STORM HAZARDS TESTBED

Dr Joshua Soderholm (UQ)

Prof Hamish McGowan (UQ Meteorology)

Dr Matthew Mason (UQ Wind Engineering)

1. Weather Radars & Hazard Detection

- 2. Storm Hazards Testbed
- 3. Platform
- 4. Climatology Applications

Weather Radar & Hazard Detection

Weather Radars

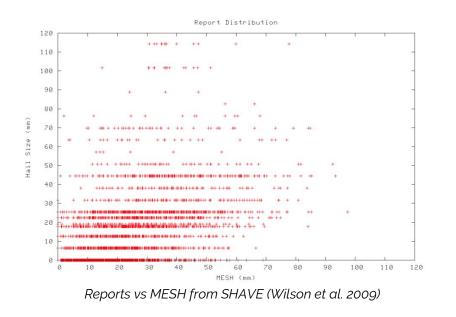
Rain

- Buckland Park
- Mt Stapylton
- Melbourne
- Terry Hills

With dual-pol technology, a radar uses both horizontally (H) and vertically (V) polarized beams, instead of only H

- 1. Ratio of returned H and V gives a measure of target shape and orientation (z_{dr})
 - Tumbling hail vs oblate large rain drops
- 2. Correlation between H and V returns gives a measure of homogeneity $(\rho_{\mu\nu})$
 - rain vs rain and hail
 - tornadic debris
- 3. Phase shift between H and V gives a measure of liquid water content (θ_{dp})
 - Sensitive to rain (no change for hail)

Large Hail Detection

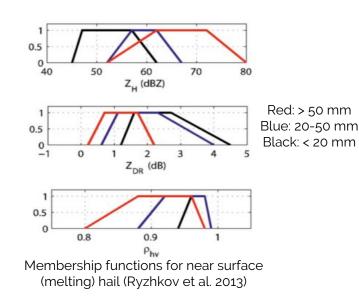

Single Pol

Maximum Estimated Size of Hail (MESH)

Regrided reflectivity data is vertically integrated and weighted according to 0 °C and -20 °C heights.

Poor verification - some use for severe vs nonsevere

Applied across forecasting and industry



Dual Pol

Hail Size Discrimination Algorithms (HSDA)

Applies physical relationship between dual-pol moments, temperature profile and hail distributions

- Applied to the rain/hail PID region
- Membership functions for three hail size categories (< 20 , 20 50, > 50 mm)
- Significant improvement over MESH (POD and FAR) (Ortega et al. 2016)
- Sensitive to ZDR quality :-)

Large Hail Detection

No one-to-one relationship between Z and hail size

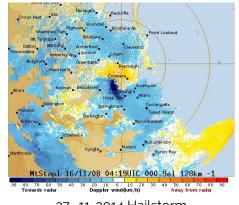
Hail size has a distribution

Different distributions have the same Z

- Sparse Giant hail (50 dBZ)
- Heavy rain and small hail (50 dBZ)

Hail size distribution changes with height

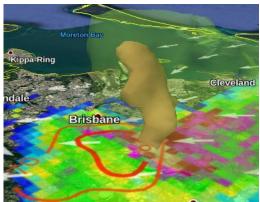
- Melting
- Sorting


Large hail approaches the radar wavelength - Change from Rayleigh to Mie scattering - no linear relationship between hail size and scattered Z

Dual Pol can help!

Damaging Wind Detection

Doppler Wind


- Many BoM radars measure Doppler Wind (radial component of wind field)
- Lowest tilt of 3D scans surveys approximately 200-400 m ASL (within 80 km)
- Quantification difficult due to perspective of radial wind
- Relationship between gust speed and feeder lockouts (Darveniza et al. 2007)

