologies in 
agriculture must be developed by using this data in the same way that an art lover would view 
an impressionistic painting. Up close, the impressionistic painting is a collection of dots. From 
some distance, taking in the whole painting, those dots form patterns. Similarly, any individual 
adoption survey is of limited value because of the technology and country specifics involved. 
It is only when they are considered as a whole that patterns emerge. 
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Table 1. Selected milestones in digital automation in agriculture 

Year  Technology or 
activity 

Company or 
organization 

Country Reference  

1974 Electronic ID for 
livestock 

Montana State 
University 

United States of 
America 

Hanton and Leach 
(1981) 

1983  Executive order that 
allowed civilian use 
of GPS  

United States of 
America 
government  

United States of 
America 

Brustein (2014) 
Rip and Hasik (2002) 

1983 UAV fertilizer and 
pesticide application 

Yamaha Japan Sheets (2018) 

1987  Computer-controlled 
VRT fertilizer  

Soil Teq  United States of 
America 

Mulla and Khosla 
(2016) 

1992  Milking robot Lely Netherlands Lely (2022) 
Sharipov et al. (2021) 

1997  GNSS agriculture 
equipment guidance  

Beeline  Australia Rural Retailer (2002) 

1997  Nitrogen sensor Yara Norway Reusch (1997) 

2006  Automated sprayer 
boom section 
controllers  

Trimble United States of 
America 

Trimble (2006) 

2009  Planter row shutoffs  Ag Leader United States of 
America 

Ag Leader (2018) 
  

2011 Weeding robot Ecorobotix 
Naïo 
Technologies  

Switzerland 
France 

Ecorobotix (2022) 
Naïo Technologies 
(undated) 

2013 Combine harvester 
operator assistance 
system 

Claas Germany Claas (2022) 

2017  First fully  
autonomous field crop 
production  

Harper Adams 
University  

United Kingdom of 
Great Britain and 
Northern Ireland 

Hands Free Hectare 
(2018) 

2018 Autonomous 
chaser bin 

Smart Ag United States of 
America 

Smart Ag, (2018) 
 

2022 Autonomous large-
scale tractors 

John Deere United States of 
America 

John Deere (2022) 

Source: Author’s own elaboration. 

Table 1 lists selected milestones in digital automation in agriculture. The dates, countries and 
technologies listed are intended to be indicative of general adoption patterns, but will be 
discussed for years by technology historians. No technology springs fully developed from the 
laboratory or design studio to the farm. It is an iterative process. With basic research opening 
new opportunities for technology development, applied research to show the potential for 
application of this new science, technology development that converts scientific ideas into 
usable commercial products, and entrepreneurship that takes those potentially commercial 
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technologies from the factory to the farm. Sometimes each step takes years and there are many 
false starts along the way. In many cases, there are parallel developments in different countries 
and by several companies or research organizations. The list in Table 1 has attempted to list 
the first mover for each technology, but dating technology introduction is not always simple. It is 
not always clear when a technology moves from being a scientific discovery, to a prototype, to 
the beta test stage and from there to being a standardized commercially product. 

2.1 Digital	automation	of	livestock	production	
Digital automation of livestock farming requires identifying individual animals. From time 
immemorial, farmers identified their animals by colour, shape of the head and body, sound and 
other physical characteristics. In the late sixteenth century metal ear tags were developed, 
but still required a human to read them and act on the information. A radio frequency 
identification (RFID) system for cattle was developed in the 1970s. Initially, the RFID technology 
was in the form of a glass bolus placed in the rumen. In the early 1980s an implantable chip 
technology was created (Hanton and Leach, 1981). Governments in some industrialized 
countries now require electronic identification (EID) of cattle, sheep and some livestock, mainly 
for disease control purposes. 

Several precision livestock technologies have been developed which facilitated management of 
individual animals based on EID. The most common digital automated technology in agriculture 
is milking robots, which allow cows to be milked without direct human involvement. Traditionally, 
milking was done by hand. The conventional machine milking uses a vacuum technology that 
mimics a calf sucking, but still requires a human operator to place the milk machine on cow 
(or other dairy animal) and remove it when milking is completed. Because the udder shape 
differs slightly from animal to animal, attaching the milk machine and removing it could not be a 
simple mechanical process. EID allowed a milking robot to access a database of udder 
coordinates for specific cows (Knight, 2020). Milking robots have been adopted by around 
30 percent of dairy farms in Iceland and Sweden and more than 20 percent of those in countries 
such as Belgium and the Netherlands. Adoption has been lower in other major dairy countries, 
such as Canada and the United Kingdom of Great Britain and Northern Ireland (7 percent), 
the United States of America (3 percent), and Australia and New Zealand (less than 1 percent) 
(Eastwood and Renwick, 2020). Many of the milking systems are linked to automated feeding 
varying amounts of concentrates to cows based on milk production (Ordolff, 2001). Other digital 
automated technology in livestock agriculture include poultry feeding systems based on bird 
weight, egg counting and computerized control of ventilation based on temperature and humidity 
(Banhazi et al., 2012). 

2.2 Global	navigation	satellite	systems	is	key	for	digital	automation	of	
crops	

Because plants are not self-mobile, digital automation of crop production is possible if the 
location of a block of plants or individual plants is known. In this sense, GNSS was an essential 
precursor to digital automation of crop agriculture. The development of the Global Positioning 
System (GPS) but the United States of America is listed in Table 1 because it is the first such 
system that was made available for civilian use. Other countries subsequently made their 
system available, including the European Galileo system, which went live in 2016, the Russian 
Global Navigation Satellite System (Russian acronym: GLONASS) which was declared fully 
operational in 1993, and the Chinese Beidou system, which was completed in 2020. Lowenberg-
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DeBoer and Erickson (2019) document that GNSS guidance is widely adopted in most 
industrialized countries and is in the process of becoming standard practice in mechanized 
agriculture worldwide.  

Figure 1. Percentage of American agricultural input dealerships using GNSS between 
2000 and 2017  

  

Notes: GPS-guidance refers to manual GNSS guidance before introduction of autosteer. GPS-guidance with auto 
control/autosteer was introduced on the American market around 2003, following the GPS-guidance with manual 
control/lightbar. Finally, GPS-enabled sprayer boom/nozzle control is for more targeted pesticide application.  

Source: Adapted from Erickson, B. & Lowenberg-DeBoer, J. 2021. 2021 Precision Agriculture Dealership Survey 
Confirms A Data Driven Market For Retailers. www.croplife.com/precision/2021-precision-agriculture-dealership-
survey-confirms-a-data-driven-market-for-retailers/#slide=87709-87729-3 

The rapid adoption of GNSS guidance in agriculture is exemplified in Figure 1, using the case 
of the United States of America. The figure is based on a survey by CropLife-Purdue Precision 
Agriculture, and was done with some of the same questions and a consistent methodology 
annually or biannually since the late 1990s; consequently, it provides a good perspective on 
precision agriculture technology trends. While this data is for dealerships and not farmers, it is 
highly relevant to the situation of the United States of America because many American farmers 
access precision agriculture as a service provided by cooperatives and fertilizer retailers. 
The use of GNSS guidance by dealers is similar to the use of that technology by their famer 
customers. Note that, prior to 2003, only GNSS manual guidance (i.e. lightbars) were available 
commercially in the United States of America. They were introduced in Northern America in the 
late 1990s. When the question about guidance was first asked on the CropLife-Purdue survey 
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in 2000, 24 percent of dealers were already using the technology. Manual GNSS guidance use 
by dealers peaked in 2009 at 79 percent. Since then, it has been replaced by autosteer which 
has now almost completely taken over steering. Autosteer requires a greater investment than 
manual GNSS guidance, but it is preferred when opportunity cost of capital is low as it is more 
precise and requires less effort from the human driver. In recent years, 80–90 percent of dealers 
have been using GNSS autosteer. The estimate varies slightly from year to year due to sampling 
variation. Combining all dealers that use some kind of GNSS guidance (manual or autosteer) 
the total is well over 90 percent. In terms of digital automation, what GNSS guidance initially did 
for the dealers was to help in steering tractors, fertilizer applicators and pesticide sprayers.  

