

第2回 EUV-FEL WOOK 2017 12.12Tue 10:00-17:00

HIGH POWER LPP-EUV SOURCE WITH LONG COLLECTOR MIRROR LIFETIME FOR HIGH VOLUME SEMICONDUCTOR MANUFACTURING

Dr. Hakaru Mizoguchi 講演者:鈴木 章義

Executive Vice President, CTO, Gigaphoton Inc.

Hiroaki Nakarai, Tamotsu Abe, Krzysztof M Nowak, Yasufumi Kawasuji, Hiroshi Tanaka, Yukio Watanabe, Tsukasa Hori, Takeshi Kodama, Yutaka Shiraishi, Tatsuya Yanagida, Georg Soumagne, Tsuyoshi Yamada, Taku Yamazaki and Takashi Saitou

Gigaphoton Inc. Hiratsuka facility: 3-25-1 Shinomiya Hiratsuka Kanagawa, 254-8567, JAPAN

2nd EUV-FEL Workshop

Agenda

Motivation

HVM Ready System Performance Progress and Target
HVM Ready Long-lifetime Collector Mirror
Summary

MOTIVATION

2nd EUV-FEL Workshop

Requirement for a Light Source in EUV Lithography

2nd EUV-FEL Workshop

EUV extension roadmap

ASML

Motivation

According to ASML roadmap*, EUV lithography will be released with 145wph throughput by 2019 for HVM.

- EUV source power is increasing, but has not yet reached sufficient power levels, required 250W is Ready? Q1
- In order to reach 145wph, it requires high Availability, and also one key element such as Collector Life are Ready? Q2

Gigaphoton has been integrating an architecture of LPP with CO₂ laser plus Pre-pulse since 2002, and has the longest development history in EUV.

Will Gigaphoton's source be in time to meet145wph HVM by 2019 ? Q3

* Reference: Christophe Smeets (ASML)@ EUVL Symposium- 2016

2nd EUV-FEL Workshop

HVM READY PERFORMANCE PROGRESS AND TARGETS

2nd EUV-FEL Workshop

How to generate EUV light

- Sn droplet 20um Dia.100kHz ejection with 300km/h
- Pre and main lasers shoot every single droplets.
- Collector transfer EUV light to the IF point.

2nd EUV-FEL Workshop

Gigaphoton's LPP Source Concept

1. Dual-wavelength shooting concept

High CE attained with CO_2 and pre-pulse solid-state lasers

2. EUV specific Hybrid CO₂ laser system

Short pulse/High repetition rate oscillator combined with commercial cw-amplifiers

3. Debris mitigation with Super conductive magnets (SM3)

4. Accurate shooting system

Stable droplet generation and shooting beam control

5. Out-of-band light reduction

Grating structured collector mirror

2nd EUV-FEL Works Feb 2017

Current EUV Sources at Gigaphoton

2nd EUV-FEL Workshop

Pre-pulse Technology

Higher CE and Power

- Optimum wavelength to transform droplets into fine mists
- High CE is achieved with ideal expansion of the fine mists to match the CO₂ laser beam diameter

Long Life Chamber

- Debris mitigation by superconducting magnets
- Ionized tin atoms are guided to tin catchers by the magnetic field

2nd EUV-FEL Workshop

Pre-Pulse Technology

Conversion Efficiency

20um diameter-droplets with 900 um interval are ejected at 100kHz.

2nd EUV-FEL Workshop

Pilot System Driver Laser and PPL System

2nd EUV-FEL Workshop

Target System Specification

		Proto#1	Proto#2 Key Technology	Pilot#1 HVM Ready	
Target Performance	EUV Power	25W	>100W	250W	
	CE	3%	> 4%	> 5%	
	Pulse Rate	100kHz	100kHz	100kHz	
	Output Angle	Horizontal	62°upper	62°upper	
	Availability	~1 week	~1 week	>80%	
echnology	Droplet Generator	20 - 25 <i>µ</i> m	< 20 <i>µ</i> m	< 20 µm	
	CO ₂ Laser	5kW	20kW	27kW	
	Pre-pulse Laser	picosecond	picosecond	picosecond	
	Collector Mirror Lifetime	Used as development platform	10 days	> 3 months	

2nd EUV-FEL Workshop

Key Performance Status and its target

	2015	2016	2017 Current	2018
In-band power (Average Power)	87W (83W)	113W (111W)	113W (91W)	250W
Collector lifetime*1	No data	-10%/Bpls *3	-0.4%/Bpls	-0.2%/Bpls
Availability*2	15%	44%	53%	> 80%

Proto #2

Pilot #1

- *1, Collector lifetime estimation has been started from 2017
- *2, Max availability in 4 week operation.
- *3, Main issue was capping layer performance.

