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Abstract

Growth theory is based on the assumption of exponential total factor produc-
tivity (TFP) growth. Across countries and time periods I find that TFP growth
is additive. There is no evidence that TFP increments increase with the level of
TFP as predicted by the exponential model. Even with low priors Bayesian esti-
mations selects the additive model over the exponential one. The additive growth
model, unlike the exponential one, provides useful long-term forecasts for TFP.
For the distant past the model suggests piecewise linear evolutions with infrequent
changes: the size of TFP increments increases around 1650, 1830 and 1930. For
the distant future the model predicts ever increasing increments in standards of
living but with falling real interest rates and growth rates that converge to zero.
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This paper is an empirical investigation of the stochastic process that governs total
factor productivity (TFP). At least since Solow (1956) economists have assumed that
TFP At follows an exponential process. In a deterministic setup this model, which I call
model G (“geometric”) takes the form:

At+τ = At (1 + g)τ , (1)

where g is constant or at least highly persistent. I will show instead that growth is
additive and that the TFP process is better described by model A (as in “additive” or
“arithmetic”):

At+τ = At + bτ, (2)

where b is constant or at least highly persistent. The key prediction of model G is that
the size of the next TFP increment is proportional to the current level of TFP. I examine
data across many countries and time periods and I find that this prediction is rejected.
In essentially all cases productivity growth appears to be additive.

Figure 1 provides a straightforward motivation for this paper. It shows that TFP
growth has been linear in the US since at least World War II. Models A and G are
estimated over the first half of the sample (1947-1983) and then used to predict the level
of TFP in the second half of the sample (1984-2019). One can observe the well-known
TFP slowdown “puzzle” with Model G, which simply means that actual TFP has fallen
short of the exponential benchmark. By contrast there is no TFP slowdown according
to model A.

US growth after World War 2 is well described by the following statement: Hicks-
neutral TFP, normalized to 1 in 1947, increases each year by about 250 basis points, not
by 2.5%. Using data for the private sector, the same statement holds with an annual
increments of 275 basis points. With the normalization the initial trend growth rate is
2.5% but growth is additive: as TFP doubles after 40 year and increments are constant,
the measured trend growth rate is half of what it used to be. After 60 years, it is around
one percent, in line with the data. When Hicks-neutral TFP grows linearly, capital
accumulation creates a convex path for labor productivity. The Appendix shows that
the linear TFP model predicts the correct non-linear evolution of labor productivity
while the exponential model over-predicts future levels of labor productivity.

Section 1 focuses on US data from Fernald (2012) and Bergeaud et al. (2016). I
start with postwar data to estimate a specification that nests model A and G. The tests
reject model G in favor of model A. There is no evidence that TFP increments increase
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Figure 1: Out-of-Sample TFP Forecasts
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normalized to 1 in 1947. Models are estimated over 1947-1983. The forecast 1984-2019 is out-of-sample.
Data source: Fernald (2012) and Bergeaud et al. (2016).

with the level of TFP and the point estimates suggest that expected increments are
approximately constant. I then use a longer sample (1890-2019) from Bergeaud et al.
(2016) to estimate a simple dynamic model where the (unknown) trend growth rates b
and g are estimated in real time. Model G performs poorly even when one allows the
trend g to change over time. Model A performs significantly better at all horizons and we
learn that the 250 basis point trend in Figure 1 actually starts around 1930. This finding
is consistent with the historical literature (Field, 2003; David, 1990; Gordon, 2016) and
implies that US TFP growth has been additive with constant expected increments for
90 years.

Section 2 extends the analysis with a Bayesian model. The parameters are estimated
by maximum likelihood, filtering the distribution of the unobserved states with a Kalman
filter, before approximating the conditional expectations using Monte Carlo simulations.
While more complicated than that of Section 1.3, the Bayesian estimation provides
optimal forecasts as well as posteriors for model selection. Figure 4 shows the conditional
forecasts of the two models and highlights the failures of model G. In the model selection
exercise the posteriors converge to one for model A even when one starts with small priors
in favor of A in 1890.

Section 3 repeats the analysis of Sections 1.3 and 2 in the long panel of 23 countries
and 129 years from Bergeaud et al. (2016). The additive model predicts TFP dynamics
better than the exponential model for each of the 23 countries. The 10-year forecast
errors of the exponential model are 30% to 60% higher than those of the additive model
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and model selection favors model A in all cases. I also consider a sample of OECD
countries that are not in the BCL sample (e.g., Korea) and I show that their TFP
growth is linear. TFP growth paths in Thailand and Taiwan, two prime example of
“miracle growth” in Asia, are also linear. The exponential growth model fails because it
predicts periods of sustained and convex productivity growth that simply do not exist
in the data.

Section 4 provides a broader historical interpretation of the data. A symptom of the
failure of the exponential model is that the estimated trend growth rates are unstable.
By contrast the additive TFP model displays remarkably few breaks and these have
plausible economic interpretations in terms of General Purpose Technologies (GPTs).
For example, the process of US TFP increments has only one break over the past 130
years, around 1930, following the large-scale implementation of the electricity revolution
(Gordon, 2016). Using UK data on GDP per capita back to 1500, I find only two more
breaks. The first is around 1650 and the second is around 1830. These breaks are
consistent with historical research on the first and second industrial revolutions (Mokyr
and Voth, 2010).

Finally, Section 5 discusses the theoretical implications of additive growth in two
steps. I first show, in a standard DSGE framework, that the policy functions are similar
in models A and G. Conditional of the observed path of TFP, the two models therefore
predict similar paths for consumption, investment, short rates and Tobin’s Q, while long
term rates are less volatile in model A than in model G. I then study standard mod-
els of endogenous growth. Exponential growth relies on the assumption that ideas are
multiplicative. Models with expanding varieties assume that the number of potential
new varieties is proportional to the number of existing varieties. Models with vertical
differentiation assume that the quality ladder itself is exponential. Removing these as-
sumption leads to additive growth. Inter-temporal spillovers are smaller than previously
thought: an improvement in TFP raises economic efficiency but does not imply that
future discoveries become exponentially easier.

Literature This paper analyzes the stochastic process of TFP growth, finds that it is
linear, and draws some implications for economic theory. As such it relates to several
strands of the literature on economic growth. Solow (1956) studies the theoretical prop-
erties of the neoclassical growth model and Solow (1957) constructs TFP series from
1909 to 1949. Since then, essentially all models of growth have taken the exponential
model as a benchmark. My Bayesian estimation rejects the exponential model using the

4



full sample, but, interestingly, the power of the test is lower if I only use Solow’s original
data because of the structural break in 1930.

Section 5 connects additive growth with general equilibrium theory, in two steps. I
first ask whether, for a given (historical) path of TFP, agents’ beliefs about the TFP
process affect equilibrium allocations. I find that the answer is no in many applications
because the policy functions for consumption and investment are quite similar under
additive or exponential growth for reasonable values of the elasticity of inter-temporal
substitution. Even if agents believe (incorrectly) that the underlying process is expo-
nential, they save (approximately) the same fraction of their income, supply the same
quantity of labor, and the economy accumulates the same quantity of capital. The fact
that TFP growth is additive therefore has limited implications for monetary policy and
business cycles, and for the great ratios (labor share, capital to GDP ratio, etc.) condi-
tional of observed TFP. Important exceptions (debt sustainability and climate change)
are discussed in the conclusion. The second part of Section 5 studies additive TFP in
models of endogenous growth (Romer, 1990; Grossman and Helpman, 1991; Aghion and
Howitt, 1992) and explains the assumptions that need to be changed and the issues that
may arise when growth is not exponential.

This paper complements the literature on endogenous growth accounting, such as
Jones (2002). Compared to Solow (1957), this literature treats TFP growth as an en-
dogenous variable to be explained by inputs such as capital, education, and the labor
force employed in research. A key puzzle in the literature is that TFP growth has not
increased despite the increase in measured research effort (Jones, 1995). Jones (2009)
argues that innovation is getting harder because new generations of innovators face an
increasing educational burden. Similarly, Bloom et al. (2020) present case studies of
several technologies to argue that innovations are becoming harder to find. Guzey et al.
(2021), however, show that this conclusion is sensitive to the choice of a productivity
measure, and that many series, including US TFP, do not appear to exhibit exponential
growth. A critical issue in this literature is the measurement of inputs into the inno-
vation process. Formal R&D spending captures only a fraction of innovative activities,
and R&D data is usually missing before World War 2. Growth accounting also depends
on the functional form chosen to map inputs into TFP. By contrast, my approach fo-
cuses directly on the TFP process and shows that TFP is additive across many countries
and time periods. This new stylized fact speaks to all models of growth, endogenous or
semi-endogenous, based on R&D or on learning-by-doing.

