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An Extension of Gauss' Transformation for
Improving the Condition of Systems of

Linear Equations
1. Gauss' Transformation Extended. Consider a consistent system of

linear equations

n

(1) Z»tf*¿ = bi(i = 1, ■■■,n)
j-i

with o,y, bi real. Let the matrix be symmetric and of positive rank n — d and

suppose the quadratic form corresponding to A is non-negative semi-definite.

Thus the solution points of (1) in affine «-space form a linear subspace of

dimension d.
The following is our extension of a transformation due to Gauss: Let

î = (iii • • •, sn) be any real vector. Make the substitution

(2) Xi = y i + 5,y„+i (* « 1, '•-",'*),

and thereby convert (1) into a system (3) of n equations in the » + 1

unknowns yi, ■ • •, y„+i :

(3) ¿ any i + ( ¿ dijSj ) yn+i = &< (*' = 1, • • •, »).

An (« + l)-th equation is obtained as the weighted sum of the n equations

(3):

(4) ¿ ( ¿ atjSi ) y i + (   ¿ üijSiSj 1 yn+l = ¿ ô<5».
¿-1 \ í-l / V'iH / »-1

The redundancy of (4) means that the solution space of the equation pair

(3, 4) is a linear subspace of dimension d + 1 ; that is, the rank of the coeffi-

cient matrix Ai of the system (3, 4) is n — d. However, the quantities

Xi = y< + s.-yn+i are determined exactly as well by the system (3, 4) as by

the system (1). If A is symmetric, the system (3, 4) also has a symmetric

coefficient matrix.

Gauss910, in writing how he liked to solve certain systems (1) by relaxa-

tion,23 presented a transformation whose application, he was convinced, would

improve the convergence of the relaxation process for normal equations

associated with the adjustment of surveying data. Gauss' transformation was

originally presented only for non-singular (d = 0) systems (1), and was the

special case si = ■ • • = s„ = — 1 of (2). The same transformation was

given by Dedekind6, who showed its effectiveness in one example. Zurmühl22

brings the apparently forgotten transformation to light again, but errs in

asserting that it will speed the solution by relaxation and by Seidel's

method of all (non-singular) systems of equations for which the respective

method is slowly convergent.24

In two letters Gauss9,10 reveals the motivation of his transformation

*«• = y» — yn+i in these terms : By the method of least squares he is seeking

to determine the values of n + 1 quantities y\, • • -, yn+i (e.g., azimuths or

elevations), whose magnitudes can be deduced from the given data up to
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an additive constant. To use the equations (1) amounts to selecting the

origin so that y„+i = 0 (e.g., measuring angles from one of the unknown

azimuths). But how may one decide which unknown to set equal to zero?

In this quandary Gauss10 warns us [p. 251] not to set any of the unknowns

equal to zero, but to leave them all variable, and then to determine their

differences by solving the system (3, 4). This, Gauss is convinced, will lead to

faster convergence of the relaxation process, because of the symmetrical

treatment of all the variables. Incidentally, one also gains an attractive

column-sum check as a control on accuracy.

We shall examine the effect of transformation (2) on the system (1) from

a different point of view. We shall ascribe a "condition number" P(A) to the

matrix A, whether singular or not. We shall show the effect on P(A) of the

transformation (2) and, in particular, show when P{A) can be lowered and by

how much. As tools we use an extension of a separation lemma known in

many connections—for example, for the one-step escalator process for

eigenvalues.14 By repeated application of the extended lemma we derive a

¿-step separation theorem, believed new, applicable, for example, to the

¿-step escalator process.2,8

For non-singular matrices A, Cesari4,3 has considered the relation be-

tween P(A) and P[tt(A)2, where t(A) is a polynomial in A.

For positive definite matrices A the relation of P(A) to the accuracy of

the solution of (1) by elimination is discussed at length by von Neumann &
Goldstine.1*

2. Condition of a Singular Matrix. The condition of a system Ax = b
with 1-4 17*0 describes the influence of small changes in A and b on x; the

larger the change in x for given changes in A and b, the "worse" the condition.

Though the condition depends also on b, the numbers hitherto proposed

(see Todd18) to measure the condition are functions solely of A. When A is

not singular, Todd suggests the ratio P = |X,-|m»x/|X<|min as a condition

number of A, where the X< are the eigenvalues oí A. In the following, however,

we are concerned with systems Ax = b, where A may be a singular matrix.

