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A GENERALIZED POLYGAMMA FUNCTION
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We study the properties of a function c(z, q) (the generalized polygamma function), intimately connected with the
Hurwitz zeta function and defined for complex values of the variables z and q, which is entire in the variable z
and reduces to the usual polygamma function c(m)(q) for z a non-negative integer m, and to the balanced
negapolygamma function c(�m)(q) introduced in Ref. [5] for z a negative integer �m.
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1 INTRODUCTION

The Hurwitz zeta function defined by

z(z, q) ¼
X1
n¼0

1

(nþ q)z
(1:1)

for z 2 C, Re z > 1 and q 6¼ 0, �1, �2, . . . is a generalization of the Riemann zeta function

z(z) ¼ z(z, 1). This function admits a meromorphic continuation into the whole complex

plane. The only singularity is a simple pole at z ¼ 1 with unit residue. The recent paper [9]

presents a motivated discussion of this extension.

The Hurwitz zeta function turns out to be related to the classical gamma function, defined

for Re q > 0 by

G(q) ¼

ð1
0

tq�1e�t dt, (1:2)

in several different ways. For example, the digamma function

c(q) ¼
d

dq
logG(q) (1:3)
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appears in the Laurent expansion of z(z, q) at the pole z ¼ 1:

z(z, q) ¼
1

z� 1
� c(q) þ O(z� 1): (1:4)

A second connection among these functions is given by Lerch’s identity

z0(0, q) ¼ logG(q) þ z0(0) ¼ log
G(q)ffiffiffiffiffiffi

2p
p

� �
(1:5)

where we have used the classical value z0(0) ¼ � log
ffiffiffiffiffiffi
2p

p
in the last step.

A third example is the relation between the Hurwitz zeta function and the polygamma

function defined by

c(m)(q) ¼
dm

dqm
c(q), m 2 N, (1:6)

namely

c(m)(q) ¼ (�1)mþ1m!z(mþ 1, q): (1:7)

These relations are not independent. Both (1.5) and (1.7) can be derived from (1.4), in the

limiting case z ! 1, with the aid of the formula

q
qq

� �m

z(z, q) ¼ (�1)m(z)mz(zþ m, q): (1:8)

The digamma (c(q) ¼ c(0)(q)) and polygamma functions are analytic everywhere in the

complex q-plane, except for poles (of order mþ 1) at all non-positive integers. The residues

at these poles are all given by (�1)mþ1m!.
Extensions of the polygamma function c(m)(q) for m a negative integer have been defined

by several authors [1, 6, 5]. These functions have been called negapolygamma functions. For

example, Gosper [6] defined the family of functions

c�1(q) :¼ log G(q),

c�k (q) :¼

ðq
0

c�kþ1(t) dt, k � 2,
(1:9)

which were later reconsidered by Adamchik [1] in the form

c�k(q) ¼
1

(k � 2)!

ðq
0

(q� t)k�2 log G(t) dt, k � 2: (1:10)

These negapolygamma functions can be expressed in terms of the derivative (with respect to

its first argument) of the Hurwitz zeta function at the negative integers [1, 6]. The definition

of the negapolygamma functions in (1.9) can be modified by introducing arbitrary constants

of integration at every step. This yields infinitely many different families of negapolygamma
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functions, with the property that the corresponding members of any two families differ by a

polynomial,

c(�m)
a (q) � c(�m)

b (q) ¼ pm�1(q),

where the functions pn(q) are polynomials in q of degree n, satisfying the property

pn(q) ¼
d

dq
pnþ1(q):

An example of such modified negapolygamma functions has been introduced in Ref. [5],

in connection with integrals involving the polygamma and the loggamma functions. These

are the balanced negapolygamma functions, defined for m 2 N by

c(�m)(q) :¼
1

m!
[Am(q) � Hm�1Bm(q)], (1:11)

where Hr :¼ 1 þ 1=2 þ � � � þ 1=r is the harmonic number (H0 :¼ 0), Bm(q) is the mth

Bernoulli polynomial, and the functions Am(q) are defined in terms of the Hurwitz zeta

function as

Am(q) :¼ mz0(1 � m, q): (1:12)

A function f (q) is defined to be balanced (on the unit interval) if it satisfies the two properties

ð1

0

f (q) dq ¼ 0 and f (0) ¼ f (1):

Note that the Bernoulli polynomials, which are related to the Hurwitz zeta function in a way

similar to (1.12),

Bm(q) ¼ �mz(1 � m, q), m 2 N, (1:13)

are themselves balanced functions. In Ref. [5] we have shown that the balanced negapoly-

gamma functions (1.11) satisfy

d

dq
c(�m)(q) ¼ c(�mþ1)(q), m 2 N: (1:14)

This makes them a negapolygamma family, connecting c(�1)(q) ¼ logG(q) þ z0(0) to the

digamma function c(0)(q) ¼ dlogG(q)=dq.

