

Preface

1. Purpose of Standard

This standard specifies HAS-160(Hash Algorithm Standard) that provides methods to compress bit strings with arbitrary lengths into a hash code with fixed lengths(160 bits).

2. Recommended Recommendations and/or Standards

2.1 International Standards

formation Technology-Security techniques
lash functions - Part 1 General
formation Technology-Security techniques
lash functions - Part 2 : Hash functions
ising an n-bit block cipher algorithm
formation Technology-Security techniques
lash functions - Part 3 Dedicated hash function
formation Technology-Security techniques
lash functions - Part 4 Hash functions
ising modular arithmetic

- 2.2 Domestic Standards : KIS 133 : Hash function Standard / Framework
- 2.3 Other Standards : None

3. Relationship to International Standards

- 3.1 The Relationship of international standards : None
- 3.2 Additional requirements to the international standard : None

- 4. The statement of intellectual Property Rights : None
- 5. The Statement of conformance testing and certification : None

6. The history of standard

Edition	Issue Date	Contents
The 1st edition	1998. 10. 27.	Established
The 2nd edition	2000. 12. 20.	Revised

CONTENTS

1.	Introduction	1
2.	Scope	2
3.	References·····	3
4.	Definitions	3
5.	Notations and Conventions	4
6.	Techniques of HAS-160·····	6
7.	Design Criteria for HAS-160·····	13
An	nex 1. Pseudo-code of HAS-160·····	16
An	nex 2. Test Values·····	18

HASH FUNCTION STANDARD - PART 2: HASH FUNCTION ALGORITHM STANDARD(HAS-160)

1. Introduction

Hash algorithm, as algorithm that compresses a certain length of bit row into a fixed output value, satisfies the following features;

- 1. It is impossible to calculate input value for the given output in view of calculation.
- It is impossible to find another input which will generate the same output for the given input in view of calculation.
 Most hash algorithm used in crypto application is required to have not only these two features but also much stronger collision resistance than these. That is,
- It is impossible to find two different input messages that generate the same output in view of calculation.(collision-resistance).
 The collision resistance of crypto hash algorithm is an essential requirement for non-repudiation service to prevent falsification by the third party but sender in digital signature.

Hash algorithm can be divided into the hash algorithm based on block cipher algorithm such as DES and the leased hash algorithm. The algorithm using block cipher algorithm has an advantage that it can use already implemented block cipher algorithm but the speed of most block cipher algorithm is not fast and in case of the hash algorithm that uses basic function, its speed is much lower than block cipher algorithm, therefore today, in most applications, leased hash algorithm is mainly used. Most leased has algorithm is calculated through add. division, loop operation process. A certain length of message X to make it multiple of input unit is added and then divided into t number of input block((X_1, \dots, X_k) .

Hash code is calculated by repeatedly applying to compression function after initializing chain variable into a given initialization value(IV). its process is described as followings.

$$H_0 = IV,$$

$$H_i = f(H_{i-1}, X_i), \ 1 \le i \le t,$$

$$h(X) = H_i$$

Here, *f* is compression function of *h*, H_i is calculation value in the middle of stage *i*-1 and stage i.

2. Scope

The hash algorithm defined in this standard can be used for digital signature that provides information protect service such as authentication, integrity and non-repudiation in telecommunication network environment. Or, according to this standard, it can be used for checking whether implementation results are proper when developing telecommunication equipments and applications.

3. References

KIS 133 : Hash Function Standard/Basic Structure

4. Definitions

Definitions below are used in this standard respecting those in the governed standard.

- A. Adding : Add additional bits to a certain data row
- B. Digital Signature : Data that is generated cryptologically, or additional data to prove data originating source and integrity, and to prevent falsification for data recipient.
- C. Collision resistance hash algorithm : hash algorithm whose feature is represented by the fact that it is impossible to find two different input data rows that have the same output(Hash code) in view of calculation.
- D. Hash Code : Output bit row of hash algorithm
- E. Hash algorithm : Function that makes data row match to a fixed length of hash code satisfying two features below.
- 1) It is impossible to find data rows generating the same hash code with a give hash code in view of calculation.
- 2) It is impossible to find another data rows generating the same hash code with a give hash code in view of calculation.
- F. Word : 32 bit row
- G. Block : Input bit number of compression function in hash algorithm(512bit)

5. Notations and Conventions

5.1 General symbol and notation

Symbols notated in English Capital letters are not negative numbers but integer values or corresponding bit rows. Symbols used in this standard are as followings.

+ : Addition operation in which the value between words is 2^{32} . $X^{<<S}$: Operation to circulate and move X to the left as far as s bit. \neg , \lor , \land , \oplus : NOT, OR, AND, XOR operation by bit H_0 , H_1 , H_2 , H_3 , H_4 : Chain variable K_j : 32 bit constant which is used in operation of stage j f_j: Boolean function which is used in operation of stage j $s_1(j)$, $s_2(j)$: Amount(bit number) circulated and moved which is used in operation of stage j A += B : Input the value of A + B to A for a certain A and B

5.2 Conversion between bit row and word

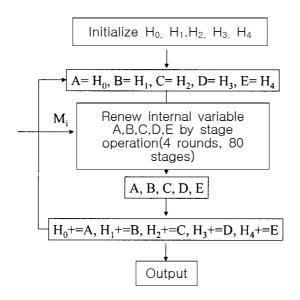
In internal operation of standard hash algorithm, operation between 32 bit of integers. That is, a certain length of bit row converts into 32 bit word row, its result is converted into bit row of 160 bit and then, hash code is output. Therefore, little-endian conversion is needed between bit row and word row. In this standard, the following little-endian conversion is used.

A. Conversion between bit row of 32 bit and word Bit row of 32 bit is considered as word row of 4 bite and the first bite becomes the lowest level bite. For example, bit row 10101101 01101011 11001001 10101110 = ad6bc9ae

becomes W = aec96bad in 32 bit word. This is the same with the result of operation in which the 4 bit word row above is type cast into unsigned long in little-endian computer.

B. When converting a certain length of bit row into 32 bit word row, consider this bit row as bite row and the first 4 bite as the first word and repeat this conversion process converting the second bite into the second word and so on. For example, bit row

becomes aec96bad 0046593f in 32 bit word row.


- C. When converting 32 bit word row to bit row, reverse the processes of A and B.
- D. 64 bit integer $Z=2^{32}X + Y(0 \le X, Y \le 2^{32})$ is converted into 32 bit word row (Y, X). That is, low level 32 bit becomes the first word.