Then the solutions form a linear subspace X, and it is the displacement of

this linear subspace which should be dealt with by a condition number.

Cutting with a linear subspace V orthogonal and complementary to X, we

can measure the displacement of X by the displacement of its intersection

x with V. But x is the unique common point of the intersections of the hyper-

planes Ax = b with V. We may therefore measure the condition of the singu-

lar system Ax «= ¿> by the condition of the related non-singular problem in

V. We are thus led to the following definition of a condition number :

Let the eigenvalues X< of A be numbered so that

(5)   0 = Xi = ••• = Xd < |Xd+i| < |Xd+2| < ••• < |X„| (0 < d < n).

The condition number P{A) of A is defined as the ratio |X«|/|Xd+i| of the

maximum and minimum absolute value of the non-vanishing eigenvalues.

For non-negative, semi-definite A all X< are real and non-negative. For

such A we shall study the effect of the transformation (2) on P(A).

The sensitivity of x or X to changes of the coefficients in (1) probably has

a decisive influence on the speed of convergence of an iterative solution of

(1). Eigenvalues of A which are exactly zero do not seem to be troublesome

in iterative methods of solving the system. In the gradient method (see 6, for

example) all iterations take place in some subspace V orthogonal to the
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solution space X, and one gets to some point of X without difficulty. For the

gradient method an immediate extension of theorems of Kantorovich13

proves that the A length27 of the error vector decreases per step by at least

the factor [_P{A) — 1] [_P{A) + I]-1. Perhaps P{A) bears a direct relation

to the rate of convergence of iterative processes which are invariant under

rotations of the axes. Also, it might ordinarily give some indication of the

convergence of processes (like relaxation and the methods of Seidel17 and

Jacobi12) which are not invariant.

3. Eigenvalues of the Transformed Matrix. To study the effect on P of
the transformation (2), we may without loss of generality choose an origin

so that each &, = 0 and choose axes so that A is in diagonal form : a„- = X<-

5<y, where the X< are numbered as in (5). Because of the semi-definiteness of

A, this can be achieved by a real transformation. The s< are subjected to the

same transformation. Then finding some solution of the d-fold indeterminate

system (1) is equivalent to finding some point in the subspace of centers of

the family of similar elliptic cylinders

(6) 2 Xi»,5 = const.

In the variables y< defined by (2) the quadrics (6) become a new family of

elliptic cylinders. Finding some solution of the (d + l)-fold indeterminate

system (3, 4), and hence some solution of (1), is equivalent to finding some

point in the subspace of centers of the transformed quadrics

(7) Q(yu • • •. yn+ù = £ X<(y< + s<yn+i)2
i-l

const.

The geometrical effect of the transformation (2) is easily visualized for a

non-singular (d = 0) matrix A in two dimensions (w = 2). Solving A is

equivalent to finding the common center of the ellipses (6). In the variables

y¿ defined by (2) the ellipses (6) become a family (7) of elliptic cylinders.

Each cylinder of (7) is generated by elements parallel to the direction

(si, s2, — 1) passing through an ellipse (6). Getting a point (yit y2, y3) on the

axis of the cylinders (7) is equivalent to finding one solution of (3, 4). This

one solution of (3, 4) yields the unique solution of (1). Note that the eccen-

tricity « = {1 — CPC4i)3~2}*of the elliptical normal sections of the cylinders

can be varied in the range 0 < « < 1 by varying the vector s = (su s2). The

best "condition" of A\ corresponds to a circular cross section, for which

6 = 0andP(^i) = 1.
Let Mo < Mi < • • • < Mn be the eigenvalues of the quadratic form (7),

whose matrix A i is the coefficient matrix of the system (3, 4). The m are the

roots of the determinantal equation

(8)

Xi — n
o

0
X2 — M

0 0

XiSj X2S2

0
0

Xn  —  M

XiSi

X2S2

nnSn

x„s„     52 XjSi2 — /1
i-l

= 0.
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Expansion of (8) according to the last row and column gives the equation

o - ( ¿ x^2 - m ) n (x* - m) - £ XiV n (x* - m)
V«-i / *-i *=i *=i

(9)

= - m f n (x* - /i) + £ xf5,2 n (x* - m)1 .
L*=i «-i *=i J

The factor pd+l can be removed from (9), since Xi = • • • = Xd = 0.