The goal of this work is to introduce and study a meromorphic function of two complex

variables, c(z, q), the generalized polygamma function, that reduces to the polygamma func-

tion c(m)(q) for z ¼ m 2 N0 and to the balanced negapolygamma function c(�m)(q) for

z ¼ �m 2 �N. We describe some analytic properties of c(z, q) and show they extend

those of polygamma and balanced negapolygamma functions. We also present some definite

integral formulas involving c(z, q) in the integrand. Finally, we compare our generalized

polygamma function with a different generalization introduced by Grossman [8].
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2 THE GENERALIZED POLYGAMMA FUNCTION

The generalized polygamma function is defined by

c(z, q) :¼ e�gz q
qz

egz
z(zþ 1, q)

G(�z)

� �
, (2:1)

where z 2 C and q 2 C, q 62 �N0. At z ¼ m 2 N, where G(�z) has a pole, and at z ¼ 0,

where both G(�z) and z(zþ 1, q) have poles, we define (2.1) by its corresponding limiting

values given in the proof of Theorem 2.4. We show below that, for fixed q, c(z, q) is indeed

an entire function of z.

The alternative representation

c(z, q) ¼ e�gz q
qz

egz

G(1 � z)

qz(z, q)

qq

� �
(2:2)

follows directly from (1.8).

LEMMA 2.1 The function c(z, q) is given by

c(z, q) ¼
1

G(�z)
[z0(zþ 1, q) þ {gþ c(�z)}z(zþ 1, q)] (2:3)

and

c(z, q) ¼
1

G(�z)
[z0(zþ 1, q) þ H(�z� 1)z(zþ 1, q)], (2:4)

where H is defined by

H(z) :¼
X1
k¼1

1

k
�

1

k þ z

� �
: (2:5)

Proof Differentiation of (2.1) yields (2.3). The second representation follows from the

identity H(z) ¼ gþ c(zþ 1); see Ref. [7], for instance. j

The function H can be termed the generalized harmonic number function. It has simple

poles with residue �1 at all negative integers, and reduces to the nth harmonic number

Hk for z ¼ k 2 N0. It satisfies the following reflection formula:

H(�z) ¼ H(z� 1) þ pcot pz: (2:6)

We show first that, for m 2 N, c(�m, q) reduces to the balanced negapolygamma function

c(�m)(q) defined in (1.11).

THEOREM 2.2 For m 2 N, c(�m, q) ¼ c(�m)(q).
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Proof Lemma 2.1 gives

c(�m, q) ¼
1

G(m)
[z0(1 � m, q) þ Hm�1z(1 � m, q)]: (2:7)

The result now follows from (1.11)–(1.13). j

We show next that the generalized polygamma function has no singularities in the complex

z plane and that c(0, q) is actually the digamma function c(q).

THEOREM 2.3 For fixed q 2 C, the function c(z, q) is an entire function of z. Moreover

c(0, q) ¼ c(q).

Proof In the representation (2.4), the term 1=G(z) is entire and z(z, q) has only a simple

pole at z ¼ 1 and is analytic for z 6¼ 1. Thus z ¼ 0 is the only possible singularity for c(z, q).

This singularity is removable because for z near 0

z0(zþ 1, q)

G(�z)
¼ �

1

z2
þ O(z)

� �
�zþ gz2 þ O(z3)
� �

¼
1

z
� gþ O(z)

and

H(�z� 1) z(zþ 1, q)

G(�z)
¼ �

1

z
þ gþ c(q) þ O(z),

so that c(z, q) ¼ c(q) þ O(z). j

We finally show that, for m 2 N, c(m, q) reduces to the polygamma function c(m)(q)

defined in (1.6).