This paper is not the first to suggest a departure from exponential growth. Jones
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(1995), for instance, includes a TFP equation of the type Ȧt = Aφt LA,t where LA,t is re-
search employment. Exponential growth in the models of Romer/Grossman-Helpman/Aghion-
Howitt comes from the assumption that φ = 1. The endogenous growth accounting
literature calibrates φ < 1 to match the fact that increasing research effort does not
necessarily lead to faster growth, but the estimates of φ using R&D data are rather un-
stable. By contrast, I estimate this specification directly and I find φ = 0 with reasonable
precision.

Finally this paper relates to the history of long run growth. Transitions between
regimes, as in Figure 11, are even more striking when viewed through the lens of additive
growth. The fact that growth increments increase during industrial revolutions speaks to
the complementarity of new inventions with existing technologies emphasized by Comin
et al. (2010). The turning point of the 1930s is consistent with Field (2003)’s argument
that “the years 1929–1941 were, in the aggregate, the most technologically progressive of
any comparable period in U.S. economic history.” The early break point around 1650 is
consistent with recent work by Bouscasse et al. (2021).

1 Evidence from the US

1.1 Main Data Sources

My primary sources for TFP are Fernald (2012) (Fernald) and Bergeaud et al. (2016)
(BCL). Let ABCLt and AFt denote the BCL and Fernald measures of TFP. There are
several differences between these two datasets. BCL covers 23 countries from 1890 to
2019 and their data allow the analysis of a long sample period as well as international
comparisons in Section 3. Fernald’s series cover only the US business sector, while BCL
include households and the government. Fernald includes an adjustment for capacity
utilization to make the series comparable to the theoretical benchmark. Finally, Fernald
also includes an adjustment for human capital, following Mankiw et al. (1992). Formally,
BCL assume that Lt = Ht, total hours worked, while Fernald assumes Lt = QtHt where
Qt is an index of labor quality based on education. Using a Cobb-Douglas specification
the Fernald’s measure comparable to the BLC measure is

AFQt = AFt Q
1−α
t
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where AFt is Fernald’s labor-quality-adjusted TFP measure. Figure 13 in the Appendix
shows the three TFP series, where ABCLt is normalized to 1 in 1947 to be comparable
with Fernald’s measures. None of the series is well described by the exponential process
(1) with constant g. AFQt and ABCLt are well described by the additive process (2)
with constant b. The AFt displays some slow down in the later part of the sample even
according to (2) because some of the measured productivity gains are attributed to the
labor quality factor.

1.2 Specification Tests in Postwar U.S. Data

I start my investigation with simple specification tests that nest both models. I study
post-war US data because it is the most reliable and because the US was arguably at
the technological frontier during the entire period. I run two sets of tests using postwar
US data. The first test nests models A and G as

At+τ − At = bτ + ((1 + g)τ − 1)At + εt+τ (3)

Table 1, panel a, shows the NLLS estimates of equation (3). The estimates of g are all
statistically zero and b is in the expected range. My main specification throughout the
paper uses 10-year TFP changes in the BCL data. The estimate for b (column iv) is
2.4 percentage points with a standard error of 0.41pp. The estimate for g is 0 with a
standard error of 0.2 percentage points.

Another way to write a nested model is

At+τ − At
τ

= bAφt + εt+τ (4)

Exponential growth corresponds to φ = 1. Table 1, panel b, shows the NLLS estimates
of equation (4). The advantage of this equation is that it allows for intermediate inter-
temporal spillovers, parameterized by φ. The estimate of φ are statistically zero, even
perhaps slightly negative in Fernald. In my main specification (column iv) b is estimated
at 2.4pp with a standard error of 0.23pp and and φ is estimated at 0 with a standard
error of 0.16. The statistical tests thus confirm the visual impression from figure 1: US
TFP growth is linear, and there is no evidence that future TFP increments increase with
the current level of TFP.

I conclude that post-war US growth is better described as additive rather than multi-
plicative. The initial growth rate is thus around 2.5%. After 40 years, TFP has doubled
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Table 1: Specification Tests

US TFP 1947-2019 (i) (ii) (iii) (iv)
τ = 5 τ = 10

Fernald BCL Fernald BCL
100× b 3.3 2.7 3.1 2.4

100× s.e. 0.61 0.51 0.48 0.41
100× g -0.3 0.1 -0.2 0.0

100× s.e. 0.31 0.27 0.26 0.22
N 68 68 63 63

(a) At+τ −At = bτ + ((1 + g)
τ − 1)At + εt+τ

US TFP 1947-2019 (i) (ii) (iii) (iv)
τ = 5 τ = 10

Fernald BCL Fernald BCL
100× b 3.0 2.7 3.0 2.4

100× s.e. 0.4 0.31 0.30 0.23
φ -0.2 -0.13 -0.16 0.01
s.e. 0.2 0.19 0.16 0.16
N 68 68 63 63

(b) (At+τ −At) /τ = bAφt + εt+τ

Notes: US, 1947-2019. Data from Fernald (2012) and Bergeaud et al. (2016).
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and since increments are constant, the growth rate is only 1.25%.

Result 1: Postwar US TFP growth is well described by model A with constant
increments of 0.025 points each year starting from a value of 1 in 1947. There is no
evidence that TFP increments increase with the level of TFP.

The fact that TFP is additive implies that labor productivity is convex since it
depends on the product of TFP and capital intensity. Panel (b) in Figure 14 shows
that the convex-linear forecast of model A predicts correctly the evolution of labor
productivity in the long term. Model G does not.

1.3 U.S. 1890-2019

I now extend the methodology and the sample, taking into account that trend growth
rates change over time. I present first a simple model that is easy to replicate and
interpret. In the next section I present a MLE estimation with Kalman filtering and
Bayesian model selection, which is more powerful but significantly more complex.

The simple approach forecasts time varying growth according to a standard expo-
nential smoothing model

Et [yt+1] = (1− ζ)Et−1 [yt] + ζyt (5)

where yt = At/At−1−1 for model G and yt = At−At−1 for model A. I use values of 0.05
and 0.1 for the smoothing parameter ζ. At 0.05, the sensitivity of the trend estimate to
the most recent observation is the same as that of a 20-year moving average. At 0.1 the
sensitivity would be the same as that of a 10-year moving average.

Figure 2 shows the raw and smoothed series for ζ = 0.05 and ζ = 0.1. The data is
from Bergeaud et al. (2016). The model is initiated over the first 10 observations, 1891
to 1900: E1900 [y1901] = y1891+..y1900

10
. I drop observations between 1942 and 1946 to avoid

extreme outliers during WW2.
A few features stand out in Figure 2. The series in first difference is approximately

homoskedastic. The standard deviation of TFP changes is 0.13 before WW2 and 0.11
since 1947, and the difference is not statistically significant. The series is percent changes,
on the other hand, displays a secular decline in volatility. The second striking feature is
that there is a permanent mean change around 1930. I will return to this point later.
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Figure 2: US TFP, 1890-2019
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Notes: Models are estimated over 1947-1980. The left panel show the prediction of a linear model. The
right panel shows the prediction of a log-linear model. US TFP is from the updated work of Bergeaud
et al. (2016).

Forecasts Errors At the 10 year horizon, the predictions for the level of TFP from
model A are

Ebt−10 [At] = At−10 + 10b̂t−10 (6)

and from model G
Egt−10 [At] = At−10 (1 + ĝt−10)10 , (7)

where b̂t−10 ≡ Et−10 [∆t−9], ĝt−10 = Et−10 [gt−9] are the trends estimates. The 10-year-
ahead forecast error is then

εb,gt =
At − Eb,gt−10 [At]

Ā
,

where Ā is the sample average of At. I use this normalization to ease the comparison
across datasets. Table 2 reports the root mean square errors (RMSE) of long term
forecasts. Model A outperforms model G in all cases and the relative performance of
model A increases with the forecast horizon.1 The main reason is that after a sequence
of positive growth rates the multiplicative model extrapolates exponential growth for 10
years, which systematically fails to materialize.

