
CRC-8 tutorial for SMBus, John Milios, USAR Systems

6
%
6
�
,
)
�
'
H
Y
&
R
Q
�
-
D
S
D
Q
�
�
�
�
�

CRC-8 firmware
implementations for SMBus

John Milios

USAR Systems

CRC-8 tutorial for SMBus, John Milios, USAR Systems

6
%
6
�
,
)
�
'
H
Y
&
R
Q
�
-
D
S
D
Q
�
�
�
�
�

Scope

• CRC-8 has been defined as optional feature
of SMBus V1.1

• Packet Error Checking will improve the
reliability of the bus

• Let’s make sure that we understand it the
same way

CRC-8 tutorial for SMBus, John Milios, USAR Systems

6
%
6
�
,
)
�
'
H
Y
&
R
Q
�
-
D
S
D
Q
�
�
�
�
�

 ..0000001101 = Quotient
1001 0001100001 = Dividend
Divisor 0001,.. .,

 0000,.. .,
 0011.. .,
 0000.. .,
 0110. .,
 0000. .,
 1100 .,
 1001 .,
 1010.,

 1001.,
 0110,
 0000,
 1100
 1001
 101

CRC’s basic idea
• The remainder of a division changes a lot with small

changes in the dividend

CRC-8 tutorial for SMBus, John Milios, USAR Systems

6
%
6
�
,
)
�
'
H
Y
&
R
Q
�
-
D
S
D
Q
�
�
�
�
�

Polynomial arithmetic mod 2

• No propagation of carry
• Addition AND subtraction are performed with XOR
• Multiplication is similar with binary except that sums

are calculated with XORs
• Division relies on “weak” definition of larger or equal

3 X is greater than or equal to Y if and only if the position of
the highest 1 bit of X is the same or greater of the highest 1
bit of Y

CRC-8 tutorial for SMBus, John Milios, USAR Systems

6
%
6
�
,
)
�
'
H
Y
&
R
Q
�
-
D
S
D
Q
�
�
�
�
�

CRC calculation

• We need the following:
• A polynomial of width M (divisor). In the case of SMBus, the

polynomial will be using is X8 + X2 + X + 1. The width of
this polynomial is 8 (the highest power of X indicates the
width) and it can be represented as 1 0000 0111. Since the
width of the polynomial is 8 we refer to our CRC method as
CRC-8.

• A message represented as a bit-stream augmented with M =
8 zeroes at the end.

• Division of the augmented bit-stream message by the
polynomial 0000 0111. The remainder will be the CRC-8
check byte.

CRC-8 tutorial for SMBus, John Milios, USAR Systems

6
%
6
�
,
)
�
'
H
Y
&
R
Q
�
-
D
S
D
Q
�
�
�
�
�

CRC calculation example
3 Our polynomial is: s¬¬¬¬�¬sss.

The original message is : ¬s¬s�ss¬¬.
After we augment it with 8 zeroes it becomes: ¬s¬s�ss¬¬�¬¬¬¬�¬¬¬¬
We ignore the quotient as it is not used in the CRC calculation.

0101110000000000 =CRC

 100000111 XOR polynomial

 001110111000000 =CRC

 100000111 XOR polynomial

 0110110110000 =CRC

 100000111 XOR polynomial

 010110001000 =CRC

 100000111 XOR polynomial

 00110010100 =CRC

 100000111 XOR polynomial

• 010010011 =CRC

CRC-8 tutorial for SMBus, John Milios, USAR Systems

6
%
6
�
,
)
�
'
H
Y
&
R
Q
�
-
D
S
D
Q
�
�
�
�
�

What to do with CRC
3 The original message can be appended with the calculated

CRC-8 byte and transmitted to the receiver.

3 The CRC-8 enhanced message will be 0101 1100 10010011.

3 The receiver can perform the same calculation upon the first 8
bits of the original message and then compare the result with
the received CRC-8

3 Or calculate the CRC-8 upon the whole (16 bits in this example)
message, without appending zeroes and verify that the
outcome is zero.

CRC-8 tutorial for SMBus, John Milios, USAR Systems

6
%
6
�
,
)
�
'
H
Y
&
R
Q
�
-
D
S
D
Q
�
�
�
�
�

The algorithm for the example

• Initialize the shift register with zeroes
• Shift left the augmented message until a 1 comes out
• XOR the contents of the register with the low eight bits of the

polynomial
• Continue until the whole message has passed through the shift

register (the trailing zero bits will be the last ones to fill the register
and their role is to push out the original message)

• The CRC-8 is the last value of the shift register
3 Calculator Example

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 1 1 11Polynomial

Augmented
message

CRC-8 tutorial for SMBus, John Milios, USAR Systems

6
%
6
�
,
)
�
'
H
Y
&
R
Q
�
-
D
S
D
Q
�
�
�
�
�

Implementation problems

• Easier to implement in hardware

• In real communication systems including
SMBus you may not want to put the
calculation load at the end
• It takes long time
• You need to respond fast with ACK, NACK

• How can you perform the calculation byte by
byte?