THEOREM 2.4 The function c(z, q) satisfies

q
qq

c(z, q) ¼ c(zþ 1, q) (2:8)

and

c(m, q) ¼ c(m)(q), m 2 N: (2:9)

Proof Use (1.8) to produce

q
qq

c(z, q) ¼ �e�gz q
qz

egz
(zþ 1) z(zþ 2, q)

G(�z)

� �

and then use G(�z) ¼ �(zþ 1)G(�z� 1) to obtain (2.8).
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The identity (2.9) follows by induction from Theorem 2.3 and (2.8), but we provide an

alternative proof. Set z ¼ mþ e and consider (2.4) as e ! 0. The expansions

1

G(�m� e)
¼ (�1)mþ1m! eþ O(e2) and H(�1 � m� e) ¼

1

e
þ Hm þ O(e)

are the only terms that produce a nonvanishing contribution in (2.4) as e ! 0. We conclude

that c(m, q) ¼ (�1)mþ1m! z(mþ 1, q) and the result follows from (1.7). j

3 FUNCTIONAL RELATIONS

The generalized polygamma function c(z, q), as a function of q, satisfies some simple

algebraic and analytic relations. These are derived from those of G(z) and z(z, q).

THEOREM 3.1 The function c(z, q) satisfies

c(z, qþ 1) ¼ c(z, q) þ
ln q� H(�z� 1)

qzþ1G(�z)
: (3:1)

Proof The identity

z(z, qþ 1) ¼ z(z, q) �
1

qz
, (3:2)

produces

c(z, qþ 1) ¼ c(z, q) � e�gz q
qz

egz
1

qzþ1G(�z)

� �
:

The result now follows from gþ c(�z) ¼ H(�z� 1). j

Relation (3.1) generalizes the well-known functional relations for the digamma and poly-

gamma functions,

c(qþ 1) ¼ c(q) þ
1

q
, (3:3)

c(m)(qþ 1) ¼ c(m)(q) þ
(�1)mm!

qmþ1
, (3:4)

and the corresponding relation

c(�m)(qþ 1) ¼ c(�m)(q) þ
qm�1

(m� 1)!
[ ln q� Hm�1] (3:5)

for the balanced negapolygamma function [5].

Note We have been unable to find a generalization of the other well-known functional

relation for the polygamma function,

(�1)mc(m)(1 � q) ¼ c(m)(q) þ
dm

dqm
pcot pq: (3:6)
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The next result establishes a multiplication formula for c(z, q). It generalizes the analo-

gous result for the digamma function, [7, (8.365.6)].

THEOREM 3.2 Let k 2 N. Then,

kzþ1c(z, kq) ¼
Xk�1

j¼0

c z, qþ
j

k

� �
� kzþ1 ln k

z(zþ 1, kq)

G(�z)

¼
Xk�1

j¼0

c z, qþ
j

k

� �
�

ln k

G(�z)
z zþ 1, qþ

j

k

� �� �
: (3:7)

Proof Use the multiplication rule

kzz(z, kq) ¼
Xk�1

j¼0

z z, qþ
j

k

� �
(3:8)

for the Hurwitz zeta function in the Definition (2.1) of c(z, q). j

The case k ¼ 2 yields the duplication formula

c(z, 2q) ¼
1

2zþ1
c(z, q) þ c z, qþ

1

2

� �� �
� ln 2

z(zþ 1, 2q)

G(�z)
: (3:9)

4 SERIES EXPANSIONS OF w(z, q)

In this section, we present two different series expansions for the generalized polygamma

function. The first is a generalization of the well-known expansion of the digamma function,

c(qþ 1) ¼ �gþ
X1
k¼1

(�1)kþ1z(k þ 1)qk , jqj < 1: (4:1)

THEOREM 4.1 Let z 2 C and jqj < 1. Then

c(z, qþ 1) ¼
X1
k¼0

c(zþ k, 1)
qk

k!
: (4:2)

Proof The Taylor expansion of c(z, qþ 1) around q ¼ 0 can be expressed in terms of

c(z, q) using the iterated version of (2.8),

qk

qqk
c(z, q) ¼ c(zþ k, q) (4:3)

evaluated at q ¼ 1. The radius of convergence is computed to be 1 by using the ratio test, the

identity

c(z, 1) ¼
1

G(�z)
[z0(zþ 1) þ H(�z� 1) z(zþ 1)], (4:4)
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and the fact that z0(zþ 1) tends to zero faster than the term H(�z� 1) z(zþ 1) as

z ! 1. j

Note 4.2 The series expansion (4.1) for the digamma function is the special case z ¼ 0 of