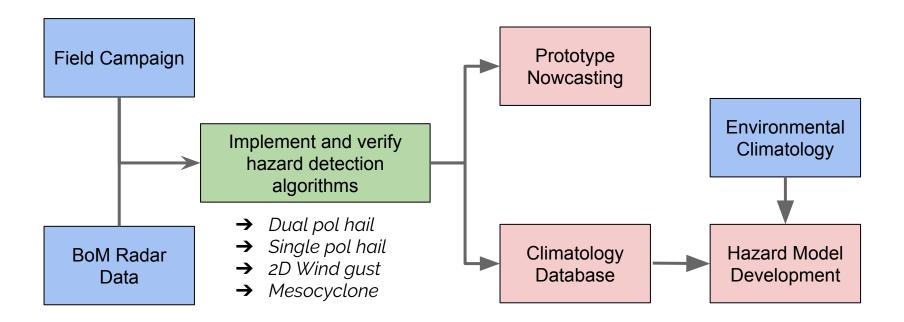
27 -11-2014 Hailstorm

Wind Retrieval Algorithms

- Robust statistical algorithm to retrieve 2D wind field from single Doppler (Xu 2006)
- Variation technique to retrieve 3D wind field from multi Doppler (Protat 1999)
- Limited by small wind events (< 3 km in diameter), radar range (resolution), radar beam height, coverage, cold pool depth

27 -11-2014 Hailstorm showing > 90 km/h gusts over the Archerfield area

Storm Hazards Testbed


Testbed Aims & Objectives

Deliver hail and wind detection tools for the Australian radar network using the latest operational and research technology

- 1. Implement, calibrate (adapt) and verify radar-derived hazard algorithms
 - a. Single pol hail
 - b. Dual pol hail
 - c. 2D wind retrievals
 - d. Mesocyclone detection
- 2. Implement algorithms within a prototype real-time nowcasting platform
- 3. Apply algorithms to produce a radar-derived hazard climatology across the national radar network
 - a. 20 year hailstorm frequency (single pol hail)
 - b. 10-15 year windstorm & mesocyclone frequency (2D wind retrievals)

Roadmap

Linking the science of thunderstorms to hazard detection and modelling.

4 year Research Program

- 2-3 year data collection (field and citizen science)
- Full time research scientist
- 2 PhD and 4 honours projects

Algorithms

→ Dual pol hail

- Implement Gary Wen's clustering PID and NCAR fuzzy-logic HCA to identify rain/hail regions (X and S band)
- Apply HSDA algorithm to S band and provide verification
- Explore application of combining HSDA, ZDR columns and BWER detection to improve nowcasting lead-time (research)
- Integrate into real-time nowcasting testbed (Amazon platform)
- → Single pol hail
 - Verification of MESH in an Australian context + Z correction (clutter/TRMM)
 - Explore improvements relating to hail core tilt
- → 2D Wind gust
 - Single Doppler retrieval (Xu 2006) and multi Doppler variation technique (Protat et al. 1999)
 - Explore application of boundary layer wind model calibration using AWS and in situ measurements
- → Mesocyclone
 - QC of Doppler noise (mostly dual-PRF; Altube et al. 2016)
 - Miller et al. 2003

Now for the observations...

