

附加數學課程指引(中四至中五) 月錄 頁數 目錄 i 課程發展議會數學科教育委員會委員名單 iii 課程發展議會/香港考試局附加數學課程聯合工 iv 作小組委員名單 引言 V 第一章 宗旨和目標 1 ٠ 數學教育的宗旨 1 附加數學科課程的目標 2 第二章 課程架構 3 內容及特定學習目標 3 |共通能力、價值觀及態度 6 第三章 學與教的建議 8 • 主導原則 8 建議次序 8 建議時間分配 9 建議學與教策略 12 第四章 評估建議 17 + 評估的目的 17 評估的標準及策略 17 評估的回饋 20 附錄一 《中學課程綱要-附加數學(中四至中五) 21 (1992)》內容變動摘要 附錄二 本附加數學科課程與《中學課程綱要:附加數學 23 (中四至中五)(1992)》內容對照 附錄三 參考書目 69

目錄

		頁數
目錄		i
課程發展		iii
課程發展	展議會/香港考試局附加數學課程聯合工作小組委員名單	iv
引言		V
第一章	宗旨和目標	1
	◆數學教育的宗旨	1
	◆ 附加數學科課程的目標	2
第二章	課程架構	3
	◆ 內容及特定學習目標	3
	◆ 共通能力、價值觀及態度	6
第三章	學與教的建議	8
	◆ 主導原則	8
	◆建議次序	8
	◆建議時間分配	9
	◆建議學與教策略	12
第四章	評估建議	17
	◆ 評估的目的	17
	◆ 評估的標準及策略	17
	◆評估的回饋	20
附錄一	《中學課程綱要・附加數學(中四至中五)(1992)》	21
	內容變動摘要	

附錄二	本附加數學科課程與《中學課程綱要:附加數學(中	23
	四至中五)(1992)》內容對照	
7/1 / 4 —	м х э п	60
	參考書目	69

課程發展議會 數學教育委員會委員名單

自二零零零年九月一日起委員名單如下:

主席 葉錦元先生

副主席 教育署總課程發展主任(數學)

(關兆錦先生)

當然委員 教育署首席督學(培訓及推廣)

(曾健華先生)

委員 陳靜儀女士 莫雅慈博士

鄭紹遠教授 鄧志鵬先生

馮志揚先生 崔桂瓊女士

何汝淳先生 溫德榮先生

洪進華先生 黃毅英博士

郭家強先生 (至二零零一年八月三十一日)

李少鶴先生 甄佩濃女士

駱瑞萍女士 余家明先生

秘書 教育署高級課程發展主任(數學)

(梁廣成先生)

課程發展議會/香港考試局 附加數學科課程聯合工作小組 委員名單

自二零零零年十一月四日起的委員名單如下:

召集人 教育署總課程發展主任(數學)

(關兆錦先生)

委員 陳若玓女士 梁龍先生

鄭紹遠教授 吳世美女士

洪進華先生 溫德榮先生

郭家強先生 甄佩濃女士

梁國英先生 余家明先生

記錄 教育署課程發展主任(數學)

李顯明博士

(至二零零零年十一月二十四日)

翁子明先生

(自二零零零年十一月二十五日起)

引言

本課程指引是香港課程發展議會為中學所編訂的一系列課程指引之一。

課程發展議會乃一諮詢組織,就幼稚園至中六學制之課程發展事宜, 向香港特別行政區政府提供意見;成員包括校長、在職教師、家長、僱主、 專上學院的學者、有關領域或團體的專業人士、香港考試局和職業訓練局 的代表及教育署有關部門的人員。

教育署建議中學採用本課程指引。為高中編訂之課程,皆與香港考試局開設的有關考試相配合。

課程發展議會亦會就實施情況,對本課程作出定期檢視。有關本課程 指引的任何意見和建議,請致函:

> 香港灣仔皇后大道東 213 號 胡忠大廈十二樓 教育署 數學組總課程發展主任收

這是空白頁

第一章 宗旨及目標

無論在家居、社交或工作方面,數學都與我們息息相關。它一貫推動主要科學和技術的發展。很多在社會方面的發展和決定,均相當倚賴數學的運用。除了一般公民所需的數學基本技術和知識外,擴寬對數學有興趣的學生的數學經驗亦非常重要。

附加數學是一個需要修讀兩年的課程。對象是一些無論在興趣或能力均達到一定水平的中四、五學生。透過本課程,他們能從中四開始研習較高深的數學而有所得益。修讀本課程的學生需要同時修讀較基本的前香港課程發展委員會於一九八五年頒佈的《數學科課程綱要(中一至中五)》的課程;從二零零四年開始,學生則需要同時修讀課程發展議會於一九九九年頒佈的《中學課程綱要 — 數學科(中一至中五)》的課程。

有一些在本課程指引內的課題是建基於中學數學科課程綱要的,但對這些課題的要求,卻要有較闊和較深的認識。其他課題則是中學數學科課程綱要所無。就這角度而言,本課程指引的內容是較為高深的。本指引是一九九二年的附加數學課程綱要的修訂版,並於二零零二年九月起由中四級開始施行。

數學教育的宗旨1

數學教育的宗旨如下:

- 協助青少年掌握數學的知識、技能及概念,增強他/她們對數學的信心和興趣,從而讓他/她們有效地運用數學及能夠從數學的觀點建立及解決問題;及
- 希望培養他/她們的思維能力及正面的數學學習態度,並讓他/她們 能終身不斷發展各種共通能力。

¹詳細解釋可見於課程發展議會(2000)。《學會學習—學習領域數學教育(諮詢文件)》。 第五章(課程架構)及附錄 3。香港:教育署。

附加數學科課程的目標

附加數學科的課程目標如下:

- 提高學生在一般數學教育以外的數學水平,為較高深的數學概念和程序提供一穩健而有啟發性的初階,並為將來繼續修讀數學的學生建立較佳的基礎;
- 加強學生構思、探究及數學推理的能力,以及運用數學來建立及解決 數學問題和其他有關學科的問題的能力;
- 加強學生以邏輯及批判性的數學語言與別人溝通的能力;及
- 培養學生對數學學習的正面態度,以及從美學和文化角度欣賞數學的 能力。

第二章 課程架構

本課程是由《中學課程綱要 - 附加數學(中四至中五)1992》修訂而成,主要是刪除或減少其中一些課題。有關本課程的變動及和《中學課程綱要 - 附加數學(中四至中五)1992》的比較可分別參照附錄一及附錄二。修訂的理念是希望能夠騰出更多空間用以鞏固概念及讓教師可以調整教學策略(以照顧學習差異)等,從而提升附加數學的學習效能。為了達到以上理念,本課程的總教學節數與《中學課程綱要 - 附加數學(中四至中五)1992》內所建議的節數並無分別(可參考本課程第三章所建議的教學時間分配)。

中學數學科課程將學習內容分為學習範疇,而本課程則將學習內容分為九個單元。每一單元均附有特定目標以提供清晰的重點,而每一單元內的內容更分為細項,俾能協助達到預期的特定學習目標。

本課程有些課題是來自中學數學科課程中的「數與代數範疇」及「度量、圖形與空間範疇」,但這些課題是要作更深入的處理。

內容及特定學習目標

單 元		內容	特定學習目標			
1	數學歸納法原理			理解數學歸納法的概念		
	1.1	數學歸納法的概念	2.	熟習數學歸納法的步驟		
	1.2	數學歸納法的步驟	3.	在各方面應用數學歸納法		
	1.3	數學歸納法的應用				
2	正整	指數的二項式定理	1.	認識 n!和 C ⁿ 的符號		
	2.1	n!和 C ⁿ 的符號	2.	利用二項式定理展開正整指		
	2.2	帕斯卡三角形		數的二項式		
	2.3	利用帕斯卡三角形展開二項				
		式				
	2.4	正整指數的二項式定理				

3	二次	方程及二次函數	1.	學習以配方法及求根公式解
	3.1	二次方程的解法		二次方程的技巧
	3.2	根的性質	2.	確定二次方程的根的性質
	3.3	二次函數	3.	求二次函數的極大值和極小
	3.4	絕對值		值
4	三角		1.	理解任意角的六個三角函數
	4.1	弧度法		及其圖像
	4.2	任意角的六個三角函數及其	2.	理解及應用複角公式及和積
		圖形		互變公式
	4.3	複角	3.	計算三角方程的通解
		(不包括三倍角公式及半角	4.	掌握二維及三維空間較難問
		公式)		題的解題技巧
	4.4	補助角的形式		
	4.5	三角方程的通解		
	4.6	三角形的解法		
	4.7	二維及三維空間的問題		
5	極限和	 和微分	1.	學習極限的概念
5	極限 5.1	和 微分 極限	1.	學習極限的概念 計算函數的極限
5				
5	5.1	極限	2.	計算函數的極限
5	5.1 5.2	極限	2. 3.	計算函數的極限 求函數的導數
5	5.1 5.2	極限導數微分法	2. 3.	計算函數的極限 求函數的導數 利用微分法的技巧解數學問
5	5.1 5.2	極限 導數 微分法 5.3.1 簡單代數函數和微分	2. 3.	計算函數的極限 求函數的導數 利用微分法的技巧解數學問
5	5.1 5.2	極限 導數 微分法 5.3.1 簡單代數函數和微分 法的法則	2. 3.	計算函數的極限 求函數的導數 利用微分法的技巧解數學問
5	5.1 5.2	極限 導數 微分法 5.3.1 簡單代數函數和微分 法的法則 5.3.2 複合函數和隱函數的	2. 3.	計算函數的極限 求函數的導數 利用微分法的技巧解數學問
5	5.1 5.2	極限 導數 微分法 5.3.1 簡單代數函數和微分 法的法則 5.3.2 複合函數和隱函數的 微分	2. 3.	計算函數的極限 求函數的導數 利用微分法的技巧解數學問
5	5.1 5.2	極限 導數 微分法 5.3.1 簡單代數函數和微分 法的法則 5.3.2 複合函數和隱函數的 微分 5.3.3 三角函數的微分	2. 3.	計算函數的極限 求函數的導數 利用微分法的技巧解數學問
5	5.1 5.2 5.3	極限 導數 微分法 5.3.1 簡單代數函數和微分 法的法則 5.3.2 複合函數和隱函數的 微分 5.3.3 三角函數的微分 5.3.4 二階導數	2. 3.	計算函數的極限 求函數的導數 利用微分法的技巧解數學問
5	5.1 5.2 5.3	極限 導數 微分法 5.3.1 簡單代數函數和微分 法的法則 5.3.2 複合函數和隱函數的 微分 5.3.3 三角函數的微分 5.3.4 二階導數 微分的應用	2. 3.	計算函數的極限 求函數的導數 利用微分法的技巧解數學問
5	5.1 5.2 5.3	極限 導數 微分法 5.3.1 簡單代數函數和微分 法的法則 5.3.2 複合函數和隱函數的 微分 5.3.3 三角函數的微分 5.3.4 二階導數 微分的應用 5.4.1 曲線的斜率、切線及法	2. 3.	計算函數的極限 求函數的導數 利用微分法的技巧解數學問
5	5.1 5.2 5.3	極限 導數 微分法 5.3.1 簡單代數函數和微分 法的法則 5.3.2 複合函數和隱函數的 微分 5.3.3 三角函數的微分 5.3.4 二階導數 微分的應用 5.4.1 曲線的斜率、切線及法 線	2. 3.	計算函數的極限 求函數的導數 利用微分法的技巧解數學問

た等不 1. 理解不等式的基本法則 2. 解一元一次不等式 6.1 不等式的基本法則 一元一次不等式 3. 解一元二次不等式 6.2 6.3 一元二次不等式 1. 求坐標平面上直線圖形的面 解析幾何 平面直角坐標及兩點間的距 7.1 穑 2. 求兩直線的交角 3. 了解直線的法線式,並利用有 7.2 直線圖形的面積 7.3 直線的傾角及斜率 關知識計算距離 4. 求圓的方程及圓與直線的交 兩直線的交角 7.4 7.5 直線的方程 點 法線式 5. 求圓的切線方程 7.6 7.7 直線族 6. 求直線族及圓族方程 7.8 軌跡的概念 7. 獲取參數方程與軌跡的概 圓的方程,圓與直線的交點 念,及解簡易軌跡問題 7.9 7.10 圓的切線方程 7.11 圓族 7.12 簡易的參數方程及軌跡問題 二維空間的向量 1. 學習向量的概念及表示法 8.1 純量及向量、向量相等、零 2. 學習二維空間向量的某些性 向量及單位向量 質及運算 3. 理解二維空間向量的幾何表 向量的和及差、純量與向量 8.2 相乘 示法 向量在直角坐標系的表示法 4. 應用向量方法解某些幾何問 8.3 兩向量的純量積 題 8.4 向量的應用、線段分點、平 8.5 行及垂直

9 積分法

- 9.1 不定積分
- 9.2 函數的積分法及簡易應用
- 認識不定積分法為微分的逆
- 2. 理解不定積分的性質

- 9.3 積分法的基本技巧
- 9.4 定積分
- 9.5 定積分的計算
- 9.6 定積分的應用

- 3. 認識不定積分法在幾何及物理上的一些應用
- 4. 認識及應用不定積分法的標準公式
- 5. 理解以定積分作為一個總和 的極限的基本原理
- 6. 理解及應用定積的基本性質
- 7. 應用定積分去求平面積及旋轉體體積

單元 3、4、6 和 7 是中學數學科課程內相應課題的延續。為求完整,本課程指引更把它們以細項形式羅列於該單元內。這些細項是學習該單元較高深部分的必備知識。

其餘的五個單元(單元 1、2、5、8 及 9)均是中學數學科課程以外的新教材。雖然這些課題也載於現行的中六數學課程,惟是其施教時的深度處理則是局限於較基本的層次。教師應避免以中六的層次來處理這些課題。

共通能力、價值觀及態度

由於我們生活在一個知識型的社會,我們的附加數學課程亦應強調共通能力²的培養及建立正面的態度和價值觀。共通能力主要是幫助學生學會掌握知識、建構知識和應用所學知識解決問題,因而幫助教師在課堂體現出「學會學習」的精神。我們會先集中發展學生溝通、創造和批判性思考這三種能力(課程發展議會,2001,第 23 頁),不過,這並不表示其它的能力不重要。

通過附加數學科課程培養正面的價值觀和態度亦非常重要。價值觀是學生 應發展的素質,是行為和判斷的準則,而態度是把工作做好所需的個人特 質。這些價值觀及態度滲透在課程內不同的單元中。以下是一些重要的價

² 該九種共通能力是協作能力、溝通能力、創造力、批判性思考能力、運用資訊科技能力、運算能力、解決問題能力、自我管理能力和研習能力。

值觀和態度:

- 在工作時持開放態度及負責任,以及在討論數學問題時願意聽取他人的意見;
- 展示追尋更高深數學知識的興趣;
- 展示對參與數學活動的熱忱;
- 展示在日常生活中或其他問題上應用數學知識的信心;
- 解決數學問題時,能獨立思考;
- 鍥而不捨地解決數學問題;及
- 欣賞數學的精確性、美感和文化方面的貢獻及其在人類事務上所發揮 的作用。

第三章 學與教建議

主導原則

教師在設計附加數學科的學與教活動時,應留意以下的各項原則:

- 重點是幫助學生學會學習而不單是只傳授學科上的知識;
- 所有學生均能根據不同的步伐學習;
- 採用以學習者為中心的策略;及
- 適當地使用資訊科技以提高學與教的效益。

建議次序

本課程共有9個單元,它們在本指引內以下列的次序編排:

單元

- 1. 數學歸納法原理
- 2. 正整指數的二項式定理
- 3. 二次方程及二次函數
- 4. 三角
- 5. 極限與微分法
- 6. 不等式
- 7. 解析幾何
- 8. 二維空間的向量
- 9. 積分法

在本課程指引所表示的次序只是一個例子。教師可因應學生的需要自行釐 訂教學次序。教師設計本科校本課程時,應留意在教授某個課題時,學生 已經具備應有的必備知識。

為著能達至本課程的學習目標及體現本課程的精神,教師施教時宜將內容連貫,並鼓勵學生多作數學的探究、推理和溝通等活動。

建議時間分配

在教節的安排上,假設每一教節是四十分鐘及每週上課五天,本指引建議的時間分配是每週中有四個教節。以下列出的建議時間分配是讓教師作為一個參考,以釐訂教學內容的深度。學校可因應需要而自行制訂一個相若或略作調整的教學時間分配表。

	單元	時間分配
1.	數學歸納法原理	10
2.	正整指數的二項式定理	11
3.	二次方程及二次函數	9* + 12
4.	三角	18* + 28
5.	極限與微分法	44
6.	不等式	3* + 4
7.	解析幾何	12* + 35
8.	二維空間的向量	20
9.	積分法	22
		42* + 186

備註: 單元 3、4、6 和 7 的基礎內容已包括在中學數學科課程內,並且以*表示。這些基礎內容乃是學習該等單元的較高深部分的必備知識。

每一單元的時間分配均以分數表示。所列數字是分子。分母是 200 , 大約相當於該兩個學年內所需的授課節數的總和。總節數 200 已將兩學年內因測驗及考試的節數刪除。餘下的 14 節是預留作鞏固活動、增潤活動和學期完結前溫習之用。從所列出的時間分配,可顯示出教授每一單元及細項的時間應佔整個課程的總教授時間的分量。

以下為各單元及其所佔時間的詳細分配:

		時間	分配
單元 1	數學歸納法原理		
1.1	數學歸納法的概念		2
1.2	數學歸納法的步驟		3
1.3	數學歸納法的應用		5
			10
出二 っ	正数比數的二百学字理		
	正整指數的二項式定理		1
2.1	n! 及 C ⁿ 的符號		1
2.2	帕斯卡三角形		1
2.3	利用帕斯卡三角形展開二項式		2
2.4	正整指數的二項式定理		7
			11
單元 3	二次方程及二次函數		
3.1	二次方程的解法	9*	
3.2	根的性質		5
3.3	二次函數		5
3.4	絕對值		2
		9* +	- 12
單元 4	三角		
4.1	弧度法	3*	
4.2	任意角的六個三角函數及其圖形	5* +	- 5
4.3	複角		9
4.4	補助角的形式		3
4.5	三角方程的通解		5
4.6	三角形的解法	10*	
4.7	二維及三維空間問題		6
		18* +	- 28

單元 5 極限和微分 5.1 極 限 6 5.2 導數 5 微分法 5.3 5.3.1 簡單代數函數和微分法的法則 5 5.3.2 複合函數和隱函數的微分 6 5.3.3 三角函數的微分 5 5.3.4 二階導數 2 5.4 微分的應用 5.4.1 曲線的斜率、切線及法線 5 5.4.2 極大及極小、簡易曲線的描繪 7 5.4.3 變率 3 44 單元 6 不等式 不等式的基本法則 6.1 1* 一元一次不等式 6.2 1* + 1 一元二次不等式 6.3 1* + 3 3* + 單元 7 解析幾何 7.1 平面直角坐標及兩點間的距離 1* 7.2 直線圖形的面積 3 7.3 直線的傾角及斜率 1 * 兩直線的交角 7.4 4 7.5 直線的方程 1* 7.6 法線式 5 直線族 7.7 5 7.8 軌跡的概念 1* + 3 7.9 圓的方程,圓與直線的交點 8* 圓的切線方程 7.10 5 7.11 圓族 5 7.12 簡易的參數方程及軌跡問題 5

12* +

35

單元 8 二維空間的向量 純量及向量、向量相等、零向量及單位向 8.1 3 量 向量的和及差、純量與向量相乘 8.2 4 向量在直角坐標系的表示法 8.3 3 兩向量的純量積 5 8.4 向量的應用、線段分點、平行及垂直 8.5 5 20 單元 9 積分法 9.1 不定積分 2 函數的積分法及簡易應用 9.2 5 9.3 積分法的基本技巧 3 9.4 定積分 2 定積分的計算 9.5 3 定積分的應用 9.6 7 22

總計: 42* + 186

備註: 若附加數學科和中學數學科非由同一位教師教授,附加數學科教師 應留意學生是否已具備各細項的必備知識或在教授較高深部分之 前是否已重溫有關知識。雖然就行政而言學校方面或會覺得由不同 教師教授是較為方便,但就這兩個課程的契合安排而言,由同一位 教師教授這兩科是較有利的。

建議學與教策略

學習附加數學的過程與學習的結果同樣重要。教師應提供足夠的時間讓學生發展數學概念、掌握解難技巧和培養思維能力。教師應注意,從本質而言,附加數學科與中學數學科並沒有分別。它只包括一些中學數學科不同的課題,而在相同的課題上,附加數學科的處理亦較深入。因此,中學數

學及附加數學兩科的學與教策略大致相同。

無論本課程強調哪樣的學與教策略,教師才是課堂教學的關鍵。教師教學是否生動及解釋是否清楚是學生十分關注的。多元化的學習及教學活動肯定對學生有利。向學生提供數學概念在生活上的應用可激發他們學習附加數學科的動機。為了培養學生欣賞數學文化的能力,教師可考慮介紹帕斯卡(帕斯卡三角或楊輝三角)、笛卡兒(坐標幾何)、萊布尼茲及牛頓(微積分)等數學家的成就。

在設計及準備學習及教學活動以幫助學生學習時,教師應特別留意以下的 策略:

照顧學習差異

附加數學科課程是為了能力較佳、且將會在中六、七修讀理科組別或純粹 數學科的學生而設計的。基本上,選修附加數學科的學生能力差異並不大, 但是,在九年免費教育制度下,更多學生選修這科目,使學生的差異擴闊。

學習差異問題並沒有容易且快捷的方法解決,但是,為學生提供不同難度的課業或活動是可行的。對於學習能力稍遜的學生,課業應較為簡單和注重基礎訓練;對於學習能力較高的學生,課業必須具挑戰性,才能培養及維持他們對學習數學的興趣。另一方面,教師亦可安排所有學生做同樣的課業或習作,但按學生的能力給予不同程度和形式的輔助。例如,給予學習能力較弱的學生更多提示,把較複雜的問題分為多個較小部分等。

資訊科技的使用亦可為教師提供照顧學生學習差異的另一種解決方法。在教授如三角函數的圖像及曲線的極點等課題時,教師可利用合適的軟件作簡單、快捷及準確的演示,這是傳統教學所不能辦到的。對較弱的學生來說,應用資訊科技學習尤為重要。

適當運用資訊科技

多年來,教師常以直述式(用粉筆及講授形式)教授附加數學科。近年來,電腦的廣泛應用使學習及教授附加數學科方面得到了改進。應用資訊科技於學習及教授數學有以下的好處:

- (a) 資訊科技可增進及擴展數學學習的經驗,以及鼓勵學生積極參與探究活動。
- (b) 資訊科技可用作支持、補足及擴展學習和教學活動的工具。這些活動包括:
 - 練習及導修;
 - 圖表及圖像分析;
 - 模擬及數模;
 - 提取及處理資料;及
 - 數據處理。
- (c) 資訊科技可引發新的教學策略及課堂練習模式。例如,教師可在情境學習中給學生提供互動的環境。

在學校數學教育方面,資訊科技可作為

- (i) 工具 教師可利用演示軟件來投影筆記、利用幾何軟件來展示圖像和數學模型、利用某些圖像計算機或繪圖軟件的放大縮小功能來繪畫不同函數的圖像。例如,教師可應用電腦程式展示一些複雜三角函數的圖像。教師亦可應用 Java Applets 為學生提供在網頁上展示互動的證明。
- (ii) 導師 很多數學唯讀光碟所載的軟件均能充當導師的角色,向學生教授數學概念。這些軟件利用文字、圖解、聲音和隨附的分等級練習或測驗解釋有關的數學概念。學生可利用這些軟件溫習在課堂所學的數學知識、糾正弱項、或在教師授課前預習新的課題。學生亦可按照本身的程度和進度,選做合適的練習,以進一步鞏固所學的數學知識。
- (iii) 受指導者 教師可根據試算表或其他程式語言,研製切合本身教學需要和策略的教學計劃。而學生則可以運用軟件探討圖像的特性。

我們預期教師及學生均能明智和審慎地決定何時使用科技。例如,學生應判斷用作圖軟件或以計算方法描繪函數 $f(x) = x^3 - 3x^2 + x - 4$ 的圖像。教師應決定使用電腦或其他工具作出展示,以及決定某項課業應選用哪一種軟件最為合適。

此外,教師亦應考慮採用不同形式的小組活動,附以資訊科技以促進協作學習或鼓勵探究式學習。堂課或家課的選擇應注重思考和理解,而非僅著眼於運算複雜的數式、符號或只是死記公式。

適當運用各式各樣的教學資源

除了資訊科技外,教師可以運用以下的教學資源去計劃及進行學與教活動:

- 教科書或教材套;
- 參考書;
- 錄影帶;
- 繪圖及製造模型的一些工具;
- 由報刊、廣告小冊子或地圖等所得的資料;及
- 由圖書館或資源中心所得的資料。

教科書是主要教學資源之一。透過教科書,學生應能獲得若干數學知識和技能,建立正確的學習態度及能明白當中文字及圖像所顯示的概念與訊息。教科書不應單被用作灌輸知識,或只提供習題以操練學生的運算技能。以量和深度計,有部分教科書傾向提供遠超過課程要求的練習。為了避免過份的教授或過多的操練,教師應選擇教科書中適當部分以配合學生的需要。除了教科書外,教師可以參考教育署分發給學校的參考資料。

越高年級的數學語言越為抽象。不同的學習理論均建議學生應多操作一些實物,作為發展符號概念的基礎。教師可使用立體模型、方塊、繪圖板等來展示某些數學概念,以及讓學生*建立及運用概念*前,進行具體的*遊戲*活動。

廣告傳單或報刊上的圖和圖片等都能提供較新的資料及較容易引起學生的 學習興趣。圖書館或由教育署所開設的多個資源中心,如課程資源中心, 均藏有大量相關的資料給予教師參考。

在九十年代,互聯網更成為另一分享與提取資料的主要來源。如何提取及選擇資訊將會成為廿一世紀重要學習活動之一。

最後,教師應注意本文件只是一份指引,而不是必須嚴格跟從的教學計劃。 我們極鼓勵教師探索和發展適合學生能力的教學方法及教學進度。

第四章 評估建議

評估的目的

教師大多同意有需要評估學生的作業及與教學有關的活動。評估包括收集、判斷及理解有關學生學習表現的資料。評估可以是進展性評估或總結 性評估。

- 進展性評估量度學生的進度,從而找出學生懂什麼及能做什麼。所得 資料用作回饋以改善學與教。進展性評估應為經常及持續進行的活動,以不同方式進行,其中可包括課堂上的觀察及討論,以及學生堂 課與家課。
- 總結性評估量度學生在某一時段(例如,在一個學期、學年或學習階段終結時)的整體表現。它主要就學生學習表現及進度提供一個全面及扼要的描述。

評估的目的包括:

- 提供可靠的資料以改善學與教的安排;
- 提供回饋讓學生了解其學習進度;及
- 提供匯報資料。

進展性評估或總結性評估的運用應視乎其目的而定。如要診斷學生在學習上的強項與弱項,定時的評估是必要的,所以,進展性評估在學與教的過程中顯得越來越重要。其實這概念並不新鮮,教師均會在課堂上經常進行評估。大部份教師都會在課堂上提問,要求學生在黑板或在座位內回答問題,進行討論及組織課堂活動等。這些都是進展性評估的活動。這裏所強調的是搜集資料應該是經常性的,其目的是希望改善及提升學與教的質素。一般來說,評估不應被視為單獨的活動而應被視為學與教周期中一個不可或缺的一部分。

評估的標準及策略

學生的學習表現不能從單一分數或單一種評估活動作出準確的量度或反

映。教師應透過不同模式的評估活動去收集學習成果。教師在進行評估時 應留意以下這兩點:

- 評估(特別是*正式*的測驗/考試)可令學生感到憂慮和造成不必要的 壓力,而在極端的情況下,學生甚至失去學習的自信和興趣;及
- 過多的評估會減少學習和授課的時間,更加會增加教師不必要的工作量,而最終會增加學生及教師的壓力。

學校須要設計一套合適學校文化及需要的評估政策/活動。在設計的同時應切記評估的主要目的是搜集資料用以改善學與教的過程。

任何一個評估活動均須要考慮教學結果而釐訂評估策略。最合適的收集資料方式或程序是取決於使用資料的目的及甚麼種類的表現能提供所需資料。評估學生在附加數學科的表現應考慮以下三個準則:

準則一: 溝通能力

準則二: 數學技巧,包括

(i) 學習結果及數學過程;及

(ii) 數學工具的使用。

準則三: 數學應用,包括

(i) 在日常生活(真實或模擬)應用數學;

(ii) 在數學情境下應用數學;及

(iii) 就問題的解作合理的解釋。

以下扼要說明了以上述準則評估學生表現的一些重點:

準則一:溝通能力

這是一個雙向的過程,並應表現於每一個附加數學科的課堂內。就收集學生在這方面表現的資料時,應以學生在課堂上對活動/課業的回應的溝通技巧作整體的考慮。問與答(例如,要求學生描述當某曲線上的 Q 點趨近在同一曲線上的 P 點時,弦線 PQ 的改變)及課堂討論(例如,讓學生解釋為何在証明命題 P(n)是正確時,祇須証明 P(1)是正確及若 P(k)是正確,則 P(k+1)是正確便可以)都是用作搜集有關資料的一些非常有效方法。

準則二:數學技巧

評估的重點應放於學生是否能應用數學知識、結果及程序和使用已學的數學技巧於類似的情境上。在附加數學科中,學生數學技巧的運用可於學生能否解常規性問題上反映出來。教師應鼓勵學生在家課及堂課中清楚及有層次地表達其解題方法。在課堂中,由於要節省時間,學生可只提出解題的方案(例如,以微分法找出極點,測試極大或極小點,找出 x 截距和 y 截距,最後利用這些資料描繪圖像 》。在擬題方面應考慮以下幾方面:

- 題目應有不同的難度以照顧學生的能力差異及找出學生在數學上的強項和弱項;
- 題目須具備能考核學生各種不同的數學技巧;
- 題目能讓學生應用數學於日常生活及數學的情境中;及
- 題目應能讓學生展示能否達到溝通能力的準則。

準則三:數學應用

評估的重點應集中於學生能否在不常見的情境下應用數學。這個準則可以 透過在日常生活情況及數學情境中應用數學而作出評估。同時,有關答案 的合理性解釋的評估應於問題中一併考慮。

策劃評估時,教師應讓學生有機會顯示不同的能力(包括高層次思維能力)。故此,評估應包括多元化的活動如課業或練習,務求函蓋所有學習重點。以下是一些可以在附加數學科課程中推行的評估活動:

- 堂上討論及口頭報告(例如,討論為何當兩向量的純量積等於零時, 則此兩向量互相垂直);
- 觀察學生堂上的學習表現:
- 堂課及家課;
- 專題設計(例如,函數圖像及其導數圖像的配對);
- 課堂小測驗:
- 探究活動(例如,楊輝三角、極限的概念、假設地球為一球體或橢球體時地球的體積);
- 研究課題(例如,如何令包裝某一商品所需的材料達致最少);及
- 測驗和考試。

總括來說,一個平衡的評估方案應包含不同類形的有效評估活動,以判斷 能否達到既定的學習目標。

評估的回饋

回饋可以用口頭或書面的形式去進行。沒有適當的回饋,評估便失去了意義。教師應了解評估的精神及原則在於利用收集的資料改善學生的學習及調整教師教學的策略和進度。向學生作出的回饋應就其工作表現的素質上提出改善建議,應盡量避免與其他同學比較。即時回饋是十分有效的,可作為課堂上進展性評估的一部分。家課應盡快作批改,並糾正學生的錯誤概念。教師應特別留意改善學生共有的弱項。教師可利用從進展性評估所得的資料作修訂教學策略之用,並決定應否在以後的日常教學中加入一些鞏固活動或增潤項目。

總結性評估的回饋可提供資料給學生作為規劃隨後的學習,給教師設計下一學期或學年的教學次序、範圍和深度。這些資料對學校調整校本附加數學科課程的目標和策略是十分重要的。

為使學生在學校及家庭的學習同步,家長與教師之間需要一個有效的溝通途徑。有些家長認為背誦和多練習對學生學習極為重要。這種觀念會引致過量操練而忽略高層次思維能力的培養。各種家庭與學校的非正式活動或學生的成績報告都可以是學校與家庭的溝通渠道。根據評估活動所收集的資料,學校可透過這些渠道向家長提供如何改善學生學習的方法。

《中學課程綱要:附加數學(中四至中五)(1992)》 內容變動摘要

單元	課題	細項	內容修訂
1	數學歸納法原理	1.3	刪去第(2)點「簡易不等式證
			明」。
4	三角	4.3	「複角」
			刪去「三倍角公式」及「半倍
			角公式」。
5	極限和微分	5.3	「微分法」
			在 5.3.4 內,將「高階導數」改
			為「二階導數」。
		5.4	「微分的應用」
			刪去 5.4.4「微增量」。
6	不等式	6.4	刪去「形式如 $\frac{ax+b}{cx+d} \ge k$ 的不等
		0.4	式。
			10 10
		6.5	「絕對值」
			此課題應與「單元 3:二次方程
			及二次函數」一起施教。
		6.6	刪去「含絕對值的不等式」。
		6.7	刪去「絕對不等式」。
7	解析幾何	7.12	刪去「標準位置上的拋物線、
			橢圓及雙曲線」。

單元	課題	細項	內容修訂
9	積分法	9.3	「積分法的基本技巧」
			不需要以「代換法」求積分。
			只須學習形如(ax+b)n(不包括
			$n=-1$)、 $\sin(ax+b)$ 及 $\cos(ax+b)$
			等被積函數的積分公式。
		9.4	「定積分」
			這細項的要求只限於 9.1-9.3
			細項內已學的技巧。
		9.5	「定積分的計算」
			這細項的要求只限於 9.1-9.3
			細項內已學的技巧。
		9.6	「定積分的應用」
			有關求體積問題只限於繞著
			x 軸或 y 軸旋轉而成的旋轉體。
10	複數	10	刪去整個單元。

備註:有關修改的詳細資料請參閱附錄二。

本附加數學科課程 與

《中學課程綱要:附加數學(中四至中五)(1992)》 內容對照

本附加	吅數學	課程指引是	由一九ナ	ι二年編訂	之附加	數學課	程綱	要修	訂
而成	, 主要	是刪除或減	少其中一	-些課題。	為方便	教師參	考,	這些	課
題以[方格覆蓋。	說明及備	請註則列於		方格內] , 讓	教師	i較
易掌护	屋教學	的內容和深	度。						

3. 課程

單元1:數學歸納法原理

特定目標:

1. 理解數學歸納法的概念。

- 2. 熟習數學歸納法的步驟。
- 3. 在各方面應用數學歸納法。

	內容	時間 分配	教 學 建 議
	1.1 數學歸納法的概念	2	學生應認識到有些公式只對正整數才成立。例子包括等差級數及等比級數n項和的公式。
<u> </u>			那些公式雖或可用其他方法求得,但亦可利用公式中的變數是正整數的特點,用另一種方法來證明。這種方法就是「數學歸納法」。
			教師可先用一些簡單但不常見的公式,以作說明。例如:
			$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{1}{6}n(n+1)(2n+1)$
			當 $n=1$ 、2 及 3 時,這公式成立。我們預期這公式對所有正整數 n 都成立。但我們怎作保證呢?例如,當 $n=100$ 或 257 時,我們怎知道那公式仍然成立?這就須證明其有效性了。
	1.2 數學歸納法的步驟	3	數學歸納法的步驟可用一簡單的例子帶出,而不應一開始便引用一般命題 P(n)。所得結果可於稍後才總結為一般性。
			教師應特別注重數學歸納法證明時的表達方式。以下是一個例子。

	內容	時間 分配	教 學 建 議
			例 求證對所有正整數 n , $1+2+3+\cdots+n=\frac{n(n+1)}{2} \ .$
			設 P(n) 為命題 " $1+2+3+\cdots+n=\frac{n(n+1)}{2}$ "。 當 $n=1$, 左方 $=1$
			右方 = $\frac{1(I+I)}{2}$ =1 ∴ 左方 = 右方
			故 P(1) 成立。 假設 P(k)成立,即
12			$1+2+3+\cdots+k = \frac{k(k+1)}{2}$ •
,,			當 n=k+1, 左方 = 1+2+3+···+k+(k+1)
			$= \frac{k(k+1)}{2} + (k+1)$
			$= (k+1)(\frac{k}{2}+1)$
			$= \frac{(k+1)[(k+1)+1]}{2}$
			= 右方 ∴ P(k + 1) 亦成立。
			根據數學歸納法原理, P(n) 對所有正整數 n 皆成立。
			用來介紹數學歸納法步驟的例子,不應涉及太多運算,否則會分散學生的注 意力,而不能集中理解基本的論點。以下是另一些有用的例子:
	內容	時間 分配	教 學 建 議
			$1 \times 2 + 2 \times 3 + 3 \times 4 + \dots + n(n+1) = \frac{1}{3}n(n+1)(n+2)$
	1.3 數學歸納法的應用	<u>-4</u> 5	教師如今可介紹一些較複雜的例子,以說明數學歸納法的效用。例如:證明 對任何正整數 n,
	1.3 數學歸納法的應用	-4 5	教師如今可介紹一些較複雜的例子,以說明數學歸納法的效用。例如:證明 對任何正整數 n, $(1) 1^2+3^2+5^2+\dots+(2n-1)^2=\frac{1}{3}n\Big(4n^2-1\Big)$
	1.3 數學歸納法的應用	<u>-4</u> 5	教師如今可介紹一些較複雜的例子,以說明數學歸納法的效用。例如:證明 對任何正整數 n, (1) $1^2+3^2+5^2+\cdots+(2n-1)^2=\frac{1}{3}n\Big(4n^2-1\Big)$ (2) $1\cdot n+2(n-1)+3(n-2)+\cdots+(n-2)2+n\cdot 1=\frac{1}{6}n(n+1)(n+2)$
1	1.3 數學歸納法的應用	<u>-4</u> 5	教師如今可介紹一些較複雜的例子,以說明數學歸納法的效用。例如:證明 對任何正整數 n, (1) $1^2+3^2+5^2+\cdots+(2n-1)^2=\frac{1}{3}n\Big(4n^2-1\Big)$ (2) $1\cdot n+2(n-1)+3(n-2)+\cdots+(n-2)2+n\cdot 1=\frac{1}{6}n(n+1)(n+2)$ (3) $\sin\alpha+\sin2\alpha+\sin3\alpha+\cdots+\sin n\alpha$
13	1.3 數學歸納法的應用	_45	教師如今可介紹一些較複雜的例子,以說明數學歸納法的效用。例如:證明 對任何正整數 n, (1) $1^2+3^2+5^2+\cdots+(2n-1)^2=\frac{1}{3}n\Big(4n^2-1\Big)$ (2) $1\cdot n+2(n-1)+3(n-2)+\cdots+(n-2)2+n\cdot 1=\frac{1}{6}n(n+1)(n+2)$
13	1.3 數學歸納法的應用	-4 5	教師如今可介紹一些較複雜的例子,以說明數學歸納法的效用。例如:證明 對任何正整數 n, (1) $1^2+3^2+5^2+\cdots+(2n-1)^2=\frac{1}{3}n\Big(4n^2-1\Big)$ (2) $1\cdot n+2(n-1)+3(n-2)+\cdots+(n-2)2+n\cdot 1=\frac{1}{6}n(n+1)(n+2)$ (3) $\sin\alpha+\sin2\alpha+\sin3\alpha+\cdots+\sin n\alpha$
13	1.3 數學歸納法的應用	<u>-4</u> 5	教師如今可介紹一些較複雜的例子,以說明數學歸納法的效用。例如:證明對任何正整數 n, $(1) 1^2 + 3^2 + 5^2 + \dots + (2n-1)^2 = \frac{1}{3} n \Big(4n^2 - 1 \Big)$ $(2) 1 \cdot n + 2(n-1) + 3(n-2) + \dots + (n-2)2 + n \cdot 1 = \frac{1}{6} n(n+1)(n+2)$ $(3) \sin\alpha + \sin2\alpha + \sin3\alpha + \dots + \sin n\alpha$ $= \frac{\sin\Big(\frac{n+1}{2}\alpha\Big)\sin\Big(\frac{n}{2}\alpha\Big)}{\sin\frac{\alpha}{2}}$ 其中 α 並不等於 2π 的倍數。 (若學生已學過有關的三角函數公式,則此題可給學生作例子;否則可留待
13	1.3 數學歸納法的應用	-4 5	教師如今可介紹一些較複雜的例子,以說明數學歸納法的效用。例如:證明對任何正整數 n, $(1) 1^2 + 3^2 + 5^2 + \dots + (2n-1)^2 = \frac{1}{3} n \Big(4n^2 - 1 \Big)$ $(2) 1 \cdot n + 2(n-1) + 3(n-2) + \dots + (n-2)2 + n \cdot 1 = \frac{1}{6} n(n+1)(n+2)$ $(3) \sin\alpha + \sin2\alpha + \sin3\alpha + \dots + \sin n\alpha$ $= \frac{\sin\Big(\frac{n+1}{2}\alpha\Big)\sin\Big(\frac{n}{2}\alpha\Big)}{\sin\frac{\alpha}{2}}$ 其中 α 並不等於 2π 的倍數。 (若學生已學過有關的三角函數公式,則此題可給學生作例子;否則可留待複習時用。) 除可用來證明級數和的公式外,數學歸納法的應用,還應包括以下各類: (1) 可整除性的證明,例如,
13	1.3 數學歸納法的應用	_45	教師如今可介紹一些較複雜的例子,以說明數學歸納法的效用。例如:證明對任何正整數 n, $(1) 1^2 + 3^2 + 5^2 + \dots + (2n-1)^2 = \frac{1}{3} n \Big(4n^2 - 1 \Big)$ $(2) 1 \cdot n + 2(n-1) + 3(n-2) + \dots + (n-2)2 + n \cdot 1 = \frac{1}{6} n(n+1)(n+2)$ $(3) \sin\alpha + \sin2\alpha + \sin3\alpha + \dots + \sin n\alpha$ $= \frac{\sin \Big(\frac{n+1}{2} \alpha \Big) \sin \Big(\frac{n}{2} \alpha \Big)}{\sin \frac{\alpha}{2}}$ 其中 α 並不等於 2π 的倍數。 (若學生已學過有關的三角函數公式,則此題可給學生作例子;否則可留待複習時用。) 除可用來證明級數和的公式外,數學歸納法的應用,還應包括以下各類: $(1) \overline{O}$ 可整除性的證明,例如, $(a) 7^n + 3n - 1 \qquad \overline{O}$ 被9 整除
13	1.3 數學歸納法的應用	5	教師如今可介紹一些較複雜的例子,以說明數學歸納法的效用。例如:證明對任何正整數 n, $(1) 1^2 + 3^2 + 5^2 + \dots + (2n-1)^2 = \frac{1}{3} n \Big(4n^2 - 1 \Big)$ $(2) 1 \cdot n + 2(n-1) + 3(n-2) + \dots + (n-2)2 + n \cdot 1 = \frac{1}{6} n(n+1)(n+2)$ $(3) \sin\alpha + \sin2\alpha + \sin3\alpha + \dots + \sin n\alpha$ $= \frac{\sin\left(\frac{n+1}{2}\alpha\right)\sin\left(\frac{n}{2}\alpha\right)}{\sin\frac{\alpha}{2}}$ 其中 α 並不等於 2π 的倍數。 (若學生已學過有關的三角函數公式,則此題可給學生作例子;否則可留待複習時用。) 除可用來證明級數和的公式外,數學歸納法的應用,還應包括以下各類: $(1) 可整除性的證明,例如,$ $(a) 7^n + 3n - 1 \qquad 可被 9 整除$ $(b) 23^n - 1 \qquad 可被 11 整除$
13	1.3 數學歸納法的應用	<u>-4</u> 5	教師如今可介紹一些較複雜的例子,以說明數學歸納法的效用。例如:證明對任何正整數 n, $(1) 1^2 + 3^2 + 5^2 + \dots + (2n-1)^2 = \frac{1}{3} n \Big(4n^2 - 1 \Big)$ $(2) 1 \cdot n + 2(n-1) + 3(n-2) + \dots + (n-2)2 + n \cdot 1 = \frac{1}{6} n(n+1)(n+2)$ $(3) \sin\alpha + \sin2\alpha + \sin3\alpha + \dots + \sin n\alpha$ $= \frac{\sin \Big(\frac{n+1}{2} \alpha \Big) \sin \Big(\frac{n}{2} \alpha \Big)}{\sin \frac{\alpha}{2}}$ 其中 α 並不等於 2π 的倍數。 (若學生已學過有關的三角函數公式,則此題可給學生作例子;否則可留待複習時用。) 除可用來證明級數和的公式外,數學歸納法的應用,還應包括以下各類: $(1) \overline{O}$ 可整除性的證明,例如, $(a) 7^n + 3n - 1 \qquad \overline{O}$ 被9 整除

•	內容	時間 分配	教 學 建 議
14			當 n = 1, $a^{2n-1} + b^{2n-1} = a + b$
•	內容	時間 分配	
. 15		- 8	(3) 簡易應用問題,例如求圖中所示金字塔堆中共有球多少個球。 教師應提醒學生,在有些命題中,n 不是由 1 開始的。

單元 2: 正整指數的二項式定理

特定目標:

- 1. 認識 n! 及 Cⁿ 的符號。
- 2. 利用二項式定理展開正整指數的二項式。

		內容	時間 分配	教 學 建 議
16		n! 及 C_r^n 的符號 帕斯卡三角形	1	教師應介紹 $n!$ 和 C_r^n 的定義。排列和組合的概念只宜向能力較高的學生提及。 $0!=1$ 亦應以定義方式提出。教師應讓學生認識 C_r^n 的其他記號法,如 ${}_nC_r$ 及 $\binom{n}{r}$)。 學生應能驗證 $C_r^n = C_{n-r}^n$ 及 $C_{r-l}^n + C_r^n = C_r^{n+1}$ 。在證明後者時,教師宜指導學生由左方開始證明至右方為止。 類似下面的例子可供參考: 例 若 $C_{n+1}^{18} = C_{2n-1}^{18}$,試求 n 的可能值。 教師可著學生以直接乘法展開 $(a+b)^2$ 、 $(a+b)^3$ 、 $(a+b)^4$ 和 $(a+b)^5$ 。然後將各展開式中的係數填入下面的空格中: $(a+b)^0$ ($(a+b)^1$ ($(a+b)^2$ ($(a+b)^3$ ($(a+b)^4$ ($(a+b)^4$ ($(a+b)^4$ ($(a+b)^5$)
		內容	時間 分配	教學建議
	2.3	利用帕斯卡三角形展開二項式	2	教師應引導學生發現每個係數都可以用 C_r^n 的形式寫出及帕斯卡三角形的特性如 $C_r^n = C_{n-r}^n$, $C_0^n = 1$, $C_n^n = 1$ 及 $C_{r-1}^n + C_r^n = C_r^{n+1}$ 。 學生應可利用帕斯卡三角形去展開 $(a+b)^n$,其中正整數 $n \le 5$ 。教師可提供以下的例子: 例一 (a) 按 x 的升冪序展開 $(2x+3)^4$, (b) 按 x 的降冪序展開 $(3x^2-1)^5$ 。 例二 試求 $(2x^3 - \frac{1}{3x^2})^5$ 展開式中的常數項。
17	2.4	正整指數的二項式定理	7	教師可用帕斯卡三角形證明正整指數的二項式定理,這個定理的證明方法應是一個讓學生重溫數學歸納法的好機會。 在 $(x+y)^n$ 的展開式中,學生應可發現 (a) 總共有 $(n+1)$ 項及 (b) 按 x 的降冪表達時,第 $(r+1)$ 項是 $C_r^n x^{n-r} y^r$ 。 在二項式的展開式中,教師無須引入最大值項和係數間的關係。教師可用以下的例子: 例一 展開 (a) $(2x+3y)^4$ (b) $(3x-\frac{2}{x})^5$ 例二 試求 $(3-\frac{x}{2})^6(1+x)^5$ 展開式中 x^3 的係數。

	內容	時間 分配	教 學 建 議
18			例三
_		8 11	

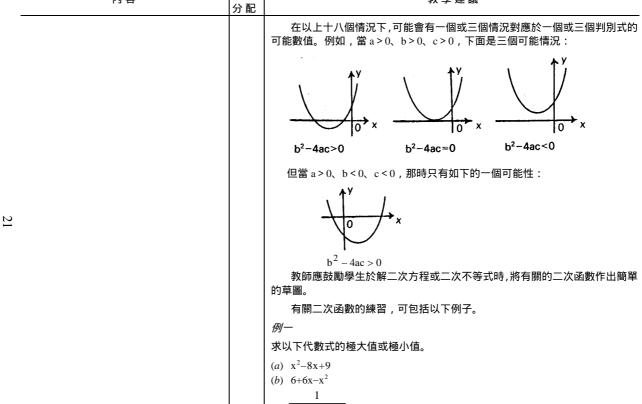
單元3:二次方程及二次函數

特定目標:

- 學習以配方法及求根公式解二次方程的技巧。
 確定二次方程的根的性質。
- 3. 求二次函數的極大值和極小值。

	內容	時間 分配	教學建議
	3.1 二次方程的解法	-8* 9*	教師應先利用例子如 $x^2-8x+9=0$,後再利用 x^2 係數不等於 1 的其他例子如 $3x^2-6x-14=0$ 去介紹配方法解二次方程。當學生已熟習這技巧後,教師可嘗試利用同一方法去推導出二次方程 $ax^2+bx+c=0$ ($a\neq 0$) 求根公式:
			$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} .$
19			學生應沒有運用求根公式的困難,並應探究二次方程的兩根 $lpha$ 、 eta 的和及積
			與其係數 a 、 b 、 c 的關係。學生應牢記 $\alpha+\beta=-\frac{b}{a}$ 與 $\alpha\beta=\frac{c}{a}$ 這兩個關系,然後再
			應用於其他計算方面,如求 $\frac{1}{\alpha}$ + $\frac{1}{\beta}$ 、 α^2 + β^2 和 α^3 + β^3 的值、及依據已知條件作出二
			次方程的練習。
			教師應討論由一線性方程及一二次方程組成的聯立方程的解法,代數方法與 圖解法也要同時介紹。 圖解法最能有效地解釋為何二次方程會有兩個相異根或是 兩個相同根、甚至無實根。教師應強調圖解法帶出的幾何意義。
	3.2 根的性質	-4 5	教師應引導學生去發現二次方程 $ax^2+bx+c=0$ 的根的性質是由它的判別式 $D=b^2-4ac$ 所確定。學生應能清楚分辨二次方程的根是否實數、還是 複數 ;是相同、還是相異;是有理數、還是無理數。 非實數
			例如:二次方程 $(b-c)x^2+(c-a)x+(a-b)=0$,其中 a 、 b 、 c 是相異整數,它的判別式是 $(c-a)^2-4(b-c)(a-b)=(a+c-2b)^2$ 。這可引出方程的兩根是有理數。同樣,學生應看出那兩根在 $a+c-2b=0$ 的情況下是相同的。

	內容	時間 分配	教 學 建 議
18			例三
_		8 11	


單元3:二次方程及二次函數

特定目標:

- 學習以配方法及求根公式解二次方程的技巧。
 確定二次方程的根的性質。
- 3. 求二次函數的極大值和極小值。

	內容	時間 分配	教學建議
	3.1 二次方程的解法	-8* 9*	教師應先利用例子如 $x^2-8x+9=0$,後再利用 x^2 係數不等於 1 的其他例子如 $3x^2-6x-14=0$ 去介紹配方法解二次方程。當學生已熟習這技巧後,教師可嘗試利用同一方法去推導出二次方程 $ax^2+bx+c=0$ ($a\neq 0$) 求根公式:
			$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} .$
19			學生應沒有運用求根公式的困難,並應探究二次方程的兩根 $lpha$ 、 eta 的和及積
			與其係數 a 、 b 、 c 的關係。學生應牢記 $\alpha+\beta=-\frac{b}{a}$ 與 $\alpha\beta=\frac{c}{a}$ 這兩個關系,然後再
			應用於其他計算方面,如求 $\frac{1}{\alpha}$ + $\frac{1}{\beta}$ 、 α^2 + β^2 和 α^3 + β^3 的值、及依據已知條件作出二
			次方程的練習。
			教師應討論由一線性方程及一二次方程組成的聯立方程的解法,代數方法與 圖解法也要同時介紹。 圖解法最能有效地解釋為何二次方程會有兩個相異根或是 兩個相同根、甚至無實根。教師應強調圖解法帶出的幾何意義。
	3.2 根的性質	-4 5	教師應引導學生去發現二次方程 $ax^2+bx+c=0$ 的根的性質是由它的判別式 $D=b^2-4ac$ 所確定。學生應能清楚分辨二次方程的根是否實數、還是 複數 ;是相同、還是相異;是有理數、還是無理數。 非實數
			例如:二次方程 $(b-c)x^2+(c-a)x+(a-b)=0$,其中 a 、 b 、 c 是相異整數,它的判別式是 $(c-a)^2-4(b-c)(a-b)=(a+c-2b)^2$ 。這可引出方程的兩根是有理數。同樣,學生應看出那兩根在 $a+c-2b=0$ 的情況下是相同的。

	內 容	時間 分配	教 學 建 議
20	3.3 二次函數		教學建議 教師應給予學生有關的練習。以下是一個例子: 例 求 m 值的範圍,使得以下方程的根為實數。 $y = m(x+2)$ $y^2 = 8x$ 在這例子中,學生應能找出 $m^2x^2 + (4m^2 - 8)x + 4m^2 = 0$ 的方程、及 $(4m^2 - 8)^2 - 16m^4 \ge 0$ 這條件。 學生應能運用配方法把代數式 $ax^2 + bx + c$ 寫成 $a\left(x + \frac{b}{2a}\right)^2 + \frac{4ac - b^2}{4a}$ 的形式。教師應引導學生去確定二次函數 $ax^2 + bx + c$ 的極 大值(若 $a < 0$)或極小值(若 $a > 0$)為 $\frac{4ac - b^2}{4a}$,而 x 的對應值為 $-\frac{b}{2a}$ 。 學生也應知道直線 $x = -\frac{b}{2a}$ 是二次函數 $ax^2 + bx + c$ 的對稱軸。 教師可與學生討論二次函數 $ax^2 + bx + c$ 的圖像,同時引導學生總結以下不同的情況:
		時間公配	教學建議
		分配	在以上十八個情況下,可能會有一個或三個情況對應於一個或三個判別式的

內容	時間 分配	教 學 建 議
	2 8* + 8 9*+ 12	例二 求 m 和 n 的值,得使以下數式恆為正數。 (a) $3x^2 + 2x + m$ (b) $nx^2 - 5x + 4$ 細項 6.5 「絕對值」在此引入較為適合。

單元4:三角

- 1. 理解任意角的六個三角函數及其圖像。
- 2. 理解及應用複角公式及和積互變公式。
- 3. 計算三角方程的通解。
- 4. 掌握解二維及三維空間較難問題的技巧。

		內容	時間 分配	教 學 建 議
	4.1	弧度法	<u>2*</u> 3*	學生應已明白弧度的意義。他們應能推導 $s = r \theta$ 及 $A = \frac{1}{2}r^2\theta$ 兩條公式和計
				算弧長及扇形面積。
				學生應能掌握角度與弧度的換算。計算三角函數和涉及弧度的公式應有足夠 的練習。
23	4.2	任意角的六個三角函數及其圖形	4* + 4 5* + 5	學生應已熟習正弦、餘弦和正切函數及其在 $0 \Xi 2\pi$ 區間內的圖像。這些函數的定義域可伸展至實數全集。
				學生可發現正弦、餘弦和正切都是周期函數而其周期分別是 2π 、 2π 和 π 。 教師可用單位圓來定義餘割、正割和餘切。
				學生應知道
				$\csc \theta = \frac{1}{\sin \theta}$
				$\sec\theta = \frac{1}{\cos\theta}$
				$\cot \theta = \frac{1}{\tan \theta}$
				$1 + \tan^2 \theta = \sec^2 \theta \mathcal{D}$
				$1 + \cot^2 \theta = \csc^2 \theta$

內容	時間 分配	教 學 建 議
	2 8* + 8 9*+ 12	例二 求 m 和 n 的值,得使以下數式恆為正數。 (a) $3x^2 + 2x + m$ (b) $nx^2 - 5x + 4$ 細項 6.5 「絕對值」在此引入較為適合。

單元4:三角

- 1. 理解任意角的六個三角函數及其圖像。
- 2. 理解及應用複角公式及和積互變公式。
- 3. 計算三角方程的通解。
- 4. 掌握解二維及三維空間較難問題的技巧。

		內容	時間 分配	教 學 建 議
	4.1	弧度法	<u>2*</u> 3*	學生應已明白弧度的意義。他們應能推導 $s = r \theta$ 及 $A = \frac{1}{2}r^2\theta$ 兩條公式和計
				算弧長及扇形面積。
				學生應能掌握角度與弧度的換算。計算三角函數和涉及弧度的公式應有足夠 的練習。
23	4.2	任意角的六個三角函數及其圖形	4* + 4 5* + 5	學生應已熟習正弦、餘弦和正切函數及其在 $0 \Xi 2\pi$ 區間內的圖像。這些函數的定義域可伸展至實數全集。
				學生可發現正弦、餘弦和正切都是周期函數而其周期分別是 2π 、 2π 和 π 。 教師可用單位圓來定義餘割、正割和餘切。
				學生應知道
				$\csc \theta = \frac{1}{\sin \theta}$
				$\sec\theta = \frac{1}{\cos\theta}$
				$\cot \theta = \frac{1}{\tan \theta}$
				$1 + \tan^2 \theta = \sec^2 \theta \mathcal{D}$
				$1 + \cot^2 \theta = \csc^2 \theta$

	內容	時間 分配	教 學 建 議
24	4.3 複角	- 10 -9	教師應指示出如何去化簡角是 $\frac{n\pi}{2}\pm\theta$ (n 是偶數或奇數)的六個三角函數。應給予學生涉及關係式和恆等式的分類練習。 相信學生亦可發現餘割、正割和餘切都是周期函數而其周期分別是 2π 、 2π 和 π 。 例一 證明恆等式 $\sec^2\theta$ $\csc^2\theta=\sec^2\theta+\csc^2\theta$ 。 例二 已知 $\frac{\sin^2\theta}{1+2\cos^2\theta}=\frac{3}{19}$,且 $\frac{\pi}{2}<\theta<\pi$,試求 $\frac{\sin\theta}{1+2\cos\theta}$ 的值。 教師可利用下列圖中三角形 PQR 的面積來介紹 $\sin(\alpha\pm\beta)=\sin\alpha\cos\beta\pm\cos\alpha\sin\beta$ 的公式:
	內容	時間分配	教學建議
25			教師亦可利用線段 OP 在線 OX 的投映來顯示 $\cos(\alpha+\beta)=\cos\alpha\cos\beta-\sin\alpha\sin\beta$,

		時間	
		分配	75 于 左 65
			$2\cos A\cos B = \cos (A+B) + \cos (A-B)$
			$2 \sin A \sin B = \cos (A-B) - \cos (A+B)$
			$\sin x + \sin y = 2\sin \frac{x+y}{2}\sin \frac{x-y}{2}$
			$\sin x - \sin y = 2\cos\frac{x+y}{2}\sin\frac{x-y}{2}$
			$\cos x + \cos y = 2\cos \frac{x+y}{2}\cos \frac{x-y}{2}$
			$\cos x - \cos y = -2\sin \frac{x+y}{2}\sin \frac{x-y}{2}$
			其它有關公式亦可推出。
			二倍角公式 sin 2A = 2sinAcosA
26			$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$
			$\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$
			$\sin^2 A = \frac{1}{2}(1 - \cos 2A)$
			$\cos^2 A = \frac{1}{2} (1 + \cos 2A)$
			2 '
		n+ 88	
	內 容	時間 分配	
			例一
			運用 $\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$, 求證 $\tan \frac{\pi}{8}$ 是方程 $x^2 + 2x - 1 = 0$ 的根,從而求
			出 $\tan \frac{\pi}{8}$ 的根式值。
27			
7			
			例四
			求證 $\cos \theta + \cos 3\theta + \cos 5\theta + \cos 7\theta = \frac{\sin 8\theta}{2 \sin \theta}$, 其中 $\sin \theta \neq 0$ 。
		1 !	

	內 容	時間 分配	教學建議
28	4.4 補助角的形式	2 3	教師可從這例子引導學生先去探究數式 $2\sin\theta(\cos\theta+\cos 3\theta+\cos 5\theta+\cos 7\theta)$ 及說明下列三角級數的和亦可用同樣的方法處理 $C=\cos\theta+\cos(\theta+\alpha)+\cos(\theta+2\alpha)+\cdots+\cos(\theta+n\alpha)$ 和 $S=\sin\theta+\sin(\theta+\alpha)+\sin(\theta+2\alpha)+\cdots+\sin(\theta+n\alpha)$ 例五 解下列方程,其中 $0^{\circ}\leq\theta\leq 360^{\circ}$:
		時間分配	教學建議 教學建議
29	4.5 三角方程的通解	4 5	例— (a) 若 $\sqrt{3} \sin \theta + \cos \theta = r \sin(\theta + \alpha)$ 其中 $r > 0$ 和 $0^{\circ} \le \alpha \le 90^{\circ}$,試求 r 及 α . (b) 若 $y = \frac{1}{\sqrt{3 \sin \theta + \cos \theta + 7}}$,利用(a)的結果,試求 y 值的值域。 例二 設 $f(\theta) = 12 \sin \theta - 5 \cos \theta + 8$ 。 (a) 試將 $f(\theta)$ 化為 $r \sin(\theta - \alpha) + c$ 的形式,其中 r , α 和 c 是常數及 $0^{\circ} \le \theta \le 90^{\circ}$ 。 (b) 利用(a)部的結果,或其它方法,試求 $f(\theta)$ 的最小值。 教師可要求學生列出方程 $\sin \theta = \sin 30^{\circ}$ 的所有解。學生應知道 $\theta = 30^{\circ}$ 是 θ 的其中一個解,而 $180^{\circ} - 30^{\circ}$, $360^{\circ} + 30^{\circ}$, $540^{\circ} - 30^{\circ}$, 是其他可能的解。 教師應引導學生去結合上述結果為兩組: $\theta = 2n(180^{\circ}) + 30^{\circ}$ 和 $\theta = (2n-1)(180^{\circ}) - 30^{\circ}$ 及 簡化為單一的公式 $\theta = n \cdot (180^{\circ}) + (-1)^{n}(30^{\circ})$,其中 n 是整數。

	內容	時間 分配	教 學 建 議
			在這階段,學生應不難知道 $\sin\theta=\sin\alpha$ 的通解是 $\theta=n\cdot(180^\circ)+(-1)^n\alpha$ 。 教師應和學生討論如何求出 $\cos\theta=\cos\alpha$ 的通解和總結 $\theta=n\cdot(360^\circ)\pm\alpha$ 。
			同樣地, $\tan\theta = \tan\alpha$ 的通解是 $\theta = n\cdot 180^\circ + \alpha_o$ 教師宜將上述三個結果同時以弧度表示。
			$\theta = n\pi + (-1)^n \alpha$ 若 $\sin \theta = \sin \alpha$ $\theta = 2n\pi \pm \alpha$ 若 $\cos \theta = \cos \alpha$ $\theta = n\pi + \alpha$ 若 $\tan \theta = \tan \alpha$
			應提醒學生不要將弧度和度在同一公式中混合使用。他們可用反函數的記法,例如 $\theta = n\pi + (-1)^n \sin^{-1} \left(\frac{1}{2}\right)$ 來表示。
			以下的例子可供參考。 <i>例一</i>
30			試求 $\cos^2 y = \frac{1}{2}$ 的通解。
			從原式可得出 $\cos y = \pm \frac{1}{\sqrt{2}}$ 而解是 $y = 2n\pi \pm \frac{\pi}{4}$ 和 $2n\pi \pm \frac{3\pi}{4}$ 其中 n 是整數。對 能力較高的學生,可重新安排答案如下:
			對 $y = 2n\pi \pm \frac{\pi}{4}$,
			$y = k\pi \pm \frac{\pi}{4}$, 其中 k 是偶數或零。 對 $y = 2n\pi \pm \frac{3\pi}{4}$,
			$y = k\pi \pm \frac{\pi}{4}$, 其中 k 是奇數。
			聯合後,解為 $y = n\pi \pm \frac{\pi}{4}$,其中 n 是整數。
		時間	7t € 53 7±5 ÷±±

	內容	時間 分配	教學建議
			例二 求 $2\cos\theta = \cot\theta$ 的通解。 學生或會忽略 $\cos\theta = 0$ 是其中一個解。教師應提醒學生不要消去可能是零的因式。 例三 求 $\cos 3\theta = \sin\theta$ 的通解。
			可用正弦或餘弦的方法來解。用正弦的方法,可得 $\theta = 180 ^{\circ} n + (-1)^{n} (90 ^{\circ} - 3\theta)$ 及用餘弦的方法,可得 $3\theta = 360 ^{\circ} n \pm (90 ^{\circ} - \theta)$ 。故利用餘弦的公式較易處理。 <i>例四</i> 求 $\sin 2x + \sin 4x = \cos x$ 的通解。
31			可利用恆等式 $\sin A + \sin B = 2 \sin \frac{A+B}{2} \cos \frac{A-B}{2}$, 將方程寫為 $2 \sin 3x \cos x = \cos x$ 的形式。
			求 $2\sin\frac{\theta}{2}\sin\frac{3\theta}{2}=1$ 的通解。 可利用恆等式 $2\sin A\sin B=\cos\left(A-B\right)-\cos\left(A+B\right)$ 來解這方程。
		10*	例六 求 $\sqrt{3}\cos\theta + \sin\theta = 1$ 的通解。 解方程時,學生可先將 $\sqrt{3}\cos\theta + \sin\theta$ 化為 $r\sin(\theta + \alpha)$ 或 $r\cos(\theta - \alpha)$ 的形式。
	4.6 三角形的解法	10.	有關解三角形的數學問題需要應用正弦和餘弦公式。對一任意銳角三角形 $ABC , \text{學生應不難利用下圖} , \text{推導出} \frac{\sin B}{b} = \frac{\sin C}{c}$ 和 $c^2 = a^2 + b^2 - 2ab \cos C$ 。

	內 容	時間 分配	教 學 建 議
			b B a-x x
32			這些公式可伸延及應用於任意三角形,包括鈍角三角形。其次,正弦公式亦可由一個任意三角形及其外接圓推導出來。至於餘弦公式,除了運用畢氏定理外,亦可從下列三恆等式中推出。 a = b cos C + c cos B b = a cos C + c cos A
2			c = b cos A + a cos B 在這情況下,學生應注意畢氏定理是餘弦公式的特殊情況。 應提供學生足夠的例子及習作。解三角形的習作亦應包括下列的情況: (1)任意兩個角和一條邊 (2)任意兩條邊及其中一邊的對角 (3)任意兩條邊及其夾角
			(4)任意三條邊 學生應能選擇及應用適合的公式。教師亦應利用例子詳加解釋兩義情況。下圖對此會有幫助。
	內容	時間分配	教 學 建 議
	內容	I	教學建議 c>b>csinB c>b>csinB 数師應介紹較艱深的問題,包括有關複角及任意三角比的問題。

	內 容	時間 分配	教 學 建 議
34			(a) 試證 $PR = \frac{\ell \sin \theta}{\sin(x + \theta)}$ 。 (b) 試以 θ 表 $\angle PCQ$ 並由此以 ℓ 、 x 、 θ 表 PQ 。 (c) 試證 ΔPQR 的面積為 $\frac{\ell^2 \sin \theta \cos \theta \sin 2x}{2 \sin(x + \theta) \cos(x - \theta)}$, 且該面積可表示成 $\frac{\ell^2 \sin 2\theta}{2} \left(1 - \frac{\sin 2\theta}{\sin 2x + \sin 2\theta}\right)$ 。(*) (d) (i) 若 $\theta = \frac{\pi}{8}$, 求 x 值的可能範圍。由此 , 利用(*)推出 ΔPQR 的極大面積 , 並以 ℓ 表 ΔPQR 的極大面積。 例二 **Notation of the image of th
	內容	時間 分配	教 學 建 議
			一汽球 B 由平地上兩點 P、Q 同時觀察,P 在 Q 的北面及相距 c 米。從 P 及 Q 兩點測得汽球的方位角分別為 $S\alpha^{\circ}E$ 及 $N\beta^{\circ}E$ 。從 P 點測得 B 的仰角為 θ° 。 R 是 B 點在地上的投影(見圖)。 (a) 試證當汽球在高度 h 米時, $h = \frac{c \tan \theta^{\circ} \sin \beta^{\circ}}{\sin(\alpha^{\circ} + \beta^{\circ})} o$ (b) 已知 $\theta = 40$, $\alpha = 54$ 及 $\beta = 46$, (i) 試求從 θ 點測得 B 的仰角; (ii) 設 M 是 PQ 的中點,試求從 M 點測得 B 的仰角和方位角。