There remains the following equation for the other m< •'

(10) ft    (X* - m) +    ¿   X.-5,2    ft    (X* - m) = 0.
*-<i+l f-d+l *=d + l

We now state the principal tool in the study of (2) :

Lemma. I. For any real numbers s i and any set of X¿ satisfying (5), the

roots m of (8) have the following properties: (i) exactly d + 1 of the m are zero;

(it) the remaining n — d roots m satisfy the following separation condition:

(11) 0 < Xd+i < Md+l < Xd+2 < Md+2 <  • • •  < X„ < ju„ <  ».

II. Conversely, given any nd+\, ■ • -, ixn satisfying (11), one can determine real

numbers Si so that the roots of (8) are 0, 0, • • •, 0, pd+i, • • •, Mn-

Proof. Of I. Case 1. No j, = 0; Xd+i < Xd+2 < • • • < Xn. We can divide
(10) through by II(X* — m)i getting the equation

n \   o 2

(12) /(m) - Z ~y -1=0.
>'-d+l M  —  Ai

Since (12) shows that/(0) < — 1 and since we previously removed a factor

pi+1, we have proved (i). Since each X<5,2 > 0, a sketch of/(/i) shows at once

that

(13) Xd+i < /Xd+i < Xd+2 < Md+2 <   • ■ •   < X„ < /in,

proving (it).

Case 2. 5<, X,- unrestricted. Since the roots m< of (8) are continuous25

functions of the Xi and the s„ (11) follows from (13) by a passage to the limit.

Of II. Since the choice of Si, • • •, s¿ is arbitrary, we have only to determine

real Sd+i, • • •, sn. This is equivalent to determining non-negative XiSi2

(d + 1 < i < n) so that the roots m of (10) are the given m<j+1i • • -, nn.

Case 1. (13) holds. Then equations (10) and (12) are equivalent. But the

roots of (12) are the ellipsoidal (confocal) coordinates corresponding to the

cartesian coordinates {a/XísÍ2} in (w — d) -space. The following inversion

formulas give the {XiS,3} as rational functions of the Mj and X,; [see21, p.

548]:

(14) XiS,3 =    ft    (My - Xi) /  fl    (Ay - Xi) > 0 (* = d + 1, • • ■, n).
j-d+i I y-d+i

Hence id+ii • ■ -, sn are uniquely determined as positive functions of the X,

and m>i where My are the roots of (10).
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Case 2. X„ My are restricted only by (11). We shall replace all X>, My by
neighboring values X/, My' which satisfy (13) and also the following condition :

for each j where X,- = My = XJ+1, we insist that

(15) m/ = HA/ + Am0.

By Case 1, let real st'(d + 1 < i < n) be determined so that (14) and

(10) hold for the primed symbols. Now let X/ —> Xy, My' —»My- By (15), the
X/s/2 of (14) all approach (non-negative) limits, which we define to be

XiSi2. Since the left-hand side of (10) is a continuous function of the arguments

Xy, Myi sy2i it is seen that (10) is satisfied in the limit. In this manner we have

proved the existence of real Sd+i, ■ • •, sn in Case 2. (The Sd+1, ■ ■ ■, sn need not

be unique in Case 2.)

Equation (12) is a special case of the one-step escalator equation of

Morris.14 Similar equations occur in the generalized Rayleigh-Ritz method

of Aronszajn1 (which includes the Morris escalator as a special case), in

dealing with the realizability of impedance functions by electrical networks11,

and in defining ellipsoidal coordinates.21 In all these connections Part I of the

lemma is known for the case of unequal Xi.

The lemma may readily be extended to diagonal matrices A with arbi-

trary real X¿, although we will not use it. Conclusion (i) continues to hold.

In addition to condition (11) for the positive X„ míi there is a similar condition

for the negative Xi, m» in which, for each i, \i+i < m < X¿ < 0.