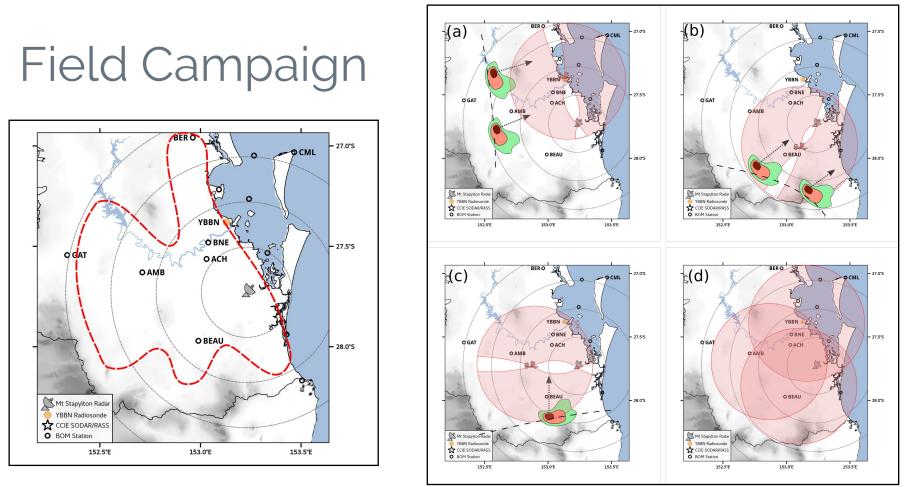
Field Campaign

BoM & Mt Stapylton Dual-pol

UQ-XPOL Deployment Team

2 min volumes (16 tilts)

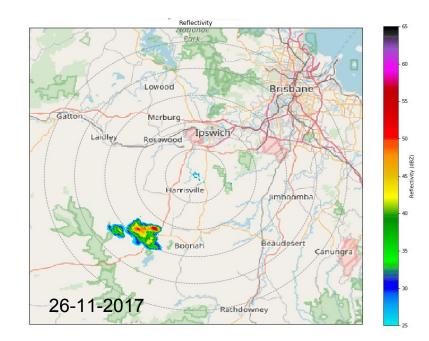
http://radar.uqhail.com


In Situ Deployment Teams (2)

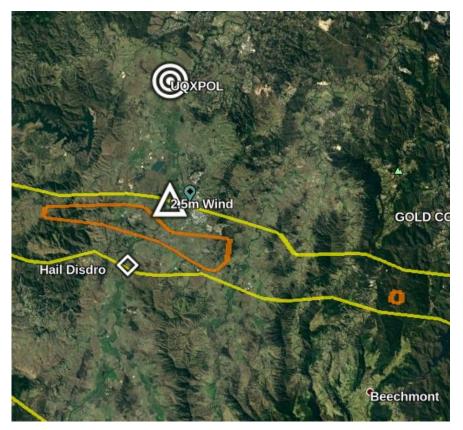
World first mobile field campaign targeting hazard verification

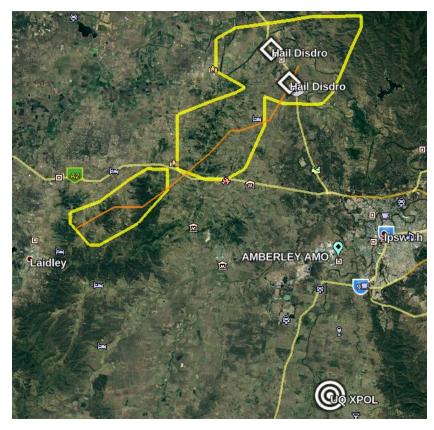
Verifying radar-derived hail size through dual-frequency (UQXPOL and Mt Staplyton), dual-pol observations and surface hail disdrometers.

Verifying radar-derived near-surface winds through surface observations and high resolution mobile radar.

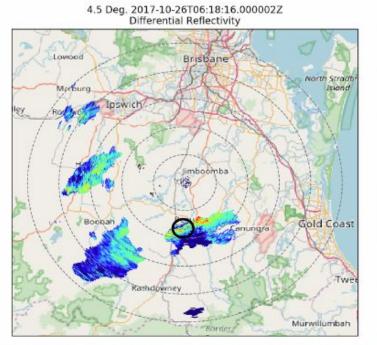

- 1. Surface measurements of <u>hail size</u> (mobile disdrometers) and the <u>evolution</u> of the hail core aloft using dual-polarised radar moments (fixed and mobile radar)
- 2. Observations of <u>surface gusts</u> (mobile towers) and the <u>evolution</u> of cold pool structure aloft using Doppler radar moments (fixed and mobile radar)
- 3. Upper air data of pre storm <u>environment</u> from Brisbane Airport, mobile soundings and surface stations to characterise preconditioning processes.

