
Computational Thinking and Practice
— A Generic Approach to Computing in Danish High Schools

Michael E. Caspersen and Palle Nowack
Centre for Science Education, Faculty of Science and Technology

Aarhus University
DK-8000 Aarhus, Denmark

{mec, nowack}@cse.au.dk

Abstract
Internationally, there is a growing awareness on the ne-
cessity of providing relevant computing education in
schools, particularly high schools. We present a new and
generic approach to Computing in Danish High Schools
based on a conceptual framework derived from ideas re-
lated to computational thinking. We present two main
theses on which the subject is based, and we present the
included knowledge areas and didactical design princi-
ples. Finally we summarize the status and future plans for
the subject and related development projects. .
Keywords: curriculum structure, course content, high
school, computational thinking, core competencies, appli-
cation areas, knowledge areas, learning activities, didac-
tical design principles.

1 Introduction
Computing, particularly in the specific form of computer
science, has been a topic in high schools in many coun-
tries for more than three decades, but without achieving
the break-through in terms of adoption that the topic de-
serves in the post-industrial society.

But things are changing, and they are changing at a
global scale. Internationally, there is a growing awareness
on the necessity of providing relevant computing educa-
tion in schools, particularly high schools. Computing ed-
ucation in schools is considered increasingly important as
expressed by e.g. Wing (2006) who argues for teaching
fundamental computing principles for all: “Computation-
al thinking is a fundamental skill for everyone, not just
for computer scientists. To reading, writing, and arithme-
tic, we should add computational thinking to every
child’s analytical ability”. In the book Program or be
Programmed, Rushkoff (2010) puts it even more bluntly:
“In the emerging, highly programmed landscape ahead,
you will either create the software or you will be the
software”.

Half a century ago, Perlis (1962) said that everyone
should learn to program as part of a liberal education. He
argued that programming was an exploration of process, a
topic that concerned everyone, and that the automated
execution of process by machine was going to change

Copyright © 2013, Australian Computer Society, Inc. This pa-
per appeared at the 15th Australasian Computer Education Con-
ference (ACE 2013), Adelaide, South Australia, January-
February 2013. Conferences in Research and Practice in Infor-
mation Technology (CRPIT), Vol. 136. A. Carbone and J.
Whalley, Eds. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

everything (Guzdial 2008). It took fifty years to get here,
but finally it seems that (a contemporary interpretation of)
Perlis’ vision has come to pass.

As mentioned by Cutts, Esper, and Simon (2011), sev-
eral national initiatives are being taken to address this
challenge. For example, the UK Royal Society has recent-
ly published the report Computing in School (Royal Soci-
ety 2012), and the US National Science Foundation and
the College Board are supporting development of an Ad-
vanced Placement course, CS Principles (Astrachan et al.
2012), aiming at broadening participation in computing
and computer science by transforming high school com-
puting (Astrachan et al. 2011). Similar initiatives are tak-
en in other countries, e.g. Israel (Gal-Ezer and Harel 1998
and 1999, Bargury 2012), Germany (Steer and Hubwieser
2010), The Netherlands (Van Diepen et al. 2011), and
Norway (Hadjerrouit 2009). Especially the effort in New
Zealand seems to be similar with respect to motivation,
and challenges, but perhaps not with respect to the con-
tent and form (Bell et al. 2010, Bell et al. 2012).

In this paper, we report on a recent Danish initiative to
redefine and revitalise computing in Danish high schools.
The Danish initiative is similar to many of the other initi-
atives in focusing on fundamental computing principles
(including computational thinking) as a fundamental skill
for all. However, the Danish initiative is different from
most of the other initiatives in taking a broader and gener-
ic approach to computing rather than the traditional and
narrower computer science or software engineering ap-
proach. This is a deliberate choice made primarily to em-
brace more fundamental aspects of computing (e.g. im-
pact of information systems, the role of it in innovation,
and interaction design for it-based systems), but also to
accommodate the four different types of high schools in
Denmark (general high schools, upper secondary shorter
general education programme, technical high schools, and
business high schools) with one generic computing sub-
ject.