6. Techniques of HAS-160

6.1. Overall Structure

Standard hash algorithm generates 160 bit output by processing a certain length of input message into 512 bit block unit. Compression function consists of all 4 rounds and 80 stages and chain variables calculating hash code are 5. Also, the number of message variable to be applied to each round becomes 20 including 16 words created from 512 bit input block and 4 words additionally created from those.

When message *M* is input, standard hash algorithm makes this *M* in multiple of 5123 bit through addition process and then, divides it by 512bit block M_i ($0 \le i < t$). After each block is compressed through such a process as seen in the picture below and done final block process, chain variables H_0 , H_1 , H_2 , H_3 , H_4 are converted into bit rows. And the converted ones become hash codes.

6.2. Input Block Length and Addition

Input message is processed in 512 bit unit. After filling the needed numbers of "0" next to "1" to make its block length 448 bit for the last message block, enter the integer value calculated the previous message length before adding in 2⁶⁴ method for the last 64 bit. For example, suppose that input message is given in the following bit row.

Since the length of this bit row is 56, make it in 448 bit by adding 391 numbers of 0 and enter 56 = 111000 for the rest of 64 bit. Therefore, from the result, 32 bit word row of 512 bit is given as following;

6be539a2 809d8ac9 0000000 0000000 0000000 0000000 0000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000038 00000000

6.3 Initial Value

In this standard hash algorithm, the values used in initialization of chain variable are notated in hexadecimal as below.

 $H_0 = 67452301$ $H_1 = efcdab89$ $H_2 = 98badcfe$ $H_3 = 10325476$ $H_4 = c3d2e1f0$

- 7 - TTAS.KO-12.0011/R1(2000. 12.)

6.4 Constant

The constants to be used in operations on each stage are notated in hexadecimal as below. These constants take irrational number, integer part of $2^{30}\sqrt{2}$, $2^{30}\sqrt{3}$, $2^{30}\sqrt{5}$.

 $K_j = 00000000 (0 \le j \le 19$: Round 1) $K_j = 5a827999 (20 \le j \le 39$: Round 2) $\lfloor 2^{30}\sqrt{2} \rfloor$ $K_j = 6ed9eba1 (40 \le j \le 59$: Round 3) $\lfloor 2^{30}\sqrt{3} \rfloor$ $K_j = 8f1bbcdc (60 \le j \le 79$: Round 4) $\lfloor 2^{30}\sqrt{5} \rfloor$

6.5. Preparing Message Variable

Each 512bit message block M_i can be converted into 16 words-X[0], X[1]..., X[15]- according to conversion rules by bits and words, and additional 4 message variables ()- X[16], X[17], X[18], X[19] are created from 16 words. The order in which message variables to be input to stage operations of each round is given as the table below. 4 additional variables X[16], X[17], X[18], X[19] are used in 10th, 15th, 0, 5th stage operation of each round and their values are calculated with XOR values of message variables used in 0-4, 6-9, 11-14, 16-19 stage operations of each round. For example, X[16], X[17], X[18], X[19] of the second round are calculated as followings;

X[16]	$= X[3] \bigoplus X[6] \bigoplus X[9] \bigoplus X[12]$ = X[15] $\bigoplus X[2] \bigoplus X[5] \bigoplus X[8]$ = X[11] $\bigoplus X[14] \bigoplus X[1] \bigoplus X[4]$
X[17]	$= X[15] \bigoplus X[2] \bigoplus X[5] \bigoplus X[8]$
X[18]	$= X[11] \bigoplus X[14] \bigoplus X[1] \bigoplus X[4]$
X[19]	$= X[7] \bigoplus X[10] \bigoplus X[13] \bigoplus X[0]$

i	round 1	round 2	round 3	round 4
0	X[18]	X[18]	X[18]	X[18]
1	X[0]	X[3]	X[12]	X[7]
2	X[1]	X[6]	X[5]	X[2]
3	X[2]	X[9]	X[14]	X[13]
4	X[3]	X[12]	X[7]	X[8]
5	X[19]	X[19]	X[19]	X[19]
6	X[4]	X[15]	X[0]	X[3]
7	X[5]	X[2]	X[9]	X[14]
8	X[6]	X[5]	X[2]	X[9]
9	X[7]	X[8]	X[11]	X[4]
10	X[16]	X[16]	X[16]	X[16]
11	X[8]	X[11]	X[4]	X[15]
12	X[9]	X[14]	X[13]	X[10]
13	X[10]	X[1]	X[6]	X[5]
14	X[11]	X[4]	X[15]	X[0]
15	X[17]	X[17]	X[17]	X[17]
16	X[12]	X[7]	X[8]	X[11]
17	X[13]	X[10]	X[1]	X[6]
18	X[14]	X[13]	X[10]	X[1]
19	X[15]	X[0]	X[3]	X[12]

For the sake of convenience, let's notate the message variables to be used in stage operation j as X[I(j)]. Then according to the above table, I(j) is as follows.

6.6. Boolean Function

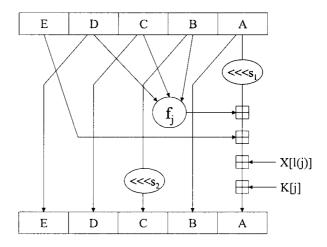
Three boolean functions is used, and the boolean functions used in each stage operation *j* are as follows.

 $f_{i}(x, y, z) = (x \land y) \lor (\neg x \land z) \qquad (0 \le j \le 19: \text{ Round } 1)$ $f_{i}(x, y, z) = x \bigoplus y \bigoplus z \qquad (20 \le j \le 39, 60 \le j \le 79: \text{ Round } 2, 4)$ $f_{i}(x, y, z) = y \bigoplus (x \lor \neg z) \qquad (40 \le j \le 59: \text{ Round } 3)$

That is, the same boolean function is used in each round, and equal boolean function is used in round 2 and 4.

6.7. Amount of Circular Movement

The circular movement amount s_1 and s_2 needed in each stage operation j is defined as blow.


 $s_{1}(j) = 5, 11, 7, 15, 6, 13, 8, 14, 7, 12, 9, 11, 8, 15, 6, 12, 9, 14, 5, 13$ $(0 \le j \le 19, 20 \le j \le 39, 40 \le j \le 59, 60 \le j \le 79)$ $s_{2}(j) = 10 \quad (0 \le j \le 19)$ $s_{2}(j) = 17 \quad (20 \le j \le 39)$ $s_{2}(j) = 25 \quad (40 \le j \le 59)$ $s_{2}(j) = 30 \quad (60 \le j \le 79)$

Circular movement amount s_1 is applied in the same order in each round and circular movement amount s_2 is applied with the same value in each round.