Result 2. For US TFP over 1890-2019, model G’s long-term forecast errors are

1Model A also beats model G when RMSE is computed with relative errors At−Eb,gt−10[At]

At
, which

corresponds to a loss function based on log-mistakes. This changes the relative importance of mistakes
early in the sample versus late in the sample, but model A continues to outperform.
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Table 2: RMSE for US TFP Forecasts, 1890-2019

Smoothing Parameter ζ = 0.05 ζ = 0.1
Forecast Horizon 10 years 20 years 10 years 20 years

Model A .086 .145 .090 .147
Model G .107 .209 .114 .237

Notes: US TFP is from the updated work of Bergeaud et al. (2016)

25% to 40% higher than those of model A.

2 Bayesian Model Selection

In this section I pursue a formal but more complex study of models A and G by casting
them in a hidden Markov chain framework. I specify model A as

bt = bt−1 + σuut (8)

At = At−1 + bt + σaε
a
t (9)

where ut and εat are uncorrelated, iid standard Gaussian innovations. In the language
of Kalman filtering, equation (8) is the state equation. The state is the (unobserved)
trend bt subject to (unobserved) shocks ut. Equation (9) is the observation equation.
I observe TFP At at time t. The change in TFP from t − 1 to t reflects the sum of
the underlying trend and the temporary shock εat , which includes measurement errors.
Similarly, the state and observation equations of model G are (10) and (11)

gt = gt−1 + σννt (10)

At = At−1 (1 + gt) + σgε
g
t (11)

where νt and εgt are uncorrelated, iid standard Gaussian innovations.

Estimation I estimate the parameters θA = {σu, σa} and θB = {σν , σg} via maximum
likelihood, filtering the distribution of the unobserved states via the Kalman filter, con-
ditional on parameter estimates. I let the Kalman filter estimate the data from 1942 to
1946 to avoid outliers. Equations (8) and (10) assume that the trends are random walk.
I confirm that the residuals are indeed close to iid, with small autocorrelations of −.09
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for model A and −.002 for model G.
Figure 3 shows the filtered estimates b̂t = E [bt+1 | At] and ĝt = E [gt+1 | At], where

At = (At, . . . A0) denotes the history up to time t.

Figure 3: Estimated unobserved coefficients for US TFP

Conditional Forecasts With parameter estimates in hand I can calculate the con-
ditional forecasts of At+τ | At for any τ . Figure 4 shows the conditional forecasts of
Models A and G for the US economy between 1890 - 2019. For model A the conditional
mean is simply E [At+τ | At] = At + τ b̂t. For model G, however, I must approximate
the conditional expectations using Monte Carlo simulations. The technical details are
in Appendix B.

Figure 4 shows why model A beats model G. Model G predicts exponentially increas-
ing increments that turn out to be systematically wrong even after taking into account
changes in the trend growth rate of TFP.

Model Selection The main advantage of Bayesian estimation lies in its ability to
formally compare competing models. To that end, one can choose the model with the
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Figure 4: Conditional forecasts from time-varying parameter model, USA

highest posterior probability conditional on the data. Define p (Mi | A) as the posterior
probability of model i ∈ {A,G}. By Bayes’ theorem, we have:

p (Ma | A) =
f (A | Ma) π (Ma)

f (A | Ma) π (Ma) + f (A | Mg) π (Mg)
, (12)

where f (A | Mi) denotes the likelihood of the data, conditional on Model i and π (Mi)

denotes the prior probability that the researcher assigns to model i. While full Bayesian
estimation would require f (A | Mi) =

∫
f (A | θi) dπ (θi), I acknowledge the well-documented

numerical instabilities involved in calculating marginal data densities and therefore sub-
stitute the maximum likelihood estimate f (A | Mi) = f

(
A | θMLE

i

)
.

As argued earlier, when I compare models A and G, I need to consider medium-term
or long-term predictions. To that end, I alter equation (12) to compare models at the
τ -period ahead horizon:
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qτ (Ma | A) =
fτ (A | Ma) π (Ma)

fτ (A | Ma)π (Ma) + fτ (A | Mg) π (Mg)
, (13)

where fτ (A | Ma) is now the likelihood calculated via the τ -step ahead prediction error
decomposition:

fτ
(
AT | θi

)
= f

(
AT | AT−1, θi

)
f
(
AT−1 | Mi

)
= f

(
AT | AT−τ , θi

)
f
(
AT−1 | AT−τ−1, θi

)
. . . f (Aτ | A0, θi) f

(
Aτ−1 | θi

)
Since each density is Gaussian I must evaluate the mean and variance of the conditional
forecasts for both models. I discussed the means earlier. The conditional variance of
model A is a (relatively) simple recursive equation involving the Kalman gains and the
conditional one-step variances. For model G, I must again use Monte Carlo simulations
described in Appendix B.

The left panel of Figure 5 shows the posterior probability of Model A as a function of
the forecast horizons τ . The different lines correspond to different priors. The right panel
of Figure 5 slices the same data in a different way, showing the posterior probability as
a function of prior probabilities for different forecast horizons τ . The posterior is one
irrespective of the prior for all horizon except τ = 1.

Result 3. The Bayesian model select model A with posterior probability of one in
the long US Sample.

The Bayesian approach to model selection can also shed light on the history of
economic research on growth. Using data from 1909 to 1949 Solow (1957) found a
pattern for A (t) qualitatively similar to that in Figure 4. He wrote that “there does
seem to be a break at about 1930. There is some evidence that the average rate of
progress in the years 1909-29 was smaller than that from 1930-49.” Indeed, as I show
in Section 4, a formal structural test finds a break around 1930 in the first difference
series A (t)−A (t− 1). The change in the slope makes it difficult to distinguish models
A and G using only Solow’s data. Formally, if one feeds data from 1909 to 1949, the
posteriors over the two models are not very different from the priors. The Bayesian
approach therefore also explains why past research might have concluded that model G
was appropriate.
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Figure 5: Posterior Selection Probability for Model A, USA

3 International Evidence

Bergeaud et al. (2016) provide data for 23 countries.2 I now apply the models of Section
1.3 to each country. This exercise is useful for two reasons. The first reason is that
the sample is much larger. The second reason is that I can investigate TFP growth in
countries that are not at the frontier of technology. I find that model A beats model
G in all countries, and often by a wider margin that in the US. Interestingly, catch-up
growth is also (conditionally) linear.

3.1 Simple Model

The trend growths are estimated with the recursive learning model (5) with parameter
ζ = 0.05 and ζ = 0.1. As before, all the forecasts are out-of-sample. For each country

2Australia, Austria, Belgium, Canada, Switzerland, Chile, Germany, Denmark, Spain, Finland,
France, United Kingdom, Greece, Ireland, Italy, Japan, Mexico, Netherlands, Norway, New Zealand,
Portugal, Sweden and United States. The sample covers 1890–2019. The main variables are GDP,
labor, and capital. Labor is constructed from data on total employment and working time. Capital is
constructed by the perpetual inventory method applied to equipment and buildings.
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i = 1 : 23 and each year t I compute the forecast errors as

εA,Gi,t =
Ai,t − EA,Gt−10 [Ai,t]

Āi
,

where Āi is the country sample average and the expectation are taken under models A
and G. Finally, I compute the root mean square error for each country as

RMSE
A,G
i =

√√√√ 1

T

T∑
t=1

(
εA,Gi,t

)2

.

I consider first the 1950-2019 sample because World War II was a “rare disaster” for
many european economies and for Japan. Barro and Jin (2021) show that rare events
coincide with world wars and depressions while long run risks (low frequency changes in
consumption growth) happen gradually. The premise of my analysis is that long term
TFP growth reflects mostly technological change but rare events could have a persistent
impact on TFP.3

Figure 6(a) shows the RMSE of TFP forecasts in the two datasets. Model A performs
better than model G in all cases. In most cases the relative performance of Model A is
stronger than for the US.

I also use the OECD MFP database as a robustness check in Figure 6(b). The data
covers 24 countries and starts in 1985 for most, and later for some. Because the time
series are much shorter it is more difficult to tell the models apart and some countries
are bunched close to the 45 degree line. Nevertheless, model G never performs better
than model A, and often performs worse. Perhaps the most interesting case is that of
Korea, which is not in the BCL sample and has experienced strong growth over the past
30 years. It turns out that Korean TFP growth is very linear.