(4.2). This follows from the values

c(0, 1) ¼ c(1) ¼ �g (4:5)

and

c(k, 1) ¼ c(k)(1) ¼ (�1)kþ1k! z(k þ 1), (4:6)

for k 2 N. Similarly z ¼ �1 and the value c(�1, 1) ¼ z0(0) yield the well-known expansion

of the loggamma function,

logG(qþ 1) ¼ �gqþ
X1
k¼2

(�1)k
z(k)

k
qk , jqj < 1: (4:7)

Note 4.3 Riemann’s functional equation,

z(1 � z) ¼
z(z) (2p)1�z

2G(1 � z) sin (pz=2)
¼ 2cos

pz
2

� 	 z(z)G(z)

(2p)z
, (4:8)

yields the alternate representation

c(z, 1) ¼ 2(2p)zcos
pz
2

� 	
gþ ln 2p�

p
2

tan
pz
2

� 	
z(�z) � z0(�z)

h i
: (4:9)

Note 4.4 Theorems 3.1 and 4.1 determine the behaviour of c(z, q) for small q:

c(z, q) ¼ �
1

G(�z)

ln q

qzþ1
þ
H(�z� 1)

G(�z)

1

qzþ1
þ c(z, 1) þ c(zþ 1, 1)qþ O(q2): (4:10)

For z ¼ m 2 N0 the coefficients of the first two terms are

1

G(�m)
¼ 0 and

H(�m� 1)

G(�m)
¼ (�1)mþ1 m!,

so the logarithmic term drops out and we recover the known behaviour of the polygamma

function as q ! 0,

c(m)(q) ¼
(�1)mþ1 m!

qmþ1
þ c(m)(1) þ O(q): (4:11)

For z 62 N with Re z � �1 the first term in (4.10) determines the leading behaviour, and if

Re z < �1 the first two terms in (4.10) vanish as q ! 0 and hence c(z, q) tends to the finite

value c(z, 1) given by (4.4) or (4.9).

We now establish a Fourier series representation for the generalized polygamma function

c(z, q).
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THEOREM 4.5 For Re z < �1 and 0 � q � 1:

c(z, q) ¼ 2(2p)z
X1
n¼1

nz(gþ ln 2pn)cos 2pnqþ
pz
2

� 	
�
p
2

X1
n¼1

nzsin 2pnqþ
pz
2

� 	" #
: (4:12)

This result generalizes the Fourier expansion for the balanced negapolygamma function

given in Ref. [5]. It implies that c(z, q) is itself balanced for any z such that Re z < �1.

Proof Let s ¼ zþ 1 in the Fourier representation of the Hurwitz zeta function,

z(s, q) ¼
2G(1 � s)

(2p)1�s
sin

ps
2

� 	X1
n¼1

cos(2pqn)

n1�s
þ cos

ps
2

� 	X1
n¼1

sin(2pqn)

n1�s

" #
, (4:13)

which is valid for Re s < 0 and 0 � q � 1, and substitute (4.13) into (2.1). j

5 INTEGRAL REPRESENTATIONS OF w(z, q)

This section contains integral representations for c(z, q) that are derived directly from corres-

ponding integral representations of the Hurwitz zeta function. For instance,

z(z, q) ¼
1

G(z)

ð1
0

e�qt

1 � e�t
tz�1 dt, (5:1)

valid for Re z > 1 and Re q > 0, implies the next result.