6.8. Stage Operation

The stage operations of each *j* are defined as blow. (Refer to the picture below).

$$T \leftarrow A^{\langle\langle s_1(j)\rangle} + f_j(B, C, D) + E + X[l(j)] + K_j;$$

$$E \leftarrow D; \ D \leftarrow C; \ C \leftarrow B^{\langle\langle s_2(j)\rangle}; \ B \leftarrow A; \ A \leftarrow T;$$

6.9. Renewal Process of Chain Variable

After completing compression function operations of 4 rounds and 80 stages, renew chain variables $H_0 \sim H_4$ by adding those results A, B, C, D, E to chain variables $H_0 \sim H_4$.

 $H_0 += A, H_1 += B, H_2 += C, H_3 += D, H_4 += E$

6.10. Hash Code Output

When all 512 bit message blocks are processes, chain variables $H_0 \sim H_4$ are converted into word row according to the conversion rules by words and bits described in chapter 5.2 and then, output in hash code. When each variable H_i is given as $H_1 = h_{i3} h_{i2} h_{i1} h_{i0}$ (h_{ij} is bit row of 8 bit), hash code becomes as the bit row blow.

$h_{00} h_{01} h_{02} h_{03} h_{10} h_{11} h_{12} h_{13} h_{20} h_{21} h_{22} h_{23} h_{30} h_{31} h_{32} h_{33} h_{40} h_{41} h_{42} h_{43}$

7. Design Criteria for HAS-160

This hash algorithm standard is designed based on design principles and analyses for existing NID4 related hash algorithm. Compression function's overall structure, addition, initial value and constant are similar to other hash algorithm. Here, several design standards are described based on special features of hash algorithm as below.

7.1. Message Variable Process

Since most of existing attacks are caused by simple applications of message variables, it is designed for one message variable to affect on various stages. The process in SHA-1, where a message word is created by using the total of 4 already-input message words, which will be input in each stage, is a good example to show this but, since too complicate method may affect on its effectiveness, it is designed to ensure fast implement as well as sufficient application frequencies of message variables.

Not only 4 additional message variables are created by doing XOR different 4 message variables out of 16 message variables in each round but also each message application becomes different by differentiating composition of the message variables done XOR to improve the simplicity. This standard hash algorithm refers the application order of message variables to the design standard of RIPEMD-160 and makes each message variable applied in a fixed interval with the same frequencies. Especially, additional message variables earned by XOR values of 4 message variables are regularly arranged in "{X[16], X[17], X[18], X[19]}" application order to make them applied in a sufficient interval(more than 5 stages) with 4 message variables to be done XOR. In addition, the same message variables are not applied next to each other in each round. Different value of circular movement amount is applied in each round.

7.2. Stage Operation

Stage operations basically use SHA-1. This is because SHA-1 stage operation method shows much stronger resistance to existing well-known attacks and it also has many advantages in paralleling or pipeline processing.

7.3. Boolean Function

The Boolean function used in stage operation uses the functions which use the numbers less than 3 as unit operation numbers for calculation among 3-variable Boolean functions widely used in existing MD4 related hash algorithm (The first Boolean function can be calculated as following: $(x \land y) \lor (\neg x \land z) = (x \land (y \lor z)) \lor z)$.) For reference, unit operation numbers represent the needed operation numbers in Boolean function when $\neg, \lor, \land, \bigoplus$ is considered as the same unit operation. The Boolean function used in Round 1 satisfies SAC(Strict Avalanche Criterion) and has 2, the biggest non-linear degree of 3-variable Boolean functions. The Boolean function used in Round 2 and 4 have the lowest calculation values, they are double used among other Boolean functions with high non-linear degrees.

7.4. Conversion between word row and integer

This standard hash algorithm has 32 bit processor as its infra structure and is designed based on little-endian structure computer. Therefore, in big-endian structure such as most workstations, the bit order of message words should be reversed. This is according to the development trend of hash algorithm and this is because in general most MD4 related hash algorithms are designed in 32 bit little-endian structure.

Annex 1. Pseudo-code of HAS-160

1.1 Definition

Suppose that the message to be hashed consists of t numbers of 512bit block $\{M_i\}$ $(0 \le i < t)$ (Here, the last message block is a 512 bit block created by adding 448 bit message and 64 bit message length through addition process.) Each message block of stage *i* consists of 16 words $M_i = \{X_i[j]\}$ $(0 \le i < 16)$ converted into 32 bit integer according to the conversion rule between bit row and integer. Functions and constants f_i , K_j , $s_1(j)$, $s_2(j)$, I(j) used in each stage operation of stage *i* are defined as below *j*;

□ Boolean function and round constant

 $\begin{array}{ll} f_j(x, y, z) &= (x \land y) \lor (\neg x \land z) & (0 \le j \le 19) \\ f_j(x, y, z) &= x \bigoplus y \bigoplus z & (20 \le j \le 39, 60 \le j \le 79) \\ f_j(x, y, z) &= y \bigoplus (x \lor \neg z) & (40 \le j \le 59) \end{array}$

 $\begin{array}{ll} K_{j} &= 0000000 & (0 \leq j \leq 19) \\ K_{j} &= 5a827999 & (20 \leq j \leq 39) & \lfloor 2^{30}\sqrt{2} \rfloor \\ K_{j} &= 6 \operatorname{ed}9 \operatorname{ebal} & (40 \leq j \leq 59) & \lfloor 2^{30}\sqrt{3} \rfloor \\ K_{i} &= 8 \operatorname{fl} \operatorname{bbcdc} & (60 \leq j \leq 79) & \lfloor 2^{30}\sqrt{5} \rfloor \end{array}$

□ Circular movement amount

 $s_{1}(j) = 5, 11, 7, 15, 6, 13, 8, 14, 7, 12, 9, 11, 8, 15, 6, 12, 9, 14, 5, 13$ $(0 \le j \le 19, 20 \le j \le 39, 40 \le j \le 59, 60 \le j \le 79)$ $s_{2}(j) = 10 \ (0 \le j \le 19)$ $s_{2}(j) = 17 \ (20 \le j \le 39)$ $s_{2}(j) = 25 \ (40 \le j \le 59)$

 $s_2(j) = 30 \ (60 \le j \le 79)$

□ Message variable application order

l(j)	=	18, 0, 1, 2, 3, 19, 4, 5, 6, 7, 16, 8, 9, 10, 11, 17, 12, 13, 14, 15	$(0 \le j \le 19)$
l(j)	=	18, 3, 6, 9, 12, 19, 15, 2, 5, 8, 16, 11, 14, 1, 4, 17, 7, 10, 13, 0	$(20 \le j \le 39)$
l(j)	=	18, 12, 5, 14, 7, 19, 0, 9, 2, 11, 16, 4, 13, 6, 15, 17, 8, 1, 10, 3	$(40 \le j \le 59)$
l(j)	=	18, 7, 2, 13, 8, 19, 3, 14, 9, 4, 16, 15, 10, 5, 0, 17, 11, 6, 1, 12	$(60 \le j \le 79)$