Technology is coming onto the market, taking the GNSS role a few steps further, by allowing 
the user to control input application more precisely. This includes sprayer boom control and 
nozzle control, which controls which areas are sprayed. It avoids applications on waterways, 
field paths, grass headlands and other non-crop areas. It also reduces double spraying of 
headlands. Sprayer boom control was commercially launched in 2006. By 2011, when the 
question was first asked on the CropLife-Purdue survey, 38 percent of dealers were using the 
technology. Use of sprayer boom control has risen to about 75 percent of dealers, following an 
adoption path similar to that of GNSS guidance. Seeder row shutoffs are a similar technology, 
which are mostly used to avoid seeding on non-crop areas and double seeding of end rows. 
Seeder row shutoffs are seldom used by American agricultural dealers because they do not 
usually provide seeding services, but are used directly by farmers. Anecdotal evidence suggests 
that seed row shutoffs are following a similar adoption path among American farmers.  

While worldwide precision agriculture technology in general and GNSS guidance in particular 
was first used by larger farms (Lowenberg-DeBoer and Erickson, 2019), evidence from the 
United States Department of Agriculture (USDA) suggests that GNSS guidance is being used 
on American field crop farms of all sizes (Schimmelpfennig and Lowenberg-DeBoer, 2021). 
For example, GNSS guidance was used by over 80 percent of the largest farms in the USDA 
2017 survey of winter wheat growers and 18 percent of the smallest farms. Similarly, GNSS 
guidance was used by 78 percent of the largest corn farms in the 2016 USDA survey and 
9 percent of the smallest farms. In the United States of America, the lag in GNSS guidance 
adoption on the smaller farms is hypothesized to be linked to equipment replacement patterns. 
Smaller farms often buy used equipment. Consequently, when new technology is introduced in 
new equipment, it takes a few years before that technology is on the used equipment market. 

2.3 Variable	rate	technology	for	input	application	
As civilian GPS equipment started to become available in the mid-1980s, research using it to 
guide agricultural input application started. The variable rate fertilizer field trials using Soil Teq 
(see Table 1) equipment in Washington, United States of America in 1987 is a good example. 
By the mid-1990s, some innovative farm cooperatives and American agricultural input dealers 
were offering variable rate fertilizer as a service for farmers (Akridge and Whipker, 1996, 1997; 
Lowenberg-DeBoer and Aghib, 1999). Commercialization of VRT applications started in 
Australia and Europe around the same time. Farmer adoption of map-based VRT has 
disappointed precision agriculture researchers and the companies commercializing the 
technology. With the exception of a few niches (e.g. VRT nitrogen on sugar beets in the states 
of Minnesota and North Dakota, United States of America), VRT fertilizer adoption is, on 
average, rarely over 20 percent of farmers or planted area anywhere in the world (Lowenberg-
DeBoer and Erickson, 2019).  
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Thousands of research trials around the world and economic analysis based on those trials 
suggests that the main reason for the modest adoption of VRT fertilizer is lack of consistent 
profitability (Lowenberg-DeBoer, 2018). Trials often show mixed economic results. VRT fertilizer 
is profitable for some seasons and some crops, but result in losses in other cases. Map-based 
VRT is at an economic disadvantage compared to sensor-based VRT, as the underlying soil 
information is quite costly. This is partially due to it typically being based on manual soil sampling 
and laboratory analysis, and partially because it requires a separate step, in which an 
agronomist creates a prescription map. This human step is costly, slows down the process and 
can result in errors. Another reason for modest adoption of VRT is that the cost of misapplication 
(usually over application) is low. It is quite difficult to track excessive fertilizer application to a 
specific farm or field and, worldwide, very few jurisdictions attempt to make individual farmers 
and agribusinesses legally responsible for the subsequent environmental damage.  

However, the VRT fertilizer systems developed in the 1980s and commercialized in the early 
1990s were automated only in the sense that fertilizer application was controlled by GNSS and 
an agronomist-created recommendation map. On-the-go systems in which fertilizer application 
was changed based on sensor readings in the field were developed in the mid-1990s (Reusch, 
1997) and first commercialized for nitrogen application by the YARA company based in Norway 
(see Table 1). By the early 2000s, there were several companies in Europe and Northern 
America offering similar on-the-go nitrogen variable rate application systems. In spite of 
widespread publicity in the farm media, intensive extension efforts in some countries and 
subsidies, adoption of the sensor-based on-the-go nitrogen variable rate fertilizer systems have 
remained very modest everywhere (Lowenberg-DeBoer and Erickson, 2019). For example, 
Denmark is a country with a strong extension system, educated farmers and rigorous 
environmental laws, which, in theory, should encourage use of sensor-based nitrogen fertilizer 
systems; however, in 2021 only 2 percent of Danish farms used sensor-based fertilizer 
application (Denmark Statistics, 2021), amounting to only 4 percent of total crop area. Sensor-
based, on-the-go variable rate fertilizer systems have been proposed for other soil nutrients 
(phosphate, potassium) and other soil amendments (e.g. lime), but not commercialized. 

2.4 Autonomous	crop	machines	
For decades, universities and research institutes have had prototype autonomous crop 
machines that they would demonstrate on parking lots and football pitches. A few were even 
evaluated in the field for specific crop operations (Lowenberg-DeBoer et al., 2020). In 2017, 
Hands Free Hectare marked a turning point: it was the first public demonstration of how 
autonomous crop machines could be used throughout the growing season to produce and 
harvest commercial crops (Harper Adams University, 2018). In the last five years, major 
manufacturers of farm equipment have announced their autonomous machines (Table 1) and 
there are over forty start-up companies around the world focused on developing commercial 
autonomous crop machines.  

Because autonomous crop machines started to be commercialized very recently, data on their 
use is very limited. Weeding robots are being trialled all over Europe, but only France has made 
the approximate number of robots public information. Lachia et al. (2019) estimated that there 
were 150 weeding robots used in 2018 in France, mainly for weeding organic vegetables and 
sugar beets. Similarly, in Northern America, various autonomous crop machines are starting to 
be commercialized, but quantitative estimates are rare. Erickson and Lowenberg-DeBoer (2021) 
estimate that 4 percent of agricultural input dealerships use robots for crop scouting services 
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and 2 percent use them for providing weeding services. However, those dealers expect 
substantial growth by 2024, with 18 percent expecting to offer robotic crop scouting and 
13 percent expecting to offer robotic weeding. Crop scouting robots are used to gather very 
detailed information on plant conditions (e.g. weed infestation, insect populations, disease 
symptoms, nutrient deficiencies). They can be used in combination with remote sensing. 
The satellite or UAV images provide a general perspective. Robots are sometimes programmed 
to collect detailed data on anomalies (e.g. areas where crop growth is lagging) identified via 
remote sensing.  

2.5 Uncrewed	aerial	vehicles	
Uncrewed aerial vehicles are the “robots in the sky.” As ground-based autonomous machines, 
UAVs have been a popular topic for agricultural researchers and in farm media for the last few 
years. Most UAVs are used for information gathering, but they can also be used to automate 
input application. In most cases, UAV input application is like map-based VRT, while information 
gathering is a separate activity. An operator creates the application map, and the UAV only 
delivers the input to the site. UAVs are especially useful for spot spraying pesticides or localized 
fertilizer application. Many industrialized countries regulate UAVs tightly because of concerns 
about spray drift and possible negative interactions with civil or military aviation. Consequently, 
UAV input application is often banned or highly regulated. In the United Kingdom of Great Britain 
and Northern Ireland, UAV spraying herbicides is currently allowed only for applying herbicide 
to inaccessible location under limited conditions. Switzerland has led Europe in allowing some 
more flexible testing of UAVs for input application (Lowenberg-DeBoer et al., 2021). The 2021 
CropLife survey shows that 14 percent of agricultural retailers in the United States of America 
provided UAV input application services that year. By 2024, 29 percent of those agricultural 
input dealers expect to offer UAV input application services (Erickson and Lowenberg-DeBoer, 
2021). Anecdotal accounts indicate that UAV input application is quite common in some low- 
and middle-income countries, such as Brazil and China. Kendall et al. (2022) provide survey 
data from the Hebei and Shandong regions in China’s north plain, which indicates that the only 
precision agriculture technology used by a substantial number of farmers in that area is UAV 
spraying. Many technical challenges remain with UAV spraying, especially pesticide drift 
(Carvalho et al., 2020; Wang et al., 2021). 

2.6 Artificial	intelligence	
The potential for AI is much discussed in agricultural research, farm machinery manufacturing 
circles and the farm media (Coral, 2020; Cunningham, 2020; Jha et al., 2019; Marr, 2019; 
Patrício and Rieder, 2018; Pauly, 2021; Peskett, 2020), but so far there are few examples of 
practical use. Combine harvester manufacturers claim to use AI in their operator assistance 
(Claas, 2022; Marr, 2019), but it is not clear how much machine learning is involved. Much of 
the combine operator assistance seems to be deterministic software that depends on 
conventional programming, such as table lookup. The use of AI in agriculture seems to mostly 
still be in the research and development pipeline.  