CRC-8 tutorial for SMBus, John Milios, USAR Systems

6
%
6
�
,
)
�
'
H
Y
&
R
Q
�
-
D
S
D
Q
�
�
�
�
�

Back to arithmetic...

• What we need is A/B = Q + R

• In CRC we are interested in only on the
remainder so we can re-write our expression
as A/B => R

• If we express A = A1 + A2 then our task
would be described as

• (A1+A2)/B =>R
• or A1/B + A2/B = (Q1 + R1/B) + A2/B
• or Q1 + (R1 + A2)/B =>R

CRC-8 tutorial for SMBus, John Milios, USAR Systems

6
%
6
�
,
)
�
'
H
Y
&
R
Q
�
-
D
S
D
Q
�
�
�
�
�

Two different methods
010110000000 =CRC
 11010 XOR with polynomial in 2nd position
 01100000000 =CRC
 11010 XOR with polynomial in 3rd position
 0001000000 =CRC
 11010 XOR with polynomial in 6th position
 0101000 =CRC
 11010 XOR with polynomial in 7th position
 011100 =CRC
 11010 XOR with polynomial in 8th position

 00110 =CRC

01010000 =CRC
 11010 XOR with polynomial(2nd position)
 0111000 =CRC
 11010 XOR with polynomial(3rd position)
 001100 =CRC (completed calculation with first number)
 10000000 Add (XOR) now the remainder to the second nibble
 01000000 =CRC
 11010 XOR with polynomial(6th position)
 0101000 =CRC
 11010 XOR with polynomial(7th position)
 011100 =CRC
 11010 XOR with polynomial (8th position)
 00110 = CRC

6WUDLJKWIRUZDUG

%UHDNLQJ�WKH�

PHVVDJH

LQWR�D�VXP

CRC-8 tutorial for SMBus, John Milios, USAR Systems

6
%
6
�
,
)
�
'
H
Y
&
R
Q
�
-
D
S
D
Q
�
�
�
�
�

Interesting observations
• We can use the CRC value derived from the first

nibble and add it (XOR) to the second nibble in order
to continue the calculation

• The XORs of the dividend with the polynomial occur
in the same bit positions

• If we XOR the polynomial shifted into these positions
we will derive the original bit-stream augmented with
the CRC as it is shown below

_11010
__11010
_____11010
______11010
_______11010

010110000110

CRC-8 tutorial for SMBus, John Milios, USAR Systems

6
%
6
�
,
)
�
'
H
Y
&
R
Q
�
-
D
S
D
Q
�
�
�
�
�

1st method - Direct

• Initialize the CRC register with zeroes

• Perform the straightforward algorithm (bit by
bit) on the first byte augmented by 8 zeroes

• XOR the CRC with the next byte and
calculate again with the straightforward
method

• Until the whole message is passed through
the calculation

CRC-8 tutorial for SMBus, John Milios, USAR Systems

6
%
6
�
,
)
�
'
H
Y
&
R
Q
�
-
D
S
D
Q
�
�
�
�
�

Direct method sample code
* This code calculates a new CRC value for each byte received
* Registers used:
* Accumulator A
* Index X
* Memory register CRC
* Memory register temp
*
* Input: Memory register CRC contains the previously calculated CRC value –
initialized to zero
* Accumulator A contains the next input data byte
* Output: Memory register CRC contains the current CRC value

• Minimum overhead to enter: [6] (jump to subroutine call)

• [x] denotes machine cycles for each instruction

init_crc:
ldx #8 [2] ;initialize x-register with the # of bits to be shifted
eor CRC [4] ; X-OR new byte with contents of memory location CRC in order to obtain

(remainder + next incoming byte)
crc_loop:
* start the straightforward approach

rola [3] ; rotate left and place the MSB into the Carry
* rola operation fills the empty bits with zeroes

bcc zero [3] ; if carry is clear no need to do anything, continue
eor #$07 [2] ; else, perform the X-OR of CRC with the polynomial

zero:
decx [3] ; decrement bit counter
bne crc_loop [3] ; if more bits need to be processed repeat the loop
sta CRC [5] ; save the new CRC value

return:

rts [6] ; no more bits, return from subroutine

CRC-8 tutorial for SMBus, John Milios, USAR Systems

6
%
6
�
,
)
�
'
H
Y
&
R
Q
�
-
D
S
D
Q
�
�
�
�
�

Direct method performance

Overhead for “5
bytes” protocols

Overhead for “35
bytes” protocols

Fosc Execution tim e
for one byte

M sg Transfer Tim e*

= 1.5 m s

M sg transfer time =
10.5 m s

4 M H z 68us 340 us 2.36 m s

2 M H z 135 us 680 m s 4.75 m s

1 M H z 270 us 1.35 m s 9.45 m s

600 KH z 450 us 2.25 m s 15.75 sec

Machine cycles required = 135
SM Bus operates at 30KHz

CRC-8 tutorial for SMBus, John Milios, USAR Systems

6
%
6
�
,
)
�
'
H
Y
&
R
Q
�
-
D
S
D
Q
�
�
�
�
�

Recall

• All it matters is the positions of the polynomial
when shifted

• We know the positions if we know the data
byte

• We can ADD (XOR) the CRC of the first byte
with the next incoming byte

• All we need is a table

• Calculator example

CRC-8 tutorial for SMBus, John Milios, USAR Systems

6
%
6
�
,
)
�
'
H
Y
&
R
Q
�
-
D
S
D
Q
�
�
�
�
�

2nd method- 256 lookup table
• Initialize the CRC register to 0
• XOR each incoming byte with the previous CRC

value (Add the remainder of the previous division
with the new value). The result is the new byte
that we need to calculate the CRC value (or
remainder of the division)

