Public

EUV High-NA scanner to extend EUV single exposure

Jan van Schoot¹, Eelco van Setten¹, Gerardo Bottiglieri¹, Kars Troost¹, Sascha Migura³, Bernhard Kneer³, Jens Timo Neumann³, Winfried Kaiser³

> ¹ ASML Veldhoven, The Netherlands ² ASML Wilton, CT, USA ³ Carl Zeiss Oberkochen, Germany

15 June 2016, EUVL Workshop, Berkeley

Public quotes from major customers on EUV adoption

EUV to shorten time to yield in the next 5 yrs

Public Slide 2 25 February 2016

EUV will be adopted for production at N5

Mark Liu, Co-CEO TSMC

SAMSUNG

Brian Krzanich CEO Intel

Intend do deploy EUV for 7 nm

Sources: Transcript, Intel Credit Suise Media conference, Brian Krzanich, December 2015, Source: Transcript, TSMC Q1 2016 earnings call, Mark Liu, April 2015, Joshua Ho, Anand tech, "Samsung Foundry Updates: 7 nm EUV, 10 LPP, and 14LPC, April 22 2016

NXE extension roadmap to optimize capital efficiency

Public Slide 3 25 February 2016

Source: Luc van den Hove, IMEC, "Technologies for the intuitive internet of everything", ITPC 2015,

Larger NA reduces Local CDU Due to larger aerial image contrast

Larger NA results in higher effective throughput NA limits dose and # of LE steps

Public Slide 6 25 February 2016

* Effective throughput = throughput / # LE steps

Overview main System Changes High-NA tool

Overview main System Changes High-NA tool

EUV: it's all about the angle High-NA comes with large angles

Public Slide 9 25 February 2016

MoSi Multilayer

NA=0.5

W. Kaiser, J. van Schoot, Sematech Workshop on High-NA, 9 July 2013

Simple model of the optical column Bending out the light cones at the mask reduces contrast strongly

ASML

Public Slide 11

*NILS = Normalized Image Log Slope, measure for image contrast

J. Van Schoot, et al, "EUV lithography scanner for sub-8nm resolution," Proc. SPIE **9422**, (2015).

High-NA >0.5NA 4x/8x anamorphic magnification Chief Ray Angle at Mask can be maintained

Anamorphic optics → half field:
8x Magnification in scan
4x Magnification in other direction
Chief ray angle ok → Imaging ok

The pattern at the mask needs to change

High-NA Anamorphic Lens prints a half field By utilizing the current 6" mask

ASML

4x/8x

Public Slide 14 25 February 2016

Note: rectangular slit shown for illustration purposes

Anamorphic optics are used in cinematography "Don't change the mask"

Public Slide 15 25 February 2016

Anamorphic Camera "The Mask" (24x36mm²)

Anamorphic Projector

Imaging verification of the new Half Field concept Logic N5 clip Metal-1, 11nm lines, SMO is done at 8x

ASML

Public Slide 17 25 February 2016

Aerial Image Intensity in Hyperlith

Note: pictures at same scale, smaller mask reflection is also visible

Standard EUV coatings cannot handle these large angles

And even better: The smaller angular range increases the transmission

Proven imaging performance with High-NA optics Spaces through pitch with small annular illumination

- Start pitch: 24nm for high-NA, 40nm for NA 0.33 \rightarrow k1 = 0.49 in both cases.
- Anamorphic high NA w/ central obscuration: comparable exposure latitude, @ smaller pitches.
- Lower Best Focus variation for high NA.

HighNA obscured pupil

ASML

Public Slide 19 25 February 2016

ZEINN

Overview main System Changes High-NA tool

Principle NXE:3300/3400 illuminator can be reused For anamorphic lithography pupil facet mirror becomes asymmetric

Public Slide 21 25 February 2016

Field Facet Mirror

Overview main System Changes High-NA tool

High-NA anamorphic Half Field concept Faster stages enable high productivity

Half Field yields 2x more fields

 2x wafer stage acceleration maintains overhead while going to twice number of scans

Y-magnification $4x \rightarrow 8x$

 2x wafer acceleration results in 4x mask acceleration

Acceleration of wafer stage ~2x Acceleration of mask stage ~4x

Public Slide 23 25 February 2016

High-NA Mask Stage solution for increased acceleration ASML Improved motor technology & different architecture 25 February 2016

Power ~
$$I^2 \cdot R$$

= $k \cdot (acc \cdot mass)^2 \cdot R_{motor}$

Public Slide 24

Limiting increasing power by:

- Improved motor technology (k, R)
- **Reduce mass**

Further Optimizing power consumption:

New stage architecture with lower mass

Courtesy Chris Hoogendam, ASML

High-NA Field and Mask Size productivity 500W enables throughput of >150wph with anamorphic HF

ASML

Public Slide 25 25 February 2016

Overview main System Changes High-NA tool

High-NA calls for tight focus control High-NA scanner will be introduced in line with focus scaling

Public Slide 27 25 February 2016

Focus latitude scales according expectation Spaces through pitch with small annular illumination

Overlapping process window @ 8%EL → 45nm NA=0.55, Random cuts, 24nm minimum pitch

Public Slide 29 25 February 2016

- Combined set of 4 building blocks, 24nm minimum pitch
 - Annular illumination used
 - Overlapping process windows calculated

High-NA system has smaller M3D effects than 0.33NA Smaller mask angles of incidence due to anamorphic system

ASML

Public Slide 30 25 February 2016

*L. de Winter, Understanding the Litho-impact of Phase due to 3D Mask-Effects when using off-axis illumination, EMLC 2015

Way forward to 30 nm focus control

Public Slide 31 25 February 2016

Summary

ASML

Public Slide 32 25 February 2016

- High-NA extends Moore's Law into the next decade
 - Larger contrast of High-NA helps mitigating LCDU
 - New anamorphic concept enables good imaging with existing mask infrastructure resulting in a Half Field image
 - New stages technologies and high transmission enable throughput ~185WpH
 - We identified measures to meet the tight focus budget

The authors would like to thank the High-NA teams in

- Oberkochen
- Wilton
- Veldhoven

Thank you for your attention

Public