In section two we briefly recap the history of compu-
ting in Danish High School curricula. Section 3 describes
the two main theses that together define the perspective
from which the new generic computing subject was de-
signed. The subject is then fleshed out in the following
two sections: Section 4 describes the knowledge areas of
the subject, and Section 5 describes the didactical design
principles behind the subject. Finally, Section 6 briefly
summarizes the current status and plans for the subject.

2 Computing in Danish High School 1971-2011
Various flavours of computing has been a topic in Danish
high school for more than forty years.

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

137

After some early individual initiatives in the late six-
ties with computing education in high schools, the John-
sen Committee was formed in 1971 to give recommenda-
tions regarding EDP education (Electronic Data Pro-
cessing) in the Danish education system (Johnsen 1972).
The recommendations of the Johnsen committee guided
the computing curriculum decisions in general high
school for more than ten years. However, the full set of
recommendations ⎯encompassing a mandatory compu-
ting subject for all high school students⎯ were never
implemented.

In 1980, the Ministry of Education published the so-
called Obel/Fisher Circular recommending computing in
general high school to be integrated in other subjects and
phased-out as an independent subject. In the 1980s, com-
puting remained an independent subject only in one
branch (out of four) of Danish high schools. In 1987,
computing became again an independent subject, but still
only as an elective, and it has remained as such until to-
day.

In business high schools, computing has been a subject
since the mid-1980s ⎯always with a special flavour of
business, management, and administration.

From the mid-1990s and onward, other computing
subjects saw the light of day in the different types of high
schools, e.g. Information Technology, Programming, and
Multimedia.

A major high school reform in 2005 dramatically re-
duced the conditions for elective subjects such as compu-
ting, and the same pattern emerged in all types of high
schools: hardly any pupils chose computing and the sub-
ject almost completely vanished from the schools.

In late 2008, the Ministry of Education established a
task force to conduct an analysis of computing in high
schools and provide recommendations for a revitalisation
of the subject (Agesen and Nørgaard 2009). The major
recommendations of the task force were:

• To distinguish between computer literacy
(emphasizing it-usage, e.g. the use of spread-
sheets, word processing, and other applica-
tions) and computational thinking and prac-
tice (emphasizing creational and construc-
tional competencies).

• To develop a single, coherent, and uniform
computational thinking and practice subject,
which then can be offered in several flavours.

• To design the course such that it may inspire
pupils to continue with computing studies af-
ter high school.

The recommendations gained political support at all
levels, and a new generic computing subject has been
developed and is offered by volunteering schools for a
three-year test period (2011-2014).

3 Foundational Theses
In general, young people do not consider computing a
proper subject, and they certainly do not realise the im-
portance and potential of computing in modern society.
The main purpose of the new computing subject for high
school is to convey the message condensed in the first of
two foundational theses:

Thesis 1: Through computing, people can create,
share, and handle thoughts, processes, products and ser-
vices that create new, effective, and boarder-crossing
opportunities -impossible without the digital technology.

The wording is a bit heavy, but the essence is quite
similar to Wing’s notion of computational thinking. The-
sis 1 is the keynote of the new computing subject; as
such, it must permeate all concrete learning activities that
will be developed.

The second thesis relates to our ambition of embracing
more fundamental aspects of computing but also to ac-
commodate the four different types of high schools in
Denmark with one generic computing subject. The thesis
also reflects the diversity and various flavours of compu-
ting in academia, education, and industry.

Thesis 2: There exists a common and shared founda-
tional set of computational concepts, principles and prac-
tices, which can be applied purposefully within science &
technology, business and social science, arts and humani-
ties, and health and life sciences.

Both theses were formulated before we commenced
concrete development of the new computing subject.
Throughout development, the theses served as guiding
principles for our efforts of refinement and concrete de-
sign of the subject. In particular, thesis 2 provided
guidelines for identification of seven core knowledge
areas that has come to define the new computing subject.
The seven knowledge areas are presented in the following
section.