The BCL and OECD data do not include some important Asian countries with
strong growth performance. Figure 7 shows TFP for Thailand and Taiwan along with
the 10-year forecasts of the two models. Taiwan’s TFP growth is remarkable. The TFP
index, normalized to 1 in 2017, was only 0.2 in 1955. Such a fast growth makes it easy

3The existence of disasters is a good reason to use TFP as opposed to GDP per capita to study long
term growth. In the US, for instance, modern TFP growth starts in the middle of the great depression:
a macro disaster coincides with a technological miracle. TFP captures it correctly because it accounts
for changes in hours worked. The case of Europe is more complicated because the shock (WW2) is
larger and destroys the capital stock, where some of the technology is embedded. It therefore seems
safer to first estimate the model in the post-1950 sample. In any case, Table 3 shows that the results
are similar in the full sample 1890-2019.
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Figure 6: TFP Forecast Errors, Post War
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(b) OECD, post-1985
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with smoothing parameter 0.05. Data from Bergeaud et al. (2016). Sample 1950-2019.
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Figure 7: TFP, Fast Growing Asian Countries
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Notes: Data from Penn tables Asia. The solid green line is the level of TFP, At. The dashed and dotted
lines show the forecast made 10 years before by the two models, EA,Gt−10 [At].

Table 3: Average RMSE for 23 Countries, BCL Sample
Sample 1890-2019 1950-2019

Parameter ζ = 0.05 ζ = 0.1 ζ = 0.05 ζ = 0.1
Model A .130 .128 .102 .103
Model G .171 .168 .162 .145

Number of Countries 23 23 23 23
Notes: Data from Bergeaud et al. (2016).

to tell apart the two models. Model A fits very well. Model G vastly over-predicts TFP,
irrespective the smoothing parameter.

Table 3 summarizes the average performance of models D and G. The differences are
even larger than in Table 2. Model A over-performs model G by 30% to 60%. The table
shows that this result also holds for the long sample.

Linear growth inside the frontier could suggest that the limit on productivity growth
is not the flow of new ideas, but rather their implementation, via human capital invest-
ment and learning-by-doing (Comin and Hobijn, 2010).
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3.2 Bayesian Selection

I run the same model selection methodology used for the US for all the countries in
the BCL sample. Figure 8 shows the proportion of countries with posterior probability
of Model A greater than 0.5. The Bayesian model selects model A for essentially all
countries in the sample. The one exception is Ireland where both models fit poorly and
there is no clear winner.

Figure 8: Proportion of countries with p(Ma|Data) > 0.5

Result 4. TFP growth is better described by model A than by model G for both
developed and developing countries.

3.3 TFP Slowdown Revisited

Section 1.2 has shown that there is no TFP slowdown in the US if one defines the
benchmark model as linear. There is, however, a TFP slowdown in the euro area (EA,
defined as of current membership) and in Japan. Figure 9 compares the evolution of
TFP (left panel) and labor productivity (right panel) in the US and the EA during the
post-war era. The EA catches up with the US from 1947 to 1980. Between 1980 and
1990 TFP growth is somewhat faster in the EA than in the US. From the mid 1990s
onward, however, EA TFP starts to fall behind US TFP. The right panel shows the
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Figure 9: TFP and Labor Productivity in the US and the Euro Area
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Table 4: TFP Increments
∆ [TFP ] /TFPUS,1947 1947-1990 1991-2019

USA .023 .027
Euro Area .037 .016
Japan .029 .012

Denmark .026 .026
Sweden .022 .028

Notes: TFP Increments measured in units of US TFP in 1947: ∆ [TFP ] /TFPUS,1947. Data from
Bergeaud et al. (2016).

same pattern for labor productivity, and the dashed line shows that the entire slowdown
in output per hour in the EA comes from TFP, not from capital accumulation.

Table 4 shows the evolution of TFP increments before and after 1991, a year chosen
because it corresponds to the peak of the EA relative TFP performance. The increments
are scaled by US TFP in 1947 to make them comparable across regions. As I have already
shown, the US grows with a roughly constant increment. Until 1990 the EA and Japan
grow at a faster pace. After 1990, however, their TFP increments decline dramatically
and fall below that of the US. The key point is that this slowdown goes beyond what
one might expect at the end of the catch-up period.

Table 4 suggests that model A provides a more useful benchmark to study growth
than model G does. Model G is a poor diagnostic tool because no country is able to live
up to its extreme predictions.4 If one takes the benchmark to be one of exponentially

4Unless the predicted growth rate is continuously revised downward so as to emulate a linear growth
model, but that merely proves the point that the exponential benchmark is useless.
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growing increments, then one must conclude that all countries have failed to live up
to our expectations. By contrast the linear TFP benchmark highlights that Denmark
and Sweden have TFP performances comparable to that of the US while Japan and the
Euro area do not. The exponential model paints a particularly misleading picture of
growth in countries with high TFP. The danish TFP increment, at 0.026 is much higher
than that of the Euro Area at 0.016. The difference in growth rates is less impressive,
however, because TFP in Denmark is higher than in the EA.

4 Long Term Historical Evidence

In this section I provide historical evidence of changes in TFP growth in the very long
run. In doing so I depart from the formal statistical approach of the previous sections as
the historical discussion is more easily framed in terms of regimes separated by breaks.

4.1 The 1930 Structural Break

Figure 2 shows that model A, unlike model G, appears to have only one break over
the period 1890-2019 in the US. I can formally test this idea following Bai and Perron
(2003). The unconstrained test finds one break in the ∆ [TFP ] series: the point estimate
is 1933. I test {H0: no breaks} versus {H1: break in 1933}. The W statistic is 21.72
and the p-value is 0.0.

The timing of the break is consistent with Field (2003)’s argument that “the years
1929–1941 were, in the aggregate, the most technologically progressive of any comparable
period in U.S. economic history.” This period corresponds to the large scale implemen-
tation of the discoveries of the second industrial revolution: electric light, electric power,
and the internal combustion engine, as discussed in Jovanovic and Rousseau (2005).
Gordon (2016) points out that it is somewhat surprising that “much of the progress
occurred between 1928 and 1950,” several decades after the discoveries were made. Fol-
lowing David (1990), he explains the paradox by showing that the 1930s were a period
of follow-on inventions, such as the perfection of the piston-powered aircraft and the im-
proving quality of machinery made possible by a large increase in available horsepowers
and kilowatt-hours of electricity.
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Figure 10: Linear US TFP with One Break

0.
00

2.
00

4.
00

6.
00

8.
00

1900 1920 1940 1960 1980 2000 2020
Year

TFP Pre-Post GPT

US TFP

Notes: US TFP is from the updated work of Bergeaud et al. (2016), normalized to 1 in 1890.

4.2 World TFP: 1550-2020

Just as the US provides a good proxy for the world technological frontier in the 20th
and 21st centuries, the UK arguably provides a good proxy in previous centuries. The
Maddison series for UK GDP per capita has one observation in the year 1000 and then
offers annual values from 1252 onward. Growth appears virtually null until the 1600’s
(Bolt and van Zanden, 2020). In the neoclassical growth model, labor productivity is

proportional to A
1

1−α
t . If hours worked per capita are stationary and if the capital share

is constant then I can use series on GDP per capita to construct proxies for TFP. I make
these heroic assumptions and use as my proxy for TFP (yt)

1−α where yt is GDP per
capita and α = 1/3.

I will use this measure of UK pseudo-TFP for the first part of the sample and then
the data from BCL, which start in 1890. An important choice is when to switch from
the UK to the US as proxy for the TFP frontier. In the BCL data, the US overtakes
Britain in 1910 for GDP per capita but only in the late 1930s for TFP (the US has a
higher capital intensity than the UK during that period, which explains the difference).
I use 1930 as a switching point. My proxy for World TFP is thus based on the UK
before 1930 and on the US after 1930.
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Panel (a) of Figure 11 shows the long series for the frontier of World TFP – normalized
to 1 in 1930 – together with historical breaks. Each circle represents a five year average.
The breaks are in 1650, 1830 and 1930. Panel (b) zooms in on the two main sub-
period, 1550-1915 and 1820-2020. Growth is zero until 1650 and the level of TFP is 0.3.
Starting in 1650 it increases by 10.5 basis points each year until 1830 where it reaches
approximately 0.5. In 1830 the increment increases to 46 basis points and grows linearly
until World War 1. The period 1915-1930 is somewhat noisy but TFP remains close to
its linear trend of 45 basis points until 1930. After 1930 I observe an enormous increase
in TFP growth, from 46 basis points to 418 basis points per year. As a result, TFP
today is almost five times higher than it was in 1930.

