Info Systems J (2002) 12, 61-78

On the security of open source software

Christian Payne

School of Information Technology, Murdoch University, Murdoch 6150, Perth, Western
Australia, email: christian@it.murdoch.edu.au

Abstract. With the rising popularity of so-called ‘open source’ software there
has been increasing interest in both its various benefits and disadvantages. In
particular, despite its prominent use in providing many aspects of the Internet’s
basic infrastructure, many still question the suitability of such software for the
commerce-oriented Internet of the future. This paper evaluates the suitability of
open source software with respect to one of the key attributes that tomorrow’s
Internet will require, namely security. It seeks to present a variety of arguments
that have been made, both for and against open source security and analyses
in relation to empirical evidence of system security from a previous study. The
results represent preliminary quantitative evidence concerning the security issues
surrounding the use and development of open source software, in particular
relative to traditional proprietary software.

Keywords: open source software, proprietary software, computer security, secu-
rity vulnerabilities, code review

INTRODUCTION

In today’s interconnected world, both businesses and individuals are finding that they are
increasingly reliant on computer systems and networks. With this increased dependence often
comes a highlighted sense of the importance of maintaining control over this information infra-
structure. Without this security, businesses are hamstrung by being unable to trust the infor-
mation systems they depend on for their survival. Furthermore, in the growth area of Internet
commerce, lack of customer confidence in the security of online transactions is still regarded
as one of the major limiting factors.

So just what sorts of systems are modern Internet users, be they home or business, depend-
ing on? Interestingly, more often that not, the systems on which the Internet is built are not
exclusively proprietary, commercially developed code. In fact, many of the programs that make
up the infrastructure of the Internet are actually available for free. This is known as ‘free soft-
ware’ and consists of programs for which the source code is available and for which users
are granted certain rights rarely given where commercial code is concerned. Users are not

© 2002 Blackwell Science Ltd

C Payne

only able to obtain the source code and use the program for free but they are also encour-
aged to redistribute it to others (whether gratis or for a fee) and even have permission to modify
it. In recent years this concept has become increasingly popular and has been given the new
name of ‘open source software’ (Raymond, 2000), (Norin & Stéckel, 1998). However, while
this has been the subject of much publicity in recent years, this software has actually been of
critical importance in keeping the Internet running virtually since its birth. The BIND name
server provides all-important DNS services to the vast majority of Internet users and has done
so for years. The SENDMAIL mail transfer agent (MTA) is involved in the delivery of a signifi-
cant proportion of the millions of email messages that are sent daily. The Apache web (HTTP)
server that, in the face of intense competition from Microsoft, still manages to regularly
increase its market share. [At the time of writing the percentage of web servers running
Apache was 59.99% which represented a 1.24% increase from the previous month (Netcraft
Web Server Survey, 2001).] And the Unix systems based around Linux and BSD, who’s speed
and reliability are legendary, are also proving more and more popular as server platforms
(DiBona, Ockman & Stone, 1999).

But how good really is all this software? In particular, how secure is it? Certainly the
Internet has grown from infancy depending on this free code but today’s online world is no longer
the domain of academics and hobbyists. Can this ‘homegrown’ code be relied upon for the
business-centric Internet of the future? Is open source software really secure? How does it
perform in this department relative to traditional, proprietary software and what special security
issues pertain to it given that the source code is continually available to potential attackers?

In recent times there have been many differing opinions presented on this matter. Some
argue what seems counter-intuitive to many, that free software is actually more secure. Others
disagree, claiming the availability of source code makes things easier for those seeking to
compromise systems. Despite the fact that a lot has been said about this topic, few facts have
actually been presented. Certainly the opinions of experts carry much weight but, before they
can be accepted, empirical evidence must be provided. This paper seeks to analyse the
arguments of both sides and assess them in the light of results from an empirical study that
measured the security of three different operating systems.

Definitions

Although it is most often known as ‘open source software’, the software described in this paper
was originally more commonly known as ‘free software’. The concept of free software is to grant
users certain freedoms. In this sense the word ‘free’ does not mean ‘without cost’ but rather
free in the sense of having freedom. Indeed, the analogy commonly given amongst the free
software community is ‘think of “free speech”, not ‘free beer”’. Although the specific licences
under which free software is placed often differ in their details, free software will usually grant
its users the rights to access the source code for the purposes of modification, re-distribute the
software (either modified or otherwise) and sell the software either on its own or as part of
another product, and generally does not restrict the purposes for which the software may be
used. A strong factor in the development of free software was, and still remains, ideology. The

© 2002 Blackwell Science Ltd, Information Systems Journal 12, 61-78

On the security of open source software

rights of individuals to have access to programs that they need and the freedom to use and
manage the code as they see fit are often strongly held beliefs amongst many free software
developers. However, the ‘open source’ movement has resulted in these ideals being somewhat
diluted. The emphasis of open source is on improved, cooperative development methodologies
and on improving acceptance of free software amongst business. The term itself is also often
misleading. Many mistakenly believe that ‘open source’ simply means that the source code is
available whereas this is certainly not the case — there are many pieces of software where the
source code is available but users have no rights to modify or redistribute the code. This soft-
ware is not ‘open source’ despite the source being ‘open’. Software that falls into this category
is not the focus of this paper although there are some conclusions concerning it that may be
arrived at. As mentioned, there are many different licences that qualify as free software
although each has different terms. Two common licences are the General Public Licence (GPL)
and BSD licence. There is no universal standard for determining whether a particular licence
qualifies as free software, although the Open Source Definition (OSD) and Debian Free Soft-
ware Guidelines (DFSG) represent two commonly accepted (and very similar) sets of criteria.

Defining the opposite of open source software is much simpler. This traditional means of
licensing software is often described as ‘proprietary’ or ‘binary-only’ (in reference to the usual
lack of source code) although the informal term ‘closed source’ has proven an intuitive and
effective antonym.