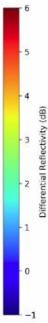
Field Campaign - Oct 2017

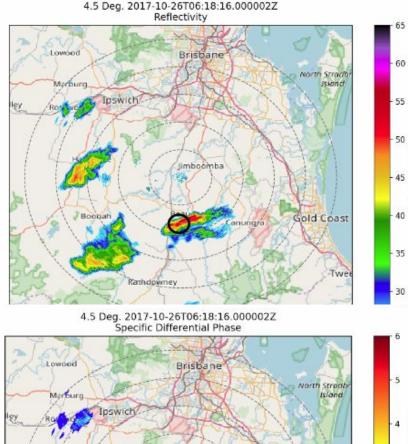

- 5 Operation days (3 full deployment)
 - UQXPOL, radiosondes & in situ
- 3 successful disdrometer deployments
 - 2 have sampled 1-2 cm hail
 - 1 has sampled 2-4 cm hail
- 1 wind tower deployment
- <u>64 hail size reports</u> across social media and uqhail.com (another 20 from Tues)



Field Campaign - Oct 2017




Deployment sites for 26-10-2016 showing UQ-XPOL (target), 2.5 m wind tower (triangle) and hail disdrometer (diamond). Mt Stapylton derived hail contours (MESH) at 15 mm (yellow) and 30 mm (orange) shown.



Deployment sites for 29-10-2016 showing UQ-XPOL (target) and hail disdrometers (diamonds). Mt Stapylton derived hail contours (MESH) at 15 mm (yellow) shown.

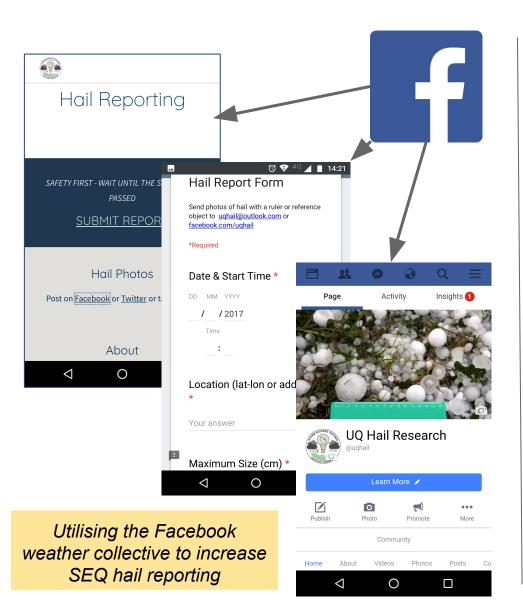
Field Campaign - Oct 2017

Reflectivity (dBZ)

Specific Differential Phase (degree/km)

3

2


1

0

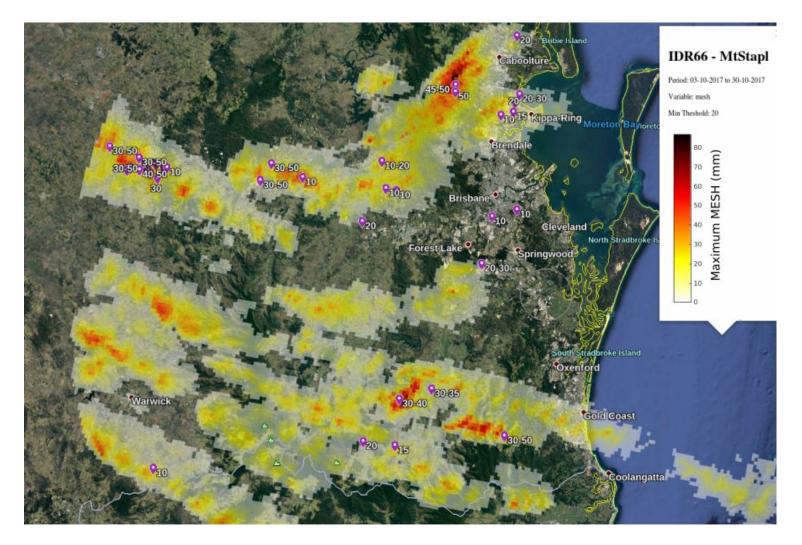
-1

Engagement

QRO Engagement

- → Forecaster briefings
- → Adaptive radiosonde releases
- → Staff supporting research team
- → Collaboration on outputs