4 Knowledge Areas
We use the term “Knowledge Areas” in the same sense as
in the curriculum recommendations from ACM1: the are-
as are not to be thought of as teachable modules by them-
selves, but as appropriate categories for describing sub-
ject content. Hence, the categories are for description, and
not didactical design of practical learning activities. We
expand on these issues in Section 5.

In the following, we motivate and describe the seven
knowledge areas that have been chosen for characterising
the new computing subject and for formulating learning
goals. The areas have been chosen after a short and inten-
sive dialogue with selected colleagues from Danish uni-
versities. In retrospect, some of the areas are related to the
computing practices suggested by (Denning 2003).

The knowledge areas are:
• Importance and Impact
• Application Architecture
• Digitisation
• Programming and Programmability
• Abstraction and Modelling
• Interaction Design
• Innovation

For each area, we provide a brief description and pre-
sent the associated learning goals, as they appear in the
formal curriculum. It should be noted, that the learning
goals may appear overly ambitious, but they must of
course be interpreted in the context of level, preconcep-
tions, and allocated time for the actual course delivery.

1http://www.acm.org/education/curricula-

CRPIT Volume 136 - Computing Education 2013

138

4.1 Importance and Impact
To truly understand and appreciate the importance of
computing in modern society, the pupils must be present-
ed to a portfolio of important and for the pupils relevant
systems and innovations (e.g. Facebook, iTunes, GPS-
based navigation systems, email, health care systems,
etc.) — systems that the pupils know and can relate to.
The design of an IT system has strong consequences for
the people, organisations, and social systems that use it.
 Designers do not only design the system but also use
patterns and workflows that unfold through the use of the
system. The purpose is to make the pupils aware of the
interplay between design of a system and the use patterns
which the system intentionally or unintentionally gener-
ates.
Pupils must be able to

• Give examples of the impact of IT systems on
human behaviour.

• Analyse and assess the importance and impli-
cations of IT systems and how they impact
human behaviour.

• Apply user-oriented techniques for construc-
tion or modification of IT systems.

4.2 Application Architecture
The majority of IT systems are structured according to
the so-called three-tier model consisting of a presentation
tier, a logic tier, and a data tier. The model is relevant
partly because it provides a general framework for under-
standing a very large class of IT systems, their compo-
nents, and the interplay between these, and partly because
the model is useful for qualified use of concrete systems,
e.g. the Office package, Photoshop, iTunes, Facebook and
general types of systems, e.g. simulation tools, account-
ing systems, content management systems, mobile tech-
nology, and computer games.
Pupils must be able to

• Describe principles for the architecture of IT
systems.

• Apply specific architectures for construction
of simple IT products and adjustment of ex-
isting IT systems.

4.3 Digitisation
In order to understand the basic characteristics of the
computer, the pupils must understand and work with rep-
resentation and manipulation of data. The main point is
that data need to be digitised to allow representation in a
computer and manipulation by programs. The purpose
with this topic is that the pupils gain concrete experience
with (and hence understanding of) representation and
manipulation of data including the fact that digitising
often results in loss of information. The other side of the
coin is that digitisation and manipulation makes it possi-
ble to create new data. IT security is another important
issue that may be addressed.
Pupils must be able to

• Describe the representation of selected types
of data (e.g. images, sound, text, etc.) and
construct IT products (programs) that make
simple manipulations of data.

• Integrate various types of data in simple IT
products and extend functionality of existing
IT systems by adding new types of data.

4.4 Programming and Programmability
Computers are indeed very simple machines that gain
their power through scale. The defining characteristic of
the computer is its programmability and universality.
Programming comes in many forms, but common to these
is the principle of defining and hence automating compu-
tations that can be executed again and again with arbi-
trary data and data sets.
Pupils must be able to

• Identify basic structures in programming lan-
guages, construct IT products (simple pro-
grams) and adjust existing programs.