Past work

As stated more, a wide array of opinions have been expressed in the popular on-line press
concerning this issue (Levy, 2000), (Garfinkel, 1999), (Gross, 2000), (Viega, 2000), (Chowdhry;,
1999). However, there has been little discussion of this in the academic literature although the
issue was discussed at the first Composable High Assurance Trusted Systems (CHATS) work-
shop held on 30 November 1999.

Paper organisation

This paper begins by delineating the common arguments that are regularly given by those
who claim that open source provides significantly better security than traditional proprietary
software. Then the alternative view point is considered. Next a recent study is described which
yielded certain empirical results that can be used to provide evidence concerning the ques-
tion of the security of this sort of software. Finally arguments from both sides will be discussed
in the light of this evidence and final conclusions will be drawn.

THE CASE FOR SOURCE CODE AVAILABILITY

The process of peer review

The claim of open source advocates that this type of software is more secure than propri-
etary software is based primarily on the perceived strength of the peer review process. Accord-

© 2002 Blackwell Science Ltd, Information Systems Journal 12, 61-78

C Payne

ing to this process, code is openly published and thus can, and will, be reviewed by other
programmers. These programmers, whether specifically looking for bugs or not, will find prob-
lems in the code and report them. These bug reports (which will include security bugs) allow
the developers to fix the problems and thus the quality of the software improves. Often the
person who finds the bug will also submit a ‘patch’ to solve the problem which serves to speed
up the process. The claim is that ‘given enough eyeballs, all bugs are shallow’ (Raymond,
2000). Some open source advocates claim that this process is in the tradition of the scientific
method whereby results are openly published and are not accepted until they have been both
reproduced and subjected to the analysis and criticisms of their peers. Despite many differ-
ing opinions being put forward regarding the effectiveness of this process, there is certainly
evidence that some users perform auditing work to verify for themselves the security of the
software they use. In particular, for especially security-sensitive software (for example, cryp-
tographic software such as PGP) there is certainly evidence that some users do seek to verify
the source code for themselves (Simpson, 1999). Advocates also point to often-repeated anec-
dotal evidence of poor reliability of many proprietary, closed source systems such as Microsoft
Windows in contrast to the good reputations of systems such as GNU/Linux and FreeBSD,
and claim that the peer review process is responsible for this. Of course, this argument must
always be taken with a grain of salt since systems such as Sun Microsystems Solaris are also
generally regarded as extremely reliable while still being closed source.

A popular example of the strength of the peer review process with respect to security is the
supposed difficulty involved for an attacker to insert a ‘back door’ into an open source program.
A ‘back door’ is malicious code either inserted into, or in some way attached, to a legitimate
program or system that allows an attacker to easily and covertly bypass existing security
mechanisms. For example, a back door in an operating system might let a person log in as
the system administrator without needing a password if they connect from a certain IP address.
According to its fans, open source makes it almost impossible for an attacker to hide such
code in a program when any number of people can easily gain access to and read its source.
One good example of this is that, when the FTP site containing Wietse Venema’s ‘TCP
Wrapper' software was broken into and the attackers modified the source code to contain a
back door, the malicious code was discovered and corrected within a day (Garfinkel, 1999).
Another telling example was the deliberate inclusion of a back door in Borland/Inprise’s Inter-
base database software in 1992 by the authorized and legitimate programmers working at
that company. The purpose of the back door was not actually malicious but, had its presence
become known to a malicious party, then this would effectively have granted them complete
access to all installations of the database system. Interestingly, the issue was discovered and
fixed 9 years after being added, but only shortly after the product was made open source
(CERT Advisory CA-2001-01 Interbase Server Contains Compiled in Back Door Account,
2001). Therefore, while access to the source code is essentially required in order to add a
back door, if the code is proprietary software then it will probably remain vulnerable for a very
long time. This has caused many to speculate on the implications of the potential insertion of
a back door into Microsoft code during the successful penetration of that company’s network
during 2000.

© 2002 Blackwell Science Ltd, Information Systems Journal 12, 61-78

On the security of open source software

Another factor in favour of open source that makes it especially difficult to add such mali-
cious code is the nature of the development process often used in these projects. For example,
many projects use the Concurrent Versioning System (CVS) program which controls access
and changes to the source code such that these can be managed and tracked. Other projects
like the Linux kernel only allow submission of modifications to the kernel in the form of
‘patches’ to existing code which are carefully examined for bugs by trusted developers with
long histories of involvement before being incorporated.

Flexibility and freedom

The very nature of open source software in providing its users with additional rights not given
with proprietary software allows them certain options that wouldn’t otherwise be available. In
some instances these choices potentially have significant security consequences.

For example, an organization using a piece of open source software is free to perform their
own in-house security auditing work which would not be possible without access to the source
code. Of course, not all organizations have the skills or resources to conduct this sort of work
but, often for those with extreme or specific security requirements, such work is virtually
mandatory. For example, it has been suggested that some countries throughout the world
might have a certain distrust of software developed in another country that represents a poten-
tial enemy. Such software could easily contain some form of back door or deliberate security
flaw that could be exploited by an enemy if the software were used in a sensitive military or
intelligence-oriented environment. In fact, it has recently been reported in the online media
that Chinese and German authorities may be limiting the use of U.S.-developed binary-only
software in certain situations and possibly promoting Linux as a preferred computing platform
for similar reasons (McAllister, 2001), (Lettice, 2001). While there is certainly no evidence to
confirm that these fears are justified, for many countries that do not produce all their own soft-
ware the ability to audit the source code of the programs they use in such situations would
certainly be very welcome. This is rarely possible with proprietary software.

This concept can also be extended further. While the ability to audit source code where
security requirements are extreme or highly specific is a definite advantage, the ability to
modify that software to specifically meet these requirements is perhaps even more significant.
With free software, the organization has the option of either contributing development
resources to collaborate with the independent free software developers or simply making
the modifications themselves in-house. One notable recent example of this is the U.S.
Government’s National Security Agency (NSA) which produced their own version of the Linux
kernel with enhancements to enforce certain advanced security requirements pertaining to
their organization (NSA Security-Enhanced Linux 2000). They have also released the source
code to their modifications and the software is still being improved. This would be much harder
to achieve with proprietary software, even for an influential organization like the NSA.