GIGAPHOTON

2nd EUV-FEL Workshop

Power and Stability at Continuous Operation

Performance In-band power 120

Average power at IF	85W
Dose error (3 sigma)	0.04%
Die yield (< 0.16%)	99.4 %
Operation time	143h
Pulse Number	19Bpls
Duty cycle	75%
In-band power	113W
Dose margin	35%
CE	4.4%
Availability 4wk	32%
Collector lifetime	-10%/Bpls
Repetition rate	50kHz
CO2 power	12kW
Note	

Burst pattern: 1000ms ON, 333ms OFF Dose error: including pre-exposure phase(10ms) Die yield: defined by 0.16% dose error

Dose error was mainly due to droplet combination failure and it was improved by droplet generator improvement(but not perfect).

2nd EUV-FEL Workshop

Copyright 2017 GIGAPHOTON INC. all rights reserved.

EUV power: 250W achieved

Experimental data

Proto#2: 250W with 4% CE at 100KHz

2nd EUV-FEL Workshop

Availability potential test

<u>Dose error</u>: System stopped at > 2% dose error (3 sigma) /10kpls slit and error was not recovered by automatic function <u>Idle time</u>: Time for waiting operators.

24 hour x 7 days definition: Unmanned operation between 9pm thru 8am

2nd EUV-FEL Workshop

High Power EUV Source for High NA EUV Exposure Tool

											Lithography	R(nm)*	NA		
EUV ave.Power[W]			ver[W]	V] Conversion Efficiency [%]									(nm)	(•••)	
@100kHz				2%	3%	4%	5%	<mark>6%</mark>	7%	8%	KrF dry	102	0.85	248	40
CO2 laser Energy [mJ]	15		1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ArF dry	73	0.93	193	45
	50		5	19.1	28.7	38.2	47.8	57.3	66.9	76.4	F ₂ drv	69	0.80	157	-
	100		10	46.4	69.6	92.8	<u>).0</u>	139.2	162.4	185.6	Λ Γ :	50	1.05	104	00
	150		15	73.7	110.6	147.4	1.3	221.1	258.0	294.8	Arr immersion	50	1.35	134	90
	200		20	101.0	151	202.0	5	303.0	353.5	404.0	EUV	14	0.33	13.5	>250
	250	$\overline{}$	25	128.3	192.5	256.6	320.8	384.9	449.1	513.2	EUV (High NA)	7	0.6	13.5	>500
	300	[kv	30	155.6	233.4	311.2	389.0	466.8	544.6	622.4		·			
	350	er	35	182.9	274.4	365.8	457.3	548.7	640.2	731.6					
	400	Ň	40	210.2	315.3	420.4	525.5	630.6	735.7	840.8				6-	
	450	۵.	45	237.5	356.3	475.0	593 <u>8</u>	712.5	831.3	950.0					R. 1997 -
	500	ave	50	264.8	397.2	529.6	662.0	794.4	926.8	1059.2					
	550	л С	55	292.1	438.2	584.2	730.3	876.3	1022.4	<u>1168.4</u>		HV	M1	HVM2	HVM3
	600	ase	60	319.4	479.1	638.8	798.5	958.2	1117.9	<u>1277.6</u>					
	<mark>650</mark>	2	65	346.7	520.1	693.4	866.8	1040.1	1213.5	<mark>1386.8</mark>	EUV Power	250W		300W	500W
	700	8	70	374.0	561.0	748.0	935.0	1122.0	1309.0	1496.0					
	750	Ū	75	401.3	602.0	802.6	1003.3	1203.9	1404.6	1605.2	Pulse Rate	100	kHz	100kHz	100kHz
	800		80	428.6	642.9	857.2	1071.5	1285.8	1500.1	1714.4					
	850		85	455.9	683.9	911.8	1139.8	1367.7	1595.7	1823.6	CE	4.5	5%	5%	5%
	900		90	483.2	724.8	966.4	1208.0	1449.6	1691.2	1932.8					
	950	ļ	95	510.5	765.8	1021.0	1276.3	1531.5	1786.8	2042.0	CO ₂ Laser Powe	r 25	<w< td=""><td>25kW</td><td>40kW</td></w<>	25kW	40kW
	1000		100	537.8	806.7	1075.6	1344.5	1613.4	1882.3	2151.2		251(11			

Our LPP system has capability to give 300~500W output power.

2nd EUV-FEL Workshop

HVM READY LONG-LIFETIME COLLECTOR MIRROR

2nd EUV-FEL Workshop

Pilot System EUV Chamber

HVM Collector Mirror Specifications

Size Φ412mm
Weight 22kg
Collector efficiency >74%
Collector reflectivity >48%
Grating structure

Measured IR reflectivity: 0.37%

Copyright 2017 GIGAPHOTON INC. all rights reserved.