• Apply programming technologies for devel-
opment of IT products and adjustment of ex-
isting IT systems.

4.5 Abstraction and Modelling
The purpose of this topic is to provide insight into model-
ling where data, processes and systems are described at
an abstract level where design alternatives and properties
can be evaluated and choices and decisions can be made.
Pupils must be able to

• Give examples of models of data, processes
and systems and describe the relation be-
tween a concrete model and the relevant as-
sociated parts of an IT system.

• Implement selected models in a concrete IT
product and adjust existing models and im-
plement these adjustments in existing IT sys-
tems.

4.6 Interaction Design
The previous topic is primarily about models for elements
of the presentation and logic tiers of the three-tier model.
This topic is about models and design principles for the
presentation tier — the interface where users and other
systems meet an IT system. It’s the purpose that the pu-
pils understand the premises for as well as the conse-
quences and importance of interaction design.
Pupils must be able to

• Describe and analyse selected elements of a
user interface design, construct simple user
interface designs and adjust existing designs.

• Implement selected interaction design in a
concrete IT product and adjust existing de-
signs and implement these adjustments in ex-
isting IT systems.

4.7 Innovation
The subject treats innovation from a product as well as
process perspective. The subject takes an innovative ap-
proach to IT product development and provides a back-
ground for understanding aspects of IT product develop-
ment and the interplay between IT and users/society.

Pupils must be able to:

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

139

• Characterise innovative development pro-
cesses and sketch ideas for innovative IT
products.

5 Didactical Design Principles
A number of didactical design principles and guidelines
have been enforced, or at least highly recommended, for
the development of learning materials for the new compu-
ting subject. In this section, we present the five major
didactical principles:

• A learning activity is not (necessarily) the
same as a knowledge area.

• Learning activities should be application-
oriented.

• Learning activities should facilitate and guide
a consume-before-produce progression
through the materials.

• Learning activities should include several
substantial worked examples.

• Learning activities should illustrate stepwise
improvement as a general approach to incre-
mental development of artefacts.

Other principles have been used such as game-based
learning and narrative media-approaches (e.g. Andersen
et al. 2003).

For a more general discussion of didactical approaches
to computing, see Bennedsen et al. (2008) and Hazzan et
al. (2011).

5.1 Knowledge Areas vs. Learning Activities
The knowledge areas introduced in Section 4 helps to
structure the entire curriculum, but it is not a feasible
structure for teaching the subject, as it would imply a
sequential depth-first approach to the subject as a whole.

Instead we have adopted a well-known teaching strat-
egy from Danish high schools, in which subject matter
from various different knowledge areas are extracted and
combined to piecemeal construct and deliver smaller
packages of contextualised and interdependent subject
matter components. These learning activities form the
toolbox, from which the teacher select, combine, design,
and implement his/her particular version of the subject
which should be adapted and adjusted to the relevant con-
text (education, level, and individual pupils). A learning
activity may include subject matters from one, multiple,
or all of the seven knowledge areas as illustrated in Fig-
ure 1. A learning activity is comprised by a description
for pupils and teachers, materials and resources, and a
process (cookbook) for using the materials in the learning
activity.

The latter also illustrates a characteristic difference be-
tween knowledge areas and learning activities: the former
are more static and are expected to change at a much
slower pace than the learning activities, which are ex-
pected to change rapidly over the years, as technology
and trends changes. Put another way: when the
knowledge areas change, the whole identity of the subject
changes (ranging from minor adjustments to radical
changes in conceptual frameworks). Furthermore, chang-
es in learning activities could be made for purely peda-
gogical reasons.