While data is sparse, adoption of digital automation for agriculture in middle-income countries 
with substantial mechanized agriculture sectors seems to follow the same pattern as adoption 
in high-income countries (Griffin, Lowenberg-DeBoer and Lambert, 2005; Lowenberg-DeBoer 
and Erickson, 2019). For example, combine harvester yield monitor use started in Latin America 
and South Africa about the same time in the mid-1990s as it started in the United States of 
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America and western Europe. Early in the yield monitor adoption process, Argentina led the 
world in terms of percentage of combines equipped with yield monitors and GNSS. In the late 
1990s it was estimated that 87 percent of yield monitors in Argentina were used with GNSS, 
compared to only a third in the United States of America (Griffin, Lowenberg-DeBoer and 
Lambert, 2005). Without GNSS to provide location data, yield maps cannot be made. This rapid 
adoption of yield monitors with GNSS in Argentina was linked to their structure of farming, with 
many large farms managed by professional farm managers. For those farm managers who 
rarely operate farm equipment the yield maps were new information, while in those parts of the 
world with more family farms, and therefore where farmers do more of the machine operation 
themselves, the yield maps helped quantify patterns of which they were already aware. 
Similarly, VRT fertilizer was introduced in Latin America and South Africa about the same time 
as it was started in Northern America and western Europe, and it has shown a similar mixed 
adoption pattern. For example, in a survey of large-scale commercial farmers in Brazil in 2013, 
26 percent reported using VRT fertilizer, mostly with vary coarse sampling resolution  
(Molin, 2016). In the United States of America the most common sampling strategy is a roughly 
one-hectare grid, but in the 2013 survey in Brazil, only 16 percent of farmers used a grid of 
1 hectare or less. Some Brazilian farmers reported using grid sizes over 9 hectares, which would 
not be considered precision agriculture in many other parts of the world. GNSS guidance is also 
being adopted in middle-income countries. An internet-based survey of Argentinian farmers in 
2018 showed 60 percent were using GNSS guidance (Melchiori and Garcia, 2018). The 2013 
survey in Brazil showed that already at that time 23 percent of farmers were using GNSS 
guidance and 14 percent were using lightbars. Anecdotal evidence suggests the GNSS 
guidance adoption is common on larger farms throughout Latin America and Africa. In general, 
GNSS guidance is being adopted almost everywhere where there is mechanized agriculture, 
and variable rate technology is still at the evaluation stage for many farmers, with widespread 
awareness of the technology but modest adoption levels. Variations from those general patterns 
of adoption are often related to crop choice, cost of capital, wage rates and other economic 
parameters.  

Adoption of digital automation in agriculture for non-mechanized agriculture anywhere in the 
world is negligible. This non-adoption is largely because digital automation from mechanized 
agriculture does not transfer easily to non-mechanized farms and research to adapt digital 
automation for smallholder farm is almost non-existent. Almost no digital automation has been 
developed and commercialized with the non-mechanized smallholder farmer in mind.  
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3 Expected	benefits	of	digital	automation	in	agriculture	

Consideration of the expected benefits of digital automation in agriculture almost always starts 
with labour costs and labour availability, but often quickly moves on to the benefits of greater 
precision in application, individualized management of animals and plants, more data which can 
be analysed to fine tune decision, selective harvest and other benefits not related to labour. 
Availability of information on economic benefits varies widely among digital automation 
technology in agriculture. In this section, economic analysis of benefits will be presented for four 
technologies that have attracted the attention of economic researchers: robotic milking, 
GNSS guidance, VRT fertilizer and autonomous crop machines. 

3.1 Milking	robots	
Evidence of the monetary benefits of milking robots is mixed. Economic benefits can result from 
labour savings, up to around 18–30 percent in some studies, but around 10 percent on average, 
(Hansen, 2015), and increased milk production, perhaps of 10–15 percent per cow (Drach et 
al., 2017; Hansen, 2015; Steeneveld et al., 2012). Steeneveld et al. (2012), for example, 
quantified the capital cost of automated milking at EUR 12.71 per 100 kg of milk instead of EUR 
10.10 per 100 kg of milk for conventional milking machine systems. However, Steeneveld et al. 
(2012) also found little difference between the economic performance of robotic milking and 
conventional systems.  

While the labour required to operate robotic milking systems is minimal, human time and effort 
is needed to interpret the vast amounts of data collected by these systems. Farmers, as well as 
workers, can find themselves doing different work, rather than less work (Bear and Holloway, 
2019; Rose and Chilvers, 2018), and the stress of dealing with the vast quantity of data could 
negatively impact mental health (Hansen, 2015). The animal welfare implications caused by the 
changing relationship between humans and animals (i.e. less contact between them) have also 
been explored (Bear and Holloway, 2019; Butler and Holloway, 2016; Driessen and Heutinck, 
2015), although it is noted that data from automatic milking systems (AMS) can be used to 
identify health and welfare issues with stock. Introduction of AMS has also been associated with 
the restructuring of national dairy systems with the total number of farms reduced and the 
remaining farms getting larger (Tse et al., 2017; Vik et al., 2019). Regardless of the relative 
efficacy of robotic milking versus conventional systems, the experience of changing farm 
workflows and structures after implementation provides a precedent for identifying some of the 
social, ethical and legal implications of robotic systems in arable farming.  

Overall, the conclusion that emerges from the research is that while the profitability of AMS 
varies from farm to farm, overall they reach breakeven, and farmers adopt the systems for the 
more flexible work schedule and quality of life benefits (Bergman and Rabinowicz, 2013; Castro 
et al., 2015; Hansen, 2015; Vik et al., 2019). Dairy farmers particularly appreciated the ability to 
spend more time with family and in community activities. It should be noted that, until very 
recently, most AMS were installed on small- to medium-sized family run dairy farms 
(i.e. between 100 and 300 cows). Often milking robots were installed as part of an 
intergenerational transfer on the farm given that the younger generation was interested in dairy 
farming, but not eager to take on milking cows two or three times per day. Recent anecdotal 
accounts indicate that large dairy farms (> 1 000 cows) install AMS due to concerns about hired 
labour availability. The decision to use robotic milking thus differs across dairy farms of different 
sizes. 
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3.2 Global	navigation	satellite	systems	guidance	
The first published economics study on GNSS guidance was done in the late 1990s at Purdue 
University, with data supplied by the companies who first introduced GNSS (Lowenberg-
DeBoer, 1999). The study focused on the benefits of GNSS lightbar systems because autosteer 
was not yet on the American market. It summarizes the qualitative benefits of GNSS lightbar 
guidance and quantifies the benefits of reduced skip and overlap compared to the foam and 
disk markers used up to that time. Skip occurs when the application passes are too far apart, 
such that some areas do not receive the input. To avoid skip, farmers with conventional 
technology often overlap input application passes, which leads to excessive, wasteful doses of 
input being applied. With manual driving overlap also occurs when the machinery turns on end 
rows. Thus, for custom operators, the reduction in skip and overlap from GNSS can cover the 
initial investment in the technology and show a modest benefit. The situation was similar for the 
many farmers who had already invested in GNSS for yield monitoring. Finally, the study 
predicted the growth of GNSS autosteer in agriculture based on technology that was already 
being used in construction and mining at that time.  

Subsequent studies further confirmed the benefit and potential of related technologies. Watson 
and Lowenberg-DeBoer (2004) further considered autosteer technology, as well as the potential 
for farm expansion and controlled traffic. They concluded that autosteer would be profitable for 
many American farmers. Looking at the whole farm context, Griffin et al. (2005) evaluated the 
increase in timeliness from using GNSS guidance. Batte and Ehsani (2006) added sprayer 
boom section control to the analysis and concluded that its benefits were largest when used in 
irregular shaped fields and fields with obstructions like waterways, trees and rocks. Bergtold et 
al. (2009) estimated the benefits of autosteer in cotton production. Ortiz et al. (2013) estimated 
the benefit for autosteer for groundnut production. Griffin and Lowenberg-DeBoer (2017) 
examined the potential for reintroducing mechanical cultivation weed control in row crop 
systems using GNSS guidance. They found that, when herbicides were expensive or 
unavailable, mechanical weed control with GNSS guidance could help farmer avoid weed-
related yield losses and maintain profitability. 