I have discussed the break in 1930 in the previous section. The break in 1830 also
aligns well with the standard historical account of the second industrial revolution. The
break in 1650 seems to happen before the first industrial revolution, however. There
are several explanations for the fact that growth in the UK started earlier than the
18th century. The first key point to keep in mind is that I do not have a measure of
hours worked. The pseudo-TFP series are based on income per-capita. Voth (2001)
has shown that a rising labor input was an important contributor to growth after 1770.
It is plausible that changes in hours per capita also contributed to growth during the
previous century. Mokyr and Voth (2010) point out that “the rise of cottage industries
in the countryside after 1650, the famed “proto-industrialization” phenomenon, would do
exactly that. There is also reasonable evidence to believe that labor participation rates
were rising in the century before the Industrial Revolution.” Moreover, England, unlike
France, had no food crises between 1650 and 1725. Finally, the increase in GPP per
capita in the 1600’s is consistent with recent work by Bouscasse et al. (2021).

5 Theory

I now discuss the theory of additive growth, first with exogenous TFP, and then with
endogenous TFP. The neoclassical model predicts policy functions that respond similarly
to additive and exponential growth shocks. Given a path for TFP, the predicted paths
of macro variables (consumption, capital, etc.) are therefore similar. I then present
a simple model of endogenous growth where TFP is additive and I explain the key
assumption that determines the nature of growth.

23



Figure 11: World Frontier TFP
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5.1 Additive Neoclassical Growth

Let us consider the textbook neoclassical growth model with exogenous TFP. To simplify
the notations in the theoretical discussion I use continuous time and I assume an inelastic
labor supply. Aggregate value added (GDP, Yt) is given by

Yt = F (Kt, AtLt) (14)

where At is labor augmenting (Hicks-neutral) productivity,5 Lt is the flow of labor ser-
vices and Kt is the flow of capital services which accumulates as

K̇t = It − δKt. (15)

Labor grows at the constant population growth rate gL: dLt
dt

= gLLt. Households have
standard CRRA preferences with relative risk aversion γ and rate of time preference ρ.
Normalizing the macro variables per efficiency unit of labor as k̂t ≡ Kt

AtLt
and ĉt ≡ Ct

LtAt

I obtain the resource constraint

˙̂
kt = f

(
k̂t

)
− ĉt −

(
δ + gL +

Ȧt
At

)
k̂t, (16)

and the Euler equation

γ
˙̂ct
ĉt

= f ′
(
k̂t

)
− δ − ρ− γ Ȧt

At
. (17)

Define

gA∞ = lim
t→∞

Ȧt
At

The long-term balanced growth path is given by

f ′
(
k̂∞

)
= δ + ρ+ γgA∞

and
ĉ∞ = f

(
k̂∞

)
− (δ + gL + gA∞) k̂∞

5Note that the empirical analysis in Fernald (2012) and Bergeaud et al. (2016) uses standard growth
accounting notations where Yt = ASt K

α
t L

1−α
t where ASt is the Solow residual. In the Cobb-Douglass

case there is of course the equivalence ASt = A1−α
t . Whether one assumes that ASt or At is linear is of

course important empirically but it makes no difference to the theory. I therefore work with A linear
because it simplifies the notations.
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Figure 12: Response to One Time Increase in Trend Growth

(a) Expected TFP (b) Expected Consumption

Notes: Economy in steady state with zero growth at time 0. The shock is 2% trend growth starting
at time 1. The key parameters are CRRA=2, Frisch elasticity=1/2 and capital adjustment costs of 5
(annual frequency) as in I/K − δ = (Q− 1)/5. See Appendix for details.

In the long run all per capital variables grow with At. For instance, long run per capita
consumption is ct = Ct/Lt = ĉ∞At. Under exponential growth we have gA∞ > 0. Under
additive growth the model features decreasing growth rates until gA∞ = 0 and the risk
free rate falls over time to eventually converge to ρ.

There is nothing particularly surprising about the behavior of an economy under
permanent additive growth. For instance, any growth process less extreme than the
exponential one would also have gA∞ = 0. Groth et al. (2010) discuss various specifi-
cations where this happens and Kruse-Andersen (2022) provides estimates in favor of
semi-endogenous growth models. This, however, does not mean that, given an observed
path for TFP, macroeconomic variables would be different under models A and G.

A more interesting question, then, is to ask whether agents react differently to the
same observed changes in TFP depending on the model they use to interpret the data.
To understand whether policy functions depend on model specification I simulate the
responses of the economy to additive versus exponential trend growth shocks. For the
simulations I use a standard discrete time model with elastic labor supply and capital
adjustment costs (details are in the Appendix). The important parameters are the
CRRA (γ = 2) and the Frisch elasticity (0.5).

Figure 12 shows the response of the economy to a one-time increase in trend growth.
The economy is in steady state with no growth until time 0, with TFP normalized to
A0 = 1. Agents wake up at time 1 and observe an increase in TFP from 1 to 1.02.
Agents believe the trend increase is permanent. In model G the agents expect g = 2%
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Table 5: Initial Response to TFP Trend Shocks

CRRA γ 0.5 1 2 3 4 5

Consumption C1

C0
− 1 (%) Model A 0.16 1.86 4.31 6.01 7.29 8.30

Model G 0.04 1.92 4.66 6.60 8.07 9.24

Short Rate r1 (1)− r0 (1)(%) Model A 0.72 1.16 1.71 2.05 2.32 2.55
Model G 0.71 1.15 1.68 2.02 2.30 2.54

Long Rate r1 (τ)− r0 (τ)(%) Model A 0.79 1.47 2.68 3.77 4.79 5.79
Model G 0.93 1.75 3.24 4.60 5.91 7.19

Notes: Economy in steady state with zero growth at time 0. The shock is 2% trend growth starting
at time 1. The key parameters are CRRA=2, Frisch elasticity=1/2 and capital adjustment costs of 5.
The long rate is computed for τ = 20 years. See Appendix for details.

for ever. In model A they anticipate b = 0.02 for ever. Panel (a) shows the expected
paths of TFP, one additive, and one exponential. Panel (b) shows the expected path
of consumption and I am interested in the initial consumption response C1/C0 under
models A and G. Note that current TFP is A1 = 1.02 in both cases and the only
difference between models A and G comes from the expected path of TFP from time
t = 2 onwards. Consumption jumps on impact because of a wealth effect. The wealth
effect could be stronger in model G than in model A because agents anticipate higher
consumption in the future. The key point, however, is that the increase in consumption
in year 1 is quantitatively similar in the two economies. In other words, conditional
on the same capital stock and the same observed TFP, agents choose roughly the same
level of consumption whether they believe growth to be linear or exponential. Formally,
the policy function C1 = C (A1, K1;Ma,g) does not depend much on the model M in
the agents’ information set for given state (A1, K1). This is a quantitative result that
depends on the assumed EIS and figure 12 uses γ−1 = 0.5 as a benchmark. Table 5
shows the robustness of this result.

Table 5 shows the initial response of consumption and interest rates to trend growth
shocks for different values of γ. The case γ = 2 is the one depicted on Figure 12
where consumption increases by 4.3% when agents believe model A and 4.6% when
they believe model G. When γ = 1 (log preferences) the initial consumption response
is virtually identical. When γ = 0.5 both are very small. When γ = 5 agents are less
willing to substitute consumption over time and the wealth effect is stronger, but the
difference between model A and G is still only 1 percentage point. Table 5 also shows
that the responses of the short term interest rate are nearly identical under models A and
G, even for relatively high CRRA. The parameters of monetary policy (e.g., the natural

27



rate) are therefore also similar. Moreover these results obtain even though agents are
assumed to observe the trend directly. Adding learning and imperfect information, as
in Section 1.3 or in Edge et al. (2007), would make the responses even mode similar.