Yet another advantage of the flexibility that free software brings is apparent where a secu-
rity flaw is discovered. When dependent on binary-only software the user is heavily restricted:
their only option is to simply wait, vulnerable, for the vendor to release a patch or update. In

© 2002 Blackwell Science Ltd, Information Systems Journal 12, 61-78

m C Payne

some situations a vendor may simply decide that it is not worth releasing an update for this
particular problem (Payne, 1999). The users of proprietary software are entirely at the mercy
of their chosen vendor. On the other hand, users of free software have a variety of options.
Even if their vendor does not release an official patch, very often other users will collaborate
to develop their own. And, in the unlikely event that this does not happen, the user still has
the option of producing their own fix independently. Without access to the source code, these
possibilities simply do not exist.

Other miscellaneous arguments

It is generally held that security bugs in open source software tend to get fixed faster than
similar problems in proprietary software, although in recent years commercial vendors have
definitely improved their response rate. This is almost certainly due to increased media focus
on security issues and the negative publicity that often results today from major security fail-
ures. One possible explanation for this is that bug fixes in commercial software often have to
go through lengthy regression testing before being released. Another reason is that some-
times a proprietary vendor’s release timetable for a new security patch may be influenced
more by business issues than technical ones. For example, official acknowledgement of a
security problem may result in bad publicity and exert a negative effect on the company’s stock
price. Some vendors may also be required to privately inform their larger customers about the
issue going public and this potentially leaves many ordinary users vulnerable for an unnec-
essarily extended period of time. In many ways this is a serious disadvantage for closed source
software since the longer a known bug is left unfixed, the more likely it is that damage will be
done (Schneier, 2000a). Perhaps the classic example of this relates to the infamous ‘Ping of
Death’ bug which affected a large number of operating systems’ TCP/IP stacks. Systems all
over the Internet were being crashed with oversized ICMP ECHO packets and many users of
commercial systems suffered an anxious wait while their vendors implemented and released
the appropriate patches. In contrast, fixes were made available for Linux and BSD-based oper-
ating systems within hours (Moody, 1997). A similar and related fact is that it is often easier
for users who discover security-related bugs to report them directly to the relevant program-
mers when dealing with open source development projects. In contrast, reporters of bugs in
proprietary software often have to deal with multiple layers of corporate bureaucracy and are
usually unable to speak directly with the programmers responsible for writing and fixing the
code.

Another, perhaps slightly more tenuous, argument in favour of open source is that, while
the development of proprietary software is often controlled by commercial imperatives, free
software can be developed in accord with purely technical requirements. For example, com-
mercial vendors are often under pressure to rush products to market in order to get an advan-
tage over a competitor. Their inclusion of features is generally dominated by perceived
customer requirements. If there is not a strong indication that the software’s users will appre-
ciate a given feature then it probably won’t be implemented. Unfortunately, security often falls
into this category. Generally users want faster, more powerful and easier to use systems. Secu-

© 2002 Blackwell Science Ltd, Information Systems Journal 12, 61-78

On the security of open source software

rity typically requires significant investment of resources to be properly implemented and is
often simply too intangible to be easily marketable. On the other hand, the vast majority of
open source software projects are free to make decisions purely on the basis of their techni-
cal merits. If security is required then it can be added — regardless of whether users are
demanding it or not. Thus, its advocates argue, free software can be developed according to
purely technical mandates which has a positive overall impact on security.

Proponents of closed source software argue that, because the source code for such prod-
ucts is unavailable, it is harder for malicious users to find security bugs in them compared with
software where the source code is available (this argument will be explored in more detail in
the section ‘Vulnerabilities are harder to find’). However, some advocates of open source soft-
ware have suggested that the truth of this statement is not as straightforward as it seems.
Instead, it is argued, bugs in binary-only software can often be found just as easily as in open
source counterparts simply by using different techniques. While a common approach to finding
some specific classes of security bugs in source code is to perform a search for a set of
functions that frequently cause security problems (a tactic that appears to be possible
only when the source code is available), a similar process can actually be performed with
respect to binary programs. The binary code can be disassembled and system calls to the
problematic functions can thus be identified. Similarly, external references to dynamically
linked modules also reveal this information. Thus, it is argued, while finding security bugs in
closed source programs is certainly different to finding them when the source is available, it
is not necessarily always significantly harder. Based upon this argument it would seem that
open source programs are, in fact, at a significant advantage, since even a novice open source
code auditor that comes across a potential problem in a program’s code can easily fix this
for themselves. In contrast, fixing similar problems in a binary-only program is much, much
harder.

THE CASE AGAINST

Vulnerabilities are harder to find

The case against the security of open source software is derived from what some may per-
ceive as simply an entirely different philosophical perspective. While open source users view
the source code auditing and peer review processes as vital to eliminating bugs and thus
improving the software, advocates of proprietary software base their hopes for security pri-
marily on the principle that, if these bugs are never discovered, there is no actual security
problem and they might as well not exist. This poses the philosophical, almost Taoist, ques-
tion: if a vulnerability exists in a program but no one knows about it, does it really pose a
problem? Bruce Schneier describes this as ‘Phase 1’ of the ‘Window of Exposure’ (Schneier,
2000a), (Schneier, 2000b). The closed source school of thought says that since security bugs
are easier to discover when you have the source code, restricting access to the source code
will reduce the number of security flaws discovered (at least by external parties) and, since

© 2002 Blackwell Science Ltd, Information Systems Journal 12, 61-78

m C Payne

flaws that remain undiscovered have no impact on the security of the system, a closed source
system will therefore be more secure.

Naturally this hinges on the assumption that vulnerabilities are actually harder to find without
having access to the source code. Although this is certainly intuitively correct we will explore
the reasoning behind it here for the sake of completeness. It is interesting to note that this is
a virtually identical argument to the one made by open source advocates; availability of source
code makes it easier to find security bugs. The difference in opinion lies with whether or not
this is a positive thing.