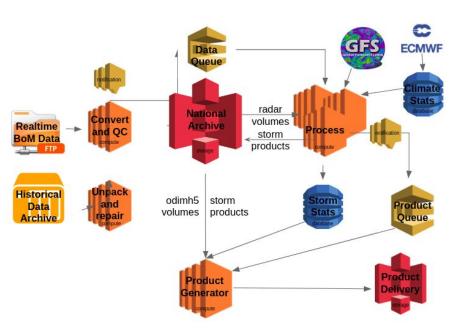
UQ


- → Volunteers from undergraduate, postgrad, research staff, academics
- → Collaboration across meteorology (AORG) and wind engineering (WIRL)

Citizen Science

- Print, radio, TV, online news (ABC, channel 7)
- BoM Twitter (more professional)
- Local Government Facebook
- Facebook Weather Groups

Citizen Science - October 2017



Maximum value of MESH (mm) during October 2017 derived from Mt Stapylton radar. Public hail reports collated by the uqhail citizen science initiative. Location shown with a purple marker and hail size labelled (mm).

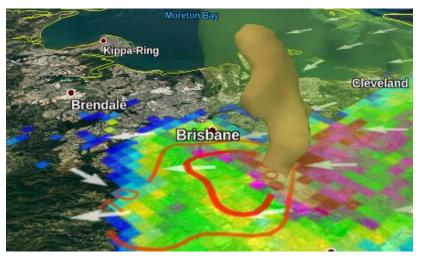
Platform

Prototyping Platform

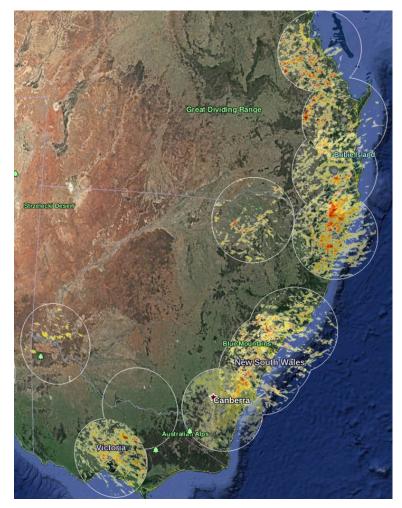
- <u>One</u> platform for nowcasting and climatological (decades of data) processing
 - One database
 - One compute pipeline
 - One storage point
- Complete automation and scalable from one radar to > 700 years of historical data (30 TB).
- Capable of handling the diversity of Australian radars
- Modular/objective easy to add new capabilities