The conclusion, then, is that the behavior of the economy, conditional on the same
path for At, would be roughly the same under models A or G. To understand this point,
note that the state space is (At, Kt) and that capital is determined jointly by the policy
function for C and the law of motion: Kt = K (Kt−1, At−1;M) where the function K

is not sensitive to the modelM used by the agents to interpret the data. The same path
of A (t) therefore leads to (approximately) the same path for Kt and to the same path
of Ct. Given the same historical path of TFP, the two models make similar predictions
about consumption, investment, the labor share, the capital labor ratio or inflation.
Recognizing that TFP growth is linear therefore does not affect existing research on
these topics.6

The response of long term interest rates is somewhat stronger under model G than
under model A. For instance, when γ = 2 the growth shock increases the 20 year rate
by 2.68p.p. under model A (b = 0.02) versus 3.24p.p. under model G (g = 2%). The
stronger response of the long rate is consistent with the expected path of consumption
but it also explains the similarity of the initial response of consumption and investment.
Agents anticipate higher returns to capital in the future under model G than under
model A, which, all else equal, would increase Tobin’s Q and investment. The increase
in the long rate compensates that difference so that the response of Tobin’s Q becomes
similar in both models. When γ = 0.5 Tobin’s Q increases by 2.2p.p. under model A
versus 2.5p.p. under model G. When γ = 2, Tobin’s Q decreases by 6.9p.p. under A
versus 7.6p.p. under G.

5.2 Endogenous Growth

Endogenous growth models were designed to generate exponential growth. I now present
a simple model that delivers additive growth. I use an expanding variety model à la
Romer (1990) to illustrate my point but it is relatively straightforward to apply it to the
the other types of endogenous growth models (AK, human capital (Uzawa, 1965; Lucas,
1988) or quality ladders (Aghion and Howitt, 1992)). Following the textbook treatment
in Barro and Sala-i-Martin (2004) the final good is produced using intermediate inputs

6Model G predicts balanced growth if g happens to be constant, while model A does not predict
balanced growth until the rate of growth is zero. However, since g is not constant in the data the fact
that model G makes it easier to compute a balanced growth is irrelevant.
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and labor using a production function from Spence (1976)

Yt = AL1−α
t

∫ Nt

0

xαi,tdi,

where Nt is the set of varieties that have been discovered up to time t and labor supply
Lt is exogenous. The price of final output is normalized to one.

Micro given Nt The demand curve for product i at time t, αAL1−α
t xα−1

i,t = pi,t, is
iso-elastic with price elasticity ε = 1/ (1− α). The wage is such that wtLt = (1− α)Yt.

Variety i is produced from final output with a constant marginal cost ψ so profits are
πi,t = (pi,t − ψ)xi,t. The profit maximizing price is pi,t = ψ

α
and output per variety is

xi,t =

(
α2A

ψ

) 1
1−α

Lt. (18)

An important feature of (18) is that the quantity of each input is independent of Nt. It
only depends on productivity and market size measured by Lt. Profits are also propor-
tional to market size: πt = π̄Lt where π̄ = 1−α

α
(α2A)

1
1−α ψ−

α
1−α . Compared to the first

best – p∗ = ψ and x∗t =
(
αA
ψ

) 1
1−α

Lt – output is too low because of market power.

Macro given Nt Given Nt, production is

Yt = A
1

1−α

(
α2

ψ

) α
1−α

NtLt, (19)

and labor productivity A
1

1−α

(
α2

ψ

) α
1−α

Nt is proportional to Nt. Output is either con-
sumed, used to produce existing varieties, or used to generate new varieties. Mar-
ket clearing thus requires Yt = Ct + ψXt + κ̄tṄt, where κ̄t is the average cost per
new variety that I discuss below. Using the equilibrium conditions we see that Ct =

(1− α2)Yt − κ̄tṄt. From wtLY = (1− α)Yt we have the equilibrium wage wt =

(1− α)A
1

1−α

(
α2

ψ

) α
1−α

Nt. Consumers have a standard Euler equation, expressed in per
capita consumption ct = Ct/Lt as

γ
ċt
ct

= rt − ρ. (20)
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Innovation I assume that the innovator gets a permanent patent so the value of
discovering a new variety is

vt =

∫ ∞
t

πτe
−(τ−t)rt,τdτ (21)

where rt,τ is the zero coupon yield at time t with maturity τ . Up to this point the model
is exactly the same irrespective of the dynamics of TFP. I now propose a specification
that nests the exponential model as a special case. At any time t there is a set Mt of
ideas for new varieties, indexed by their discovery costs: idea j costs κj. The marginal
idea financed at time t must satisfy κj(t) = vt. The number of new varieties is therefore

Ṅt = F (vt)M (Lt, Nt) (22)

where F (.) is the c.d.f. of κj and Mt = M (Lt, Nt) is the mass of potential ideas. A
simple model could be that each person has some probability of having an idea, in which
caseMt would be proportional to Lt. Mt could also depend on the number Nt of varieties
already discovered. In general I write Mt = M (Lt, Nt).

The dynamics of the system are pinned down by the Euler equation (20), the NPV of
monopoly profits (21), and the variety production equation (22). I focus for simplicity
on a balanced growth path with constant labor Lt = L. With constant interest rate r we
have v = π

r
. From the resource constraint we see that the growth rate of consumption

per capita is the same as the growth rate of N . The dynamics are therefore

Ṅt = F
(π
r

)
M (L,Nt) (23)

γ
Ṅt

Nt

= r − ρ (24)

I now explain how the function M determines the nature of growth.

Exponential Growth Let us start with the “standard” model. To get exponential
growth one has to assume that the number of new ideas is proportional to the number
of existing varieties Mt = M̄Nt. Growth is such that γgc = r − ρ and the equilibrium
interest rate solves

γM̄F
(π
r

)
= r − ρ. (25)
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The comparative statics are the same as in the textbook model: Growth is high when
risk aversion is low, when consumers are patient, when innovation costs are low, and
when monopoly profits are high. The model has a scale effect because π is proportional
to L – larger markets enable higher profits and faster accumulation of N .

Equation (25) allows us to better understand the key assumption of the standard
model. In textbooks (e.g., Barro and Sala-i-Martin, 2004) one often assumes an infinite
supply of new ideas at constant cost κ. Technically this corresponds toM =∞ together
with a degenerate distribution of potential ideas: F is discontinuous at κ: F (κ−) = 0

while F (κ+) = 1. In that special case we must have r = π
κ
and we obtain the growth rate

directly from the Euler equation γgc = π
κ
− ρ. Infinite elasticity at κ is unrealistic7 and

it hides the fundamental assumption driving exponential growth, namely that M must
be proportional to N . Proportionality ensures that the capacity constraint on new ideas
does not become binding as the economy grows. It is all that is needed for balanced
growth, it is much weaker than assuming M = ∞, and it allows a more transparent
comparison with other models. When M is proportional to N we obtain exponential
growth and the infinitely elastic free entry condition v = κ is just a special case.

Remark 1. The fundamental assumption delivering exponential growth in the standard
model is that the number of new ideas Mt is proportional to the number of existing
varieties Nt.

All endogenous growth models make the same fundamental assumption to obtain
exponential growth. The quality ladder model, for instance, assumes that the steps of
the ladder are exponentially distributed. The key assumption that ideas multiply each
other does not seem particularly plausible. In the context of expanding varieties, (19)
implies that labor productivity is proportional to N , which makes sense since these
varieties were invented precisely to offer goods that consumers want. But there is no
reason to think that the flow of new ideas should also be proportional to N .

Additive Growth We obtain an additive growth model when M does not depend on
N . In the long run the interest rate converges to the rate of time preference ρ and the
increment is constant: Ṅ = F

(
π
ρ

)
M implies

N = N0 + t× F
(
π

ρ

)
M. (26)

7It says that all varieties existing today could have been discovered earlier and the only reason they
were not is that the cost in terms of consumption would have been too high. Strictly speaking, this
assumption means that the iPhone could have been invented in 1900.
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The Lemma summarizes our discussion so far

Lemma 1. Growth is exponential when Mt is proportional to Nt and additive when Mt

does not depend on Nt.

If we think that ideas occur in people then a natural specification is M = M̄L. Ag-
gregate innovation Ṅ = F

(
π̄L
ρ

)
M̄L depends on market size in two ways: big countries

have big markets that can sustain more varieties (π̄L/ρ) and they have more people who
can generate ideas (M̄L). Note that this scale effect does not alter the fact that growth
is additive. Time varying population growth, Lt, would generate time varying economic
growth just as in the standard model.