Clearly, without access to the source a potential code auditor (whether their intent be good
or evil) must make certain guesses about the program’s implementation, and even elements
of its design, which would otherwise be obvious. Thus searching for security bugs often
involves ‘black box’ style testing where the auditor ‘probes’ the program with carefully selected
input data in order to observe outcomes. For example, they might supply a privileged program
running on an Intel platform with an overly long parameter made up of 1,000 ASCII ‘A char-
acters and observe the outcome. If the program crashes and leaves the EIP register filled with
the hexadecimal value 0 x 41 (the number value for the character ‘A’ in ASCII) then this is a
good indication that the program is vulnerable to a ‘stack smashing’ style buffer overflow attack
and the auditor would probably continue to probe the program to confirm exploitability (Levy,
1996). However, this process is clearly very ‘hit and miss’ and, if the auditor does not get the
outcome they were looking for then it is a matter of laboriously back-tracking and trying another
approach. On the other hand, with the source code available, the auditor could go straight to
the code in question and establish very quickly whether or not it is vulnerable. For the buffer
overflow example just given, this dramatically increases the ease of performing the attack
since the set of functions frequently responsible for this problem can be searched for quickly
(Friedrichs, 2000). Furthermore, the auditor can determine the exact length of the data
required to overflow the buffer and other specifics concerning the nature of the injected mali-
cious data that might not otherwise be able to be predicted.

Another possible approach would be to disassemble the binary code. This has the advan-
tage of taking most of the guesswork out of the auditing process since it gives the auditor
a more complete view of the program and it's behaviour than even the source code would.
However, this does not necessarily make the auditing process significantly easier, since the
level of detail provided is often, in fact, far too great. Comprehending large programs that
have been converted into assembly language is a formidable task made worse by the opti-
mizations modern compilers often utilize which change the structure of the program logic from
how it is in the high-level source code. Thus disassembling frequently does not help in audit-
ing programs for security bugs and may actually involve more effort than simple black-box
testing.

Flaws in the ‘peer review’ argument
So, according to the argument just presented, if hiding the source code inhibits the discovery

of new security problems, conversely, publishing the source code must aid the discovery of

© 2002 Blackwell Science Ltd, Information Systems Journal 12, 61-78

On the security of open source software m

such problems. Thus, it would appear that the argument for concealing the source actually
supports the argument in favour of peer review. However, the differing perspectives held by
both camps lie not only in the semiphilosophical difference of whether a system is more secure
when vulnerabilities are found and fixed or if they remain hidden, but also in the practical effec-
tiveness of open source code auditing. In essence, is the ‘peer review’ argument actually valid?

The first question that should be asked is: is publishing the source code of a program effec-
tively the same as publishing new scientific results? For one thing, new scientific results are
not accepted or relied upon until they have been comprehensively reviewed, analysed, criti-
cized and replicated. Despite the mass media reports immediately following its ‘discovery’, no
car owners rushed to upgrade their automobiles to a new cold fusion-powered model. In con-
trast, newly released open source software is very frequently relied upon almost immediately,
and before many people have had the chance to conduct even a cursory examination. In fact,
often the peer review process does not actually gain much momentum until a significant
number of suitably qualified people have taken this initial risk. While some users may have
the time and resources to install new software only on special isolated ‘testing’ networks while
they trial and audit it, many users simply have to trust the code (whether open source or
otherwise) and install it on their production systems. As such, the situation for these users is
much the same as if they were running proprietary software and, in fact, commercial vendors
would certainly argue that they themselves are uniquely positioned to be able to invest
resources into such testing and auditing regimes in a way that most users cannot. This begs
the question: if the source is available to all but very few are actually looking, how big is the
peer review advantage really? (Levy, 2000). Thus suggestion is that users of open source
software all believe that everyone else is auditing the source code for them and so do not
bother to do so themselves (Viega, 2000). In particular, with the many various Linux distribu-
tions becoming more and more popular, most software, even for open source systems, is
increasingly distributed primarily in binary form. Although the source code is still available, this
usually has to be downloaded separately and, with changing user demographics, fewer and
fewer users are bothering to do this. While once the majority of Linux users preferred to obtain
the source code themselves and compile and install it by hand, toady most simply want to use
the software without going to this additional trouble. Furthermore, this new group of users also
tend to have much less background, let alone interest, in security.

Consequently, evidence abounds that the peer review process is not always as effective as
is often argued. Despite Raymond'’s claim that ‘given enough eyeballs, all bugs are shallow’,
security bugs have often proved to be extremely ‘deep’ (Raymond, 2000). For example, (Viega,
2000) cites bugs in the GNU Mailman program that existed for 3 years without being discov-
ered. Furthermore, both that paper and (Garfinkel, 1999) discuss buffer overflows in MIT’s
Kerberos distribution that lay undiscovered for over 10 years (Neuman and Ts’o, 1994). Inter-
estingly (Garfinkel, 1999) also considers the example of the SENDMAIL SMTP server which for
years was regularly plagued with security problems. Here Garfinkel notes that SENDMAIL’s
security record improved dramatically after a company was formed to develop and market a
commercial version of the software. To advocates of proprietary software these examples
clearly demonstrate the security failures of open source and the peer review process. They

© 2002 Blackwell Science Ltd, Information Systems Journal 12, 61-78

C Payne

claim that users of open source software are, quite literally, being lulled into a false sense of
security.

So assuming that there are ‘enough eyeballs’, why are these bugs not always found? One
possible answer is that even though many people are examining the source, not all are
necessarily qualified to properly identify security problems they might find. In the realm of
scientific peer review, the reviewers themselves tend to have similar levels of experience and
expertise, however, this is frequently not the case with respect to software. Although most
security issues are not difficult for skilled programmers to understand in concept, in practice
actually auditing source code for them may not be so easy. Having experience is important,
however, there are few (if any) comprehensive documents available to teach potential code
auditors how to do this work effectively. As a result, gaining such experience may be prob-
lematic. Experienced code auditors almost seem to advocate a cavalier jump in the deep end
and see if you sink or swim’ attitude. To many potential novice code auditors this may seem
particularly discouraging.