THEOREM 5.1 Let Re z > 0 and Re q > 0. Then

c(z, q) ¼ �

ð1
0

e�qttz

1 � e�t
cos pzþ

g
p

sin pzþ
sin pz
p

ln t

� �
dt: (5:2)

Proof The identity

z(zþ 1, q)

G(�z)
¼ �

sinpz
p

ð1
0

e�qt

1 � e�t
tz dt (5:3)

follows from the integral representation for z(z, q) in (5.1) and the reflection rule for the

gamma function. The result now follows from the definition of c(z, q). j

A Hankel-type contour is a curve that starts at þ1þ i 0þ, moves to the left on the upper

half-plane, encircles the origin once in the positive direction, and returns to þ1� i 0þ on

the lower half-plane. The Hurwitz zeta function has the following integral representation

along a Hankel-type contour [12]:

z(zþ 1, q)

G(�z)
¼ �

1

2pi

ð(0þ)

1

e�qt

1 � e�t
(�t)z dt, (5:4)

valid for arbitrary complex z and Re q > 0.
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THEOREM 5.2 Let q, z 2 C with Re q > 0. Then

c(z, q) ¼ �
1

2pi

ð(0þ)

1

[gþ ln(�t)]e�qt

1 � e�t
(�t)z dt: (5:5)

Proof The result follows directly from (5.4).

6 DEFINITE INTEGRALS INVOLVING w(z, q)

Definite integrals of c(z, aþ bq) can be directly obtained from its primitive,

ð
c(z, aþ bq) dq ¼ b�1c(z� 1, aþ bq), (6:1)

according to (2.8). So, for example,

ð1

0

c(z, q) dq ¼
0, if Re z < 0,

1, if Re z � 0,



(6:2)

where we have used the result (4.10) to evaluate c(z, q) at the origin.

The integral formulas presented below are direct consequences of the corresponding inte-

gral formulas for the Hurwitz zeta function. Several of these were derived in Refs. [4, 5].

THEOREM 6.1 For Re z, Re z0 < 0 and Re(zþ z0) < �1,

ð1

0

c(z, q)c(z0, q) dq ¼ 2(2p)zþz0 cos
p(z� z0)

2

p2

4
þ (gþ ln 2p)2

� �
z(�z� z0)




� 2(gþ ln 2p)z0(�z� z0) þ z00(�z� z0)

�
: (6:3)

Proof This is a direct consequence of the following result [4],

ð1

0

z(s, q)z(s0, q) dq ¼
2G(1 � s)G(1 � s0)

(2p)2�s�s0
z(2 � s� s0) cos

p(s� s0)

2
,

valid for Re s < 1, Re s0 < 1, Re(sþ s0) < 1. Set s ¼ zþ 1, s0 ¼ z0 þ 1, divide by G(�z)�

G(�z0), and construct the functions c(z, q), c(z0, q) in the integrand according to

definition (2.1). j

The evaluation (6.3) generalizes Example 5.6 in Ref. [5]: for k, k 0 2 N,

ð1

0

c(�k)(q)c(�k 0)(q) dq ¼
2cos(k � k 0)p=2

(2p)kþk 0
z00(k þ k 0) � 2(gþ ln 2p)z0(k þ k 0)

�

þ (gþ ln 2p)2 þ
p2

4


 �
z(k þ k 0)

�
:
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The special case k ¼ k 0 ¼ 1 reduces to

ð1

0

( lnG(q))2 dq ¼
g2

12
þ

p2

48
þ

1

3
g ln

ffiffiffiffiffiffi
2p

p
þ

4

3
ln2

ffiffiffiffiffiffi
2p

p
� (gþ 2 ln

ffiffiffiffiffiffi
2p

p
)
z0(2)

p2
þ
z00(2)

2p2
,

given in Ref. [4].

COROLLARY 6.2 Let Re z < �1=2. Then

ð1

0

c(z, q)2 dq ¼ 2(2p)2z p2

4
þ (gþ ln 2p)2

� �
z(�2z) � 2(gþ ln 2p)z0(�2z) þ z00(�2z)


 �
:

(6:4)

For Re z < �1, ð1

0

c(z, q)c(zþ 1, q) dq ¼ 0: (6:5)

The same type of argument gives the next evaluation.

THEOREM 6.3 For Re z, Re z0 < 0, and Re (zþ z0) < �1,

ð1

0

z(zþ 1, q)c(z0, q) dq ¼ 2(2p)zþz0G(�z)
p
2
z(�z� z0) sin

p
2

(z� z0)
n

þ [(gþ ln 2p)z(�z� z0) � z0(�z� z0)] cos
p
2

(z� z0)
o
: (6:6)

COROLLARY 6.4 For Re z < 0,

ð1

0

z(z, q)c(z, q) dq ¼ �
1

2
(2p)2zG(1 � z)z(1 � 2z): (6:7)

Our final evaluation computes the Mellin transform of the generalized polygamma function.