The business case for GNSS guidance facilitated its adoption. The overall conclusion from the 
available research is that the largest benefits from GNSS guidance are a reduction in skip and 
overlap in input application. Reduction in operator fatigue, ability of family workers to work longer 
hours, flexibility in hiring drivers (i.e. driver skill is less of an issue), environmental benefits from 
reduction in overlapping applications and other more difficult to quantify advantages are treated 
as side effects in the adoption decision. The fact that benefits of GNSS guidance are realized 
quickly (e.g. input saving from reduction in overlap is almost immediate) and are visible to the 
farmer and the neighbours (e.g. reduced weed strips resulting from herbicide skips) also aid 
adoption. 

3.3 On-the-go	sensor-based	VRT	fertilizer	
The economic benefits of variable rate technology of any type are linked to reducing input 
application and to optimizing crop yield. Environmental benefits are hypothesized when over-
application of inputs is reduced in areas where those inputs are not needed to optimize yield. 
Fertilizer VRT was the first VRT to be commercialized and still represents the largest proportion 
of VRT application worldwide. Many evaluations of map-based VRT fertilizer also exist based 
on different soil nutrient variability data, different mapping making tools and varying application 
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equipment. Overall, those studies show mixed results of profitability (Lowenberg-DeBoer, 2018). 
Some show fertilizer reductions when compared to farmer practice and, more rarely, when 
compared to scientifically based extension recommendations. A few show overall yield 
increases. Companies sometimes advertise VRT as a cost-saving technology, although VRT 
fertilizer rarely reduces fertilizer expenses enough to cover the extra cost of testing the soil, 
making the recommendation map and variable rate spreading. To be profitable, VRT fertilizer 
often requires yield quality and quantity to increase. An example of yield quality improvement 
with VRT fertilizer is the higher sugar content of sugar beets when nitrogen fertilizer is site-
specific according to the plant requirements and the soil nitrogen content. Sugar beet 
processors often pay a premium for higher sugar content beets.  

The modest adoption of VRT fertilizer around the world can be linked to this mixed economic 
record. Farmers intuitively like the idea of putting fertilizer where it is most needed, but they are 
not convinced that with current technology it could be a profitable practice. Consequently, 
modest adoption estimates for VRT fertilizer suggest the technology is used only where it has 
proven consistently profitable (e.g. nitrogen on sugar beets, lime on soils with a very wide range 
of soil acidity), or by farmers that continuously hope that it will increase profitability.  

Sensor-based VRT fertilizer has also been evaluated many times around the world (Colaço and 
Bramley, 2018; Lowenberg-DeBoer, 2018), mostly for VRT nitrogen fertilizer applications. 
Like map-based VRT, sensor-based technology depends on input cost reductions and 
optimizing yield for economic feasibility. In theory, sensor-based VRT fertilizer has economic 
advantages – e.g. sensor information often cheaper than soil sampling or other soil information 
source as fertilizer is adjusted by a computer algorithm, which does not require an agronomist 
for making the recommendation map. However, the literature shows mixed profitability results 
that are similar to that of map-based VRT fertilizer. For example, a partial budgeting analysis – 
which often focus only on short-term cash costs and yield benefits – shows that, out of 58 VRT 
nitrogen studies, about 25 percent showed economic losses (Colaço and Bramley, 2018). More 
complete economic analyses, which include the cost of equipment investment, training staff and 
other longer-term costs show an even higher rate of losses. Like the map-based VRT fertilizer, 
there is a modest level of adoption, reflecting farmers’ interest in the technology and their efforts 
to find those uses for which the current technology is profitable. 

One of the weak points of most commercial sensor-based VRT fertilizer systems is that they do 
not allow for differences in the productive capacity of the soil in adjusting fertilizer rates. 
To simplify the technology and reduce costs they often adjust fertilizer rates only based on 
sensor readings. For instance, crop colour may signal a lack of nitrogen to the sensor when the 
problem is in fact soil depth or another constraint. Diacono et al. (2013) reviewed 17 studies of 
precision agriculture for nitrogen management on wheat and recommend combining sensor 
data with soil maps, remote sensing images, yield maps and other data to tailor the nitrogen 
application to the site-specific constraints. Some crop nitrogen sensor companies are starting 
to introduce systems that combine sensor data with soil type and texture, previous yield and 
other field information in making fertilizer rate adjustments.  

It is interesting to note that sensor-based VRT is one of the few precision agriculture 
technologies for which research has been done on medium- and small-scale farms in 
developing countries. For example, Ortiz-Monasterio and Raun (2007) tested use of a hand-
held nitrogen sensor with wheat farmers in Yaqui Valley, Mexico. The use of the sensor when 
combined with a nitrogen rich strip for calibration saved farmers an average of USD 56/ha over 
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two crop seasons. A nitrogen rich strip is sometimes used with nitrogen sensors to provide 
information on the reflectance of the crop in that specific soil and climate when it has adequate 
nitrogen. Enough nitrogen fertilizer would be applied in that narrow strip to make it adequate for 
crop needs in all anticipated circumstances. Tobeh et al. (2012) review attempts to use hand-
held nitrogen sensor technology in Africa. Hand-held crop sensors do not fit the definition of 
digital automated machinery, but their developing path is illustrative of the adaptive research 
and innovative business models that would be necessary to make digital technology available 
to small- and medium-scale farmers in low- and middle-income countries. 

3.4 Autonomous	crop	machines	
The assessment of the economic benefits of autonomous crop machines often starts with labour 
savings, and then extends to increased timeliness, greater accuracy of input application, and 
reduced soil compaction when using smaller swarm robots. Because autonomous crop 
machines are just starting to be commercialized, all the public economic analysis is extrapolated 
from research results. Lowenberg-DeBoer and Erickson (2019) did a review of published 
literature on the economics of autonomous crop machines. They found 18 studies, mostly partial 
budgeting analyses of automation of one field operation (e.g. seeding, weeding, harvesting). 
All those studies found autonomous crop machines to be economically feasible in certain 
circumstances.  

Studies implementing whole farm analysis of the economics of autonomous crop machines have 
started to appear in the last few years. Lowenberg-DeBoer et al. (2021) used the Hand Free 
Hectare experience at Harper Adams University to estimate parameters for a linear 
programming analysis of autonomous crop equipment for arable farming in the West Midlands 
of the United Kingdom of Great Britain and Northern Ireland. They show that autonomous 
equipment has the potential to reduce wheat production costs by USD 20–30 per ton, cut 
equipment investment by more than half on some farms – by using smaller, lower cost 
equipment, such as swarm robots – and reduce economies of scale to the point that smaller-
scale farms can achieve minimum costs of production. Shockley et al. (2019) developed a farm 
linear programme analysis based on autonomous crop machine prototypes at the University of 
Kentucky, United States of America. They showed the economic feasibility of autonomous crop 
machines for maize and soybean farms, and highlighted the potential for profitable use of 
autonomous crop machines on small- and medium-sized farms. Lowenberg-DeBoer (2019) 
used the Hand Free Hectare model to look at which farmers in the United Kingdom of Great 
Britain and Northern Ireland would be interested in autonomous grain carts, especially given 
how grain production harvest delays can lead to late seeding of subsequent winter crops and 
thus disrupt entire farming systems. He found that, with current wage ranges, farmers are 
usually better off with human-driven grain carts if they can hire workers reliably; when labour 
availability is lacking, using an autonomous grain cart might be a better option. Al-Amin et al. 
(2021) built on earlier analyses for the United Kingdom of Great Britain and Northern Ireland 
arable farms and showed that the swarm robot cost advantage is accentuated on farms with 
small and irregularly shaped fields.  

Because some countries and states in the United States of America require on-site supervision 
of autonomous crop machines, Lowenberg-DeBoer et al. (2021) considered the economic 
impact of human supervision regulations. They found that, where 100 percent human 
supervision is required, the farmer is better off using conventional equipment. With current 
technology, if human supervision at the field is required, having a human drive the equipment 
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might be a better option. Maritan et al. (forthcoming) examined where human supervision of 
autonomous crop machines would be economically optimal if not required by law or regulation. 
That study shows that remote supervision (e.g. from the office at the farm) is optimal if the task 
to be automated is straightforward. They emphasize the need for greater AI capacity if the 
autonomous machine is to resolve more issues without human intervention. Shockley et al. 
(2021) extended the earlier Kentucky analysis to consider the economic impact of autonomous 
machine speed restrictions and found that, for maize and soybean farms, these can make the 
machines unprofitable.  

Farm labour is becoming increasingly scarce, including in developing countries, especially as 
the rural young migrate to cities. The development of small, low-cost autonomous crop 
machines for small- and medium-scale farms can help fill labour gaps (Al-Amin and Lowenberg-
DeBoer, 2021; Reddy et al., 2016; Tarannum et al., 2015; Valle and Kienzle, 2020); however, 
no publicly available economic analysis has yet been done on the use of autonomous crop 
machines in developing countries. Yet, the available literature on the economics of swarm crop 
robots highlights some of its benefits: 

• The ability to reduce human manual labour in crop production with fairly limited investment. 