A related issue is that effective auditing often requires not only an understanding of the pro-
gramming language concerned, but also quite possible a strong background in other specific
areas. This may be a challenge in itself if the language is not a widely used one. For example
the GNU Mailman bug cited previously occurred in Python code and it is believed that the
lower popularity of this language as compared with, for example, C contributed to it remain-
ing undiscovered for so long (Viega, 2000). For example, to effectively audit network servers
the auditor must have a good understanding of the relevant networking protocol. Without this
it may be hard for an auditor to gain a proper understanding of the code being studied. Under-
standing the underlying protocol in detail would probably be necessary to properly analyse
the flow of data throughout the program in order to determine potential vectors for an attacker
to inject specially crafted malicious data into the running server and exploit a particular
vulnerability. If an auditor does not understand the protocol then they will have trouble telling
whether the source data in a suspicious strcpy () call is actually derived from an untrusted
source or not. This problem is even more extreme when dealing with specialized areas such
as cryptography. The auditor must not only understand the programming language and the
protocol in use, but they must also have a very solid understanding of the wide range of issues
related to securely implementing cryptographic software. A recent example of this would be
a vulnerability found in some implementations of the Secure Shell (SSH) remote login system
protocol version 1.5 (Ylénen 1996), (SSH1 Session Key Retrieval Vulnerability, 2001). Finding
this vulnerability required not only an understanding of the SSH protocol itself, but also of
many advanced issues relating to cryptanalysis and secure implementation of cryptographic
software. Very few ‘eyeballs’ could be expected to have such qualifications.

However, even assuming that there are sufficient numbers of auditors with the relevant skills,
having the source code still does not represent a complete documentation of the program.
The source code represents one possible implementation of a particular design, however, it
does not necessarily make it easy to comprehend and properly analyse all aspects of that
design. While many security problems are caused by what amounts to coding errors, there

© 2002 Blackwell Science Ltd, Information Systems Journal 12, 61-78

On the security of open source software

are also often flaws in the program’s design. The source code by itself does not explain the
rationale behind certain design decisions so, unless the auditor has access to complete and
detailed documentation concerning the program’s design then errors pertaining to this may
be hard to find.

A final argument made against the validity of the open source peer review process is that,
while open source code is certainly being read, in many cases the only people with the
requisite security background needed to find holes are those whose motives are not actually
entirely honest (Levy, 2000). It is argued that these so-called ‘black hats’ or ‘backers’ are willing
to search source code that is easily available in order to find security bugs that they can exploit
while, at the same time, being less interested in closed source programs where much more
effort is required. Thus this represents the converse of the argument given in the section
‘Vulnerabilities are harder to find’. The true validity of this argument is somewhat hard to deter-
mine but it does seem to apply at least some of the time given that some vulnerabilities actu-
ally become public by virtue of ‘attack tools’ found on compromized machines and their
description in ‘underground’ publications.

Other miscellaneous arguments

One interesting argument made in (Levy, 2000) is that it can never be guaranteed that the
source code being read actually corresponds to the binary version of the program that is then
used. The example is given from Thompson (1984) where a compiler is created that detects
the source code for a certain program (in this case, the Unix login program) and covertly
inserts a back-door into the generated object code. Furthermore, the compiler also detects
when it is compiling another new version of itself and automatically inserts the code to per-
petuate the back-door. This creates the situation where a back-door perpetually exists but
there is no evidence of it in the program’s source code. Such a problem would be very hard
to find and theoretically could exist almost indefinitely. This is a rather sophisticated attack and
there is no evidence that such a trick has ever actually been perpetrated. Indeed, open source
advocates would very likely argue that the idea is somewhat far-fetched and, while possible,
would probably depend on the dishonesty of a key member of the development staff from the
particular vendor. Furthermore, if such an accusation could be levelled at open source soft-
ware, certainly the danger is at least as great with binary-only software. If an attacker were
able to gain access to proprietary code and add such a back-door then it would be even less
likely to be discovered (as discussed in the section ‘The process of peer review’). However,
given that open source software is distributed predominantly in binary form, such an attack is
still entirely possible. Users of Linux distributions, for example, have little guarantee that the
binary packages they implicitly trust every day bear any relationship to the source code ver-
sions their distributor makes available for download. Since the source code for these programs
is available, an attacker could easily create a modified version without resorting to the labo-
rious tasks of disassembly and binary patching which would be necessary if the same attack
was attempted against most proprietary software.

© 2002 Blackwell Science Ltd, Information Systems Journal 12, 61-78

C Payne

EMPIRICAL RESULTS

Although much has been written concerning the variety of opinions on the security of open
source software, very little empirical or factual data has been presented. In his paper, Viega
perhaps comes the closest by presenting and analysing his own experiences with security
bugs that he unwittingly introduced into the GNU Mailman software (Viega, 2000). However,
even this represents a purely qualitative discussion of a single piece of software.

However, quantitative results do exist that shed some light on the various claims made by
both camps regarding this issue. A study from 1999 took three similar Unix-based operating
systems, studied the consideration of security during their development, and compared this
against a quantitative assessment of their respective security (Payne, 1999). The three
systems considered were Sun Microsystems Solaris, Debian GNU/Linux and OpenBSD - of
these, the latter two are both open source systems. The purpose of this work was purely and
simply to analyse the role that the development process plays in the effective security of fielded
systems (Payne, 2000), however, since whether a piece of software is open source or not is
a significant aspect of the program’s development, these results can be used when assess-
ing the relationship between open source code and security.