Figure 1: Content Structure Framework:
Knowledge Areas (blue columns) versus

Learning Activities (yellow lines)

5.2 Application-oriented (outside-in)
Traditionally, introductory computer science courses ap-
ply a bottom-up approach, in the sense that pupils are
introduced to basic and foundational concepts and ex-
pected to master these before more advanced concepts
and principles are introduced. Hence, in a traditional pro-
gramming course, pupils are often trained in constructing
a “Hello World” program as the very first activity, and
then later on are trained in adding more layers of com-
plexity to a system in terms of user interfaces, databases,
etc. For the technically inclined pupils this may be a fea-
sible approach, but in our case, this could pose severe
motivational problems, as we are dealing with a wider
range of pupils with much more diverse interests and
backgrounds.

There is an even more important reason why a tradi-
tional bottom-up approach is fallible. We are not aiming
at developing detailed and specific competences in the
seven knowledge areas. Overall, we are aiming at devel-
oping interest, critical thinking, and broader skills in
computational thinking and practice. Therefore we have
decided on an application-oriented top-down approach.
This means, that we start the various teaching activities
by introducing well-known or familiar applications,
which we then split apart for conceptual and/or technical
examination, evaluation, and modification. For motiva-
tional reasons, we choose applications based on the crite-
ria, that they must by themselves be naturally appealing
to pupils in our age range. Applications, which they find
interesting to use and hopefully to examine and improve.
Examples could include pedagogical lightweight versions
of Facebook, iTunes/Spotify, YouTube, Twitter, Blogs,
Photoshop, and similar applications.

5.3 From Consumer to Producer
When designing learning activities, we aim at organising
the material in such a way that the pupils experience a
consume-before-produce progression through the materi-
al. Initially, the pupils act as consumers of an artefact by
using and studying it; then, they go on to make first sim-
ple and then gradually more complex modifications to the
artefact. Eventually, the pupils may be requested to build
similar artefacts from scratch.

The consume-before-produce principle ⎯sometimes
alternatively characterised as a use-modify-create pro-
gression⎯ can be applied in many areas. In program-
ming, pupils can use programs or program modules be-

CRPIT Volume 136 - Computing Education 2013

140

fore they start making modifications and eventually cre-
ate modules or complete programs on their own. The ap-
proach applies equally well to other areas, e.g. modelling
and interaction design.

The origin of (a specialisation of) this principle can be
traced back at least to 1990 where Pattis introduced the
call-before-write approach to teaching introductory pro-
gramming (Pattis 1990). In Christensen and Caspersen
(2002), the authors apply the principle to provide an al-
ternative and incremental way of teaching about software
frameworks and event-driven programming in CS1. In
Schmolitzky (2005), the author briefly mentions the no-
tion of consuming before producing by providing three
specific examples of using the principle in the context of
learning object-oriented programming using the BlueJ
system (Kölling 2003).

5.4 Worked Examples
A Worked Example (WE), consisting of a problem state-
ment and a procedure for solving the problem, is an in-
structional device that provides a problem solution for a
learner to study (Atkinson et al. 2000, Chi et al. 1989,
LeFevre and Dixon 1986). WEs are meant to illustrate
how similar problems might be solved, and WEs are ef-
fective instructional tools in many programs, including
computing.

Bennedsen and Caspersen (2004) illustrate implicitly
how WEs can be used to teach object-oriented program-
ming using a systematic, model-based programming pro-
cess. Caspersen & Bennedsen (2007) present an instruc-
tional design for an introductory programming course
based on thorough use of WE. Caspersen (2007) provides
an overview of WE literature related to programming
education as well as a survey of the related cognitive load
theory.

Through didactical training of teachers and systematic
enforcement, WE have come to play a key role in the
didactical design of most learning activities developed for
the new computing subject. A multitude of examples are
available from a website maintained by the Danish Asso-
ciation of High School Teachers in Computing2. Unfortu-
nately, the material is only available in Danish.

5.5 Stepwise Improvement
The Danish Ministry of Education’s official guidelines
for the new computing subject recommend that all con-
structional activities be designed according to Stepwise
Improvement. In its original form, stepwise improvement
(not to be mixed with stepwise refinement although the
two are somewhat related) is presented in the context of
program development (Caspersen 2007, Caspersen and
Kölling 2009), but the methodology is applicable for the
construction of any concrete or abstract artefact.