16*+24 18*+28

單元 5:極限和微分

特定目標:

- 1. 學習極限的概念。
- 2. 計算函數的極限。
- 3. 求函數的導數。
- 4 利用微分法的技巧解數學問題。

	內	容	時間 分配						教學 3	建議				
36	5.1 極限		-5- 6	時 f(x) 函數在 lim f x→x ₀ 時簡易	所趨近 $x = x_0$ (x) 和 $有理逐$ $x) = \frac{x^2}{x}$	的數值 時是連 $\lim_{h\to 0} f(x)$ 數的極	道。教師 連續的, (x + h) 章 極限。 が り圖像す	可指出 但不課 等符號, 亦應介約 並考慮電 描繪f(x	出函數 需對函數 並應和 留一些 當 x 趨	2	時的極 F嚴謹的 易代數函 以便澄》	限是 fd 方處理。 數的極 情極限的	(x ₀)當且 教師歷 限和趨	且僅當 應介紹 向無窮

內容	時間 分配	教 學 建 議
		$y = \frac{x^2 - 4}{x - 2}$ 3 2

37

當 x 越來越接近 2 時 , f(x) 越來越接近 4 並記為

$$\lim_{x \to 2} f(x) = 4$$

或
$$\lim_{x\to 2} \frac{x^2-4}{x-2} = 4$$

除了(2 , 4)一點外 , 很明顯 , $f(x)=\frac{x^2-4}{x-2}$ 的圖像是和 y=x+2 一樣的。當 x 從兩方面迫近 2 時 , 可記作

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2} \frac{(x - 2)(x + 2)}{x - 2} = \lim_{x \to 2} (x + 2) = 4$$

但教師應強調 f(x)在 x=2 時是沒有定義的。

內 容	時間分配	教 學 建 議
38		例二 試求 $\lim_{x\to 2} x^2$ 。 由於函數 $f(x) = x^2$ 在 $x = 2$ 時是連續的 ,所以極限等如 $f(2)$ 。 $\lim_{x\to 2} x^2 = 2^2 = 4$ 。 教師可用圖像和數字說明。 例三 試求 $\lim_{x\to 8} \frac{x-8}{\sqrt{x+1}-3}$ 。 教師應提醒學生把根式有理化的技巧: $\frac{x-8}{\sqrt{x+1}-3} = \frac{(x-8)(\sqrt{x+1}+3)}{(\sqrt{x+1}-3)(\sqrt{x+1}+3)}$ $= \frac{(x-8)(\sqrt{x+1}+3)}{(x+1)-9}$ $= \sqrt{x+1}+3$ 由此 $\lim_{x\to 8} \frac{x-8}{\sqrt{x+1}-3} = \lim_{x\to 8} (\sqrt{x+1}+3) = 6$ 學生應知道 $\frac{x-8}{\sqrt{x+1}-3}$ 在 $x=8$ 時是沒有定義的。 例四 考慮當 x 趨向無窮大時 $f(x)$ 。 教師可介紹記號 $\lim_{x\to \infty} f(x)$ 。
內 容	時間分配	教 學 建 議
39		學生應能列出下表和描繪 $\frac{1}{x}$ 的圖像。

	內容	時間	教學建議
40	內容	分配	$(c) \lim_{x \to x_0} [c \cdot f(x)] = c \cdot \lim_{x \to x_0} f(x) \text{ , } \\ \downarrow \text{ im } f(x) \\ \downarrow \text{ im } f($
	內容	時間 分配 -4- 5	例題和習作可包括 $\frac{\sin 3\theta}{2\theta}$ 、 $\frac{\tan \theta}{2\theta}$ 、 $\frac{1-\cos \theta}{\theta^2}$ 和 $\frac{\sin m\theta}{\sin n\theta}$ 其中 m n 為常數。
			義為 $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$ 。 教師應介紹導數的常用記號例如 $f'(x)$ 、 $\frac{dy}{dx}$ 、 y' 、 $\frac{d[f(x)]}{dx}$ 和 $\frac{d}{dx}[f(x)]$ 等、並應強調 $\frac{dy}{dx}$ 是一個記號而不應視為一個分數。 教師應舉例說明如何從基本原理求導數。 例題應包括簡單的多項式和 $\frac{1}{ax+b}$ 、 $\frac{ax+b}{cx+d}$ 、 $\sqrt{ax+b}$ 及 $\frac{ax+b}{\sqrt{cx+d}}$ 其中 a、b、c、d 為常數的代數式。至於三角函數的處理方法則可留待介紹了微分法的法則後才作討論。
41	5.3 微分法 5.3.1 簡單代數函數和微分法的法則	5	教師可導出下列微分法的法則,其中 c 為一常數而 u、 v 是 x 的函數。 1. $\frac{dc}{dx} = 0$ 2. $\frac{d}{dx}[x^n] = nx^{n-1}$ 其中 n 為一整數(冪規律) 注意: 教師可介紹和利用 n 為正整數的冪規律 $\frac{d}{dx}[x^n] = nx^{n-1}$ 而無需証明,但當 n 是一個整數(包括正數和負數)的情況則宜在介紹了商法則之後才作討論。 3. $\frac{d}{dx}[cf(x)] = c\frac{d}{dx}[f(x)]$ 4. $\frac{d}{dx}[u+v] = \frac{du}{dx} + \frac{dv}{dx}$ 5. $\frac{d}{dx}[u\cdot v] = u\frac{dv}{dx} + v\frac{du}{dx}$ (積法則)

	內 容	時間 分配	教 學 建 議
-			6. $\frac{d}{dx} \left[\frac{u}{v} \right] = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} $ (商法則)
			教師宜先用多項式作例題,示範如何微分一個常數、x的乘冪和x的乘冪之。
			線性組合等。當學生已熟識了 $n=0,1,2$, 的冪規律 $\frac{d}{dx}[x^n]=nx^{n-1}$,他們已可以把一個多項式逐項微分。當確定了微分函數的和、積和商的法則之後,學生便
			可以微分多項式的積和有理函數,例如 $(2x+3)(4x^2+5)$ 和 $\frac{1-2x^2}{2+3x}$ 等。
			下列的例題亦適用:
42			n 為一正整數,試從基本原理求 x" 的導數。 例二
			已知若 n 為一正整數時 $\frac{d[x^n]}{dx} = nx^{n-1}$, 同時若 $f(x) \neq 0$
			$\boxed{\parallel \frac{\mathrm{d}}{\mathrm{d}x} \left[\frac{1}{\mathrm{f}(x)} \right] = \frac{-\frac{\mathrm{d}}{\mathrm{d}x} [\mathrm{f}(x)]}{[\mathrm{f}(x)]^2}} .$
			証明對所有整數 , $\frac{d[x^n]}{dx} = nx^{n-1}$ 正確。
	5.3.2 複合函數和隱函數的微分	-4 6	教師應介紹一些複合函數、隱函數和反函數的例子。
		6	教師然後應介紹鏈式法則:
			$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \cdot \frac{\mathrm{d}u}{\mathrm{d}x}$
			其中 y 是 u 的函數及 u 是 x 的函數。
-	內容	時間 分配	教學建議
_			鏈式法則是可以用來微分複合函數、隱函數和反函數的。教師應介紹多兩個 有用的公式
			$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}u}}{\mathrm{d}x}$
			$\frac{dy}{dx} = \frac{\frac{dy}{du}}{\frac{dx}{du}}$
			du
			$\mathcal{B} \qquad \frac{\mathrm{d}x}{\mathrm{d}y} = \frac{1}{\frac{\mathrm{d}y}{\mathrm{d}x}}$
			ΔU
43			$ D = \frac{du}{dy} = \frac{1}{\frac{dy}{dx}} $ $ ie $
43			$\Delta = \frac{du}{dy} = \frac{1}{\frac{dy}{dx}}$ $ = \frac{1}{\frac{dy}{dx}} $ 這些公式不需要嚴謹的証明但要有充足的應用題。教師可以用鏈式法則來証 明當 n 是一有理數時 $\frac{d}{dx}[x^n] = nx^{n-1}$ 亦成立。在現階段學生應能運用微分的法
43			$ \begin{array}{c} du \\ D & \dfrac{dx}{dy} = \dfrac{1}{\dfrac{dy}{dx}} \\ & = \dfrac{1}{\dfrac{dx}} \\ & = \dfrac{1}{\dfrac{dx}} \\ & = $
43			$\frac{du}{dy} = \frac{1}{\frac{dy}{dx}}$ 這些公式不需要嚴謹的証明但要有充足的應用題。教師可以用鏈式法則來証 明當 n 是一有理數時 $\frac{d}{dx}[x^n] = nx^{n-1}$ 亦成立。在現階段學生應能運用微分的法 則於包括有理指數的代數式,例如 $(3x^2+4)^{\frac{5}{2}}$ 或 $x(2x-3)^{-\frac{3}{2}}$ 等。教師可利用 曲線的標準方程或參數方程作為例題和習題。
43			$ \begin{array}{c} du \\ \overline{dy} = \dfrac{1}{\dfrac{dy}{dx}} \\ & \text{ise} \triangle x \text{ ise} \triangle x can be made of the model of $
43			$\frac{du}{dy} = \frac{1}{\frac{dy}{dx}}$ 這些公式不需要嚴謹的証明但要有充足的應用題。教師可以用鏈式法則來証 明當 n 是一有理數時 $\frac{d}{dx}[x^n] = nx^{n-1}$ 亦成立。在現階段學生應能運用微分的法 則於包括有理指數的代數式,例如 $(3x^2+4)^{\frac{5}{2}}$ 或 $x(2x-3)^{-\frac{3}{2}}$ 等。教師可利用 曲線的標準方程或參數方程作為例題和習題。

內容	時間 分配	教 學 建 議
		$\begin{cases} x = t^2 \\ y = 2t \end{cases}$
		$\Re \frac{\mathrm{d}y}{\mathrm{d}x}$.
		學生應能運用 $\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = \frac{dy}{dt} \cdot \frac{1}{\frac{dx}{dx}}$ 。
		dt 例三
		求函數 $x^2 + y^2 = 25$ 的 $\frac{dy}{dx}$ 在點 (3, 4) 處的值。
		教師可把結果用圖解說明。 <i>例四</i>
4		已知當 n 為任何整數時 $\frac{d}{dx}[x^n] = nx^{n-1}$ 。
		証明當 $m = \frac{p}{q}$, 其中 p、q 為整數且 $q > 0$, $\frac{d}{dx}[x^n] = nx^{n-1}$ 。
		設 $y = x^n = x^{\frac{p}{q}}$,則 $y^q = x^p$
		在方程兩邊同時對 x 求導數:
		$qy^{q-1}\frac{dy}{dx} = px^{p-1}$
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \left(\frac{p}{q}\right) \cdot \frac{x^{p-1}}{y^{q-1}}$
		$= \left(\frac{\mathbf{p}}{\mathbf{q}}\right) \cdot \mathbf{x}^{\frac{\mathbf{p}}{\mathbf{q}} - 1}$
		由此,可知當 n 是一有理數時, $\frac{d}{dx}[x^n] = nx^{n-1}$ 亦成立。
	·	
內 容	時間分配	教學建議
內 容 5.3.3 <i>三角函數的微分</i>		在推出六個三角函數的導數之前,教師應先替學生溫習三角函數的極限、複 角公式或和積互變公式等。更應時常提醒學生所有角是以弧度為單位。sin x 的導
	分配	在推出六個三角函數的導數之前,教師應先替學生溫習三角函數的極限、複 角公式或和積互變公式等。更應時常提醒學生所有角是以弧度為單位。sin x 的導 數是可以如下推出:
	分配	在推出六個三角函數的導數之前,教師應先替學生溫習三角函數的極限,複角公式或和積互變公式等。更應時常提醒學生所有角是以弧度為單位。sin x 的導數是可以如下推出:
	分配	在推出六個三角函數的導數之前,教師應先替學生溫習三角函數的極限、複角公式或和積互變公式等。更應時常提醒學生所有角是以弧度為單位。 $\sin x$ 的導數是可以如下推出: $\frac{d}{dx}[\sin x] = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$ $= \lim_{h \to 0} \frac{2\cos(x+\frac{h}{2}) \cdot \sin(\frac{h}{2})}{h}$
	分配	在推出六個三角函數的導數之前,教師應先替學生溫習三角函數的極限、複角公式或和積互變公式等。更應時常提醒學生所有角是以弧度為單位。sin x 的導數是可以如下推出:
	分配	在推出六個三角函數的導數之前,教師應先替學生溫習三角函數的極限、複角公式或和積互變公式等。更應時常提醒學生所有角是以弧度為單位。 $\sin x$ 的導數是可以如下推出: $\frac{d}{dx}[\sin x] = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$ $= \lim_{h \to 0} \frac{2\cos(x+\frac{h}{2}) \cdot \sin(\frac{h}{2})}{h}$ $= \lim_{h \to 0} \cos\left(x+\frac{h}{2}\right) \cdot \lim_{h \to 0} \frac{\sin\left(\frac{h}{2}\right)}{\frac{h}{2}}$ $= \cos x \cdot 1$ $= \cos x$
5.3.3 三角函數的微分	分配	在推出六個三角函數的導數之前,教師應先替學生溫習三角函數的極限、複角公式或和積互變公式等。更應時常提醒學生所有角是以弧度為單位。 $\sin x$ 的導數是可以如下推出: $\frac{d}{dx}[\sin x] = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$ $= \lim_{h \to 0} \frac{2\cos(x+\frac{h}{2}) \cdot \sin(\frac{h}{2})}{h}$ $= \lim_{h \to 0} \cos\left(x+\frac{h}{2}\right) \cdot \lim_{h \to 0} \frac{\sin\left(\frac{h}{2}\right)}{\frac{h}{2}}$ $= \cos x \cdot 1$ $= \cos x$ 其它三角函數的導數是可以由基本原理推出,亦可以利用以上的公式和導數公式推出來,下列表示如何求 $\cos x$ 的導數:
	分配	在推出六個三角函數的導數之前,教師應先替學生溫習三角函數的極限、複角公式或和積互變公式等。更應時常提醒學生所有角是以弧度為單位。 $\sin x$ 的導數是可以如下推出: $\frac{d}{dx}[\sin x] = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$ $= \lim_{h \to 0} \frac{2\cos(x+\frac{h}{2}) \cdot \sin(\frac{h}{2})}{h}$ $= \lim_{h \to 0} \cos\left(x+\frac{h}{2}\right) \cdot \lim_{h \to 0} \frac{\sin\left(\frac{h}{2}\right)}{\frac{h}{2}}$ $= \cos x \cdot 1$ $= \cos x$ 其它三角函數的導數是可以由基本原理推出,亦可以利用以上的公式和導數公式推出來,下列表示如何求 $\cos x$ 的導數: $\frac{d}{dx}[\cos x] = \frac{d}{dx}\left[\sin\left(\frac{\pi}{2} - x\right)\right]$
5.3.3 三角函數的微分	分配	在推出六個三角函數的導數之前,教師應先替學生溫習三角函數的極限、複角公式或和積互變公式等。更應時常提醒學生所有角是以弧度為單位。 $\sin x$ 的導數是可以如下推出: $\frac{d}{dx}[\sin x] = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$ $= \lim_{h \to 0} \frac{2\cos(x+\frac{h}{2}) \cdot \sin(\frac{h}{2})}{h}$ $= \lim_{h \to 0} \cos\left(x+\frac{h}{2}\right) \cdot \lim_{h \to 0} \frac{\sin\left(\frac{h}{2}\right)}{\frac{h}{2}}$ $= \cos x \cdot 1$ $= \cos x$ 其它三角函數的導數是可以由基本原理推出,亦可以利用以上的公式和導數公式推出來,下列表示如何求 $\cos x$ 的導數: $\frac{d}{dx}[\cos x] = \frac{d}{dx}\left[\sin\left(\frac{\pi}{2} - x\right)\right]$ $= -\cos\left(\frac{\pi}{2} - x\right)$
5.3.3 三角函數的微分	分配	在推出六個三角函數的導數之前,教師應先替學生溫習三角函數的極限、複角公式或和積互變公式等。更應時常提醒學生所有角是以弧度為單位。 $\sin x$ 的導數是可以如下推出: $\frac{d}{dx}[\sin x] = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$ $= \lim_{h \to 0} \frac{2\cos(x+\frac{h}{2}) \cdot \sin(\frac{h}{2})}{h}$ $= \lim_{h \to 0} \cos\left(x+\frac{h}{2}\right) \cdot \lim_{h \to 0} \frac{\sin\left(\frac{h}{2}\right)}{\frac{h}{2}}$ $= \cos x \cdot 1$ $= \cos x$ 其它三角函數的導數是可以由基本原理推出,亦可以利用以上的公式和導數公式推出來,下列表示如何求 $\cos x$ 的導數: $\frac{d}{dx}[\cos x] = \frac{d}{dx}\left[\sin\left(\frac{\pi}{2} - x\right)\right]$
5.3.3 三角函數的微分	分配	在推出六個三角函數的導數之前,教師應先替學生溫習三角函數的極限、複角公式或和積互變公式等。更應時常提醒學生所有角是以弧度為單位。 $\sin x$ 的導數是可以如下推出: $\frac{d}{dx}[\sin x] = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$ $= \lim_{h \to 0} \frac{2\cos(x+\frac{h}{2}) \cdot \sin(\frac{h}{2})}{h}$ $= \lim_{h \to 0} \cos\left(x+\frac{h}{2}\right) \cdot \lim_{h \to 0} \frac{\sin\left(\frac{h}{2}\right)}{\frac{h}{2}}$ $= \cos x \cdot 1$ $= \cos x$ 其它三角函數的導數是可以由基本原理推出,亦可以利用以上的公式和導數公式推出來,下列表示如何求 $\cos x$ 的導數: $\frac{d}{dx}[\cos x] = \frac{d}{dx}\left[\sin\left(\frac{\pi}{2} - x\right)\right]$ $= -\cos\left(\frac{\pi}{2} - x\right)$ $= -\sin x$ 教師可讓學生微分 $\tan x$ 、 $\cot x$ 、 $\sec x$ 和 $\csc x$ 而得出下列的結果: $\frac{d}{dx}[\tan x] = \sec^2 x$
5.3.3 三角函數的微分	分配	在推出六個三角函數的導數之前,教師應先替學生溫習三角函數的極限、複角公式或和積互變公式等。更應時常提醒學生所有角是以弧度為單位。 $\sin x$ 的導數是可以如下推出: $\frac{d}{dx}[\sin x] = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$ $= \lim_{h \to 0} \cos\left(x + \frac{h}{2}\right) \cdot \lim_{h \to 0} \frac{\sin\left(\frac{h}{2}\right)}{\frac{h}{2}}$ $= \cos x \cdot 1$ $= \cos x$ 其它三角函數的導數是可以由基本原理推出,亦可以利用以上的公式和導數公式推出來,下列表示如何求 $\cos x$ 的導數: $\frac{d}{dx}[\cos x] = \frac{d}{dx}\left[\sin\left(\frac{\pi}{2} - x\right)\right]$ $= -\cos\left(\frac{\pi}{2} - x\right)$ $= -\sin x$ 教師可讓學生微分 $\tan x$, $\cot x$, $\sec x$ 和 $\csc x$ 而得出下列的結果:

	內容	時間 分配	教 學 建 議
	<i>二階</i> 5.3.4 <i>高階導數</i>	3 2	$\frac{d}{dx}[cosec\ x] = -cosec\ x\ cot\ x$ 教師應提供足夠的例題和練習來幫助學生應用上述的公式及其它導數的公式在簡易代數和三角函數中,但是,反三角函數之微分並不須要。 二階 高階導數是可以由一階導數 微分獲得。已知一函數 $y=f(x)$ 可微分得其 一階導數 $y'=\frac{dy}{dx}=f'(x)$,則 $f'(x)$ 的導數稱為二階導數並以 $y''=\frac{d^2y}{dx^2}=f'(x)=\frac{d}{dx}\left[\frac{dy}{dx}\right]$ 為記號。
46	5.4 微分的應用 5.4.1 <i>曲線的斜率、切線及法線</i>	-4 5	可介紹下列的例題: 例一 已知 $x=a\sin(wt+k)$,其中 a ,w 和 k 為常數,証明 $\frac{d^2x}{dt^2}=-w^2x$ 。 例二 設 $f(\theta)=\sqrt{\theta^2+k}\sin 2\theta$,其中 k 為常數。若 $f'(0)=1$,求 k 的值。 例三 若 $y=a\sin x+\cos x$ 滿足方程 $\frac{d^2y}{dx^2}+y=b$,其中 a 、 b 為常數,且當 $t=0$ 時, $\frac{dy}{dx}=2$,求 a 、 b 的值。
		時間	教學建議
47		分配	教師可以利用一些簡單圖像,如 $y=x^2$ 、 $y=\frac{1}{x}$ 或 $x^2+y^2=25$ 等作切線以說明。 例一 考慮曲線 $y=x^2$ 在 $x=2$ 的切線。 在曲線 $x=2$ 之處繪畫一良好切線,其斜率是 4。 教師應重申導函數在 $x=2$ 時的值是可以由基本原理計出:

		時間	the CCI THE AM-
	內 容	分配	教 學 建 議
48			例二 考慮在圖像 $y=\frac{1}{x}$ 上的切線。 從 $y=\frac{1}{x}$ 的圖像中可以看出在 $x=2$ 處的切線的斜率,其結果可以利用微分法驗 証: $\left(\frac{dy}{dx}\right)_{x=2}=-\frac{1}{x^2}$
		時間分配	教 學 建 議
49	5.4.2 極大及極小、簡易曲線的描繪	5 7	當學生明瞭事實後,他們應能求得簡單曲線的切線和法線。 在此課程,相對極值和絕對極值(最大/最小值)都應考慮。學生亦應可分辨相對和絕對極值。 教師應引導學生接受下列事實: (i) 若 $f'(x_1) > 0$,則該函數在 x_1 處是遞增的; (ii) 若 $f'(x_1) < 0$,則該函數在 x_1 處是遞減的; (iii) 若 $f'(x_1) < 0$,則該函數在 x_1 處為一平穩點。 學生應清楚知道若 $f'(x_1) = 0$ 且當 x 遞增經 x_1 時, $f'(x)$ 的值由正變負,則 $f(x)$ 在 x_1 處為一相對極大值。若 $f'(x_1) = 0$ 且當 x 遞增經 x_2 時, $f'(x)$ 的值由負變 正,則 $f(x)$ 在 x_1 處為一相對極小值。若 $f'(x_1) = 0$ 而且 $f'(x_1) < 0$,則 $f(x)$ 在 $f(x_1) = 0$ 而且 $f'(x_1) < 0$,则 $f(x)$ 在 $f(x_1) = 0$ 而且 $f'(x_1) < 0$,则 $f(x)$ 在 $f(x_1) = 0$ 而且 $f'(x_1) < 0$,则 $f(x)$ 在 $f(x_1) = 0$ 而且 $f'(x_1) < 0$,则 $f(x)$ 在 $f(x_1) = 0$ 而且 $f'(x_1) < 0$,则 $f(x)$ 在 $f(x_1) = 0$ 而且 $f'(x_1) < 0$,则 $f(x)$ 在 $f(x_1) = 0$ 而且 $f'(x_1) < 0$,则 $f(x)$ 在 $f(x_1) = 0$ 而且 $f'(x_1) < 0$,则 $f(x)$ 和 $f(x)$

-			
<u>-</u>	內容	時間 分配	教 學 建 議
50			師應強調一階及二階導數皆可用來試驗極點,但是,如果求一階導數的導數過於困難的話,以一階導數試點較為容易。 學生應注意到若某函數的定義域包含一端點,則該函數可能在該端點達致極值。 函數的一階導數提供了一個方法去求函數的轉向點(極大或極小)和函數是遞增的或遞減的區間。衹要描繪了具有關連性的幾點便可以決定函數曲線的形狀。例如,描繪曲線 y = (x - 1)²(x + 1) 在 -2 ≤ x ≤ 2 區間內,教師應引導學生求曲線與兩軸的交點和當
-	內容	時間	 教學建議
51	5.4.3 變率	<u>2</u> 3	教師應提醒學生將圖像適當地註釋。可讓學生描繪的曲線包括 $y=\frac{x^2-2x+1}{x^2+2}$ 和 $y=\frac{4x-2}{x^2+4}$ 等。對較高能力的學生,教師可和他們討論拐點和漸近線。 若 x 為一時間 t 的函數,則其導數 $\frac{dx}{dt}$ 為 x 對時間 t 的變率。速度和加速度是變率的好例子。有關變率的問題亦應討論。以下為兩個有關的例題。 例一 一 倒置 圓錐形的漏斗底半徑為 $30~{\rm cm}$,高為 $40~{\rm cm}$ 。水從漏斗的底部以 $\pi {\rm cm}^3 {\rm s}^{-1}$ 的速率流出。當水深為 $20~{\rm cm}$ 時,求水面的下降速率。 例二 一身高 $2~{\rm m}$ 的人以 $2~{\rm ms}^{-1}$ 的速率沿著一直路背著一高 $6~{\rm m}$ 的燈而行。求此人影子增長的變率。

-	時間 分配	教 學 建 議
52		
<u>-</u>	-36- 44	

單元 6:不等式

- 1. 理解不等式的基本法則。
- 2. 解一元一次不等式。
- 3. 解一元二次不等式。

53	內容	時間 分配	教 學 建 議
	6.1 不等式的基本法則	1*	教師宜強調若 a-b 是一個正數,則 a>b,而且它的逆定理亦成立。利用這個事實,可導出下列的基本法則。 對實數 a、b、c:
			(1) 若a>b,且b>c,則a>c。 (2) 則a>b,則a+c>b+c。 (3) 則a>b,則 (a) ac>bc 若c>0。 (b) ac <bc (c)="" ac="bc" 若c="0。</td" 若c<0。=""></bc>
	6.2 一元一次不等式	<u>-1*</u>	利用基本法則來證明不等式的簡單問題亦須介紹。 教師宜提示學生解線性不等式的方法和解線性方程的方法很類似。唯一的分
		1*+1	別是當一條不等式被乘或除以一個負數時,則不等號須反向。

-	時間 分配	教 學 建 議
52		
<u>-</u>	-36- 44	

單元 6:不等式

- 1. 理解不等式的基本法則。
- 2. 解一元一次不等式。
- 3. 解一元二次不等式。

53	內容	時間 分配	教 學 建 議
	6.1 不等式的基本法則	1*	教師宜強調若 a-b 是一個正數,則 a>b,而且它的逆定理亦成立。利用這個事實,可導出下列的基本法則。 對實數 a、b、c:
			(1) 若a>b,且b>c,則a>c。 (2) 則a>b,則a+c>b+c。 (3) 則a>b,則 (a) ac>bc 若c>0。 (b) ac <bc (c)="" ac="bc" 若c="0。</td" 若c<0。=""></bc>
	6.2 一元一次不等式	<u>-1*</u>	利用基本法則來證明不等式的簡單問題亦須介紹。 教師宜提示學生解線性不等式的方法和解線性方程的方法很類似。唯一的分
		1*+1	別是當一條不等式被乘或除以一個負數時,則不等號須反向。

_	內容	時間 分配	教 學 建 議
54	5.3 一元二次不等式	1*+2 1*+3	對學生來說,將不等式的解描繪出來是一個很好的做法。在解複不等式時,將各解描畫在同一數線上對解題特別有幫助。下列是兩個典型的例子:
_	÷ 🛱	時間	±4- €3 7±± ÷±

□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	時間 分配	教 學 建 議
55		$x^2 - 3x - 10 \le 0$ 的解是 $-2 \le x \le 5$, $x^2 - 2x + 3 > 0$ 的解是所有實數,及 $x^2 - 2x + 3 < 0$ 無實數解。 解二次不等式的方法與解二次方程的方法很相似。先將各項重新排列,令右方零,然後在可能情況下將左方的二次因式分解。所得的不等式可用下列事例 求解:

		時間	 教學建議
56		分配	須給予學生做適量的習作以掌握此技巧。
	內容	時間分配	
57	6.5 絕對值 在單元 3「二次方程及二次函數」中引入這課題較為適合。	+	必須清楚說明定義: $ x =\begin{cases} x & \exists x\geq 0 \\ -x & \exists x<0 \end{cases}$,亦須介紹 $y= x $ 的圖像。 教師須提示學生在描繪含絕對值的簡單函數時,必須首先將絕對值符號移去。例如,將 $y=x^2-4$ 的絕對值符號移去後,便得如圖 1 的圖像。因為在 $y=x^2-4$ 中, y 是非負數的,故此所求的圖像將如圖 2 所示。 $ y=x^2-4 $ 中, $y=x^2-4$

	內 容	時間 分配	教學建議
58			
	內容	時間 分配	
59			

N A	時間 分配	教 學 建 議
	3* + 9	
	3* + 4	

單元7:解析幾何

- 1. 求坐標平面上直線圖形的面積。
- 2. 求兩直線的交角。
- 3. 了解直線的法線式,並利用有關知識計算距離。
- 4. 求圓的方程及圓與直線的交點。
- 5. 求圓的切線方程。
- 6. 求直線族及圓族的方程。
- 8. 獲取參數方程與軌跡的概念,及解簡易軌跡問題。

61	內容	時間 分配	教 學 建 議
	7.1 平面直角坐標及兩點間的距離	1*	因為學生在中一至中三階段應已學習平面直角坐標的基本概念,所以現在只需作簡單溫習。教師可說明距離公式及截點公式,當談及截點公式時,教師應強調外分點,即若 R 是 PQ 延線上一點,而 PR: RQ=r:1,則r將為負數。例
			某圓的圓心為 O(3, 4)。若 A(1, 1)是該圓某一直徑的端點 , 求另一端點的坐標。
	7.2 直線圖形的面積	3	學生應在引導下發現頂點為 $O(0,0)$, $A(x_1,y_1)$ 及 $B(x_2,y_2)$ 的三角形的面積可
			被寫成兩直角三角形及一梯形面積的代數和,答案是 $\frac{1}{2}$ $(x_1y_2-x_2y_1)$ 。學生亦應留
			意到若頂點 O、A 及 B 以逆時針方向選出,則所得是一正數;否則,則得一負數。
			擁有以上知識,則任何坐標平面上的三角形可被視為三個包括原點為頂點的 三角形的代數和,因此可用下列公式計算:

N A	時間 分配	教 學 建 議
	3* + 9	
	3* + 4	

單元7:解析幾何

- 1. 求坐標平面上直線圖形的面積。
- 2. 求兩直線的交角。
- 3. 了解直線的法線式,並利用有關知識計算距離。
- 4. 求圓的方程及圓與直線的交點。
- 5. 求圓的切線方程。
- 6. 求直線族及圓族的方程。
- 8. 獲取參數方程與軌跡的概念,及解簡易軌跡問題。

61	內容	時間 分配	教 學 建 議
	7.1 平面直角坐標及兩點間的距離	1*	因為學生在中一至中三階段應已學習平面直角坐標的基本概念,所以現在只需作簡單溫習。教師可說明距離公式及截點公式,當談及截點公式時,教師應強調外分點,即若 R 是 PQ 延線上一點,而 PR: RQ=r:1,則r將為負數。例
			某圓的圓心為 O(3, 4)。若 A(1, 1)是該圓某一直徑的端點 , 求另一端點的坐標。
	7.2 直線圖形的面積	3	學生應在引導下發現頂點為 $O(0,0)$, $A(x_1,y_1)$ 及 $B(x_2,y_2)$ 的三角形的面積可
			被寫成兩直角三角形及一梯形面積的代數和,答案是 $\frac{1}{2}$ $(x_1y_2-x_2y_1)$ 。學生亦應留
			意到若頂點 O、A 及 B 以逆時針方向選出,則所得是一正數;否則,則得一負數。
			擁有以上知識,則任何坐標平面上的三角形可被視為三個包括原點為頂點的 三角形的代數和,因此可用下列公式計算:

-	ch so	時間	牧16段 7卦 ☆爺
	内 容	分配	教學建議
			三角形的面積
			$= \frac{1}{2}(x_1y_2 + x_2y_3 + x_3y_1 - x_2y_1 - x_3y_2 - x_1y_3)$
			(x_1, y_1) , (x_2, y_2) 及 (x_3, y_3) 是根據逆時針方向定出的三角形頂點的坐標。
			教師應告訴學生,為了方便起見,以上公式可寫成
			三角形的面積 = $\frac{1}{2}$ $\begin{vmatrix} x_1 & x_2 & y_1 \\ x_2 & x_3 & x_3 \\ x_1 & x_1 & y_1 \end{vmatrix}$ 其中 x_1y_2 , x_2y_3 及 x_3y_1 被視為聯線向下的積,帶正值; x_2y_1 , x_3y_2 及 x_1y_3 被視為聯線向上的積,帶負值;而面積則為所有數項總和的一半。
			最後,任何平面上的 n 邊形,可被視為 (n – 2) 個三角形所組成,如下圖:
62			
			由此,可得下列公式: 多邊形的面積
			$= \frac{1}{2}(x_1y_2 + x_2y_3 + \dots + x_ny_1 - x_2y_1 - x_3y_2 - \dots - x_1y_n)$
			$\frac{1}{2}$ 1
			同樣,為了方便起見,學生可將公式寫成
-	內容	時間	教學建議
-	內容	時間分配	教學建議
-	內容		多邊形的面積 = $\frac{1}{2}$ $\begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \\ & \\ & \\ x_n & y_n \\ x_1 & y_1 \end{vmatrix}$ 在練習中,譬如求頂點為 $(1,3)$, $(4,4)$ 及 $(0,2)$ 的四邊形面積,教師
-	內 容		多邊形的面積 = 1
-	內容		多邊形的面積 = $\frac{1}{2}$ $\begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \\ & \\ & \\ x_n & y_n \\ x_1 & y_1 \end{vmatrix}$ 在練習中,譬如求頂點為 $(1,3)$, $(4,1)$, $(4,4)$ 及 $(0,2)$ 的四邊形面積,教師
-	內容		多邊形的面積 = 1
63	內容		多邊形的面積 = 1
63	内容		多邊形的面積 1/2 X ₁ X ₂ X ₂ Y ₂ X ₂ X ₂ X ₂ X ₂ X ₃ X ₄ X ₁ X ₂ X ₁ X ₂ X ₂ X ₃ X ₄ X ₁
63	內容		多邊形的面積 = $\frac{1}{2}$ $\begin{vmatrix} x_1 & x_2 & y_1 \\ x_2 & x_2 & y_2 \\ \dots & x_n & x_n \\ x_n & x_n & y_n \\ x_1 & y_1 \end{vmatrix}$ 在練習中,譬如求頂點為 $(1,3)$, $(4,1)$, $(4,4)$ 及 $(0,2)$ 的四邊形面積,教師應經常提醒學生公式內各點一定是根據逆時針方向排列的。由此,上述多邊形的面積是 $\begin{vmatrix} 0 & 2 & & & & & & & & & & & & & & & & &$
63	內容		多邊形的面積 = 12 x ₁ x ₂ x ₁ x ₂ x ₂ x ₂ x ₂ x ₂ x ₃ x ₄ x ₁ x ₂ x ₂ x ₃ x ₄ x ₁ x ₂ x ₁ x ₂ x ₃ x ₄ x ₁ x ₁ x ₂ x ₁ x ₂ x ₃ x ₄ x ₁ x ₁ x ₂ x ₁ x ₂ x ₃ x ₄ x ₁ x ₁ x ₂ x ₃ x ₄ x ₁ x ₁ x ₂ x ₃ x ₄ x ₁ x ₁ x ₂ x ₃ x ₄ x ₁ x ₂ x ₃ x ₄ x ₁ x ₂ x ₃ x ₄ x ₁ x ₄ x ₂ x ₃ x ₄ x ₄ x ₄ x ₄ x ₃ x ₄
63	内容		多邊形的面積 = 1
63	內容		多邊形的面積 = $\frac{1}{2}$ $\begin{vmatrix} x_1 & x_2 & y_1 \\ x_2 & x_2 & x_2 \\ \dots & x_n & y_n \\ x_1 & x_2 & y_n \\ x_2 & x_1 & x_2 & x_2 \\ x_1 & x_2 & x_3 & x_4 & x_4 \\ x_1 & x_2 & x_3 & x_4 & x_4 \\ x_1 & x_2 & x_3 & x_4 & x_4 \\ x_1 & x_2 & x_3 & x_4 & x_4 \\ x_1 & x_2 & x_3 & x_4 & x_4 \\ x_2 & x_3 & x_4 & x_4 \\ x_1 & x_2 & x_4 & x_4 \\ x_2 & x_3 & x_4 & x_4 \\ x_3 & x_4 & x_4 & x_4 \\ x_4 & x_5 & x_4 & x_4 \\ x_5 & x_5 & x_5 & x_4 & x_4 \\ x_5 & x_5 & x_5 & x_5 & x_5 \\ x_5 & x_5 & x_5 & x_5 & x_$
63	内容		多邊形的面積 = 1
63	内容		多邊形的面積 = 1
63	内容		多邊形的面積 = 12