While the details of the metric used to assess security are too involved to be reviewed
comprehensively here, the technique involved an examination of each system’s security-related
features and known vulnerabilities. (Payne, 1999) contains a complete description of the metric,
as well as a comprehensive discussion of its development, application, results (including details
of all the security features and vulnerabilities studied) and validity, while (Payne, 2000) contains
a brief overview. Each of these was assigned a quantitative score representing either the
positive effect (in the case of security features) or severity of threat (for the vulnerabilities).
Features were rated based upon their effectiveness and importance while vulnerabilities were
scored according to the extent of their impact, the ease of exploiting the flaw and the difficulty
of solving the problem. Each item was then classified into one or more of four security ‘dimen-
sions’: confidentiality, integrity, availability and audit. These four were based upon the three key
properties of security (confidentiality, integrity and availability) plus the common additional
requirement that a system keep a record of security-related events through some logging
mechanism (Pfleeger, 1997), (Garfinkel & Spafford, 1996), (U.S. Department of Defence
(DOD), 1985), (Russell & Gangemi Sr, 1992). Confidentiality features studied included
mechanisms such as cryptographic file systems or other data encryption systems. Some of the
operating systems considered included the ability to prevent processes from modifying files in
certain ways, even if the process were executing with superuser privileges and this acted as an
integrity-based security feature. The systems also included security controls specifically relat-
ing to the availability dimension which allowed the amount of resources utilized by each process
to be specified and limited. The objective here is to prevent a malicious user from over-utilizing
a shared resource and denying other users access. Different logging mechanisms were often
included such as special software to log network packets received by the computer or to log
information about the system call requests made by processes to the kernel. These are exam-
ples of some of the availability features included in the systems studied.

© 2002 Blackwell Science Ltd, Information Systems Journal 12, 61-78

On the security of open source software

Table 1. Summarized results from the security analysis

Debian Solaris OpenBSD

Features

Confidentiality 5.90 6.08 7.50

Integrity 5.88 6.17 7.38

Availability 7.00 5.75 6.00

Audit 6.90 5.67 7.25
Number 15 1 18
Average 6.42 5.92 7.03
Vulnerabilities

Confidentiality 6.75 8.13 4.50

Integrity 7.70 7.40 4.25

Availability 8.10 7.00 8.00

Audit 8.33 8.42 0.00
Number 12 21 5
Average 7.72 7.74 4.19
Unscaled Score -1.30 -1.80 2.80
Scaling Factor 1.25 0.52 3.60
Final Score -1.0 -3.5 10.2

For each item considered, the analyst was required to extensively document both informa-
tion about the feature or vulnerability and to justify the scores assigned to it, the classification
it received and also its inclusion in the analysis. Once all items had been identified, docu-
mented and rated, scores for both the positives and negatives for each dimension were then
averaged (Payne, 1999).

The overall score for each system was then calculated by combining the results for each
system’s features and vulnerabilities and scaling this overall score in accord with the relative
number of these. The scaling factor used represents the ratio of features to vulnerabilities. A
summarized overview of those results is presented in Table 1. Note that the results from this
metric are essentially multi-layered in that they can be viewed at varying levels of detail. The
results provide an overall, single-value result for each system allowing for a rather broad
comparison between systems but they can also provide significantly more information when
considered more closely. By examining the various figures that were used to produce these
overall results, a rather rich and detailed picture can be produced of the security strengths
and weaknesses of the various systems. Indeed, this property of the metric used is what
makes the results from this previous study useful in answering the question of whether or not
open source software has any security advantage, despite the fact that the original study was
not specifically developed for this purpose.

The results show that, of the three systems, OpenBSD had the most number of security
features (18) with Debian second (15) and Solaris third (11). Of these features, OpenBSD’s

© 2002 Blackwell Science Ltd, Information Systems Journal 12, 61-78

C Payne

features rated highest scoring 7.03 out of 10 while Debian’s scored 6.42 and Solaris’ scored
5.92. A similar pattern was observed for the vulnerabilities with OpenBSD having the fewest
(5). These vulnerabilities were also relatively minor only rating an average of 4.19 out of 10.
Note that the score of ‘0.00’ for OpenBSD’s audit vulnerabilities is because this system had
no actual availability vulnerabilities. In general, availability vulnerabilities were comparatively
rare and so it is not surprising that OpenBSD had none given that it only had five recorded
problems in total. Debian had the next fewest with 12 vulnerabilities rating an average of 7.72
while Solaris had the most with 21 vulnerabilities averaging 7.74 out of 10. The final scaled
results gave OpenBSD the best score of 10.2 while Debian scored —10 and Solaris —3.5. The
research concluded that the primary reason for OpenBSD'’s success was the consistent focus
on security throughout all phases of the development process and, in particular, the project’s
pro-active code auditing work which resulted in a large number of potential problems being
eliminated long before they were discovered and reported amongst the wider community
(Payne, 2000). We will now discuss these results in more detail with respect to the question
of whether open source software is more secure than proprietary code.

DISCUSSION

Before analysing the relative merits of the cases presented by both sides in the light of the
empirical evidence above, it is useful to briefly review the respective arguments. On the
one hand, those who argue in favour of open source software providing superior security, point
to the peer review process that supposedly occurs when the source code for a program is
openly published. Undoubtedly this assists in the discovery of bugs, some of which certainly
will be security bugs. The source code availability and, in particular, the freedoms granted
through ‘open source’ licences allow security-conscious users to not only perform their own
code audits, but also to add any additional security features that they require. In this way
open source software creates the opportunity for provision of enhanced security functionality
and assurance for organizations with a policy that demands such security. Finally, open source
software gives users additional flexibility in their response to the discovery of a new security
problem. While users of proprietary software are entirely dependent on their vendor for
releasing a fix for the problem, open source users can even patch their own software if
required.

On the other hand, those in favour of proprietary, binary-only software present an entirely
different view. They argue that, if vulnerabilities are not discovered then they effectively don’t
exist, thus making the software secure. Since it will typically be harder to find security bugs
in binary-only programs this makes software of this type more secure than its open source
counterparts. Additionally, those advocating proprietary software argue that the peer review
process, which open source software relies on for its security, is not actually as effective as
some claim. Not as many people audit the code for security flaws as is often thought and
these people frequently don’t have the expertise required to identify some of the more subtle
problems. In fact, they argue, of all those who search the source code for new security

© 2002 Blackwell Science Ltd, Information Systems Journal 12, 61-78

On the security of open source software

problems, many with the expertise to identify such problems are actually potential system
attackers who probably will not report the problem to the wider community to allow it to be
fixed. In this way, publishing the source code makes the system more vulnerable to those who
seek to attack it while not making it significantly more secure.