1.2 Pseudo Code

Input : assuming that input message M was converted into $\{X_i[j]\}\ (0 \le \kappa t, 0 \le \kappa 16)$, 32 bit word row with 16t through adding process.

$$\begin{split} H_0 &= 67452301; \ H_1 &= \text{efcdab89}; \ H_2 &= 98 \text{ badcfe}; \ H_3 &= 10325476; \ H_4 &= \text{c3d2elf0}; \\ \text{for } \mathbf{i} &= 0 \text{ to } \mathbf{t} - 1 \ \{ & A &= H_0; B = H_1; \ C = H_2; \ D = H_3; \ E &= H_4; \\ \text{for } \mathbf{r} &= 0 \text{ to } 3 \ \{ & \mathbf{j} &= 20 \cdot \mathbf{r} \ ; \\ & X_i[16] &= X_i[\ \ell(j+1)] \bigoplus X_i[\ \ell(j+2)] \bigoplus X_i[\ \ell(j+3)] \bigoplus X_i[\ \ell(j+4)]; \\ & X_i[17] &= X_i[\ \ell(j+6)] \bigoplus X_i[\ \ell(j+7)] \bigoplus X_i[\ \ell(j+8)] \bigoplus X_i[\ \ell(j+9)]; \\ & X_i[18] &= X_i[\ \ell(j+11)] \bigoplus X_i[\ \ell(j+12)] \bigoplus X_i[\ \ell(j+13)] \bigoplus X_i[\ \ell(j+9)]; \\ & X_i[18] &= X_i[\ \ell(j+16)] \bigoplus X_i[\ \ell(j+17)] \bigoplus X_i[\ \ell(j+18)] \bigoplus X_i[\ \ell(j+19)]; \\ & \text{for } \mathbf{k} &= 0 \text{ to } 19 \ \{ \\ & \mathbf{j} &= 20 \cdot \mathbf{r} + \mathbf{k} \ ; \\ & \mathbf{T} &= A^{<(s_1(j))} + f_j(B, C, D) + E + X_i[\ \ell(j)] + K_j; \\ & \mathbf{E} &= \mathbf{D}; \ \mathbf{D} &= \mathbf{C}; \ \mathbf{C} &= B^{<(s_2(j))}; \ \mathbf{B} &= \mathbf{A}; \ \mathbf{A} &= \mathbf{T}; \\ & \} \\ & H_0 &+= A; \ H_1 &+= B; \ H_2 &+= C; \ H_3 &+= D; \ H_4 &+= E; \\ \end{split}$$

Output : output after converting 32 bit word row, H_0, H_1, H_2, H_3, H_4 into bit row in each turn

Annex 2.1 reference values

hash("")

= 30 79 64 ef 34 15 1
d 37 c8 04 7a de c7 ab 50 f4 ff 89 76 2d hash("a")

= 48 72 bc bc 4c d0 f0 a9 dc 7c 2f 70 45 e5 b4 3b 6c 83 0d b8 hash("abc")

= 97 5e 81 04 88 cf 2a 3d 49 83 84 78 12 4a fc e4 b1 c7 88 04 hash("message digest")

= 23 38 db c8 63 8d 31 22 5f 73 08 62 46 ba 52 9f 96 71 0b c6 hash("abcdefghijklmnopqrstuvwxyz")

= 59 61 85 c9 ab 67 03 d0 d0 db b9 87 02 bc 0f 57 29 cd 1d 3c hash("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz01234 56789")

= cb 5d 7e fb ca 2f 02 e0 fb 71 67 ca bb 12 3a f5 79 57 64 e5 hash("1234567890

01234567890")

= 07 f0 5c 8c 07 73 c5 5c a3 a5 a6 95 ce 6a ca 4c 43 89 11 b5 hash(a million of "a")

= d6 ad 6f 06 08 b8 78 da 9b 87 99 9c 25 25 cc 84 f4 c9 f1 8d

Annex 2.2 detailed example 1

 $M = "abc" = 61 \ 62 \ 63$ X[0] = 80636261X[1] = 00000000X[2] = 00000000X[3] = 00000000X[4] = 00000000X[5] = 00000000X[6] = 00000000X[7] = 00000000X[8] = 00000000X[9] = 00000000X[10] = 00000000X[11] = 00000000X[12] = 00000000X[13] = 00000000X[14] = 00000018X[15] = 00000000Round 1 :: X[16] = 80636261 Round 1 :: X[17] = 00000000Round 1 :: X[18] = 00000000Round 1 :: X[19] = 00000018Round 2 :: X[16] = 00000000Round 2 :: X[17] = 00000000Round 2 :: X[18] = 00000018Round 2 :: X[19] = 80636261 Round 3 :: X[16] = 00000018Round 3 :: X[17] = 80636261 Round 3 :: X[18] = 00000000Round 3 :: X[19] = 00000000Round 4 :: X[16] = 00000000Round 4 :: X[17] = 00000018Round 4 :: X[18] = 80636261 Round 4 :: X[19] = 00000000H0 = 67452301