	內容	時間 分配	教 學 建 議
7.3	直線的傾角及斜率	1*	直線斜率的定義應為該直線對正 x 軸的傾角的正切,而傾角的範圍是 0° 至 180° 。 因此,連接 (x_1,y_1) 及 (x_2,y_2) 兩點直線的斜率是 $m=\frac{y_2-y_1}{x_2-x_1}$ 。
7.4	兩直線的交角	3 4	已知兩直線對正 x 軸的傾角分別為 α 和 β ,則兩直線的交角等於 α 和 β 的差 因為 $\tan(\alpha-\beta) = \frac{\tan\alpha-\tan\beta}{1+\tan\alpha\tan\beta}$ $= \frac{m_1-m_2}{1+m_1m_2} \ ,$
2			所以兩直線的交角是 $\tan^{-1}\left \frac{m_1-m_2}{1+m_1m_2}\right $ 。 公式中的絕對值符號保証所得的角是兩直線間的銳角。 至此,學生應不難理解斜率分別為 m_1 及 m_2 的直線平行(即兩線之交角 $\theta=0^\circ$)當且僅當 $m_1=m_2$;另外,兩線垂直(即 $\theta=90^\circ$)當且僅當 $m_1m_2=-1$ 。 例 直線 $x+y=5$ 與 $2x-y=7$ 間之銳角是 $\tan^{-1}\left \frac{-1-2}{1+(-2)}\right =71.6^\circ$ 。
7.5	直線的方程	1*	教師應對學生強調一直線的方程實際上是直線上任意一點的 x 與 y 坐標的關係。直線方程的標準式包括 (1)一般式 (2)兩點式 (3)點斜式 (4)斜截式 (5)截距式
	內容	時間分配	教學建議
7.6	法線式	5	學生應在教師指導下,利用直線與原點的距離 $p(p>0)$,和直線的法線對正 x 軸的傾角 α ,寫出直線的法線式。 (當 $p>0$,則 $0 \le \alpha < 2\pi$,當 $p=0$,則 $0 \le \alpha < \pi$) ** **R據上圖,學生不難證明直線上任何一點 P 的坐標(x , y)滿足關係 $x\cos\alpha + y\sin\alpha - p = 0$ 這便是直線方程的法線式。 已知一直線方程的一般式是 $Ax + By + C = 0$,學生應懂得將它化為法線式方程 $\frac{Ax + By + C}{\pm \sqrt{A^2 + B^2}} = 0$ 及了解以下的對應: $\frac{A}{\pm \sqrt{A^2 + B^2}} = \cos\alpha$ $\pm \sqrt{A^2 + B^2} = \sin\alpha$

	內容	時間 分配	教學建議
66			$\frac{C}{\pm\sqrt{A^2+B^2}} = -p$ 選擇適當的分母符號的規則是 $(1) \ $
	內容	時間 分配	教學建議
67	7.7 直線族	3 5	對能力較高的學生,可以例題方式討論兩平行線的距離和兩相交直線的角平分線的基本處理方法,藉以提高他們的興趣。 例一 求平行線 $12x-5y-10=0$ 及 $12x-5y+16=0$ 之間的距離。 選擇其中一條線上任何一點,這點至另一直線的距離,即為兩平行線的距離。假設選擇了第一條線上的點 $(0,-2)$,該點至第二條線的距離是 $\frac{(-5)(-2)+16}{\sqrt{12^2+5^2}}=2$,這就是該兩條線的距離。 例二 求直線 $x+y-3=0$ 和 $x-7y+5=0$ 的角平分線。 設 $P(x,y)$ 為角平分線上的一點。 則由 P 至兩直線的距離相等。因此,

	內容	時間 分配	教學建議
			例一 與直線 $2x-3y+4=0$ 平行的直線族的方程是 $2x-3y+h=0$ 。 通過點 $(2,3)$ 的直線族方程是 $y=k(x-2)-3$,其中 h 和 k 為參數。
			例二 求通過直線 $2x+y-1=0$ 和 $3x-2y-5=0$ 的交點及距離原點 1 單位的直線。該直線的方程是 $(2x+y-1)+k(3x-2y-5)=0$, 其中 k 為參數。 k 同時應滿足 $\frac{-1-5k}{\sqrt{(2+3k)^2+(1-2k)^2}}=1$ 。
68	7.8 軌跡的概念	-1*+1- 1*+3	教師應盡量利用實際例子說明軌跡的概念,例如日常生活上移動的點、線面積和物體所經的軌道,如像火車沿著鐵軌所經過的路程,在滾動中的圓柱體設緣的點所描繪的路線及足球在空中移動的軌跡。教師更可引領學生進行一些簡單軌跡的幾何作圖的活動。 教師應指出直線是一平面上的軌跡例子,而它並可以以直線方程在笛卡兒型面上表示出來。
			例 已知兩固定點 $A(1,0)$ 及 $B(0,3)$,若一點 P 移動時,其至點 A 和點 B 的距離机等,試求 P 點的軌跡方程。
			利用條件 PA = PB 便可求出一直線方程。學生應能認識到在直線上任何一點的 坐標必定滿足該直線方程,而直線的方程則決定直線在平面上的位置。
	7.9 圓的方程,圓與直線的交點	7* 8*	學生在引導下利用距離公式找出圓心在原點,半徑左r的圓的方程。舉出過當的例子後,學生應能推出方程的形式為 x²+y²=r²。
			已知上述形式的方程,學生應認識到它是代表一個圓心為原點及半徑為的圓。
			之後,教師可考慮一般的情況,例如,圓心不在原點而在點(h, k)。透過足夠的練習後,學生會發現圓的方程可寫成下列其中一種形式:
	內容	時間分配	教學建議
	內容		教學建議 $x^2 + y^2 + Dx + Ey + F = 0$
	內容		$x^{2} + y^{2} + Dx + Ey + F = 0$ 或 $(x - h)^{2} + (y - k)^{2} = r^{2}$
	內容		$x^{2} + y^{2} + Dx + Ey + F = 0$ 或 $(x - h)^{2} + (y - k)^{2} = r^{2}$
	內容		$x^2 + y^2 + Dx + Ey + F = 0$ 或 $(x - h)^2 + (y - k)^2 = r^2$ 已知上述一種形式的方程,學生應知道它代表一個圓,同時亦應知道圓心的位置及半徑的長度。 應加以討論通過三非線性點的圓的方程。
	內容		$x^2 + y^2 + Dx + Ey + F = 0$ 或 $(x - h)^2 + (y - k)^2 = r^2$ 已知上述一種形式的方程,學生應知道它代表一個圓,同時亦應知道圓心的位置及半徑的長度。 應加以討論通過三非線性點的圓的方程。 直線與圓是否一定相交於兩點呢?教師應與學生討論所有情況,並應連同二次方程的根一起討論,尤其是當二次方程有二重根。幾何中切線的概念可以代數
	內容		$x^2 + y^2 + Dx + Ey + F = 0$ 或 $(x - h)^2 + (y - k)^2 = r^2$ 已知上述一種形式的方程,學生應知道它代表一個圓,同時亦應知道圓心的 位置及半徑的長度。 應加以討論通過三非線性點的圓的方程。 直線與圓是否一定相交於兩點呢?教師應與學生討論所有情況,並應連同二
	內容		$x^2+y^2+Dx+Ey+F=0$ 或 $(x-h)^2+(y-k)^2=r^2$ 已知上述一種形式的方程,學生應知道它代表一個圓,同時亦應知道圓心的位置及半徑的長度。 應加以討論通過三非線性點的圓的方程。 直線與圓是否一定相交於兩點呢?教師應與學生討論所有情況,並應連同二次方程的根一起討論,尤其是當二次方程有二重根。幾何中切線的概念可以代數條件 $b^2-4ac=0$ 來表示。
69	內容		$x^2+y^2+Dx+Ey+F=0$ 或 $(x-h)^2+(y-k)^2=r^2$ 已知上述一種形式的方程,學生應知道它代表一個圓,同時亦應知道圓心的位置及半徑的長度。 應加以討論通過三非線性點的圓的方程。 直線與圓是否一定相交於兩點呢?教師應與學生討論所有情況,並應連同二次方程的根一起討論,尤其是當二次方程有二重根。幾何中切線的概念可以代數條件 $b^2-4ac=0$ 來表示。 教師應提供學生適當的例子,而下列的例子可作為參考。 例—
69	內容		$x^2+y^2+Dx+Ey+F=0$ 或 $(x-h)^2+(y-k)^2=r^2$ 已知上述一種形式的方程,學生應知道它代表一個圓,同時亦應知道圓心的位置及半徑的長度。 應加以討論通過三非線性點的圓的方程。 直線與圓是否一定相交於兩點呢?教師應與學生討論所有情況,並應連同二次方程的根一起討論,尤其是當二次方程有二重根。幾何中切線的概念可以代數條件 $b^2-4ac=0$ 來表示。 教師應提供學生適當的例子,而下列的例子可作為參考。 例 — 一圓的直徑的兩端點分別為 $A(x_1,y_1)$ 及 $B(x_2,y_2)$,試求此圓的方程。 例二 設 ΔABC 的頂點分別為 $A(-6,5)$, $B(-3,4)$ 及 $C(2,1)$ 。試求 ΔABC 的外接圓
69	內 容		$x^2+y^2+Dx+Ey+F=0$ 或 $(x-h)^2+(y-k)^2=r^2$ 已知上述一種形式的方程,學生應知道它代表一個圓,同時亦應知道圓心的位置及半徑的長度。 應加以討論通過三非線性點的圓的方程。 直線與圓是否一定相交於兩點呢?教師應與學生討論所有情況,並應連同之次方程的根一起討論,尤其是當二次方程有二重根。幾何中切線的概念可以代數條件 $b^2-4ac=0$ 來表示。 教師應提供學生適當的例子,而下列的例子可作為參考。 例一 一圓的直徑的兩端點分別為 $A(x_1,y_1)$ 及 $B(x_2,y_2)$,試求此圓的方程。 例二 設 ΔABC 的頂點分別為 $A(-6,5)$, $B(-3,4)$ 及 $C(2,1)$ 。試求 ΔABC 的外接個的方程。
69		<u>分配</u>	$x^2+y^2+Dx+Ey+F=0$ 或 $(x-h)^2+(y-k)^2=r^2$ 已知上述一種形式的方程,學生應知道它代表一個圓,同時亦應知道圓心的位置及半徑的長度。 應加以討論通過三非線性點的圓的方程。 直線與圓是否一定相交於兩點呢?教師應與學生討論所有情況,並應連同二次方程的根一起討論,尤其是當二次方程有二重根。幾何中切線的概念可以代數條件 $b^2-4ac=0$ 來表示。 教師應提供學生適當的例子,而下列的例子可作為參考。 例——圓的直徑的兩端點分別為 $A(x_1,y_1)$ 及 $B(x_2,y_2)$,試求此圓的方程。 例二 設 ΔABC 的頂點分別為 $A(-6,5)$, $B(-3,4)$ 及 $C(2,1)$ 。試求 ΔABC 的外接區的方程。
69		<u>分配</u>	$x^2+y^2+Dx+Ey+F=0$ 或 $(x-h)^2+(y-k)^2=r^2$ 已知上述一種形式的方程,學生應知道它代表一個圓,同時亦應知道圓心的位置及半徑的長度。 應加以討論通過三非線性點的圓的方程。 直線與圓是否一定相交於兩點呢?教師應與學生討論所有情況,並應連同二次方程的根一起討論,尤其是當二次方程有二重根。幾何中切線的概念可以代數條件 $b^2-4ac=0$ 來表示。 教師應提供學生適當的例子,而下列的例子可作為參考。 例一 一圓的直徑的兩端點分別為 $A(x_1,y_1)$ 及 $B(x_2,y_2)$,試求此圓的方程。 例二 設 ΔABC 的頂點分別為 $A(-6,5)$, $B(-3,4)$ 及 $C(2,1)$ 。試求 ΔABC 的外接個的方程。 例三 直線 $L:x-y-2=0$ 是否與圓 $C:x^2+y^2-4x-2y+4=0$ 相交?並說出理由。 已知一圓的方程為 $x^2+y^2+Dx+Ey+F=0$,教師應引導學生推出通過圓一已知點 (x_1,y_1) 的切線的方程,微分法的技巧在這裏會有幫助。學生應找出語

	內容	時間 分配	教學建議
70	7.11 圓族	-4- 5	例一 求證 $A(1,4)$ 在圓 $C: x^2+y^2-2x-2y-7=0$ 上。由此,求在點 A 對 C 的切線方程。 例二 求平行於直線 $2x+y+3=0$ 而與圖 $x^2+y^2+6x-2y+5=0$ 相切的直線方程。 例三 由點 $M(-4,4)$ 至圖 $C: x^2+y^2-6x-6y-7=0$ 的兩切線切圖於 P 和 Q 。求 (a) 兩切線的方程; (b) $\angle PMQ$; (c) 每一條切線段的長度; (d) ΔMPQ 的面積。 學生應該知道利用圖族的方程可以化簡一些問題的解答方法。教師應與學生討論以下三種情形: (1) 以 (a,b) 為圖心的同心圖族。方程為 $(x-a)^2+(y-b)^2=k$ $(k>0)$ (2) 經過直線 $Ax+By+C=0$ 和圖 $x^2+y^2+Dx+Ey+F=0$ 的交點的圖族。方程為 $x^2+y^2+Dx+Ey+F+k(Ax+By+C)=0$ (3) 經過兩個圖的交點的圖族。兩個圖的方程分別為 $x^2+y^2+D_1x+E_1y+F_1=0$ Q $x^2+y^2+D_2x+E_2y+F_2=0$ 而圖族的方程為 $x^2+y^2+D_1x+E_1y+F_1+k(x^2+y^2+D_2x+E_2y+F_2)=0$ 其中 $k\neq -1$ 。教師應解釋當 $k=-1$ 時上述方程為該兩圖的公弦之方程。同時,若兩圓互切,該公弦將會變成兩圓的公切線。教師可介紹以下的例子。
	內容	時間 分配	教 學 建 議
71			例一 求證方程 $x^2+y^2-4x+2y+F=0$,其中 F 為一常數,代表一同心圓族。 例二 一圓過直線 $x+y=1$ 與圓 $x^2+y^2-2x-2y+1=0$ 的交點。若它的圓心在直線 $3x-y=3$ 上,求這圓的方程。 例三 一圓 C 過點 $Q(1,2)$ 及圓 $x^2+y^2-3x+2y-2=0$ 與 $x^2+y^2+x+3y-10=0$ 的交點,試求圓 C 的方程及與 C 相切於 Q 的切線方程。