• Relative to conventional machinery, it allows to reduce costs and economies of scale so that 
minimum production costs can be achieved for small-scale farms. 

• Ability to farm small, irregularly shaped fields in a cost-effective manner, thus avoiding the 
need to reshape rural landscapes and disrupt communities to create the large rectangular 
fields on which conventional mechanization is most efficient. 
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4 Potential	digital	automation	for	agriculture	in	low-	and	
middle-income	countries	

All of the digital automation adoption and economic analyses summarized so far in this report 
have been for mechanized agriculture in high- or middle-income countries. Research on 
precision agriculture for non-mechanized agriculture is growing (APNI, 2020; Nyaga et al., 2021; 
Onyango et al., 2021), but very little on digital automation. Furthermore, only few precision 
agriculture technologies for non-mechanized farms have been commercialized, with only 
anecdotal information being available on its adoption. Methodologies have been developed for 
manual site-specific fertilizer application – e.g. for VRT fertilizer on rice, see Witt and 
Dobermann (2002) – but no adoption statistics are available. The Agrocares hand-held soil 
scanner is available in several low-income countries in Africa and Asia (Agrocares, 2022) but 
very little information is available on use of the technology at the farm level (Van Beek, 2020). 
Non-mechanized farmers in Asia and Africa are using UAV services, but the number of farmers 
and area managed with UAVs is not well documented. The main use of GNSS on non-
mechanized farms seems to be in mapping farm and field boundaries to establish land tenure 
(Lowenberg-DeBoer and Erickson, 2019).  

Research indicates that site-specific crop management can improve yields and reduce input 
use on non-mechanized farms, but the cost of implementing this is often too high for low-income 
small farms. Hand-held nitrogen sensors are often priced between USD 300 and 600, which is 
too costly, especially for an individual small-scale farmer that would use the sensor only a few 
times per year, but even for extension agents or crop advisors that work with many farmers and 
use the device for several years. The Agrocares scanner provides information on a wider range 
of soil nutrients, but lists for over USD 3 000. Low-cost, donor-subsidized or venture capital-
funded drone spraying is sometimes provided in developing countries, as the ones commercially 
available are often out of reach (Chikasha and Chipadza, 2021; Njagi, 2019). In South Africa 
even large-scale, mechanized farms may not be able to afford UAV spraying (Daniel, 2021). 
Re-designing these technologies so that they are less costly, as well as incentivizing mass 
production and innovative business models can make them more affordable for non-
mechanized farmers. 

4.1 Precision	livestock	farming	for	extensive	systems	
The status of precision livestock farming for extensive farms in developing countries is similar 
to that of precision agriculture for crops. The concept of precision livestock farming is well known 
(Adane, 2020; Laca, 2009; Neethirajan and Kemp, 2021; Walter et al., 2017) and it is mostly 
used in intensive systems in high-income countries. Sensors are starting to be used to monitor 
health, the reproductive status and behaviour of animals, but these technologies are still too 
costly to low-income farmers and livestock herders. Low-cost livestock sensors could help 
growers diagnose health problems, provide appropriate treatment, avoid overuse of antibiotics 
and manage reproduction. EID and blockchain could help improve product quality by facilitating 
traceability of livestock marketed from extensive systems.  

Among the precision livestock technologies that can be applied in low-income countries, virtual 
fencing systems come closest to being digital automation, as they reduce drudgery in addition 
to facilitating collection of information and intensive management. Virtual fencing uses audio 
alerts, electrical shocks or other prompts to keep animals within geolocated boundaries. 
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It potentially eliminates the need for physical fencing and the GNSS helps growers locate 
animals grazing in large open pastures. Sensors can be linked to the GNSS to monitor 
temperature, movement and other indicators of health and reproductive status. Virtual fencing 
could substantially reduce the labour requirement in extensive grazing systems and facilitate 
genetic improvement by improving control of reproduction, but the individual GNSS 
transponders required for each animal with current technology are too costly for these systems. 
As with crops, lower costs, mass production and innovative business models are needed to 
make these technologies available for extensive livestock production systems in low-income 
countries. 

4.2 Uncrewed	aerial	vehicles	for	smallholder	farms	
While research is being conducted on UAV input application for small farms and 
commercialization has started, it is mostly map-based with very little autonomous decision-
making capacity and consequently may not fit into the digital automation category. There has 
been research interest and some business start-ups focused on supplying UAV spraying 
services on smallholder farms in Africa (Ayamga, Tekinerdogan and Kassahun, 2021; Yawson 
and Frimpong-Wiafe, 2018). Unfortunately, robust data are not available on how widespread 
this practice is in developing countries.  

For farms of any size, the advantages of UAV input application include targeting specific areas 
instead of spraying whole fields, application to fields too wet for equipment, application to remote 
and steep areas, and application to standing crops without damage to crops from equipment 
movement. For smallholder farmers who would otherwise make pesticide application with a 
backpack sprayer, the use of a UAV potentially reduces pesticide exposure. However, there are 
many challenges to overcome in UAV input application including creating systems to refill spray 
tanks, fertilizer bins or seed hoppers, increasing battery life, using pesticide labels for spot 
application, training users and reducing drift to non-target areas (Carvalho et al., 2020). 
The profitability of UAV input application depends on the cost of the spraying service, 
the effectiveness of the application given drift, input savings and improved yields because of 
reduced damage from ground-based machines (e.g. backpack sprayer, tractor mounted or 
towed sprayer, fertilizer spreader or seeder, application with crewed aircraft). Because 
smallholder farmers are unlikely to own UAVs, the cost of the UAV application service is crucial. 

For many researchers, research funders, entrepreneurs, politicians and venture capitalists, 
investing in autonomous crop machines for smallholder farmers is not worthwhile given their 
cost. However, as seen with mobile phones – which, in the 1970s, were very costly and 
inaccessible to most but now are often sold for less than USD 20 – technology improvement 
and high-volume manufacturing can make technologies much less expensive, and the prepaid 
business model is fitting to many developing counts. Mobile phones then paved the way for the 
introduction of smartphones, which are increasingly used for precision agriculture apps. In sum, 
the combination of technology change, mass production and innovative business models could 
do the same for autonomous crop machines. 

4.3 A	vision	for	low-cost	autonomous	crop	machines	
To develop practical agricultural tools that could achieve worldwide adoption, scientists, 
engineers and technology developers usually need a vision for the technology and design 
criteria. One vision is of a small-wheeled autonomous crop machine that could learn to seed, 
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weed and harvest for the price of a motorbike (between USD 500 and 1 000), which some 
smallholder farmers in low-income countries own, and therefore can serve as a useful price 
starting point. While a leg robot might be useful in fields as it can step over obstacles, they 
usually cost much more than a wheeled robot of the same size. The ability of the autonomous 
crop machine to learn using AI would make mass production possible. Producing specialized 
robots for each crop and agroecology would be a high-cost, low-volume business. A more 
plausible business model would be developing a generic autonomous machine that is taught 
what it needs to do (perhaps by working alongside a human) and could be GNSS enabled to 
create maps (e.g. on soil colour, soil strength based on force required for hoeing, yield from 
plant-by-plant harvest). Appropriate tools for the autonomous machines would be adapted to 
the task and could be locally manufactured. There are several possible energy sources for the 
autonomous machines (e.g. fuel, solar, methane). To increase affordability, especially at first, 
rental or fee-for-service schemes might be implemented.  

With the generic autonomous crop machine, many other types of digital automation become 
possible. For example, with a crop sensor the autonomous machine might determine the 
fertilizer needs of individual plants and incorporate the required fertilizer in the soil at the base 
of each plant. This is what farmers now do when micro dosing (Aune, Coulibaly and Giller, 
2017). To add soil capacity or yield goal information to this AI fertilizer decision process, the 
autonomous machine might use previously recorded soil, plant and yield maps. With robust and 
inexpensive sensors, the autonomous machine might also determine the presence of insects or 
plant diseases and apply insecticides or fungicides as needed. Weeds could be controlled 
mechanically or with targeted herbicide applications.  