H1 = efcdab89 H2 = 98badcfe H3 = 10325476 H4 = c3d2e1f0

				А	В	С	D	E
j	=	0	::	45321f1a	67452301	3 6ae27bf	98badcfe	10325476
j	=	1	::	e04d88ff	45321f1a	148c059d	36ae27bf	98badcfe
j	=	2	::	f60b82ab	e04d88ff	c87c6914	148c059d	36ae27bf
j	Ξ	3	::	ccd02fd8	f60b82ab	3623ff81	c87c6914	148c059d
j	=	4	::	870fe765	ccd02fd8	2e0aafd8	3623ff81	c87c6914
j	=	5	::	038d19e6	870fe765	40bf6333	2e0aafd8	3623ff81
j	Ξ	6	::	eb4d513d	038d19e6	3f9d961c	40bf6333	2e0aafd8
j	Ξ	7	::	c6199cc0	eb4d513d	3467980e	3f9d961c	40bf6333
j	=	8	::	826359a2	c6199cc0	3544f7ad	3467980e	3f9d961 c
j	Ξ	9	::	a99e52d0	826359a2	66730318	3544f7ad	3467980e
j	=	10	::	28d842cf	a99e52d0	8d668a09	66730318	3544 f7ad
j	=	11	::	c6c273fb	28d842cf	794b42a6	8d668a09	66730318
j	Ξ	12	::	d655c964	c6c273fb	610b3ca3	794b42a6	8d668a09
j	=	13	::	eb2425da	d655c964	09cfef1b	610b3ca3	794b42a6
j	Ξ	14	::	63a4b6e3	eb2425da	57259359	09cfef1b	610b3ca3
j	Ξ	15	::	f0693e36	63a4b6e3	90976bac	57259359	09cfef1b
j	=	16	::	f0d180b3	f0693e36	92db8d8e	90976bac	57259359
j	Ξ	17	::	4831 dd1b	f0d180b3	a4f8dbc1	92db8d8e	90976bac
j	=	18	::	39ad9cba	4831 dd1b	4602cfc3	a4f8dbc1	92db8d8e
j	=	19	::	2b3ba486	39ad9cba	c7746d20	4602cfc3	a4f8dbc1
j	=	20	::	1fcb2490	2b3ba486	3974735b	c7746d20	4602cfc3
j	Ξ	21	::	cee58557	1fcb2490	490c5677	3 974735b	c7746d20
j	=	22	::	046c945c	cee58557	49203f96	490c5677	3974735b
j	Ξ	23	::	aceedbe0	046c945c	0aaf9dcb	49203f96	490c5677
j	Ξ	24	::	2728fe3c	aceedbe0	28b808d9	0aaf9dcb	49203f96
j	=	25	::	d2c6ef67	2728fe3c	b7c159dd	28b808d9	0aaf9dcb
j	Ξ	26	::	e4732e6e	d2c6ef67	fc 784e51	b7c159dd	28b808d9
j		27		e8563479				
				0422d61c				
				eea0e13e				
				ab216b59				
				ed2649af				
				af24b8a7				
				5cf71c1c				
				458f929a				
				e9470c4c				
j	=	36	::	88f362f4	e9470c4c	25348b1 f	3838b9ee	714f5e49

j	Ξ	37 :	98da38db	88f362f4	1899d28e	25348b1 f	3838b9ee
j	=	38 :	63608a5f	98da38db	c5e911e6	1899d28e	25348b1 f
j	=	39 :	57114f38	63608a5f	71b 731 b4	c5e911e6	1899d28e
j		40 :	745f8524	57114f38	bec6c114	71b731b4	c5e911e6
j	=	41 :	928b2f98	745f8524	70ae229e	bec6c114	71b731b4
j	=	42 :	2bfa 87 0f	928b2f98	48e8bf0a	70ae229e	bec6c114
j	=	43 :	485b83bd	2bfa870f	3125165f	48e8 bf0a	70ae229e
j	Ξ	44 ::	8543cf31	485b83bd	1e57f50e	3125165f	48e8bf0a
j	=	45 :	0234fa06	8543cf31	7a90b707	1e57f50e	3125165f
j	=	46 ::	f4d7e359	0234fa06	630a879e	7a90b707	1e57f50e
j	Ξ	47 ::	6a7ddb44	f4d7e359	0c0469f4	630a879e	7a90b707
j	=	48 ::	194bd76a	6a7ddb44	b3e9afc6	0c0469f4	630a879e
j	=	49 ::	d771855c	194bd76a	88d4fbb6	b3e9afc6	0c0469f4
j	Ξ	50 ::	33743c28	d771855c	d43297ae	88d4fbb6	b3e9afc6
j	=	51 ::	e7edeff5	33743c28	b9aee30a	d43297ae	88d4fbb6
j	=	52 ::	67f27cb1	e7edeff5	5066e878	b9aee30a	d43297ae
j	Ξ	53 ::	39004ed5	67f27cb1	ebcfdbdf	5066e878	b9aee30a
j	=	54 ::	6cd12861	39004ed5	62cfe4f9	ebcfdbdf	5066e878
j	=	55 ::	b229d753	6cd12861	aa72009d	62cfe4f9	ebcfdbdf
j	=	56 ::	05dbaade	b229d753	c2d9a250	aa72009d	62cfe4f9
j	=	57 ::	f1d5af 33	05dbaade	a76453ae	c2d9a250	aa72009d
j	Ξ	58 ::	ee9d7f0d	f1d5af 3 3	bc0bb755	a76453ae	c2d9a250
j	=	59 ::	276963ea	ee9d7f0d	67e3ab5e	bc0bb755	a76453ae
j	=	60 ::	d9855335	276963ea	7ba75fc3	67e3ab5e	bc0bb755
j	=	61 ::	b0eeba74	d9855335	89da58fa	7ba75fc3	67e3ab5e
j	=	62 ::	9a54f69e	b0eeba74	766154cd	89da58fa	7ba75fc3
j	=	63 ::	d568200c	9a54f69e	2c3bae9d	766154cd	8 9da58fa
j	=	64 ::	330c25d9	d568200c	a6953da7	2c3bae9d	766154cd
j	=	65 ::	e9feeb40	330c25d9	355a0803	a6953da7	2c3bae9d
j	Ξ	66 ::	5b05bcdf	e9feeb40	4cc30976	355a0803	a6953da7
j	Ξ	67 ::	3550bb91	5b05bcdf	3a7fbad0	4cc30976	355a0803
j	=	68 ::	9a8c9cf2	3550bb91	d6c16f37	3a7fbad0	4cc30976
j	Ξ	69 ::	7f9c5e70	9a8c9cf2	4d542ee4	d6c16f37	3a7fbad0
j	=	70 ::		7f9c5e70			
j	=	71 ::		037235cc			
j	=	72 ::		8bf6e3d6			
j		73 ::		8d89c7b7			
j		74 ::					
j		75 ::		f9182e75			
j		76 ::		02d79705			
j			7f26992f				
j		78 ::		7f26992f			
j	=	79 ::	9d3c3b96	4d5d23ff	dfc9a64b	d4c9f59c	40b5e5c1