2nd EUV-FEL Workshop

"SM3": Superconducting Magnet Mitigation Method

Higher CE and Power

- Optimum wavelength to transform droplets into fine mists
- High CE is achieved with ideal expansion of the fine mists to match the CO₂ laser beam diameter

Long Life Chamber

- Debris mitigation by superconducting magnets
- Ionized tin atoms are guided to tin catchers by the magnetic field

SM3 is the basis of debris mitigation system.

2nd EUV-FEL Workshop

"SM3": Superconducting Magnet Mitigation Method

- Minimum amount of Sn
 - 20um diameter droplet
- 100% ionization in plasma emission
 - Pre pulse technology
 - Precise shooting control
 - Solid beam profile of laser
- Sn ion trap by magnetic field
 - Not to reach the collector surface
- Sn etching even after deposition
 - $Sn + 2H_2 + EUV \rightarrow SnH_4$

2nd EUV-FEL Workshop

Debris Mitigation and Capping Layer Evaluations with a Dummy Mirror

Purpose

• Evaluation of tin deposition distribution on the collector mirror

Method

- Dummy collector mirror (no coating)
- Sampling plate (sample coupon) size: 15mmx15mmx0.7mmt material : Si plate (46 pieces)

+multi layer (Si/Mo) + Capping layer

Analysis after test

- Surface condition : SEM
- Deposited tin thickness : XRF
- Capping layer thickness: TEM

2nd EUV-FEL Workshop

Difference of Deposition on the Sample Coupons of a Dummy Mirror

Capping layer disappearance Blister generation Capping layer deformation Blister generation Capping layer survived No blister generation

The capping layer material has great influence on ML durability.

2nd EUV-FEL Workshop

Debris Mitigation Concept; Tin Stopping

Tin stopping

- Tin is ionized effectively by double pulse irradiation and precise shooting control
- 2. Tin ions are confined by magnetic field and stopped by H_2 gas to prevent the sputtering to the coating of mirror.
- 3. Confined tin ions are guided and exhausted by H₂ flow from vessel.

2nd EUV-FEL Workshop

Debris Mitigation Concept; Tin Cleaning

Tin cleaning

- 1. Tin, not confined by magnetic field, are stopped by H_2 gas in order to prevent the sputtering to the coating of collector.
- 2. Deposited tin on the collector is etched by H radical gas.

3. Cooling and gas flow systems for preventing decomposition of SnH₄

2nd EUV-FEL Workshop

Slide 29

Collector lifetime status after improvement

Power level of EUV: 100W in Burst, (= 2mJ x 50kHz), 33% duty cycle, 30W in average.
 Collector lifetime was improved to -0.4%/Bpls by magnetic debris mitigation technology optimization.

SUMMARY

2nd EUV-FEL Workshop

Summary

Pilot#1 for HVM is now under construction, and shows promising results;

- Demonstrated 113W in-burst power at 75% duty (85W average) for 143 hours based on the preliminary results of CE 5%, 250W power with Proto#2
- Next target : 250W full specification operation with long term by 1H 2018.

Pilot#1 Collector Mirror test shows HVM capable lifetime;

 Superconducting Magnet Mitigation Method "SM3" realized the reflectance degradation rate of 0.4%/Bpls at over 100W level operation (in burst mode, up to 30Bp).

Pilot#1 shows HVM ready availability;

Pilot#1 system achieved the potential availability of 89% (2week-average).

Will Gigaphoton's Source be in time to meet145wph HVM by 2019 ? Yes, Gigaphoton's Source will be in time to meet145wph HVM by 2019 .

2nd EUV-FEL Workshop

Thank you for co-operation:

Dr. Ákira Endo :Hilase Project (Prague) and Prof. Masakazu Washio and others in Waseda University Dr. Kentaro Tomita, Prof. Kiichiro Uchino and others in Kyushu University

Dr. Jun Sunahara, Dr. Katsunori Nishihara, Prof. Hiroaki Nishimura, and others in Osaka University

Mitsubishi electric CO₂ laser amp. develop. team: Dr. Yoichi Tanino*, Dr. Junichi Nishimae, Dr. Shuichi Fujikawa and others

* The authors would like to express their deepest condolences to the family of Dr. Yoichi Tanino who suddenly passed away on February 1st, 2014.

Thank you to my colleagues:

EUV development team of Gigaphoton: Hiroaki Nakarai, Tamotsu Abe, Takeshi Ohta, Krzysztof M Nowak, Yasufumi Kawasuji, Hiroshi Tanaka, Yukio Watanabe, Tsukasa Hori, Takeshi Kodama, Yutaka Shiraishi, Tatsuya Yanagida, Tsuyoshi Yamada, Taku Yamazaki, Takashi Saitou and other engineers

Thank you for funding:

EUV source development funding is partially support by NEDO (New Energy and Industrial Technology Development Organization) in JAPAN

THANK YOU

2nd EUV-FEL Workshop