Amazon Web Services Pipeline

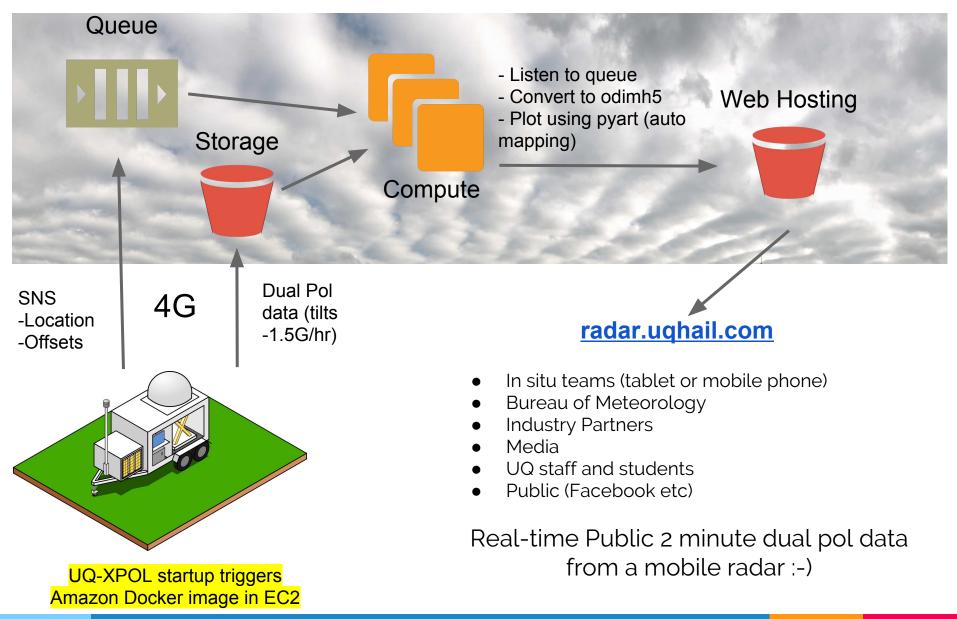
Outputs


Spreadsheets (with a few 100k rows)

		C D	F 6	н		,				M	N	-0-		- 0	R		-	U	- V	w	×	Y	z	AA	AB	AC	AD	AE	AF	AG	
10.3	3997.7	onth day	nte becor	of track, i	f)sket_i	c/_gide	n(h_giá	km()8927	1.595970	000.1.5999501	077.00.1	norm_max.	10070_000_00	1000_000_0	com min bear	orn_049.301	torm_pain_logists		reakmij a	NA. setknik	nas cel yákamze	m_thits/me		. a. siðhain i fe	ge_mail/andro	_xmh04g		W_200387.31	neer_dolds?		120
									-04.54	349.4		- 20			-34.45	-34.95	349.52	349.5			5.5			5.4			-999			4107	
										149.24							149.16	149.15	157											#5023	
									- 22	49.74					31.00	342	142.54	10.00	114.2	126.0											
									-34.55	142.56	214				34.6	34.74	142.65	142.67	105.0		10.5	40.2		14.3					31.5	34114	<u>-</u>
	1 1.000								-33.65	142.56	214	24	212	236	-33.87	-33.99	142.00	149.72	111.3		24	43.6		6.6					215	2000	
	1 1.000								-04.05	142.7	238	20	102	217	-33.94	-04.25	140.75	149.55	10	188.2	2.0	45.9		2.9	6.8				252	41220	a
	11000								-04.1	249.7	239	20	120	210	-22.05	-34.22	149.6	349.6	205.8	179.3		42.4	2.4	6.1					211	3806	a
	12000									149.84	227	- 2	112	224		-24.08	249.77	149.32	205.3	220.1	6.2	41.1	2.4	1.2					42	61210	a
	11000		33						-23.96	149.33	233	29	105	200	-23.89	-34.08	349.61	149.42	121.2	174.3	4.6			4.1					27.8	27396	×.
	11000		22						-24.99	149.26	287	32		170	-34.43	-34.172	349.37	149.14	118.7	322.6										00713	2
	11,999								-26.62	149.33	200	22			-34.46	-04.00	149.5	249.2	206.3												٩.
	51,999								-04.15	149.33	205	20	342	200	-34.40	-34.80	349.27	149.03	11.0	258.7											<u>.</u>
	51,999								-23.94	149.42	230				-33.96	-34.03	349.55	149.35	200.9												
	51,999								-34.15	140.95	245				-34.00	-34.24	349.64	140.00	115			44.9									
									-33.77	149.93	209			250	-35.95	-33.55	250.11	149.75	205.9												
										145.97	255				-34.5.5	-34.3	349.09	145.93	126.1												
															-34.55	-34.85	345.64		107.6												
									-33.15	149.96	206				-33.64	-33.79	290.25	149.87	322.4												


Data Service

<pre>#Connect to the s3 radar bucket containing data conn = S3Connection(anon = True) bucket = conn.get_bucket('roames-wxradar-archive')</pre>	
<pre>#Create the query string for the bucket knowing #how ROAMES stores their radar data in s3 (odimh5_archive/ID/yyyy/mm/dd/ my_pref = "odimh5_archive/" + site + datetime_t.strftime('/%Y/%m/%d')</pre>	