THEOREM 6.5 Let a, b 2 Rþ, a, z 2 C such that 0 < Re a < Re z. Then

ð1
0

qa�1c(z, aþ bq) dq ¼
b�aG(a)

sin p(z� a)
[( sinpz)c(z� a, a) þ ( sin pa)

G(zþ 1 � a)z(zþ 1 � a, a)]: (6:8)

Proof Start from formula (2.3.1.1) of Ref. [10],

ð1
0

qa�1z(s, aþ bq) dq ¼ b�aB(a, s� a)z(s� a, a),

valid for a, b 2 Rþ and 0 < Re(a) < Re(s) � 1, set s ¼ zþ 1, and use the Definition (2.1) of

c(z, q) to evaluate the integral as

�
b�aG(a)

p
e�gz q

qz
[egz(sin pz)G(zþ 1 � a)z(zþ 1 � a, a)]:
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The desired evaluation now follows from the reflection formulas for the gamma and digamma

functions,

G(1 � x)G(x) ¼
p

sin px
and c(1 � x) ¼ c(x) þ pcot px,

respectively. j

Note 6.6 The special case z ¼ m 2 N in Theorem 6.5 yields an explicit form for the Mellin

transform of the polygamma function c(m)(aþ bq):

ð1
0

qa�1c(m)(aþ bq) dq ¼ (�1)mþ1b�aG(a)G(1 þ m� a)z(1 þ m� a, a), (6:9)

valid when 0 < Re a < m and a, b 2 Rþ. This formula generalizes formula (6.473) of

Ref. [7] to the case a, b 6¼ 1.

7 RELATION TO GROSSMAN’S GENERALIZATION OF

THE POLYGAMMA FUNCTION

In 1975, N. Grossman presented a generalization of polygamma functions to arbitrary com-

plex orders [8] which is different to ours. He was motivated by a problem proposed a year

earlier by B. Ross [11] concerning the convergence and evaluation of the integral

I ¼

ðq
0

(q� t) p�1logG(t) dt: (7:1)

For p 2 N, this integral corresponds precisely (up to a normalization factor) to the Gosper-

Adamchik’s negapolygamma functions defined by (1.10). In Ref. [8] the author used the tech-

niques of Liouville’s fractional integration and differentiation to obtain a generalization

c(n)(q) of the polygamma function, with n 2 C, in the form

c(n)(q) ¼
q�n�1

G(�n)
ln

1

q
þ gþ

G0(�n)

G(�n)


 �
�

gq�n

G(1 � n)
�
q�n�1

2pi

ðlþi1

l�i1

qz
G(z)z(z)

G(z� n)

p
sin pz

dz,

(7:2)

where the contour of integration is along a vertical line with 1 < l < 2. The function c(n)(q)

is an entire function in the n-plane, for each q in the plane cut along the negative real axis [8].

For n ¼ �m 2 �N0, Grossman’s generalized polygamma c(n)(q) reduces to the Gosper–

Adamchik negapolygamma functions c�m(q). We showed in Ref. [5] that the latter are

related to the balanced negapolygammas c(�m)(q) by

c(�m)(q) ¼ c�m(q) þ
Xm�1

r¼0

qm�r�1

r!(m� r � 1)!
[z0(�r) þ Hrz(�r)], (7:3)
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which, in light of (4.4), can be also expressed as

c(�m)(q) ¼ c�m(q) þ
Xm�1

r¼0

qm�r�1

G(m� r)
c(�r � 1, 1): (7:4)

In the remainder of this section, we shall explore the relation between the functions c(n, q)

and c(n)(q) for arbitrary values of the complex variable n. Since both of these functions are

entire in n, their difference

C(n, q) :¼ c(n, q) � c(n)(q) (7:5)

must be an entire function itself. Furthermore, since both c(n, q) and c(n)(q) reduce to the

standard polygamma function when n 2 N0, C(n, q) vanishes identically at n 2 N0. In

order to study further properties of the function C(n, q), we shall consider the asymptotic

and small-q series expansions of both c(n, q) and c(n)(q). First, we shall derive the correct

asymptotic expansion of Grossman’s polygamma for large q, since this was incorrectly

given in Ref. [8]. Let

I (n, q) ¼
1

2pi

ðlþi1

l�i1

qz
G(z)z(z)

G(z� n)

p
sin pz

dz: (7:6)

As suggested in Ref. [8], for q > 1 we can deform the contour so that it starts at �1� i0þ,

runs below the real axis, encircles the point z ¼ 1 in the positive sense (crossing the real axis

to the left of z ¼ 2), and then returns to �1þ i0þ running over the real axis. I (n, q) can

then be evaluated along the deformed contour by a residue calculation. The only relevant

poles are z ¼ 1 and z ¼ 0,�1,�2, . . . , coming from G(z), z(z), and from the zeros of

sin(pz). The poles at z ¼ �2k are simple since z(�2k) ¼ 0. All the other poles are double.