Stepwise improvement is a framework for incremental
development of an artefact. According to stepwise im-
provement, development takes place in three dimensions:
from abstract to concrete, from partial to complete, and
from unstructured to structured. Thus, development of an
artefact can be characterised as a mixed sequence of re-
finements, extensions, and restructurings of the artefact.

2 http://www.iftek.dk

For the new computing subject, the recommendation
from the Ministry of Education is that stepwise improve-
ment is used systematically in all constructive learning
activities. A number of concrete examples as well as
more general guidelines are provided in eight reports pub-
lished by the Danish Ministry of Education (2011).

6 Summary, Status & Plans
In this paper we have described the international context
and the national history, which together form the back-
ground for a radically new and integral computing subject
in Danish high schools. The new subject has been de-
scribed in terms of two foundational theses, seven
knowledge areas, and five didactical design principles.

6.1 Status
The status of the subject is that after the first year of the
test period (2011-2012), 18% of the high schools taught
the new subject. In the second (2012-2013, current) year
of the test period, at least 26% of the high schools are
teaching the new subject. Although no formal quantitative
evaluation has yet been conducted, the informal feedback
from teachers, examiners and pupils has been very posi-
tive.

As mentioned, the Danish Association of High School
Teachers in Computing offers a number of learning activ-
ity packages on their website. Teachers are encouraged to
develop and share their own learning activity packages.
This bottom-up approach to material development of
course encourage diversity and multiplicity, which chal-
lenges the content structure framework, and the concep-
tual framework, understanding and application of
knowledge areas.

To reinforce the common understanding of the
knowledge areas, a number of short reports have been
developed by academics from Danish universities. Fur-
thermore teacher training has been initiated in an ad-hoc
fashion, offering 3 days of seminars during the winter of
2012, and again in the fall of 2012, where teachers are
instructed in the use of the learning activity packages.
Teachers from roughly 20% of all high schools attend
these courses. While these ad-hoc seminars are necessary
means in the process of developing the new subject, they
are far from sufficient for fulfilling the requirements for
in-service training of teachers to qualify them for teach-
ing the new subject.

6.2 Plans
The plans for the continued development of the subject
are fourfold:

• To further develop materials and resources
• To develop formal teacher training
• To establish professional learning communi-

ties
• To initiate relevant research
• To gain political interest and momentum

With respect to materials, we want to further iterate, in-
crement and refine the content structure framework and
the associated learning materials (both the knowledge
area reports and the learning activity packages). A possi-

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

141

ble next step could be to develop free online materials
supporting inversion of the classroom.

With respect to teacher training, we need to replace
the current ad-hoc approach with a regular 120 ECTS
education in computational thinking and practice to be
offered to high school teachers – both pre-service and in-
service.

We would like to support the former initiatives by fur-
ther evolving the current formal and informal networks
among high school computing teachers into professional
learning communities based on action learning.

The new Danish initiative is an excellent opportunity
for (and it deserves) a thorough treatment in terms of a
number of related research projects. For example, we
would like to investigate the following research ques-
tions:

• Why is computational thinking and compu-
ting practice generally and universally im-
portant to society and the individual?

• What are the relevant didactical design prin-
ciples for the new subject?

• What is the ideal selection of knowledge are-
as for the new subject, and how do they
compare to similar efforts internationally?

• How can we develop methodological and
technological support for developing moti-
vating and efficient learning activities that
properly exploits the chosen didactical de-
sign principles?

• How can we develop efficient teacher train-
ing for the new subject?

Finally we find it of utmost importance, that we ob-
tain political awareness about the importance of the sub-
ject, as it should not be an elective, but an integral, man-
datory part of any high school education. A possible next
step in this direction could be to host a conference on the
importance of the subject.