What is interesting is that these latter two arguments appear to come very close to contra-
dicting one another. The first argument says that it is harder to find bugs in binary-only code
and, consequently, easier to find them in open source code. The second argument says that
the peer review process is not particularly effective and many bugs won't actually be found.
To some, this is hard to reconcile. After all, if it is easy to find bugs in open source software
then surely the peer review process must actually work? Conversely, if the peer review process
is limited in effectiveness then perhaps open source software can also lay claim to some of
the assumed advantages of binary-only software in terms of the difficulty of finding bugs?
The answer to resolving this contradiction lies in acknowledging that, while it is certainly easier
to find simple or obvious security bugs in open source code, it is often much harder to find
the more subtle ones. Naturally they are even less likely to be found in closed source soft-
ware. The outcome of the debate, therefore, appears to rest on the question of whether or
not the code is actually reviewed by users who not only have at least a basic security back-
ground, but are also willing to report the flaws they find in order to have them fixed. If this
auditing work is not actually conducted by such ‘honest’ users then it will almost certainly be
done by those with malicious motivations who will use any vulnerabilities they find for their
OWN purposes.

Another interesting fact concerning both the primary arguments for and against open source
security is that they argue essentially the same thing. The peer review argument suggests
flaws will be found (and fixed) much more quickly while the binary-only code argument claims
that flaws will be much harder to find in order to be exploited by malicious parties. Thus, they
both argue that source code availability makes it easier to find security problems (Payne,
1999). The open source view point is that finding and fixing bugs leads to an overall decline
in the number of bugs in the code over time, while the proprietary view point is that it is better
to simply try and hide potential bugs which thus prevents them from being exploited. The origin
of this largely philosophical difference in opinion probably lies with the predominantly com-
mercial nature of proprietary software. Whereas open source software can endure the occa-
sional rash of security problems being made public, commercial software usually depends on
maintaining a positive public image to ensure continuing sales and a healthy stock price. The
discovery of new security problems can have a negative effect on both of these and so it
makes more sense to try and prevent these problems from being discovered. Therefore the
question for commercial software vendors is, does publishing the source code provide sig-
nificant enough security benefits to warrant this regardless of the potential for short term
public-relations pain?

We will now seek to answer these two questions based upon the results of the study previ-
ously cited. Note that although the study was empirically based and its results certainly suggest
a conclusion regarding the topic at hand, these conclusions are far from being final. The previ-
ous research studied only three systems and over the span of a single version release. To

© 2002 Blackwell Science Ltd, Information Systems Journal 12, 61-78

C Payne

further confirm these results a more detailed and lengthy study would need to be conducted
covering more systems over a longer period of time. Additionally, more work would be required
to further develop and refine the metric used to assess the security of the three systems.

Firstly a comparison of the final score for Debian and Solaris shows the latter (a proprietary
system) scored -3.5, placing it behind Debian (an open source system) on —1.0, although
clearly the relative difference is far from large (see Table 1). Therefore, the obvious initial
answer is that open source software is probably more secure than proprietary software al-
though the advantage is not as great as some might claim. However, taking advantage of the
multi-layered results from the metric and examining these more closely yields something even
more interesting. While binary-only software is supposed to limit the ability for vulnerabilities
to be found, the version of Solaris studied recorded 21 vulnerabilities while Debian had only
12! The results therefore suggests that hiding the source code does not necessarily bring
about the degree of protection that might be anticipated. While a program may effectively be
secure if its vulnerabilities remain in Phase 1 of Schneier's Window of Exposure, once the
flaw is discovered and Phase 2 begins, the situation becomes much worse (Schneier, 2000a).
Exactly how bad depends entirely on who it is that has discovered the vulnerability. If the
problem has been discovered by a system ‘cracker’ then the situation is bleak indeed. Perhaps
the difference between open source and proprietary code at this point is that the vulnerabil-
ity is more likely to have been discovered by an individual who will fix the problem or report it
to the vendor if the software is open source. It is less likely that the vulnerability will be found
by an ‘honest’ user who merely stumbles across it if the code is not available. On the other
hand, malicious parties are much more inclined to closely examine and probe a piece of soft-
ware specifically in order to discover a vulnerability and, as the empirical results cited suggest,
if there are large numbers of serious security problems present in a program then it is very
likely these will be discovered if looked for.

Based on these results it would appear that open source systems tend to be more secure,
however, the results from the security analysis of the third system, OpenBSD, have not yet
been considered. If the security of a system were heavily dependent on its status as either
an open source or proprietary system then the result for either Debian or OpenBSD would
clearly be anomalous. In scoring 10.2, OpenBSD was the only system of the tree to receive
a positive score and, a comparison with the magnitudes of the other two scores suggests this
is a relatively high score also. Therefore, the significant differences between Debian and
OpenBSD’s score support the argument that making a program ‘open source’ does not, by
itself, automatically improve the security of the program (Levy, 2000), (Viega, 2000). What,
therefore, accounts for the dramatically better security exhibited by the OpenBSD system over
the other two? The author believes that the answer to this question lies in the fact that, while
the source code for the Debian system is available for anyone who cares to examine it, the
OpenBSD source code is regularly and purposefully examined with the explicit intention of
finding and fixing security holes (Payne, 1999), (Payne, 2000). Thus it is this auditing work,
rather than simply the general availability of source code, that is responsible for OpenBSD’s
low number of security problems. This point bears repeating: software will not become
automatically more secure by virtue of its source code being published. It requires a careful,

© 2002 Blackwell Science Ltd, Information Systems Journal 12, 61-78

On the security of open source software

focused code audit by programmers with the necessary background and security expertise to
make a significant impact on the overall security of a body of code. Thus, there is not reason
why this work could not be done internally within a proprietary software company given suffi-
cient allocation of resources and personnel. In fact, in interviews conducted as part of this
previous research, a leading OpenBSD developer claimed that the availability of source code
had had little effect on the security of the system. Instead, a relatively small number of key
developers had been chiefly responsible for the removal of security-related bugs from the code
base (Payne, 1999). If this is true (and it does appear to be supported by the empirical evid-
ence), then clearly the opportunity exists for proprietary developers to dramatically improve
the security of their software without needing to release the source code.