Case & Real-time Visualisation

Climatology Visualisation

Real-time: PyART + Amazon

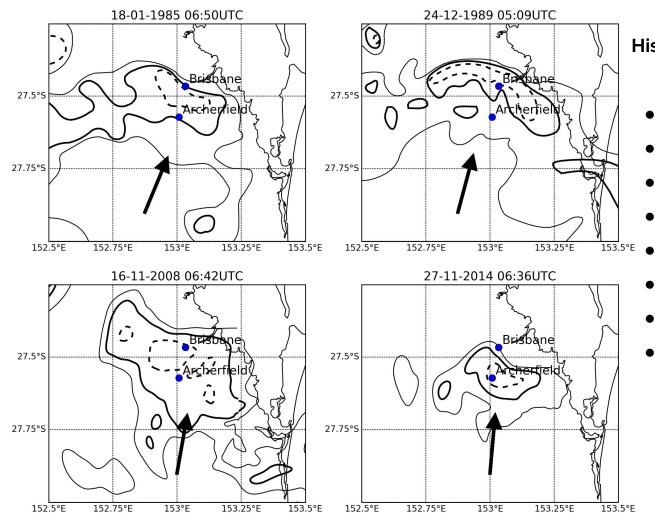
Climatology

Advantages

Radar provide a direct measurement of thunderstorm intensity, structure and dynamics. Limited by outages, range and attenuation.

- Hail/tops/density/size spatial analysis
- Storm track length/duration/direction

Report-based climatologies are biased towards locales, time of day, reference objects. Inconsistent.


Reanalysis climatologies capture the environment, not the convection. Finescale variability limitations.

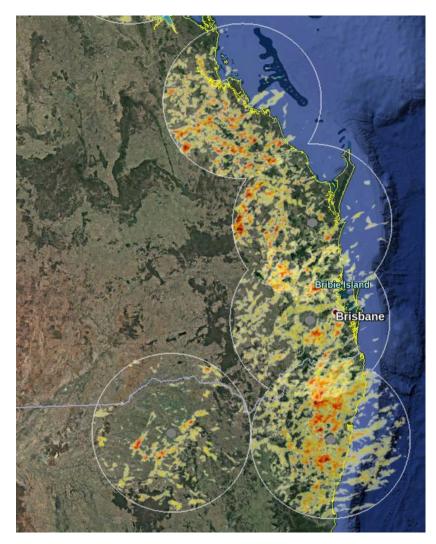
- 768 years of radar data across (27 TB)
- Some sites > 20 year record
- Issues with diversity, outages and moving radars!

- Hail Improve and expand long-term climatologies through QC and MESH verification
- Mesocyclone Climatology (supercell frequency high impact weather)
- Straightline wind Climatology

Hazard model development

Changes in Technology

History of SEQ Weather Radars


- Eagle Farm 277 (WWII)
- UQ Physics (1970s) S
- Eagle Farm WF44-C
- Brisbane AP WF100-C
- Marburg WSR74-S
- Mt Stapylton 1500-S
- CP2 S & X dual-pol

 Mt Stapylton 1500-S dual-pol

High impact thunderstorm cases shown with contoured reflectivity (30dBZ thin line, 40 dBZ bold line, 50 dBZ dash bold line)

Applications

- Ground truth for long-term environmental climatologies (e.g., calibrating parameters)
- Finescale hazard modelling (Risk)
- Distribution network management
 - Clearance vs Risk
 - Maintenance cycle
 - Assessment of new corridors
- Develop an understanding thunderstorm drivers
 - local (e.g., terrin, sea breeze)
 - synoptic (e.g., fronts, wind regimes)
 - climate scale (ENSO forcing)
- More to come!

Annual Hailstorm frequency (MESH > 20mm)

Follow us! uqhail uqhail radar.uqhail.com

Questions?