This vision of digital automation for smallholder farmers represents an enormous engineering 
and entrepreneurial challenge, but it is conceivable with current technology and may be 
facilitated by innovations. The millions of smallholders in developing countries should be seen 
as an enticing market and a classic mass market business strategy as outlined by Prahalad 
(2004). A successful, relatable example is that of the spread of hermetic grain storage through 
Africa and Southern Asia (Nouhoheflin et al., 2017) with the Purdue Improved Crop Storage 
(PICS) bag. At first, manufacturers were reluctant to invest because of the perceived lack of 
buying power of smallholders. However, after PICS sold millions of bags in more than 
30 countries, many other competitors entered the market. 
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5 Broader	implications	of	digital	automated	technology	for	the	
agricultural	sector	

Agricultural technologies often have economic and social implications that extend far beyond 
their farm level benefits and costs. For example, motorized mechanization of agriculture often 
resulted in farm size expansion and rural depopulation, with the associated decline in rural 
political and economic influence. A more positive example is the introduction of hybrid maize in 
the United States of America in areas where the growing season was too short or summer 
rainfall too low for open pollinated maize. This was possible because hybridization gave 
breeders greater control over the maturity, drought tolerance and other agronomic 
characteristics. That expansion of the geographic area where maize could be grown in turn led 
to the growth of maize processing and intensive livestock production in those new maize 
production areas. Similarly, if automation technologies are developed and widely 
commercialized, the currently available research suggests that it could have major economic 
and social implications, including: 

• Farm structure. Small swarm robots can provide almost constant returns to scale, whereby 
small farms can achieve minimum cost of production and larger farms can add more 
autonomous units that produce at that same minimum cost level. This would reduce 
economies of scale in agricultural production and eliminate one of the major motivations for 
farm size expansion. Whether economics of size and scope in input purchasing, marketing, 
finance and other farm management functions continue to drive farm size increases probably 
depends as much on cultural factors, legal structures and regulatory constraints, as it does 
on profitability. By rapidly adopting swarm robots, areas in middle- and low-income countries 
currently dominated by manually operated smallholder farms or slightly larger farms using 
animal traction may avoid the social disruption of farm size expansion and rural depopulation. 
By reducing drudgery, increasing profitability and enhancing the image for agriculture as a 
high-tech industry, swarm robots also have the potential to retain the rural young and attract 
workers from other sectors. 

• Ability to farm small irregularly shaped fields efficiently with swarm robots. 
In industrialized countries with a legacy of medium and small farms, motorized 
mechanization frequently led to the abandonment of small and irregularly shaped fields or to 
their transition to less intensive uses, such as rural residences or hobby farming. This 
occurred in eastern United States of America in the early twentieth century. In other 
countries, such as in Europe, maintaining small farm structures usually involved high subsidy 
costs. The introduction of swarm robots may allow commercial agriculture to reclaim some 
of those small, irregularly shaped fields, which also have other economic advantages, such 
as high-quality soils, reliable rainfall and are close to markets. Small farm subsidy 
programmes may become less costly as swarm robotics help agriculture in small, irregularly 
shaped fields become more profitable. Farms dominated by manual labour or animal traction 
may skip motorized mechanization and move directly to digital automation, avoiding the need 
to reshape the rural landscape into larger fields. This may also have environmental benefits 
in that small, irregularly shaped fields have greater biodiversity than large rectangular fields.  

• Introduction of swarm robots could radically alter the structure of the farm equipment 
market. Major farm equipment manufacturers usually supply to, and interact with, a relatively 
small number of large farms. In contrast, swarm robotics would require mass marketing of 
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low-cost standardized products tailored to millions of small- and medium-sized farms. What 
the optimal business model will be is not yet determined but, as with the prepaid business 
model used by mobile phone companies in low- and middle-income countries, it may be 
different from the current business model. This change in the customer base and in the 
business model may also change the farm equipment market structure: it will create 
opportunities for entrepreneurs who have the technical capacity to develop low cost, reliable 
autonomous machines and link that technology with innovative business models. 

• Digital automation with machine vision could make crop protection a service 
business. Crop protection mostly entails selling large quantities of pesticides. Targeted 
spraying may reduce that quantity of pesticide used by as much as 90 percent, with 
significant environmental benefits. Mechanical or laser weed control may eliminate 
herbicides entirely. Depending on the business model adopted, this may strengthen the role 
of local entrepreneurs who train standardized autonomous machines to effectively identify 
the weeds and pests found on local crops. Those trained autonomous machines might then 
be provided under a fee-for-service model or sold to farmers.  

It is important to note that none of these outcomes are automatic. They depend on many factors 
including: the exact characteristics of the technology, the legal and regulatory frameworks, 
business decisions by major corporations and start-up companies, and social and cultural 
reactions. Furthermore, innovations using AI often depend on the availability of high-speed 
internet and other communication infrastructure. Governments and civil society can encourage 
positive outcomes from digital automation in agriculture through digital infrastructure, 
appropriate legal and regulatory approaches, and public sector research and education.  
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6 Impact	of	digital	automated	technologies	on	income	distribution		

The common perception of agricultural automation is that it will eliminate many rural livelihoods, 
create unemployment and exacerbate inequalities between large- and small-scale farmers. 
The loss of jobs to automation may occur most prominently for fruit and vegetable production 
where manual methods are still widely used, even in industrialized countries. However, because 
many industrialized countries depend on migrant labour for fruit and vegetable production, this is 
not primarily a domestic problem, but rather a problem for the sending country. For industrialized 
countries, reduction in international migrant labour could help resolve political problems created 
by immigration and medical/biosecurity issues linked to international movement of workers 
during disease outbreaks. For the sending countries, the loss of migrant farm jobs would be a 
mixed outcome because those jobs often lack good working conditions – namely, they often do 
not pay well, they force people to be away from their families for long periods of time, and do 
not have health or social benefits. Still, they provide a source of income, and therefore 
automation can be a bottleneck for low- and middle-income countries that depended on 
remittances from migrant farmers.  

In the large-scale commercial arable farming sector, digital automation will likely entail a change 
in job types and responsibilities, but unlikely to lead to the loss of many jobs. In that sector, the 
major loss of jobs already occurred with motorized mechanization and chemical weed control. 
And given the potential increases in productivity linked to digital automation, farm workers who 
adapt and retrain could increase their incomes and have better living standards. For example, 
with digital automation, a former tractor driver may supervise a swarm of autonomous crop 
machines or learn to do repairs. With the reduction in economies of scale some former farm 
workers may also find entrepreneurial opportunities in small and medium enterprises.  

For small- and medium-scale arable farms, digital automation could create opportunities as well 
as challenges. Those farms could use digital automation to lower costs of production and be 
more economically competitive; however, even with lower costs, their farm scale may not 
provide an acceptable standard of living. In this case, they can use the labour saved to expand 
farm size, find off-farm employment or add farm enterprises.  

Digital automation technologies can also create entrepreneurial opportunities. For example, one 
of the main constraints to organic or biodynamic farming in industrialized countries is the cost 
of labour. If organic growers could rely on an autonomous weeding machine to control weeds 
and AI to identify plant diseases and suggest biological remedies, organic production could 
expand rapidly. In industrialized countries, many consumers would prefer to buy organic 
products, but they do not want to pay a premium. With digital automation, organic production 
could undercut the costs of conventional methods and become the standard. Similarly, digital 
automation could revive the production of nutrient dense heirloom crops that were difficult to 
mechanize. For example, when maize production was mechanized, hybrids were developed 
with ears at the same height on the stalk to facilitate harvest. However, in doing so, nutritional 
and culinary diversity was lost. Autonomous machines with AI could be developed to harvest 
traditional maize varieties with ears at different heights. Similarly, mechanized harvesting of 
tomatoes required varieties to ripen evenly. This, in addition to long distance supply chains, 
led to the development of new tomato varieties that lacked certain nutritional benefits and 
flavour. Autonomous harvest machines could allow for the commercial production of flavourful 
heirloom varieties. It could also create opportunities for the production of botanicals with 
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valuable aromatic or medicinal properties, which require intense management. Some of these 
opportunities could be generated also in low- and middle-income countries 

In sum, if low-cost, highly effective digital automation in agriculture becomes as ubiquitous as 
mobile phones are now in low- and middle-income countries, then with the right enabling digital 
infrastructure, legal, regulatory and cultural environment there is the potential for sustainable 
rural economic development based on intensive agriculture. Whether low- and middle-income 
countries gain or lose depends on how they manage the transition: countries that build the 
needed physical, economic and social infrastructure for digital automation stand to benefit; 
countries that ignore the challenge may not see the development of higher wage agricultural 
opportunities with digital automation. History suggests that the international community can help 
countries prepare, but it cannot oblige them to recognize the opportunity. 
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7 Policy,	regulatory	and	institutional	issues	