6.3 Acknowledgments
This work was supported in part by Central Denmark
Region and was conducted as part of the project Create IT
which includes the partners: it-vest – networking univer-
sities, the Danish High School Computing Teachers As-
sociation (IFTEK), Egaa Gymnasium, and Centre for
Science Education at Aarhus University.

The authors would like to thank Elisabeth Husum,
Jakob Stenløkke Bendtsen, Bartlomiej Rohard War-
szawski, Henning Agesen, and Peter Nørgaard for contri-
butions and inspiring discussions. We would also like to
thank the anonymous reviewers for constructive and rele-
vant feedback.

7 References
Agesen, H. and Nørgaard, P. (2009): Investigation of

Computing Subjects in High School (in Danish: Un-
dersøgelse af IT fagudbuddet I de gymnasiale uddan-
nelser), Department for High Schools, Ministry of Ed-
ucation, Denmark.

Andersen, P.B., Bennedsen, J., Brandorff, S., Caspersen,
M.E., and Mosegaard, J. (2003): Teaching Program-
ming to Liberal Arts Students ⎯ A Narrative Media
Approach. Proc. of the Conference on Innovation and

Technology in Computer Science Education, Thessalo-
nica, Greece, 8:109-113, ACM Press.

Astrachan, O., Cuny, J., Stephenson, C., and Wilson, C.
(2011): The CS10K Project: Mobilizing the Communi-
ty to Transform High School Computing. Proc. of the
42nd ACM Technical Symposium on Computer Science
Education, Dallas, TX, USA, 42:85-86, ACM Press.

Astrachan, O., Briggs, A., Cuny, J., Diaz, L., and Ste-
phenson, C. (2012): Update on the CS Principles Pro-
ject. Proc. of the 43rd ACM Technical Symposium on
Computer Science Education, Raleigh, NC, USA,
43:477-478, ACM Press.

Atkinson, R.K., Derry, S.J., Renkl, A., and Wortham, D.
(2000): Learning from Examples: Instructional Princi-
ples from the Worked Examples Research, Review of
Educational Research, 70(2):181-214.

Bargury, I.Z. (2012): A New Curriculum for Junior-High
in Computer Science. Proc. of the Conference on Inno-
vation and Technology in Computer Science Educa-
tion, Haifa, Israel, 17:204-208, ACM Press.

Bell, T., Andreae, P., & Lambert, L. (2010). Computer
Science in New Zealand High Schools. presented at the
meeting of the Twelfth Australasian Computing Educa-
tion Conference (ACE 2010), Brisbane, Australia.

Bell, T., Andreae, P., & Robins, A. (2012). Computer
science in NZ high schools: the first year of the new
standards. presented at the meeting of the 43rd ACM
technical symposium on Computer Science Education,
Raleigh, North Carolina, USA.

Bennedsen, J. and Caspersen, M.E. (2004): Teaching Ob-
ject-Oriented Programming – Towards Teaching a Sys-
tematic Programming Process. Proc. of the Eighth
Workshop on Pedagogies and Tools for the Teaching
and Learning of Object-Oriented Concepts, 18th Euro-
pean Conference on Object-Oriented Programming
(ECOOP 2004), Oslo, Norway.

Bennedsen, J., Caspersen, M.E., and Kölling, M. (2008):
Reflections on the Teaching of Programming, Lecture
Notes in Computer Science, Vol. 4821, Springer-
Verlag.

Caspersen, M.E. (2007): Educating Novices in the Skills
of Programming, DAIMI PhD Dissertation PD-07-04,
ISSN 1602-0448 (paper), 1602-0456 (online).

Caspersen, M.E. and Bennedsen, J. (2007): Instructional
Design of a Programming Course: A Learning Theoret-
ic Approach. Proc. of the International Computing Ed-
ucation Research Workshop, Atlanta, Georgia, USA,
3:111-122, ACM Press.

Caspersen, M.E. and Kölling, M, (2009): STREAM: A
First Programming Process, ACM Transactions on
Computing Education, 9(1):4.1-4.29.