4. Effect on the Condition Number. Our condition number for the

matrix A is P(A) = X„/Xd+i, while the same for the matrix A\ is P(A\) =

fin/pd+i- The dependence of P(Ai) on the X,- and the s,- can ordinarily be

stated only in terms of the roots of (8), but certain general remarks can be

made:

(a) The lemma shows that P(Ai) can always be made greater than P(A)

by some choice of s, and that, unless Xd+i = Xd+2, P(Ai) can also be made

less than P(A).
(b) A most favorable choice of 5 is one for which /zd+i = Xd+2 and m» = X„,

so that P(AJ = X„/Xd+2. This can be brought about by making (for this
particular coordinate system) Sd+i 5¿ 0, s,- = 0 (i jí d + 1), whence the

roots of (8) are 0 (d + 1 times), Xá+2, Xd+3i ■ • ■ ■ X„, and (sd+i + l)Xd+i. Then

M<¡+i = Xd+2, M» = X„ if and only if Xd+2 < (4+1 + l)X<¡+i < X„, or

,..,\ Xd+2 Xd+1      -     j s   Xn Xj+1
u°) ^ s Sd+i s    c       •

Ad+1 Ad+1

In particular, we can choose

(17) J2d+1 = (A, - Xd+O/Xd+i = P(A) - 1.

(c) For a matrix A not in diagonal form the selection of s such that s¿+i

satisfies (17) and such that the other st- = 0 can be made as soon as we know

Xd+i, Xn, and the eigenvector «¿+i belonging to Xd+i. At least in the usual case

d = 0 the Xd+i, X„, Md+i can ordinarily be approximated by known procedures.

To know the least value of P(Ai) achievable by the transformation (2)

requires knowledge of Xd+2 also. Conversely, if 5 has been selected so that

M<í+i = Xd+2, the determination of m<j+ii the least non-zero eigenvalue of Ai,
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yields Xd+2- Regarded as a matrix transformation to assist in the determina-

tion of the higher eigenvalues of A, this resembles a transformation of

Tucker.19

(d) If Xd+i, X„, Md+i are known only roughly, we can expect to make

P(A\) reasonably close to its minimum Xn/Xd+2 by picking 5 in the direction

of the rough value of ttd+i, with \s\2 equal to the rough value of (X„ — Xd+i)/

Xd+i.

5. Repeated Application of the Transformation. General Separation
Theorem. The transformation (2) can be applied a second time, to generate

a matrix A 2 of rank n — din the « + 2 variables zi, • • •, zn+z. This time 0

becomes a (d + 2)-fold multiple eigenvalue of A 2, and the separation formula

(11) relates the eigenvalues of A i to those of A 2. Finally, the variables z, and

Xi are related by the formula

(18) Zi = Xi + SiZn+l + ¿iZn+2.

The substitution (18) would border A in one step with two new rows and two

new columns. Clearly it is possible for P(A2) to get as low as X„/Xd+s-

If the generalized Gauss transformation (2) is applied k times, we. get a

matrix A * of order n + k and rank n — d. We have the following theorem,

proved by k applications of the lemma :

Theorem. The n + k eigenvalues k_*+i, • • •, «o, «i, • • •, /c« of the matrix Ak

have the following properties: (i) exactly d + k of the ¡a are zero; (ii) the re-

maining n — d values m can be numbered so as to satisfy the following inequali-

ties:

(19)

*<H-1  <   *d+2  <••'<< n t

Xi < Ki < X<+i (d + 1 < i < n - k);

[Xi < kí < « (n — k < i < n).

Conversely, given any Kd+i, • • -, k» satisfying the inequalities (19), one can

determine k real transformations (2) so that A *, the k-th successive transform of

A, has eigenvalues 0,0, • • •, 0, Kd+i, ■ • •, >c„.
After k generalized Gaussian transformations (2), we see that P(Ay) can

theoretically be made as low as X„/Xd+*. After n — d transformations

P(An-d) can be made equal to X„/X„ = 1 ; at this stage the equations are

perfectly conditioned.

The theorem can be extended to diagonal matrices A with arbitrary real

Xi. In the extension one gets inequalities of the type

Xi+jt S «i   S Xi

corresponding to negative eigenvalues

X'i+* < • • • < X'i+i < Xi' < • • • < 0

of A. In the extended form the theorem is applicable to the ¿-step (k > 1)

escalator process of Aronszajn22 for symmetric matrices A, described by

Fox.8
6. Example. For a certain class C of matrices A it is known a priori

that d = 0 and that «i has components which are all positive and roughly

equal. C includes matrices like (21), which correspond to the Dirichlet

problem over a finite net or to related random walk problems. C also includes

the matrices of the normal equations for the angle variables or the altitudes
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in a survey; this was the source of the examples in9,10,5. If A belongs to C,

the original form [s = (— 1, •••, — 1) in unnormalized coordinates] of

Gauss' transformation is close to the optimal selection of s parallel to u\.