H0 = 67452301 + 9d3c3b96 = 04815e97 H1 = efcdab89 + 4d5d23ff = 3d2acf88 H2 = 98badcfe + dfc9a64b = 78848349 H3 = 10325476 + d4c9f59c = e4fc4a12 H4 = c3d2e1f0 + 40b5e5c1 = 0488c7b1 HASH code = 97 5e 81 04 88 cf 2a 3d 49 83 84 78 12 4a fc e4 b1 c7 88 04 M = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789" = 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 4f 50 51 52 53 54 55 56 57 58 59 5a 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76 77 78 79 7a 30 31 32 33 34 35 36 37 38 39 First 512-bit block = 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 4f 50 51 52 53 54 55 56 57 58 59 5a 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76 77 78 79 7a 30 31 32 33 34 35 36 37 38 39 80 00 X[0] = 44434241X[1] = 48474645X[2] = 4c4b4a49X[3] = 504f4e4dX[4] = 54535251X[5] = 58575655 X[6] = 62615a59X[7] = 66656463X[8] = 6a696867 X[9] = 6e6d6c6bX[10] = 7271706fX[11] = 76757473X[12] = 7a797877 X[13] = 33323130X[14] = 37363534X[15] = 00803938Round 1 :: X[16] = 10000000 Round 1 :: X[17] = 08003a3eRound 1 :: X[18] = 00000010Round 1 :: X[19] = 7efd454b Round 2 :: X[16] = 263a0008Round 2 :: X[17] = 7ef54d43 Round 2 :: X[18] = 5d575553 Round 2 :: X[19] = 6365677dRound 3 :: X[16] = 737d7f75

```
Round 3 :: X[17] = 10101010

Round 3 :: X[18] = 05800000

Round 3 :: X[19] = 00101000

Round 4 :: X[16] = 7375777d

Round 4 :: X[17] = 5d474543

Round 4 :: X[18] = 6ee55d43

Round 4 :: X[19] = 262a1018

H0 = 67452301

H1 = efcdab89
```

H2 = 98badcfe H3 = 10325476 H4 = c3d2e1f0

				А	В	С	D	E
j	=	0	::	45321 f2a	67452301	36ae27bf	98badcfe	10325476
j	Ξ	1	::	a42de8df	45321 f2a	148c059d	3 6ae27bf	98badcfe
j	=	2	::	2e82b8b2	a42de8df	c87ca914	148c059d	36ae27 bf
j	=	3	::	6fff365d	2e82b8b2	b7a37e90	c87ca914	148c059d
j	Ξ	4	::	4ba724d9	6fff365d	0ae2c8ba	b7a37e90	c87ca914
j	=	5	::	c6f7606b	4ba724d9	fcd975bf	0ae2c8ba	b7a37e90
j	=	6	::	4c192962	c6f7606b	9c93652e	fcd975bf	0ae2c8ba
j	Ξ	7	::	6a2e27d3	4c192962	dd 81 af1b	9c93652e	fcd975bf
j	Ξ	8	::	52d226db	6a2e27d3	64a58930	dd81af1b	9c93652e
j	=	9	::	1b0c07d6	52d226db	b89f4da8	64a58930	dd81af1b
j	Ξ	10	::	3a48e8f9	1b0c07d6	489b6d4b	b89f4da8	64a58930
j	Ξ	11	::	bef208d3	3a48e8f9	$301\mathrm{f586c}$	489b6d4b	b 89f4da8
j	=	12	::	89b0db3b	bef208d3	23a3e4e9	301 f586c	489b6d4b
j	Ξ	13	::	4b59f37f	89b0db3b	c8234efb	23a3e4e9	301 f 586c
j	Ξ	14	::	27351bac	4b59f37f	c36cee26	c8234efb	23a3e4e9
j	Ξ	15	::	40c9d040	27351bac	67cdfd2d	c36cee26	c 8234 efb
j	Ξ	16	::	bd8b4521	40c9d040	d46eb09c	67cdfd2d	c36cee26
j	=	17	::	2f344be5	bd8b4521	27410103	d46eb09c	67cdfd2d
j	=	18	::	eaf360a3	2f344be5	2d1486f6	27410103	d46eb09c
j	Ξ	19	::	6e586a18	eaf360a3	d12f94bc	2d1486f6	27410103
j	=	20	::	c0f085e5	6e586a18	c147d5e6	d12f94bc	2d1486f6
j	Ξ	21	::	da45a825	c0f085e5	d430dcb0	c147d5e6	d12f94bc
j	=	22	::	866f084e	da45a825	0bcb81e1	d430dcb0	c147d5e6
j	=	23	::	141df495	866f084e	504bb48b	0bcb81e1	d430dcb0
j	=	24	::	8e993129	141df495	109d0cde	504bb48b	0bcb81e1
j	Ξ	25	::	44a3e18a	8e993129	e92a283b	109d0cde	504bb48b
j	=	26	::	c65e076c	44a3e18a	62531d32	e92a283b	109d0cde

j = 27 ::	0920d6da	c65e076c	c3148947	62531d32	e92a283b
j = 28 ::			0ed98cbc		
j = 29 ::	7bb13b8b	9388f846	adb41241	0ed98cbc	c3148947
j = 30 ::	d72d809a	7bb13b8b	f08d2711	adb41241	0ed98cbc
j = 31 ::	725e605c	d72d809a	7716f762	f08d2711	adb41241
j = 32 ::	ee836e69	725e605c	0135ae5b	7716f762	f08d2711
j = 33 ::	4f091795	ee836e69	c0b8e4bc	0135ae5b	7716f762
j = 34 ::	1740cd2d	4f091795	dcd3dd06	c0b8e4bc	0135ae5b
j = 35 ::	3ae274da	1740cd2d	2f2a9e12	dcd3dd06	c0b8e4bc
j = 36 ::	2b440566	3ae274da	9a5a2e81	2f2a9e12	dcd3dd06
j = 37 ::	3ab41628	2b440566	e9b475c4	9a5a2e81	2f2a9e12
j = 38 ::	6c0c6c05	3ab41628	0acc5688	e9b475c4	9a5a2e81
j = 39 ::	a06ccd40	6c0c6c05	2c507568	0acc5688	e9b475c4
j = 40 ::	3d17a198	a06ccd40	0ad818d8	2c507568	0acc5688
j = 41 ::	aa645397	3d17a198	814 0d99a	0ad818d8	2c507568
j = 42 ::	a222c158	aa645397	307a2f43	8140d99a	0ad818d8
j = 43 ::	e019e372	a222c158	2f54c8a7	307a2f43	8140d99a
j = 44 ::	ldec1fb1	e019e372	b1444582	2f54c8a7	307a2f43
j = 45 ::	655a0199	1dec1fb1	e5c033c6	b1444582	2f54c8a7
j = 46 ::	f6b31c29	655a0199	623 b d 83 f	e5c033c6	b1444582
j = 47 ::	72da30c0	f6b31c29	32cab403	623bd83f	e5c033c6
j = 48 ::	db3b55d3	72da30c0	53ed6638	32cab403	623bd83f
j = 49 ::	a8fa93ca	db3b55d3	80e5b461	53ed6638	32cab403
j = 50 ::	8a281e20	a8fa93ca	a7b676ab	80e5b461	53ed6638
j = 51 ::	b05855f0	8a281e20	9551 f 527	a7b676ab	80e5b461
j = 52 ::	ca802c35	b05855f0	4114503c	9551 f 527	a7b676ab
j = 53 ::	4af6b1a9	ca802c35	e160b0ab	411 4503 c	9551 f 527
j = 54 ::	e1e3a3ae	4af6b1a9	6b950058	e160b0ab	4114503c
•	2fa 439 b0				
j = 56 ::	aa9577de	2fa 43 9b0	5dc3c747	5295ed63	6b950058
j = 57 ::	72dbd9de	aa9577de	605f4873	5dc3c747	5295ed63
j = 58 ::			bd552aef		
j = 59 ::			bce5b7b3		
j = 60 ::			968faf33		
j = 61 ::			4dcd686b		
j = 62 ::			a828ae72		
-	93adc4e5				
j = 64 ::			45969b77		
j = 65 ::			64eb7139		
j = 66 ::			6eade712		
j = 67 ::			902c7ef1		
	2bb2f2e2				
j = 69 ::	e92e154d	ZDDZ1Ze2	30988548	19ac9782	902c7ef1

```
H0 = 67452301 + 6d26f10f = d46c1410
H1 = efcdab89 + 06345c67 = f60207f0
H2 = 98badcfe + a3c934ac = 3c8411aa
H3 = 10325476 + 7d0ff30d = 8d424783
H4 = c3d2e1f0 + 8949b1e9 = 4d1c93d9
```