Christensen, H.B. and Caspersen, M.E. (2002): Frame-
works in CS1: a Different Way of Introducing Event-
Driven Programming. Proc. of the Conference on In-
novation and Technology in Computer Science Educa-
tion. Aarhus, Denmark, 7:75-79.

Chi, M.T.H., Bassok, M., Lewis, M.W., Reimann, P., and
Glaser, R. (1989): Self-explanations: How students

CRPIT Volume 136 - Computing Education 2013

142

study and use examples in learning to solve problems,
Cognitive Science, 13(2):145-182.

Cutts, Q., Esper, S., and Simon, B. (2011): Computing as
the 4th “R”. Proc. of the International Computing Edu-
cation Research Workshop, Providence, RI, USA,
7:133-138, ACM Press.

Danish Ministry of Education (2011): Information Tech-
nology B and C, Eight Reports With Guidelines for In-
formation Technology B and C at stx, hf, htx, and hhx,
Department of High Schools, Ministry of Education.
http://www.uvm.dk/Uddannelser-og-
dagtilbud/Gymnasiale-uddannelser/Studieretninger-og-
fag/Forsoegsfag-i-de-gymnasiale-
uddannelser/Informationsteknologi-C-og-B (in Danish,
accessed 24th August 2012).

Denning, P. J. (2003): Great principles of computing.
Communications of the ACM, 46(11):15-20.

Gal-Ezer, J. and Harel, D. (1998): What (Else) Should CS
Educators Know?, Communications of the ACM,
41(9):77-84.

Gal-Ezer, J. and Harel, D. (1999): Curriculum and Course
Syllabi for a High-School Program in Computer Sci-
ence, Computer Science Education, 9(2):114-147.

Guzdial, M. (2008): Paving the Way for Computational
Thinking, Communications of the ACM, 51(8):25-27.

Hadjerrouit, S. (2009): Teaching and Learning School
Informatics: A Concept-Based Pedagogical Approach,
Informatics in Education, 8(2):227-250.

Hazzan, O., Lapidot, T., and Ragonis, N. (2011): Guide
to Teaching Computer Science: An Activity-Based Ap-
proach, Springer-Verlag.

Kölling, M., Quig, B., Patterson, A., and Rosenberg, J.
(2003): The BlueJ system and its pedagogy, Computer
Science Education, 13(4):249-268.

LeFevre, J.-A. and Dixon, P. (1986): Do Written Instruc-
tion Need Examples?, Cognition and Instruction,
3(1):1-30.

Pattis, R.E. (1990): A philosophy and example of CS-1
programming projects. Proc. of the 21st ACM Tech-
nical Symposium on Computer Science Education,
Washington D.C., USA, 21:34-39, ACM Press.

Perlis, A. (1962): The computer in the university. In
Computers and the World of the Future, 180-219.
Greenberger, M. (ed.). MIT Press.

Royal Society (2012): Shut down or restart? The way
forward for computing in UK schools. The Royal Soci-
ety, UK.

Rushkoff, D. (2010): Program or Be Programmed – Ten
Commands for a Digital Age. New York, OR Books.

Schmolitzky, A. (2005): Towards Complexity Levels of
Object Systems Used in Software Engineering Educa-
tion. Proc. of the Ninth Workshop on Pedagogies and
Tools for the Teaching and Learning of Object-
Oriented Concepts, 19th European Conference on Ob-
ject-Oriented Programming (ECOOP 2005). Glasgow,
UK.

Steer, C. and Hubwieser, P. (2010): Comparing the Effi-
ciency of Different Approaches to Teach Informatics at

Secondary Schools, Informatics in Education,
9(2):239-247.

Van Diepen, N., Perrenet, J., and Zwaneveld, B. (2011):
Which Way with Informatics in High Schools in the
Netherlands? The Dutch Dilemma, Informatics in Edu-
cation, 10(1):123-148.

Wing, J. (2006): Computational Thinking, Communica-
tions of the ACM, 49(3):33-35.

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

143