On the other hand, if A is such that d = 0 but ( — 1, • • •, — 1) is,
roughly speaking, closer to w„ than to «i, Gauss' form of (2) is likely to make

P(Ai) > P(A), whereas a choice of 5 near «i will make P(Ai) < P(A).
As an example of this, we cite T. S. Wilson's ill-conditioned matrix

(20) A =

5 7 6 5
7 10 8 7
6 8 10 9

L5 7 9 10

given by Todd.18 The decomposition of A is as follows:26

Mi = (-.830, .501, .208, -.124)
»i = ( .094, -.302, .761, -.568)
u3 = ( .396, .614, -.271, -.625)
«4 = (    .380,     .526,     .552,     .521)

Xi = 0.01015,
X2 = 0.8431 ,
X8 = 3.858 ,
X4 = 30.29     ,

Hence P(A) = 2984, a relatively high value.
Gauss' original transformation, corresponding to i = (- 1, — 1, — 1,

— 1) in unnormalized coordinates, would replace A by the coefficient matrix

¿i =

5
7
6
5

-23

7
10
8
7

■32

6
8

10
9

-33

5
7
9

10
-31

-23
-32
-33
-31

119

To obtain the condition number of A i, we find the components s, of 5 in the
coordinate system of the eigenvectors m,:

si = .245, s2 = .015, s3 = - .114, 54 = - 1.979.

With these Si, equation (12) becomes

.00061
+

.0002
+

.050
+

118.6
= 1.

M - .01015  '  m - -8431   '  m - 3.858  '  m - 30.29

Hence the eigenvalues of A i are approximately

Mi = .01027, M2 = .8431, ms = 3.867, m* = 148.9,

so that P(Ai) = 14500. As measured by P, the matrix Ai resulting from

Gauss' original transformation is even worse conditioned than A.

On the other hand, some rough knowledge of Xi, X4 permits considerable

reduction in P. Following the principles of section 4 but using only one

figure of Mi, we select 5 in the direction (.8, — .5, — .2, .1). To satisfy (17)

approximately we multiply this vector by 50, getting s = (40, — 25, — 10,

5). With these weights we obtain the transformed matrix

At*-

5
7
6
5

10

7
10
8
7

15

6
8

10
9

15

5
7
9

10
15

-10
-15
-15
-15

50
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The components of 5 in the normalized coordinate system are'

Si. = - 48.42, Si = .86, s3 = .075, s4 = - .865.

With these i, equation (12) becomes

23.797 .623 .0217 22.66
+ + +

M - -01015  ' m - .8431  '  m - 3.858  '  m - 30.29

Hence the eigenvalues of A1 are approximately

Mi = .8205, Ma = 3.853, Ms = 11.21, M4 = 66.22,

so that P(Ai) = 80.71. Thus A1 is far better conditioned than A. If we had
selected s exactly parallel to Mi, P(A\) could have been made as low as

(30.29)/(.8431) = 35.93.
7. Pairing of the Eigenvalues. By the lemma it is theoretically always

possible for n even, d — 0, to make the non-zero eigenvalues m occur in pairs,

even though all Xi are distinct; cf.20. If so, in solving (3, 4) by the gradient

method, for example, the double roots m of A1 act like single roots and the

essential dimensionality of the calculation is reduced from » to w/2. For

example, consider

(21)   A =

2    -1
-1        2

0    -1

0       0
-1        0

2    -1

0
0
0

0
0
0

0
0

0
0

0
0

0
0

-1        2    -1

0-1        2

(2m rows),

whose eigenvalues are 4 sin2 [ft*/(2m + 1)] (k = 1, 2,   • • -, 2m). If s =

(— 1, • • -, — 1), the transformation (2) yields the matrix

(22)   Ax =

2-1        0
-1        2    -1

0-1        2

0
-1

0
0

0
0

0
0

-1

0
0

0
0
0

0
0
0

-1        2    -1

0-1        2

(2m + 1 rows),

whose eigenvalues are 4 sin2 £2kv/(2m + 1)] (k = 0, 1, 1, 2, 2, • • -, m, m).

These two matrices are related to those for discrete random walks in one

dimension: (21) to walks on a line segment with "manholes" at both ends,

and (22) to walks on the circumference of a circle, with no manholes. The

matrices are also used in solving the Dirichlet problem on a discrete net.
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