X[0] = 00000000X[1] = 00000000X[2] = 00000000X[3] = 00000000X[4] = 00000000X[5] = 00000000X[6] = 00000000X[7] = 00000000X[8] = 00000000X[9] = 00000000X[10] = 00000000X[11] = 00000000X[12] = 00000000X[13] = 00000000X[14] = 000001 f0X[15] = 00000000

Round 1 :: X[16] = 00000000Round 1 :: X[17] = 00000000Round 1 :: X[18] = 00000000 Round 1 :: X[19] = 000001 f0Round 2 :: X[16] = 00000000Round 2 : X[17] = 00000000Round 2 :: X[18] = 000001 f0Round 2 :: X[19] = 00000000Round 3 :: X[16] = 000001 f0Round 3 :: X[17] = 00000000 Round 3 :: X[18] = 00000000Round 3 :: X[19] = 00000000 Round 4 :: X[16] = 00000000 Round 4 :: X[17] = 000001 f0Round 4 :: X[18] = 00000000Round 4 :: X[19] = 00000000H0 = d46c1410H1 = f60207f0H2 = 3c8411aaH3 = 8d424783H4 = 4d1c93d9A B С D Ε j = 0 :: 17df5796 d46c1410 081fc3d8 3c8411aa 8d424783 j = 1 :: b08af9fb 17df5796 b0504351 081fc3d8 3c8411aa j = 2 :: 9a51d2da b08af9fb 7d5e585f b0504351 081fc3d8 j = 3 :: 21e76b5b 9a51d2da 2be7eec2 7d5e585f b0504351 j = 4 :: 997ae4e0 21e76b5b 474b6a69 2be7eec2 7d5e585f j = 5 :: e53e5c47 997ae4e0 9dad6c87 474b6a69 2be7eec2 j = 6 :: 496da530 e53e5c47 eb938265 9dad6c87 474b6a69 j = 7 :: aa2a9d89 496da530 f9711f94 eb938265 9dad6c87 j = 8 :: 9eef38b1 aa2a9d89 b694c125 f9711f94 eb938265 j = 9 :: d2701f68 9eef38b1 aa7626a8 b694c125 f9711f94 j = 10 :: 8426d2dc d2701f68 bce2c67b aa7626a8 b694c125 j = 11 :: a591cc2e 8426d2dc c07da349 bce2c67b aa7626a8 j = 12 :: f526dbb8 a591cc2e 9b4b7210 c07da349 bce2c67b j = 13 :: ec2ca44f f526dbb8 4730ba96 9b4b7210 c07da349 j = 14 :: 1b1071d4 ec2ca44f 9b6ee3d4 4730ba96 9b4b7210 j = 15 :: 2da56e95 1b1071d4 b2913fb0 9b6ee3d4 4730ba96 j = 16 :: 248c9881 2da56e95 41c7506c b2913fb0 9b6ee3d4

j = 17 ::	55247e1b	248c9881	95ba54b6	41c7506c	b2913fb0
j = 18 ::			32620492		
j = 19 ::	5d4028bf	9cec55f6	91 f 86d54	32620492	95ba54b6
j = 20 ::	d7b8245a	5d4028bf	abed39d8	91 f 86d54	32620492
j = 21 ::	b55cd11b	d7b8245a	517eba80	abed39d8	91 f 86d54
j = 22 ::	c80f1bc9	b55cd11b	48b5af70	517eba80	abed39d8
j = 23 ::	40ec5c63	c80f1bc9	a2376ab9	48b5af70	517eba80
j = 24 ::	09a62ae9	40ec5c63	379390 1e	a2376ab9	48b5af70
j = 25 ::	3dddf101	09a62ae9	b8c681d8	3793901e	a2376ab9
j = 26 ::	619e20be	3dddf101	55d2134c	b8c681d8	3793901e
j = 27 ::	eb0f05b3	619e20be	e2027bbb	55d21 34 c	b8c681d8
j = 28 ::	711a1daf	eb0f05b3	417cc33c	e2027bbb	55d2134c
j = 29 ::	9aa1412a	711a1daf	0b67d61e	417cc33c	e2027bbb
j = 30 ::	ba 08531 6	9aa1412a	3b5ee234	0b67d61e	417cc33c
j = 31 ::	893 067a5	ba 0853 16	82553542	3b5ee234	0b67d61e
j = 32 ::	99557b90	893067a5	a62d7410	82553542	3b5ee234
j = 33 ::	00f1cf6e	99557Ь90	cf4b1260	a62d7410	82553542
j = 34 ::	097ea83b	00f1cf6e	f72132aa	cf4b1260	a62d7410
j = 35 ::	23cf8de4	097ea83b	9edc01e3	f 72132 aa	cf4b1260
j = 36 ::	296cefb2	23cf8de4	507612fd	9edc01e3	f72132aa
j = 37 ::	7af5d598	296cefb2	1bc 8479 f	507612fd	9edc01e3
j = 38 ::	baebe95b	7af5d598	df6452d9	1bc8479f	507612fd
j = 39 ::	e67dc4d1	baebe95b	ab30f5eb	df6452d9	1bc8479f
j = 40 ::	6c25e610	e67dc4d1	b775d7d2	ab30f5eb	df6452d9
j = 41 ::	bef8dae2	6c25e610	a3ccfb89	b775d7d2	ab30f5eb
j = 42 ::	65db689f	bef8dae2	20d84bcc	a3ccfb89	b775d7d2
j = 43 ::	b8c30d8a	65db689f	c57df1b5	20d84bcc	a3ccfb89
j = 44 ::	7dec56e2	b8c30d8a	3ecbb6d1	c57df1b5	20d84bcc
j = 45 ::	9e974045	7dec56e2	1571861b	3ecbb6d1	c57df1b5
	b425fce9				
	6744b0c3				
j = 48 ::					
j = 49 ::			86ce8961		
j = 50 ::	98d058e5	a2d323ff	d4b57949	86ce8961	d3684bf9
j = 51 ::	f 44 f7316	98d058e5	ff45a647	d4b57949	86ce8961
	89bb04a6				
j = 53 ::			2de89ee6		
j = 54 ::			4d137609		
j = 55 ::			ac0b6309		
	6228183f				
	7f1fcalb				
	dc6f42ab				
j = 59 ::	3ba023e9	dc6f42ab	361e3f94	7ec45030	a2ba6e6d