Anticipating the issues that will arise with the introduction of new technology is very difficult 
because the future uses of these innovations and the human reactions are not completely 
known. In general people develop new uses for technology that are often far different from the 
intent of researchers or technology developers. For example, tractors were originally invented 
to replace draft animals for field work, but the availability of mobile mechanical power with rubber 
tires, hydraulics, electronics and power-take-off led to the development of unanticipated uses 
(e.g. direct seeding and conservation tillage, harvesting and packaging forage on the go). 
In some countries tractors have also become important for transportation within and off farms. 
Even in industrialized countries, farm products are often transported the first few kilometres in 
carts and wagons pulled by tractors. Some of the policy, regulatory and institutional issues that 
have been anticipated for digital automation technology include:  

• Appropriate guidance on human supervision of autonomous crop machines. 
The European Union and the state of California, United States of America currently require, 
in most cases, on-site human supervision of autonomous crop machines. Research shows 
that, with current technology, the requirement of full on-site human supervision of 
autonomous machines substantially reduces their economic benefit (Lowenberg-DeBoer et 
al., 2021). In many cases, if the human must be in the field, they may as well drive the 
equipment. Discussions are on-going about what should determine the level of human 
supervision. Maritan et al. (forthcoming) show that the economically optimal supervision level 
of autonomous crop machines in the absence of regulation depends largely on the frequency 
of human intervention required and on the placement of the supervisor (e.g. on-site or 
remote). Beyond the economic issues in supervision, health and safety concerns are often 
expressed, especially in relatively densely populated countryside areas like those in most of 
Europe. In response to these concerns, the British Standards Institute (BSI) has organized 
an effort to create an autonomous agricultural machine code of practice for the United 
Kingdom of Great Britain and Northern Ireland. Factors that might influence appropriate 
supervision include: 

- Size of the autonomous machine: Small swarm robots have less potential for causing 
harm than some of the large autonomous machines proposed by major farm equipment 
manufacturers. 

- Speed of the autonomous machine: The State of California requires autonomous crop 
equipment to travel less than 2.4 kilometres per hour. Under some ISO standards, 
autonomous machine categories are limited to less than 0.8 kilometres per hour. 
Shockley et al. (2021) show that applying such speed limits generally in crop farming 
would undercut the economic benefit of autonomous machinery. 

- Population of the countryside: A malfunctioning autonomous machine is less likely to 
create a health and safety problem in remote areas in Australia, than it would in relatively 
densely populated rural areas in the United Kingdom of Great Britain and Northern 
Ireland. 

- Site preparation: Signage, fencing and other site preparation might be used to prevent 
injury or death of workers, rural residents, companion animals, livestock and wildlife. 
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- Community preparation: Should rural communities near farms where autonomous 
machines are in use be notified? Who should be notified (e.g. everyone, those who sign 
up for the phone or internet-based alert system)? How should they be notified? Should 
they be notified only if the autonomous machines are working without on-site human 
supervision? 

- Autonomous machine benefits beyond labour saving: For example, if swarm robots 
reduce soil compaction, increase soil health and facilitate higher yields, then a higher 
level of human supervision can be economically justified.  

• Training required for human supervisors of digital automation for both crops and 
livestock. What should the supervisors be on the alert for? How should they report incidents 
of human-robot interactions? This topic occupies a major portion of the Australian 
Autonomous Agricultural Machine Code of Practice (GPA, TMA, and SPAA, 2021).  

• Digital automation often requires internet access. Internet access allows easy updating 
of software, reduces computational capacity needs by cloud computing and facilitates access 
to remote sensing and other public databases. Internet access in rural areas worldwide is 
often sparse and expensive, and is particularly spotty in low- and middle-income countries. 
Policies to encourage development of rural digital infrastructure could include low interest 
loans for rural internet providers and the formation of communications cooperatives that offer 
data services and subsidies.  

• Automation of all kinds requires energy. This may be based on fossil fuels or on 
renewable sources (e.g. methane, solar, wind, hydrogen). Digital automation requires 
electricity. In countries where the electrical grid extends to rural areas, electricity is usually 
available only in towns, villages and farmsteads. Access to electricity in fields is rare even in 
industrialized countries. In many low- and middle-income countries, rural areas depend on 
off-grid electricity, if they have electricity access at all. Policies to encourage development 
and commercialization of off-grid electricity from renewable resources are important for 
widespread use of digital automation in agriculture.  

• Pesticide regulation for targeted application. Many agricultural pesticide labels assume 
broadcast applications. Even with the best equipment and proper procedures, with broadcast 
application little of the pesticide reaches the intended pests (Duke, 2017). With targeted 
application, much more of the pesticide reaches the intended pests. In some cases, targeted 
applications at a higher than the current label rate would be effective, while at the same time 
reducing the overall amount of pesticide used. In the extreme, a few, more concentrated, 
amount of pesticide directly applied on the target pests would eliminate pesticide 
contamination of non-target species. 

• Data privacy and security. Digital automation technology collects massive amounts of data 
on both crop and livestock farms. Some of that data may raise privacy issues for agricultural 
producers, agricultural households more generally and others. Other data may be proprietary 
information for the farm or company. Rules need to be clear on who owns the data, who 
controls it and how it is to be handled. 

• Theft prevention. In countries where rural crime is common, the theft of small robots working 
alone in isolated fields is a frequently mentioned concern. Should robots have RFID locator 
chips implanted like e.g. livestock is required to have in some countries? How should the 
resale market for used robots be regulated to make selling of stolen robots difficult? 
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• AI. While most agricultural robots currently in the commercialization pipeline have very little 
decision-making capacity, in the longer run AI is an essential part of what will make 
agricultural robots useful. AI will allow robots to deal with many of the unexpected obstacles, 
thereby reducing human supervision needs. It will help identify and target pests. Machine 
learning is an essential part of what will make AI useful, but it is also what makes it potentially 
dangerous because the manufacturer and human supervisor have little control on what it 
learns. There is also the question of who owns the knowledge generated by machine learning 
(e.g. manufacturer, farmer, the contractor supplying robot services?). 

• Technical training and retraining. Supervising digital automation, maintenance and repair 
of the machines and working with AI are not in the skillset of most of the agricultural 
workforce, especially on small-scale farms in low-income countries. What training is needed 
to supervise digital automation? Should programmes for digital automation maintenance and 
repair be started now, so that when the technology enters the market and is used there is a 
capacity to maintain and repair it? Should crop and livestock consultants be trained to use 
the data collected by robots and educated in how to interact with their AI systems? 

• Public sector research and education. In the last two centuries the basic scientific 
knowledge responsible for many agricultural advances has been developed and collected at 
universities and other public sector research organizations. Most digital automation in 
agriculture will probably be privately owned, by companies or individuals, and the data it 
collects will be proprietary. In theory, if that farm data could be collected and analysed, 
it could lead to unanticipated breakthroughs in crop and livestock production, with 
implications for food security, human health and safety, environmental management, 
biodiversity and other public concerns. Under what circumstances should public sector 
researchers have access to the agricultural data collected by digital automation technology?  

• Policies to encourage digital automation where it would have public good benefits. 
Some aspects of digital automation in agriculture bring public good benefits (e.g. farming 
small and irregularly shaped fields with higher biodiversity, reducing pesticide use, avoiding 
the disruption of rural landscapes and communities to create large fields, managing extensive 
livestock production in natural areas without fencing). Some of those public goods will be 
generated by private decisions given the right legal and regulatory guidance but, in some 
cases, it may be useful to encourage certain digital automation technologies. For example, 
where upfront investment and retraining transition costs are substantial, public subsidies 
might encourage farmers to re-equip their farms with digital automation machines, instead of 
acquiring traditional motorized mechanization. The movement of agricultural research and 
educational institutions to the development and use of digital automation could be 
encouraged.  
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8 Summary	and	conclusions	

This paper has shown that digital automation has been used successfully in agriculture for 
several decades (e.g. robotic milking) with newer technology in the pipeline to make digital 
automation ubiquitous (e.g. through mobile autonomous crop equipment). The discussion of the 
benefits of digital automation in agriculture usually starts with labour saving, but quickly moves 
to other benefits, including almost scale-neutral field operations, greater accuracy of input 
application, reduced soil compaction with small swarm robots, allowing field operations that are 
at times challenging to perform manually or with mechanical technology (e.g. due to wet soils 
or steep hillsides), allowing to automate the collection of crop and livestock data, and increased 
profitability for small and irregularly shaped fields. By rethinking and re-engineering the 
underlying science, many of the benefits of digital automation could be made available to 
medium and small farms in low- and middle-income countries. For example, the development 
of low-cost crop robots that could learn to seed, weed and harvest would help resolve labour 
constraints on small farms relying on manual labour and provide a basis for sensor-based 
fertilizer and pesticide application. If such low-cost, reliable and effective digital automation were 
developed and widely commercialized, it could radically change the farm sector. The dominance 
of large-scale farms using motorized mechanization would diminish, and medium and small 
farms everywhere would have a greater possibility of success. While digital automation has the 
potential of reducing some agricultural workers’ livelihoods – a problem especially for countries 
supplying migrant agricultural workers to more developed regions – it also has the potential to 
create higher skilled, better paid job opportunities in rural areas (e.g. supervising, maintaining 
or repairing robots) and entrepreneurial opportunities. Realizing the potential benefits of digital 
automation requires better digital infrastructure in rural areas, an appropriate legal and 
regulatory framework, facilitating digital entrepreneurship, retraining workers, revising technical 
educational curricula, attention to data security and policies that encourage digital automation 
where it would bring public good benefits. 
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Annex	1.	Glossary	

Agricultural automation: a general technology category that can be defined as the substitution 
of physical activities and/or human decision-making by machinery and equipment to perform 
agricultural operations, reducing or eliminating human direct intervention and improving their 
precision.  