Let Rn(z0) be the residue at the pole z ¼ z0. Then

Rn(1) ¼
�qln qþ qc(1 � n)

G(1 � n)
,

Rn(0) ¼
H(�1 � n) � ln 2p� ln q

2G(�n)
,

Rn(�m) ¼
1

m!G(�m� n)qm
z0(�m) �

Bmþ1

mþ 1
{ln qþ Hm � H(�m� n� 1)}

� �
,

for m ¼ 1, 2, 3, . . . . Using the special values B0 ¼ 1, B1 ¼ �1=2, z0(0) ¼ �(1=2)ln 2p, and

H0 ¼ 0, we obtain the asymptotic expansion

c(n)(q) � q�n ln q
X1
k¼0

Bk

k!G(1 � n� k)qk
�
X1
k¼1

kz0(1 � k) � BkHk�1

k!G(1 � n� k)qk

(

�
X1
k¼0

BkH(�k � n)

k!G(1 � n� k)qk

)
: (7:7)

We observe that Grossman [8] missed most of the logarithmic contribution.
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The asymptotic expansion of the generalized polygamma function c(n, q) for large q can

be obtained from (2.1) and the asymptotic expansion of z(z, q) itself. This yields

c(n, q) � q�n ln q
sin pn
p

X1
k¼0

(�1)k
Bk

k!

G(k þ n)

qk
� cos pn

X1
k¼0

(�1)k
Bk

k!

G(k þ n)

qk

(

�
sin pn
p

X1
k¼0

(�1)k
Bk

k!

H(k þ n� 1)G(k þ n)

qk

)
:

The reflection formula for G(z) yields

sin pn
p

(�1)kG(k þ n) ¼
1

G(1 � n� k)
,

and the reflection formula (2.6) for the harmonic number function produces

H(k þ n� 1) ¼ H(�k � n) � pcot pn:

Thus

c(n, q) � ln q
X1
k¼0

Bk

k!G(1 � n� k)qkþn �
X1
k¼0

BkH(�n� k)

k!G(1 � n� k)qkþn: (7:9)

We obtain therefore the following asymptotic expansion for the function C(n, q) defined

by (7.5):

C(n, q) �
X1
k¼1

c(�k, 1)

G(1 � n� k)qkþn: (7:10)

We note that for n ¼ m 2 N0 the formal series on the right-hand side vanishes identically, as

it should. For n ¼ �m 2 �N, the series above reduces to a polynomial in q, which coincides

with the one appearing in (7.4).

On the other hand, for jqj < 1, Grossman has proven that his polygamma function has the

convergent expansion1

c(n)(q) ¼
q�n�1

G(�n)
�ln qþ gþ c(�n) þ

gq
n
þ
X1
k¼2

(�1)kz(k)B(�n, k)qk

( )
, (7:11)

which, on account of the special values for c(z, 1) at the non-negative integers given in (4.5)

and (4.6), can be written as

c(n)(q) ¼
�ln qþ H(�n� 1)

qnþ1G(�n)
þ
X1
k¼0

c(k, 1)

G(�nþ k þ 1)
qk�n: (7:12)

1There is actually an error in the expression given in Ref. [8].
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This is to be compared with the small-q expansion of the generalized polygamma function

c(n, q) obtained in Theorems 3.1 and 4.1:

c(n, q) ¼
�ln qþ H(�n� 1)

qnþ1G(�n)
þ
X1
k¼0

c(k þ n, 1)

G(k þ 1)
qk : (7:13)

Again, both expansions coincide if n 2 N0, since 1=G(z) vanishes at the non-positive integers,

and differ by the polynomial in (7.4) if n ¼ �m 2 �N.
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