j = 60 ::	3a2fd57f	3ba023e9	f71bd0aa	36fe3f94	7ec45030
j = 61 ::	86d1d3b4	3a2fd57f	4ee808fa	f71bd0aa	36fe3f94
j = 62 ::	b2dfe3e2	86d1d3b4	ce8bf55f	4ee808fa	f71bd0aa
j = 63 ::	7edb1506	b2dfe3e2	21b474ed	ce8bf55f	4ee808fa
j = 64 ::	f2a969c5	7edb1506	acb7f8f8	21b474ed	ce8bf55f
j = 65 ::	7eb909a3	f2a969c5	9fb6c541	acb7f8f8	21b474ed
j = 66 ::	2b8229c3	7eb909a3	7caa5a71	9fb6c541	acb7f8f8
j = 67 ::	63ea1937	2b8229c3	dfae4268	7caa5a71	9fb6c541
j = 68 ::	ac654fa8	63ea1937	cae08a70	dfae4268	7caa5a71
j = 69 ::	d7657342	ac654fa8	d8fa864d	cae08a70	dfae4268
j = 70 ::	f82fc887	d7657342	2b1953ea	d8fa864d	cae08a70
j = 71 ::	fcc72df2	f82fc887	b5d95cd0	2b1953ea	d8fa864d
j = 72 ::	9633fde2	fcc72df2	fe0bf221	b5d95cd0	2b1953ea
j = 73 ::	703bdee2	9633fde2	bf 31 cb7c	fe0bf221	b5d95cd0
j = 74 ::	2af69707	703bdee2	a58cff78	bf31cb7c	fe0bf221
j = 75 ::	$611 \mathrm{f0e82}$	2af69707	9c0ef7b8	a58cff78	bf 31 cb7c
j = 76 ::	9fdf2ce1	$611 \mathrm{f0e82}$	cabda5c1	9c0ef7b8	a58cff78
j = 77 ::	378d8146	9fdf2ce1	9847c3a0	cabda5c1	9c0ef7b8
j = 78 ::	ea0027da	378d8146	67f7cb38	9847c3a0	cabda5c1
j = 79 ::	271249bb	ea0027da	8de36051	67f7cb38	9847c3a0

```
H0 = 67452301 + 271249bb = fb7e5dcb

H1 = efcdab89 + ea0027da = e0022fca

H2 = 98badcfe + 8de36051 = ca6771fb

H3 = 10325476 + 67f7cb38 = f53a12bb

H4 = c3d2e1f0 + 9847c3a0 = e5645779

HASH

code = cb 5d 7e fb ca 2f 02 e0 fb 71 67 ca bb 12 3a f5 79 57 64 e5
```

Contributors to Standard Write-up

Standard No. : TTAS.KO-12.0011/R1

The following individuals have contributed to enacting, amending, publishing of the present standard.

Task	Name	Committee & Position	Contact	Company
Assignment Proposal		Cryptographic Technology Team(SG10.02)		KISA
First Standard Draft Submission	S.J. Kim	Cryptographic Technology Team /Chairman	(02)3488–40 66	KISA
First Standard Draft Review & Write-up	S.J. Kim	Cryptographic Technology Team /Chairman	(02)3488-40 66	KISA
	S.J. Park	Cryptographic Technology Team /Vice chairman	(02)3453-11 14	BCQRE
	S.J. Lee	Cryptographic Technology Team /Staff	(02)3488-41 71	KISA
	H.J. Gwon	Cryptographic Technology Team /Committeeman	(02)3488-42 71	KISA
	I.S. Lee	Cryptographic Technology Team /Committeeman	(02)3453-11 14	BCQRE
	S.W. Sin	Cryptographic Technology Team /Observer	(042)860-58 20	KISA
	C.H. Im	Cryptographic Technology Team /Observer	(02)578–892 5	Future System
Standard Editing & Supervision	S.J. Kim	Cryptographic Technology Team /Chairman	(02)3488-40 66	KISA
	S.J. Park	Cryptographic Technology Team /Vice chairman	(02)3453-11 14	BCQRE
	S.J. Lee	Cryptographic Technology Team /Staff	(02)3488-41 71	KISA
	H.J. Gwon	Cryptographic Technology Team /Committeeman	(02)3488-42 71	KISA
	S.W. Sin	Cryptographic Technology Team /Observer	(042)860-58 20	ETRI
	C.H. Im	Cryptographic Technology Team /Observer	(02)578–892 5	Future System
	J.H. No	Cryptographic Technology Team /Observer	(031)450-78 85	LG Information & Communicatio ns Co., Ltd

Standard Deliberation	H.S. Lee	Cryptographic Technology Team /Chairman	(02)3488-41 50	KISA
	S.W. Kim	Cryptographic Technology Team /Vice chairman	(031)450-50 25	Hansei Univ.
	H.B. Kim	Cryptographic Technology Team /Committeeman	(02)3488-42 13	KISA
	S.J. Kim	Cryptographic Technology Team /Committeeman	(02)3488-40 66	KISA
	I.S. Leek	Cryptographic Technology Team /Committeeman	(042)870-80 47	KT
	J.O. Sin	Cryptographic Technology Team /Special committeeman	(02)2260-33 36	Dongguk Univ.
	Y.R. Choe	Cryptographic Technology Team /Special committeeman	(042)280-25 41	Daejeon Univ.
	S.C. Go	Cryptographic Technology Team /Committeeman	(02)3488-41 00	KISA
	K.K. Lee	Cryptographic Technology Team /Committeeman	(02)3488-40 30	KISA
Bureau	M.H. Gwon	Cryptographic Technology Standard Department /chief	(02)723-707 3	TTA
	M.C. Lee	Information Technology Standard Department	(02)723-707 3	TTA