Recent research has discussed the evolution of R&D spending and research produc-
tivity. Jones (2009) argues that researchers spend an increasing amount of time getting
to the frontier of knowledge before they can finally push it. Bloom et al. (2020) show
that the number of researchers has increased significantly over the past 80 years. Since
TFP growth has not increased they conclude that research productivity has declined.
This literature uses exponential growth as a benchmark therefore additive growth would
appear as a form of decreasing return. Note, however, that additive growth does not
mean stagnation: productivity goes to infinity, just not as quickly as in the exponential
benchmark. It is also straightforward to obtain the intermediate cases of equation 4 by
specifying that M increases less than proportionally with N .

With decreasing returns to R&D the models cannot sustain endogenous growth,
which is why Bloom et al. (2020) and Jones (2021) argue for semi-endogenous models
where population growth is the ultimate source of long term growth. Population growth
can overcome decreasing returns in two ways. The pull factor comes from increasing
market size and profits since πt = π̄Lt. The push factor comes from the increase in the
number of ideas as M increases with L.

The additive growth equation (26) fits the TFP data well. Its implications for R&D
spending appear more ambiguous. In the very long run, assuming no break and once r
has converged to ρ, we have v∞ = π/ρ. At this point the total resources spent on in-
novation – M

∫ v∞
0

κdF (κ)– is fixed and since productivity is growing linearly the share
of spending in GDP falls.8 Along this path, however, v increases as r falls and thus

8That it decreases towards zero is an artifact of the accounting for research effort. In the simple
model all the costs of innovation are made when the variety is created. In practice much R&D spending
is ongoing, which changes the accounting without changing the model’s prediction. Suppose that the
owner of a variety must spend m < π units per period to maintain the relevance of her variety. The flow
profits become π−m and the model is unchanged by simply replacing π with π−m in the equilibrium
conditions. In that case the ratio of R&D to GDP converges to m in the additive model.
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spending increases and the evolution of the spending share is ambiguous. Moreover, in
the data we observe important changes in the valuation equation. Assuming that new
ideas are embedded in existing firms, the ratio of aggregate firm value to GDP is propor-
tional to π

r−g and this ratio has increased over time despite the fall in g, perhaps because
of a decline in the discount rate (lower risk free rate or lower equity risk premium), or
perhaps because firms can appropriate a higher fraction of the value of their innovations.
Conditional on the observed value to GDP ratio the model would predict a stable or
increasing the ratio of R&D spending to GDP.9

Inter-temporal Spillovers An important difference between models A and G lies in
the strength of inter-temporal spillovers. Suppose that productivity At evolves along
some equilibrium and consider a one time deviation where research output increases by
ε/∆ from time t0 to t0 + ∆ (so ε is the cumulative increase). At any point t > t0 + ∆

TFP becomes Ãt = At + ε under additive growth, and Ãt = Ate
ε under exponential

growth. In other words
∂Ãt
∂ε

∣∣∣∣∣
A

= 1

while
∂Ãt
∂ε

∣∣∣∣∣
G

= At

In the exponential model, the impact on future productivity of a small change at t0
becomes infinitely large as we extend the time horizon. The following thought experiment
shows why this is implausible. Suppose that the US TFP shift of 1930 happened in 1910
instead. Using our estimates of a change in local growth rate from 1% to 3.3% during
that window, the exponential model says that TFP today (2020) would be 58% higher
and labor productivity would be twice as high. Believing in exponential growth means
believing that if the US had implemented electricity 20 years earlier than it actually did,
GDP today would be twice as high (holding constant the quantity of hours worked).
This seems wildly implausible. The linear model, by contrast, says that TFP would be
higher by 0.8 points from a baseline of 8, so 10% higher. Taking capital accumulation
into account, GDP would then be about 15% higher, as opposed to 100% higher under
exponential growth.

9Additive growth requires Ft (vt) be constant. An increase in v (say because of lower risk premia)
and a decrease in F (say because ideas are more expensive) can then explain additive growth with
increasing spending on innovation.
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5.3 Rejoinder

Section 4 shows that the trend growth of the technology frontier changes over time but
these changes are not explained by an exponential model. They highlight instead the
role of technological revolutions and GPTs. A simple model that describes TFP is as
follows. First, within a GPT era, growth is linear

At − At−1 = bt + εt,

where ε is iid. There is a small probability p of a regime change as

bt+1 =

bt , 1− p

Atξt+1 , p

I normalize the new regime by the level of TFP at the time of the regime change so that
the specification nests models A and G:

Et [At+1 − At] = (1− p) bt + pAtEt [ξt+1] . (27)

The pure model A corresponds to p = 0, the pure model G to p = 1. The historical
data suggests p ≤ 1% per annum which explains the success of model A. With the
normalization by At we have ξ1650 = 0.35%, ξ1830 = 0.94%, and ξ1930 = 4.4%. The
structural change of the 1930s appears truly amazing in that respect.

Equation (27) is related to equation (2) in Comin et al. (2010). They point out
that the exponential nature of growth depends on the complementarity between old and
new technologies. My results suggest that, in most times and places new technologies
increase TFP independently of existing technologies. One could interpret a GPT as a
technological change that is complementary to a sufficiently high share of existing ideas
and technologies. This complementarity creates what looks like multiplicative growth
as the GPT is implemented. The key point is that the TFP equation changes following
the discovery of a new GPT. The linear growth equation holds within each GPT era
but not across GPTs. An important question for future research is the persistence of
GPTs. Should we assume that a GPT permanently increases the (potential) growth of
the economy? Or should we assume that the impact on b depreciates over time? One
could speculate that the slowdown of the late 1970s in Figure 10 reflects the waning
impact of the initial electricity revolution and the pickup in the late 1980s the impact
of IT. This is an interesting question for future research.
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6 Conclusion

TFP growth is not exponential: new ideas add to our stock of knowledge; they do not
multiply it. TFP has been growing linearly over the past 90 years in the US and the
additive model beats the exponential model for every single country – developed or
developing – where TFP data is available. The TFP frontier appears to grow linearly
within broad historical periods: 1650 to 1830, 1830 to 1930, and 1930 until today.
Additive TFP growth predicts increasing growth of labor productivity and GDP per
capita thanks to capital accumulation.

The additive growth model explains the observed TFP slowdown as a consequence
of model misspecification. We should not have expected growth rates to be constant in
the first place. The additive model does not necessarily solve the research productivity
puzzle of Bloom et al. (2020) since this puzzle is not about the stochastic process for
TFP but rather about the specification of the production function for ideas.

The additive model, unlike the exponential one, provides useful long run forecasts.
To illustrate this point consider the predictions one would make in 2020 regarding GDP
in 2060, holding population constant so as not to introduce additional demographic
forecast errors. Using Fernald’s data, the TFP level is 3 in 2020. The estimate for
TFP growth is 1.2% with a standard deviation of 0.2% over the preceding 40 years.
The estimate for TFP increments is 0.027 with a standard deviation of 0.0036. The
G-forecast for cumulative growth between 2020 and 2060 is 2 (i.e., 1.012

40
1−α ) but the

two standard errors range is 1.6 to 2.6, which is $21 trillion. It is difficult to see the
usefulness of a forecast where the error range is the current level of GDP. The A-forecast
is 1.59 with a range of 1.42 to 1.76, which is only one third of 2020 GDP.

Additive growth has implications for macroeconomic, industry and firms dynamics.
Per capita income and consumption growth is lower and less volatile under additive
growth than under exponential growth. This affects the valuation of long term assets
(eg pensions) and the quantity of long term risk in the economy. This also matters for
the optimal mitigation of long term risks such as climate change, since real discount
rates are low and future generations will not be much richer than the current one.
Philippon (2022) provides some early evidence consistent with additive growth at a
more disaggregated level. More importantly, the study of industries and firms can shed
light on why growth is additive.
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Appendix

A US Data

A.1 Three Measures of Post-War US TFP

Figure 13 compares the TFP series from BCL and Fernald, with and without adjustment
for education.

Figure 13: US TFP Levels
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Notes: TFP levels, Abcl, Aft , and Ant . Data from Fernald (2012) and Bergeaud et al. (2016).