Artificial intelligence (AI): computer systems that analyse their environment and take actions 
with some degree of autonomy to achieve specific goals. Machine learning is often part of AI 
systems.1  

Autonomous machine: a mechanical and electrical device that can perform certain functions 
without direct interaction with a human operator. 

Autosteer: GNSS-enabled technology that provides automated steering and positioning in the 
landscape for self-propelled agricultural machines (e.g. tractors, combine harvesters, forage 
harvesters, sprayers). With the most advanced autosteer the computer does almost all the 
steering within the field including turning on the ends of rows. Autosteer technology typically 
requires a human operator in the seat of the machine to take over in case there is a malfunction 
or problem. 

Backpack sprayer: an apparatus consisting of a knapsack tank together with pressurizing 
device, line, and nozzle for distributing liquids. The pressure can be created with a hand or 
motorized pump. They are used chiefly in fire control and in spraying pesticides. 

Bolus: in ruminant livestock production a bolus is a large pill that can contain medication or 
sensors tracking the health and activity of the animal (e.g. temperature, movement). A sensor 
bolus can function in the rumen for several months.  

Conservation tillage: any tillage and planting system that leaves a substantial portion of the 
soil surface with crop residue, after planting, to reduce soil erosion by water or wind. In many 
definitions at least 30 percent of the surface should be covered by crop residue. Conservation 
tillage types include no-till, strip till and ridge till.2 

Conventional mechanization: non-autonomous machines which require human operators to 
accomplish farm work. Conventional machines may be powered by combustion engines, 
electricity, animal traction, human muscles or other power sources.  

Digital automation in agriculture: a subset of agricultural automation that automates at least 
parts of both the physical work and the decision making. 

Drone or Uncrewed Aerial Vehicle (UAV): a flying autonomous machine that can be remote 
controlled or fly autonomously using software-controlled flight plants.  

Electronic Identification (EID): the use of a microchip or electronic transponder embedded in 
a tag, bolus or implant to identify an individual farm animal.  

 
1 For more information see the European Commission’s High Level Expert Group on Artificial Intelligence 
(2018). 
2 For more information see Conservation Technology Information Center (2002). 
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Fee-for-service: in the context of farm machines, this refers to a business arrangement in which 
the farmer pays for machine services on a per unit basis (e.g. per ha, animal, tonne harvested), 
rather than owning the machine.  

Global navigation satellite systems (GNSS): any one of the national systems which use 
satellite signals to provide location information. Those national systems include the US Global 
Positioning System (GPS), the European Galileo system, the Russian GLONASS and Chinese 
Beidou system.  

Global positioning system (GPS): the American GNSS, which was the first GNSS functional 
for civilian use; GPS is sometime used as a generic term for GNSS. 

Leg robot: a mobile autonomous machine with articulated limbs instead of wheels for 
movement. 

Lightbar: a GNSS-enabled technology which guides the steering of a human operator on 
parallel passes through fields. Typically it involves a row of light emitting diode (LED) indicator 
lights or a graphics display which tells the operator if they are to the left or right of the parallel 
track.  

Linear programming: a mathematical optimization method that assumes that the objective 
function and the constraints are additive. When it is used for farm management, it can be thought 
of as automated budgeting.  

Machine learning: computer algorithms that can identify patterns in data and improve machine 
performance based on those patterns without explicit human instructions. Machine learning is 
used by some AI systems to improve performance with experience.  

Motorized mechanization: conventional mechanization powered by combustion engines. 
Typical fuels include gasoline and diesel.  

Nitrogen rich strip: a nitrogen rich strip is an area of a field which has received enough nitrogen 
fertilizer to more than satisfy anticipated crop needs. Such a strip is sometimes used with 
nitrogen sensors to enable comparisons between reflectance on under fertilized areas and the 
reflectance of the crop in that specific soil and climate when it has adequate nitrogen. 
The nitrogen rich strip may also be labelled a “reference strip.” 

Operator assistance system: AI systems installed by original equipment manufacturers 
(OEMs) that help human operators of farm machines. Typically operator assistance systems 
integrate sensor data from several sources on the machine and automatically adjust machine 
settings to optimize the operator’s priorities (e.g. fuel efficiency, work accomplished, product 
quality). They were first introduced on combine harvesters. 

On-the-go: in the context of farm machines, “on-the-go” means that machine operation is 
adjusted while moving through a field based an algorithm using sensor data without direct 
human intervention. 

Precision agriculture: a management strategy that gathers, processes and analyses temporal, 
spatial and individual data and combines it with other information to support management 
decisions according to estimated variability for improved resource use efficiency, productivity, 
quality, profitability and sustainability of agricultural production (International Society of 
Precision Agriculture, 2021). 
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Precision livestock farming (PLF): a data-based livestock management strategy that monitors 
and controls individual animal or group productivity, environment, health and welfare in a 
continuous, real-time and automated manner. It is focused on improving resource use efficiency, 
productivity, quality, profitability and sustainability of livestock production. 

Prescription map: spatial information used to allocate crop inputs at different rates to areas 
within fields. Prescription maps are used to guide map based VRT. 

Robot: a machine capable of autonomous operation without direct human intervention. The 
word tends to be used in the media and by the general public. Robots are often 
anthropomorphized. More technical discussions tend to use the terms like “autonomous 
machine” or “autonomous equipment”.  

Seeder row shutoff: a GNSS-enabled VRT approach that controls individual row seeder units 
based on a prescription map or sensor data. Often used to avoid seeding in non-crop areas or 
double seeding on end rows.  

Skip and overlap: with conventional technology when applying fertilizer, pesticides and other 
crop inputs, farmers typically drive in parallel passes through the field. If the passes are too far 
apart there will be an area that does not receive the input application; that is a “skip”. If they 
drive too close to the previous pass, the parallel application paths overlap, and some areas 
receive a double dose. Both skip and overlap are wasteful, but the skips are often the most 
visible, so farmers tend to overlap application. Depending on the driver and the equipment used, 
the overlap can often be 10 percent of the application width. GNSS guidance can reduce the 
overlap to less that 1 percent.  

Sprayer boom section control: a GNSS-enabled VRT approach that can control sections of 
a farm sprayer boom based on a prescription map or sensor data. Section width may vary from 
several metres’ width down to a single nozzle. Current technology allows nozzles to be turned 
on, off and pulsated a various rate.  

Swarm robots: Multiple relatively small mobile autonomous machines that accomplish work 
done by one large machine in conventional mechanization.  

Variable rate technology (VRT): equipment and software for varying application of fertilizer, 
pesticides, seed and other crop inputs within fields. Application rates can be varied either based 
on maps or sensor readings collected on the go within the field. 

• Map-based VRT: a VRT based on a map that document spatial information on site-specific 
conditions within the field. That spatial information is usually organized in a separate work 
step by a human analyst. 

• Sensor-based VRT: a VRT that is based on sensor reading collected on the go in the field. 
Typically, the sensor is at the front of the applicator, a computer that uses an algorithm to 
vary rates is on the machine and the application equipment is in the back of the machine. 

Virtual fencing: this technology equips animals with GNSS transponders to determine their 
location and uses audio alerts, electrical shocks or other prompts to keep animals within 
geolocated boundaries. It potentially eliminates the need for physical fencing and the GNSS 
helps growers locate animals grazing in large open pastures. 
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