Open source software often lays claim to being more stable than proprietary code since it
allows the code to be actively reviewed by its users. However, where security is concerned,
clearly this is not necessarily the case. Security flaws are not like ordinary bugs. They are
subtle and complex, and often require specialized or in-depth knowledge to identify. Source
code auditing for the purpose of security is not the same as simply reading or experimenting
with the code in order to find ordinary bugs. It requires special expertise and a particular
focus. Thus, regardless of other security-related advantages such as the ability to adapt to
specialized security requirements and freedom from vendor dependence as described in the
section ‘Flexibility and freedom’, open source software is not intrinsically more secure than
proprietary code. To quote Elias Levy, ‘Open source software certainly does have the poten-
tial to be more secure than its closed source counterpart. But make no mistake, simply being
open source is no guarantee of security’ (Levy, 2000).

REFERENCES

CERT Advisory CA-2001-01 Interbase Server Contains
Compiled in Back Door Account (2001).
http://www.cert.org/advisories/CA-2001-01.html.

Chowdhry, P (1999) Open source meets the ‘Baywatch’
factor. http://www.zdnet.com/eweek/stories/general/0,
11011,2352305,00.html.

DiBona, C., Ockman, S. & Stone, M. (eds) (1999) Open
Sources: Voices from the Open Source Revolution.
O'Reilly & Associates, Sebastapol, California.

Friedrichs, 0. (2000) Secure programming.
http://www.securityfocus.com/forums/secprog/secure-
programming.html. Version 1.00.

Garfinkel, S. (1999) Open
http:/www.wideopen.com/story/101.html.

Garfinkel, S. & Spafford, E. (1996) Practical Unix and
Internet Security, 2nd edn. O'Reilly & Associates,
Sebastapol, California.

Gross, G. (2000) Panel: open source security needs to be

source: how secure?

a priority. http://www.newsforge.com/article.pl?sid=00/
10/17/1830254.

Lettice, J. (2001) German armed forces ban MS software,
ciing NSA snooping http://www.theregister.co.uk/
content/4/17679.html.

Levy, E. (1996) Smashing the stack for fun and profit.
Phrack 49.

Levy, E. (2000) Wide open source. http://www.securityfo
cus.com/commentary/19.

McAllister, N. (2001) The spy who hacked me: will open
source be the hero of international security.
http://www.sfgate.com/cgibin/article.cgi?file=/technol
ogy/archive/2001/03/15/china.dtl.

Moody, G. (1997) The greatest OS that (n)ever was.
http://www.wired.com/wired/5.08/linux_pr.html.

Netcraft Web Server Survey (2001) http://www.netcraft.
com/survey/.

Neuman, B. C. & Ts’o, T. (1994) Kerberos: An authentica-

© 2002 Blackwell Science Ltd, Information Systems Journal 12, 61-78

C Payne

tion service for computer networks. IEEE Communica-
tions 32(9): 33-38.

Norin, L. & Stockel, F. (1998) Open-source software devel-
opment methodology. http://www.ludd.luth.se/users/no/
mssc_abstract.html.

NSA Security-Enhanced Linux (2000) http://www.nsa.
gov/selinux/.

Payne, C. (1999) Security through design as a paradigm
for systems development. Murdoch University, Perth,
Western Australia.

Payne, C. (2000) The role of the development process in
operating system security. In: Information Security: Third
International Workshop, ISW 2000, Vol. 1975 of Lecture
Notes in Computer Science. Pieprzyk, J., Okamoto, E.
& Seberry, J. (eds), pp. 277-291 Springer, Germany.

Pfleeger, C. (1997) Security in Computing. Prentice-Hall,
Upper Saddle River, New Jersey.

Raymond, E. (2000) The Cathedral and the Bazaar
http://www.tuxedo.org/esr/writings/cathedral-bazaar/.
Russell, D. & Gangemi Sr., G. (1992) Computer Security

Basics. O'Reilly & Associates, USA.

Schneier, B. (2000a) Closing the window of exposure:
reflections on the future of security. http://www.
securityfocus.com/templates/-forum_message.html|?
forum=28&head=3384&id=3384.

Schneier, B. (2000b) Full disclosure and the window
of exposure. Crypto-Gram. http://www.counterpare.com/
crypto-gram-0009.htmi#1.

Simpson, S. (1999) PGP DH vs
http://www.scramdisk.clara.net/pgpfaq.html.

RSA FAQ.

SSH1 Session Key Retrieval Vulnerability (2001)
http://www.securityfocus.com/vdb/bottom.html?vid=
2344.

Thompson, K. (1984) Reflections on trusting trust. Com-
munications of the ACM, 27.

U.S. Department of Defence (DOD) (1985) Trusted com-
puter system evaluation criteria. DOD 5200.28-STD.

Viega, J. (2000) The myth of open source security. http:
developer.earthweb.com/journal/techfocus/052600_sec
urity.html.

Ylonen, T. (1996) SSH — secure login connections over the
Internet. Proceedings of the 6th USENIX UNIX Security
Symposium.

Biography

Christian Payne began his undergraduate university
career as a scholarship student in Chemistry who also
happened to be majoring in Computer Science. Five years
later he emerged with a first class honours degree in
Computer Science and a deep fascination for research into
ways and means of securing computer systems. He is now
one and a half years into completing his PhD exploring his
specific interests of applied cryptography and operating
system security. He has also recently written, and currently
teaches, a new undergraduate course on computer
security at Murdoch University, Western Australia.

© 2002 Blackwell Science Ltd, Information Systems Journal 12, 61-78