• Use this value as the index to the table to obtain
the new remainder

• Continue until you have passed all bytes through
the process

• The last byte retrieved from the table is the final
CRC value

CRC-8 tutorial for SMBus, John Milios, USAR Systems

6
%
6
�
,
)
�
'
H
Y
&
R
Q
�
-
D
S
D
Q
�
�
�
�
�

Code example

* This code performs a table lookup to determine the new CRC value for each byte received
* Registers used:
* Accumulator A
* Memory register CRC
*
* Input: Memory register CRC contains the previously calculated CRC value
* Accumulator A contains the input data byte
* Output: Memory register CRC contains the current CRC value
get_crc:

eor CRC [4] ; X-OR the received byte with the stored CRC value (result in
ACC)

tax [2] ; no need to pay taxes yet... just transfer ACC to X register
lda table,x [5] ; load the new CRC value from the lookup table
sta CRC [4] ; save the new CRC value

*

Calculator example

CRC-8 tutorial for SMBus, John Milios, USAR Systems

6
%
6
�
,
)
�
'
H
Y
&
R
Q
�
-
D
S
D
Q
�
�
�
�
�

2nd method performance

Overhead for “5
bytes ” protocols

Overhead for “35
by tes” protocols

Fosc Execution
tim e for one
by te M sg Transfer T im e*

= 1.5 m s

M sg transfer time =
10.5 m s

4 M H z 7.5 us 37.5 us 262 us

2 M H z 15 us 75 us 525 us

1 M H z 30 us 150 us 1 m s

600 KH z 50 us 250 us 1.75 m s

M a c h in e c y c le s re q u ire d = 1 5

CRC-8 tutorial for SMBus, John Milios, USAR Systems

6
%
6
�
,
)
�
'
H
Y
&
R
Q
�
-
D
S
D
Q
�
�
�
�
�

Working with nibbles

• The same method can be applied to nibbles
instead of bytes

• Results in a much smaller table (16 bytes)
• Good for 4-bit MCUs

• A lot of shifts for 8-bit MCUs
• But it saves ROM space and it is faster than

the direct method calculation
• Calculator example

CRC-8 tutorial for SMBus, John Milios, USAR Systems

6
%
6
�
,
)
�
'
H
Y
&
R
Q
�
-
D
S
D
Q
�
�
�
�
�

Performance

Machine cycles required = 90

Overhead for “5
bytes” protocols

Overhead for “35
bytes” protocols

Fosc Execution tim e
for one byte (us)

M sg Transfer T im e*

= 1.5 m s

M sg transfer time =
10.5 m s

4 M H z 45 225 us 1575 us

2 M H z 90 450 us 3150 us

1 M H z 180 900 us 6300 us

600 KH z 300 1500 us 10500 us

CRC-8 tutorial for SMBus, John Milios, USAR Systems

6
%
6
�
,
)
�
'
H
Y
&
R
Q
�
-
D
S
D
Q
�
�
�
�
�

Improved 32 byte table lookup

• We can eliminate some of the shifts by
creating a second 16 byte table with reversed
nibbles

• Example
• 07 -> 70

• Improves performance in 8-bit MCUs

CRC-8 tutorial for SMBus, John Milios, USAR Systems

6
%
6
�
,
)
�
'
H
Y
&
R
Q
�
-
D
S
D
Q
�
�
�
�
�

32 byte table performance

Overhead for “5
bytes” protocols

Overhead for “35
bytes” protocols

Fosc Execution tim e
for one byte (us)

Msg Transfer Time*

= 1.5 ms

Msg transfer time =
10.5 ms

4 MHz 30 150 us 1050 us

2 MHz 60 300 us 2100 us

1 MHz 120 600 us 4200 us

600 KHz 199 995 us 6965 us

Machine cycles required = 60

CRC-8 tutorial for SMBus, John Milios, USAR Systems

6
%
6
�
,
)
�
'
H
Y
&
R
Q
�
-
D
S
D
Q
�
�
�
�
�

CRC-8 polynomial

• Polynomial: X8+X2+X1+X0

• It will detect all single bit errors
• All Odd number of bit errors

• Any burst error less than 8 bits long
• Most of other type of errors

CRC-8 tutorial for SMBus, John Milios, USAR Systems

6
%
6
�
,
)
�
'
H
Y
&
R
Q
�
-
D
S
D
Q
�
�
�
�
�

Conclusions

• By understanding the CRC principles
algorithms can be devised to address any
speed/space condition

• It is important for the CRC-8 results to agree

• The CRC calculator will be made available
along with the source code at www.usar.com

• CRC-8 calculator and white paper available
for download from USAR’s web-site