A.2 Labor Productivity

Let us now study the accumulation of capital. Define the capital labor ratio as

kt ≡ Kt/Lt,

where, in the BCL data, Kt is the real capital stock and Lt measures hours worked.
The first order condition for capital demand in the neoclassical growth model equates
the marginal product of capital (MPK) to the user cost (defined as χ). BCL do not
consider changes in the user cost and the first order condition is simply

k1−α
t =

α

χ
At. (28)
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Figure 14: Out-of-Sample Labor Productivity Forecasts

1
2

3
4

5

1950 1960 1970 1980 1990 2000 2010 2020
Year

Labor Productivity Model D Model G

Notes: Models are estimated over 1947-1983. The forecast 1984-2019 is out-of-sample. Labor produc-
tivity is real GDP per hour. Data source: Bergeaud et al. (2016).

Equation (28) says that the normalized inverse MPK (IMPK) is proportional to A.10

Model G therefore predicts that k1−α
t grows exponentially, while model A says that it

grows linearly. Once we have a forecast for the capital labor ratio we can use our forecast
for TFP to create a forecast for labor productivity λt, defined as output per hour:

λt ≡
Yt
Lt

= Atk
α
t . (29)

model A offers a forecast for labor productivity as

λ̂t =
(
â+ b̂t

)(
âimpk + b̂impkt

) α
1−α

B Bayesian Model Selection

B.1 Model A

This section calculates the moments of the τ -period ahead forecasts for Model A, con-
ditional on filtered estimates of the trend. Using the innovations representation of the
Kalman filter we have

10Users of model G typically interpret equation (28) as saying that capital grows exponentially, just
like A, as a rate (1 + g)

1/(1−α). Equivalently, if the model is written with Harrod-neutral technological
progress, Yt = Kα

t (MtHt)
1−α then capital is proportional toMt. I return to these issues in Section 5.
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b̂t = b̂t−1 +Kt−1at

At+1 = At + b̂t + at+1

where at ∼ N (0,Ωt−1) and I obtain Ωt−1 = Vt−1 [at] from the Kalman filter recursions.
Note that I am using notations where b̂t refers the forecast made at the end of time t:
b̂t = Et [bt+1]. Iterating on the law of motion I get

At+τ = At +
τ−1∑
j=0

b̂t+j +
τ∑
j=1

at+j (30)

I use (30) to estimate the τ -step ahead conditional mean and variance.

Conditional τ-step ahead mean E [At+τ | At] From (30) and the fact that Et [at+j] =

0 we have

E
[
At+τ | At

]
= At +

τ−1∑
j=0

E
[
b̂t+j | At

]
Since E

[
b̂t+j | At

]
= b̂t I get

E
[
At+τ | At

]
= At + τ b̂t.

Conditional τ-step ahead variance, V [At+τ | At] Iterating on the Kalman filter we
have

b̂t+τ = b̂t +
τ−1∑
j=0

Kt+jat+j+1

Using (30) I then get

At+τ = At + τ b̂t +
τ∑
j=1

at+j + (τ − 1)Ktat+1 + (τ − 2)Kt+1at+2 + ..

Then
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V
[
At+τ | At

]
= E

[
(At+τ − Et [At+τ ])

2 | At
]

= E

( τ∑
j=1

at+j + (τ − 1)Ktat+1 + (τ − 2)Kt+1at+2 + ..

)2

| At


Recall that V [at+1 | At] = Ωt is an output from Kalman filtering, and that the innova-
tions at are serially uncorrelated. Therefore:

V
[
At+τ | At

]
=

τ∑
j=1

(1 + (τ − j)Kt+j−1) 2Ωt+j−1.

B.2 Model G

The innovations representation of the Kalman filter for Model G is:

ĝt = ĝt−1 +Kt−1at

At+1 = (1 + ĝt)At + at+1

with the same notations as for model A. The issue with model G is that one cannot derive
simple expression for conditional means and variances several steps into the future. One
step ahead we have

E
[
At+1 | At

]
= (1 + ĝt)At

but

E
[
At+2 | At

]
= E

[
(1 + ĝt+1)At+1 | At

]
= E

[
(1 + ĝt +Ktat+1) ((1 + ĝt)At + at+1) | At

]
already contains non linear terms. I proceed by approximating the moments via Monte
Carlo simulation. Suppose one is interested in calculating the τ -period ahead prediction
density for Model G. Given the {gt, Kt,Ωt} Tt=1 output from the Kalman filter recursions,
for each time t, we simulateN sample paths of

{
At, A

i
t+1, . . . A

i
t+τ

}
(each path indexed by

i superscript) according to model G by drawing at+j ∼ (0,Ωt+j−1), and initial condition
At. With these simulations, I can approximate the mean as
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E
[
At+τ | At

]
≈ 1

N

N∑
i=1

Ait+τ ,

and the conditional variance as

V
[
At+τ | At

]
≈ 1

N

N∑
i=1

(
Ait+τ − E

[
At+τ | At

])2
. (31)

C Neoclassical Model

In the theoretical discussion I use continuous time and I assume an inelastic labor supply
to simplify the notations. For the simulations I use a standard discrete time model with
elastic labor supply. Aggregate value value added (GDP, Yt) is given by

Yt = F (Kt, AtLt) (32)

where At is labor augmenting (Hicks-neutral) productivity,11 Lt is the flow of labor
services and Kt is the flow of capital services which accumulates as

K̇t = It − δKt. (33)

Labor grows at the constant population growth rate gL: dLt
dt

= gLLt. Define ct = Ct/Lt

as per capita consumption. The representative household seeks to maximize overall
utility

U =

∫ ∞
0

u (ct) e
(gL−ρ)tdt (34)

where ρ is the rate of time preference and the utility function u is increasing, concave and
satisfies Inada conditions. The budget constraint of households is dAt

dt
= rtAt+wtLt−Ct.

On a per capita basis, with at ≡ At/Lt, I obtain

ȧt = rtat + wt − ct − gLat.
11Note that the empirical analysis in Fernald (2012) and Bergeaud et al. (2016) uses standard growth

accounting notations where Yt = ASt K
α
t L

1−α
t where ASt is the Solow residual. In the Cobb-Douglass

case we have of course the equivalence ASt = A1−α
t . I have shown that ASt is linear in the US so strictly

speaking At =
(
ASt
) 1

1−α is convex.
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Finally I rule out Ponzi schemes by imposing the condition limt→∞

{
ate
−

∫ t
o (rt−gL)dt

}
≥ 0.

Assuming CRRA preferences with relative risk aversion γ we have u̇′t
u′t

= −γ ċt
ct

so the
Euler equation with per capita consumption is

γ
ċt
ct

= rt − ρ. (35)

Population growth gL does not appear in the Euler equation because adding a family
member increases the value of higher per capita consumption in proportion to the cost
of providing this extra consumption to all household members. In a closed economy
households must hold the capital stock: at = kt. I define capital per efficiency unit of
labor as k̂t ≡ Kt

AtLt
and firms’ optimal demand for capital requires

f ′
(
k̂t

)
= rt + δ.

Finally, defining the normalized consumption as ĉt ≡ Ct
LtAt

I characterize the equilibrium
with two equations, the capital accumulation equation

˙̂
tk = f

(
k̂t

)
− ĉt −

(
δ + gL +

Ȧt
At

)
k̂t, (36)

and the Euler equation written in efficiency units of labor

γ
˙̂ct
ĉt

= f ′
(
k̂t

)
− δ − ρ− γ Ȧt

At
. (37)

Define

gA∞ = lim
t→∞

Ȧt
At

The long-term balanced growth path is given by

f ′
(
k̂∞

)
= δ + ρ+ γgA∞

and
ĉ∞ = f

(
k̂∞

)
− (δ + gL + gA∞) k̂∞

All per capital variables grow with At. For instance, long run per capita consump-
tion is ct = Ct/Lt = ĉ∞At. Under additive growth, the model features decreas-
ing growth rates therefore, assuming CRRA preferences, the risk free rate falls over
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time and eventually converges to ρ. I can finally check the transversality condition
limt→∞

{
kte
−

∫ t
o (rt−gL)dt

}
= 0. I know that limt→∞

k̇t
kt

= gA and that the long run inter-
est rate is r∞ = ρ+ γgA so the condition is

ρ+ γgA∞ > gL + gA∞ (38)

The condition says that households’ discount rate must be high enough, otherwise (34)
yields a value of infinity.
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