	內容	時間 分配	教 學 建 議
[
72			
-			
_	內容	時間 分配	
73			

	內 容	時間 分配	教 學 建 議
74			
	內容	時間 分配	
7			
75			

	內容	時間 分配	教 學 建 議
76	7.13 簡易的參數方程及軌跡問題	5	參數方程是一表示曲線方程的一個方法。而在曲線上任一點 (x,y) 都可和參數 t 相關。 教師可說明如何利用消去法將參數方程轉換為方程 $f(x,y)=0$ 。例如, $x=at^2$ 及 $y=2at$ 可以寫成 $y^2=4ax$ 形 學生應認識直線及圓錐曲線的參數方程,而且,教師應強調一個函數 $f(x,y)=0$ 可以有多個的參數表示方法。 教師應提供學生一些牽涉以參數形式表示軌跡的問題,用以幫助他們熟習有關的概念及技巧。以下是一些例子。 例一 從下列的參數方程得出關於 x 和 y 的方程: (a) $x=t^2-2t$, $y=t^2+2$ 。 (b) $x=tan\alpha+cot\alpha$, $y=tan\alpha-cot\alpha$ 。 例二 利用 $y=tx$,試求曲線 $x^3+y^3=6xy$ 的參數方程。 $例=$ 曲 已知 $x=t^2-2t$, $x=$
	內容	時間 分配	教 學 建 議
		11*+39 12*+35	曲 (a) 求證 $P_1(at_1^2, 2at_1)$ 和 $P_2(at_2^2, 2at_2)$ 皆為此 <mark>拋物</mark> 線上的點。 (b) 若 M 為 P_1P_2 的中點,試以 t_1 和 t_2 表點 M 的坐標。 (c) 設 O 為原點,若 OP_1 垂直於 OP_2 ,試求點 M 的軌跡方程。

單元8: 二維空間的向量

- 1. 學習向量的概念及表示法。
- 2. 學習二維空間向量的某些性質及運算。
- 3. 理解二維空間向量的幾何表示法。
- 4. 應用向量方法解某些幾何問題。

內容	時間 分配	教 學 建 議
8.1 純量及向量、向量相等、零向量及單位向量	3	教師可利用純量的例子,如質量、長度、時間、溫度等,以及向量(或稱矢量)的例子,如力、位移、速度、加速度等說明純量與向量兩者間的分別。
78		向量的幾何表示法(即以有向線段表示向量)有助於學生對向量的直觀認識, 宜盡早引入。學生須認識課本印刷時採用的向量符號(如 \mathbf{a} 、 \overrightarrow{AB} 等)以及書寫時採用的符號(如 \overline{a} 、 \underline{a} 等);表示向量大小的符號分別是 $\begin{vmatrix} \mathbf{a} & \mathbf{a} & \mathbf{AB} \end{vmatrix}$ 、 $\begin{vmatrix} \overline{a} & \mathbf{a} & \mathbf{AB} \end{vmatrix}$ 、 $\begin{vmatrix} \overline{a} & \mathbf{AB} & \mathbf{AB} \end{vmatrix}$ 、 $\begin{vmatrix} \overline{a} & \mathbf{AB} & \mathbf{AB} & \mathbf{AB} \end{vmatrix}$ 、 $\begin{vmatrix} \overline{a} & \mathbf{AB} $
		教師須強調若兩向量的大小與方向都相同,則兩向量相等。例如,若 $\overrightarrow{AB} = \overrightarrow{CD}$,則 $\overrightarrow{AB} = \overrightarrow{CD}$,且 $\overrightarrow{AB}/\overrightarrow{CD}$ 。
		AB = CD , HI AB = CD , H AB//CD. B C
		之後教師可引入大小是零而無特定方向的零向量,一般記作 0 或 <u>0</u> 。介紹單位向量時,教師可定為長度為 1 的任何向量。單位向量常用以表示方向。

	Į	!
內容	時間 分配	教 學 建 議
8.2 向量的和及差、純量與向量相乘	3 4	向量的加法最宜以三角形定律說明,其圖示法如下:
		A AB + BC = AC 亦可用平行四邊形定律 D
		AB+AD=AC AB+AD=AC 教師可用兩個位移的向量和兩個力的合力或兩個速度的合速度作為實例,可教授多邊形定律,作為三角形定律的引申。
		兩向量的差 $\stackrel{\rightarrow}{a-b}$ 可視作兩向量的和 $\stackrel{\rightarrow}{a+(-b)}$ 。

	內容	時間 分配	教 學 建 議
80			### The content of

內容		教 學 建 議
	分配	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
8.3 向量在直角坐標系的表示法	3	教師應先教授單位向量 \vec{i} 、 \vec{j} ,然後利用實例,解釋如何以 \vec{i} 、 \vec{j} 表示直角 坐標面內的任一向量。對任一向量 \vec{u} = \vec{x} \vec{i} + \vec{y} \vec{j} 其大小是 $ \vec{u} $ = $\sqrt{x^2 + y^2}$,
		而方向 $\theta = \tan^{-1} \frac{y}{x}$ 。 考慮 (x, y) 點所在的象限可定出向量與正 x 軸間的角 θ 。例如
		向量 $\overrightarrow{u} = \overrightarrow{i} + \overrightarrow{j}$ 的大小是 $ \overrightarrow{u} = \sqrt{2}$, 方向是 $\theta = \tan^{-1}(1) = 45^{\circ}$,而向量
		$\overrightarrow{v}=\overrightarrow{i}-\overrightarrow{j}$ 的大小是 $ \overrightarrow{v} =\sqrt{2}$,方向是 $\theta=\tan^{-1}(-1)=315^\circ$ 。 教師此時可在直角坐標系的函義內重溫兩向量的相等、和及差等觀念的意義,並給予足夠的練習。
8.4 兩向量的純量穠	-4 5	學生熟習 $\vec{u} = x_1 \vec{i} + y_1 \vec{j}$ 及 $\vec{v} = x_2 \vec{i} + y_2 \vec{j}$ 的表示方法後,可學習兩向量的 統量積(亦稱點積)的定義。
		$\overrightarrow{u}\cdot\overrightarrow{v}= \overrightarrow{u} \overrightarrow{v} \cos\theta$, 其中 θ 是 \overrightarrow{u} , \overrightarrow{v} 之間的角 , \overrightarrow{m} \overrightarrow{u} , $\overrightarrow{v}\neq\overrightarrow{0}$ 。
81		$\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} = 0$ $\overrightarrow{\mathbf{T}} \overrightarrow{\mathbf{u}} = \overrightarrow{0} \ \overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{v}} = \overrightarrow{0} \ \overrightarrow{0} \ \overrightarrow{\mathbf{v}}$.
		利用 \overrightarrow{i} · \overrightarrow{i} = \overrightarrow{j} · \overrightarrow{j} = 1 , \overrightarrow{i} · \overrightarrow{j} = \overrightarrow{j} · \overrightarrow{i} = 0 , 亦可得出另一定義
		→ → u·v = x ₁ x ₂ +y ₁ y ₂ 。 教師須提醒學生在表示點積時須用點「·」。
		教師可引導學生推出下列純量積的性質:
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		當學生熟悉兩向量相等當且僅當兩者有相同的 ┆、┆ 分量這個觀念,教師可
		將這觀念推廣至以兩個不平行的向量 u v 表示的向量。直觀上,學生不難理解
		$\ddot{a}_1 \vec{u} + b_1 \vec{v} = a_2 \vec{u} + b_2 \vec{v}$,則 $a_1 = a_2$, $b_1 = b_2$ 。 教師可舉例說明,但無須教
		授基的正式定義。下列例題可作練習:

	內容	時間 分配	教學建議
			例一 已知三點 A(1,3), B(-2,4), C(-1,5), (a) 以 ; 及 ; 表 BA 及 BC, (b) 求 BA BC,及 (c) 求 ∠ABC (準確至 0.1°)。 例二 圖中, AX = XY = YB。
82			B X A
			若 $\overrightarrow{OA} = \overrightarrow{i} - \overrightarrow{j}$, $\overrightarrow{OB} = 10 \overrightarrow{i} + 5 \overrightarrow{j}$,
			(a) 以 _i 及 _j 表 ox 及 oy , (b) 求 ox 及 ox 及
			(c) 求 $\cos\theta$ 的值。
			已知 $\overrightarrow{AB} = 3\overrightarrow{i} - 4\overrightarrow{j}$, $\overrightarrow{AC} = a\overrightarrow{i} - 12\overrightarrow{j}$, $\overrightarrow{AB} = -8\overrightarrow{i} + b\overrightarrow{j}$ (a) 若 A、B、C 共線,求 a;
			(b) 若 AD ⊥ AB , 求 b。
	 內容 	時間分配	教學建議
	8.5 向量的應用、線段分點、平行及垂直	3 5	向量方法可應用於解答課程內其他課題的問題,例如解析幾何及三角。 以某點的位置向量這個概念為開始,教師可引導學生得出以比 m:n 分割線 段 AB 的點的位置向量
			$\overrightarrow{OP} = \frac{1}{m+n} \left(\overrightarrow{n} \stackrel{\rightarrow}{a} + \overrightarrow{m} \stackrel{\rightarrow}{b} \right) ,$
			其中 $\stackrel{\rightarrow}{a}$ = $\stackrel{\longrightarrow}{OA}$ 及 $\stackrel{\longrightarrow}{b}$ = $\stackrel{\longrightarrow}{OB}$ 分別是 A 及 B 的位置向量。
			在三角學上,教師可利用點積 $\overrightarrow{AB} \cdot \overrightarrow{AC}$ 及 $\overrightarrow{BC} \cdot \overrightarrow{BC}$ 引導學生得出餘弦公式 $a^2 = b^2 + c^2 - 2bc\cos A$,學生亦須熟悉以下事實:
			(1) 若AB·BC=0,則AB⊥BC。 (2) 若AB=kCD,則AB//CD。
83			(2) 右 AB — KAC , A、B、C 共線。
			利用力量子计器吸收方缀 上某此手带红用的侧之其名 人物加

利用向量方法證明幾何學上某些重要結果的例子甚多,例如, (1) 連接某三角形兩邊中點的線段必平行於第三邊,其長度且等於第三邊的一 (2) 連接某圓的圓心及圓上一弦的中點的線段必垂直於該弦。 (3) 半圓的圓周角為直角。 (4) 菱形的對角線互相垂直平分。 (5) 三角形的三條高線共點。

(6) 三角形的三條中線共點。

下列為另類練習例子。

[5]]—

圖中, $\overrightarrow{OP} = \overrightarrow{p}$, $\overrightarrow{OQ} = \overrightarrow{q}$, $2\overrightarrow{PX} = \overrightarrow{XQ}$, $3\overrightarrow{OY} = 2\overrightarrow{YQ}$.

內容	時間 分配	教 學 建 議
	-14 20	(a) 以 $\stackrel{\rightarrow}{p}$ $\stackrel{\rightarrow}{Q}$ $\stackrel{\rightarrow}{q}$ $\stackrel{\rightarrow}{R}$ $\stackrel{\rightarrow}{OX}$ 。 (b) 若 $\stackrel{\rightarrow}{OZ} = \lambda \stackrel{\rightarrow}{OX}$, $\stackrel{\rightarrow}{PZ} = \mu \stackrel{\rightarrow}{PY}$,證明 $5\lambda - 6\mu = 0$ 且 $2\lambda + 3\mu - 3 = 0$ 。 (c) 試解 λ 以求 $PZ : PY$ 。

單元9:積分法

特定目標:

- 1. 認識不定積分法為微分法的逆運算。
- 2. 理解不定積分的性質。
- 3. 認識不定積分法在幾何及物理上的一些應用。
- 4. 認識及應用不定積分法的標準公式
- 5. 理解以定積分作為一個總和的極限的基本原理。
- 6. 理解及應用定積分的基本性質。
- 7. 應用定積分去求平面面積及旋轉體體積。

	內容	時間 分配	教 學 建 議
	9.1 不定積分	1 2	不定積分可以求導數的逆運算作為介紹,並引出下列簡易性質: $\int (u \pm v) dx = \int u \ dx \pm \int v \ dx$
85			及 $\int ku \ dx = k \int u \ dx$ $\int ku \ dx = k \int u \ dx$ $\int x \ dx \ dx = k \int u \ dx$ $\int x \ dx \ dx = k \int u \ dx$
	9.2 函數的積分法及簡易應用	5	應提供適量例題及練習,使學生熟習下列積分公式: $\int x^n \ dx = \frac{1}{n+1} x^{n+1} + C \ \ (n \neq -1)$ (應加以討論 $n=0$ 的情形)
			$\int \sin x dx = -\cos x + C$ $\int \cos x dx = \sin x + C$ $\int \sec^2 x dx = \tan x + C$ $\int \sec x \tan x dx = \sec x + C$ $\int \csc^2 x dx = -\cot x + C$

內容	時間 分配	教 學 建 議
	-14 20	(a) 以 $\stackrel{\rightarrow}{p}$ $\stackrel{\rightarrow}{Q}$ $\stackrel{\rightarrow}{q}$ $\stackrel{\rightarrow}{R}$ $\stackrel{\rightarrow}{OX}$ 。 (b) 若 $\stackrel{\rightarrow}{OZ} = \lambda \stackrel{\rightarrow}{OX}$, $\stackrel{\rightarrow}{PZ} = \mu \stackrel{\rightarrow}{PY}$,證明 $5\lambda - 6\mu = 0$ 且 $2\lambda + 3\mu - 3 = 0$ 。 (c) 試解 λ 以求 $PZ : PY$ 。

單元9:積分法

特定目標:

- 1. 認識不定積分法為微分法的逆運算。
- 2. 理解不定積分的性質。
- 3. 認識不定積分法在幾何及物理上的一些應用。
- 4. 認識及應用不定積分法的標準公式
- 5. 理解以定積分作為一個總和的極限的基本原理。
- 6. 理解及應用定積分的基本性質。
- 7. 應用定積分去求平面面積及旋轉體體積。

	內容	時間 分配	教 學 建 議
	9.1 不定積分	1 2	不定積分可以求導數的逆運算作為介紹,並引出下列簡易性質: $\int (u \pm v) dx = \int u \ dx \pm \int v \ dx$
85			及 $\int ku \ dx = k \int u \ dx$ $\int ku \ dx = k \int u \ dx$ $\int x \ dx \ dx = k \int u \ dx$ $\int x \ dx \ dx = k \int u \ dx$
	9.2 函數的積分法及簡易應用	5	應提供適量例題及練習,使學生熟習下列積分公式: $\int x^n \ dx = \frac{1}{n+1} x^{n+1} + C \ \ (n \neq -1)$ (應加以討論 $n=0$ 的情形)
			$\int \sin x dx = -\cos x + C$ $\int \cos x dx = \sin x + C$ $\int \sec^2 x dx = \tan x + C$ $\int \sec x \tan x dx = \sec x + C$ $\int \csc^2 x dx = -\cot x + C$

60

		時間	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	分配		
			$\int \csc x \cot x dx = -\csc x + C$
			上列被積函數並不包括 $\frac{1}{x}$ 和指數 e^x 。教師應強調在大多情況下,被積函數都須
			略加改動,才能成功導出積分。例如:
			$\int \sqrt{x} (2 - x) dx = \int (2\sqrt{x} - x^{\frac{3}{2}}) dx = \frac{4}{3} x^{\frac{3}{2}} - \frac{2}{5} x^{\frac{5}{2}} + C$
			$\int \sin^2 x dx = \frac{1}{2} \int (1 - \cos 2x) dx = \frac{1}{2} x - \frac{1}{4} \sin 2x + C$
86			$\int \tan^2 x dx = \int (\sec^2 x - 1) dx = \tan x - x + C \stackrel{\text{(4)}}{=} o$
			在幾何應用上,學生應瞭解一條曲線的形狀,乃取決於其在定義域內每點的斜率,而其對應於坐標軸的位置,則決定於積分常數。由此,同一函數的兩個原函數,最多只能相差一常數值。事實上函數 $y=f(x)+C$ 代表著一曲線族而 $y=f(x)$ 只是該曲線族內的一員。下圖是一個例子:
			C=1 $C=0$ $C=-1$ $C=-2$
			曲線族 y = x ² + C
			在物理應用上,應包括 $s = \int v dt \ Q \ v = \int a dt \ 的公式。以下是一個例子。$
	內容	時間分配	教學建議
			例 一質點以 $a=4t-3ms^{-2}$ 的加速度沿一直線移動,其中 t 秒為其經過點 O 後的時間。當 $t=3$ 時,質點的速度為 $12ms^{-1}$ 。求當 $t=4$ 時質點的速度及在此 4 秒內所走的路程。 在這個例子中,教師應引導學生觀察兩個初值條件: $v=12$ 當 $t=3$ 及 $s=0$ (在
	o. 4.04 # 4 # #	9 3	O點) 當 t=0。
	9.3 積分法基本技巧		
	學生只須了解下列公式而無需學 習代換積分法。		
87	$\int (ax + b)^n dx = \frac{(ax + b)^{n+1}}{a(n+1)} + C, n - 1$		例— [
	$\int \sin(ax+b)dx = -\frac{\cos(ax+b)}{a} + C$		$\int \frac{1}{(2x-7)^2} dx$
	$\int \cos(ax+b)dx = \frac{\sin(ax+b)}{a} + C$		$= -\frac{1}{2x-7} + C$ 應用 $\int (ax+b)^n dx = \frac{(ax+b)^{n+1}}{a(n+1)} + C, n - 1$
	教師可利用微分法驗証上述公 式。		$\int \cos 4x dx$
			$= \frac{1}{4}\sin 4x + C$ $\boxed{\text{REH} \int \cos(ax + b)dx = \frac{\sin(ax + b)}{a} + C}$

-	內容	時間 分配	教學建議
88			例三 對於像 $\frac{x^2-2x}{x^2-2x+1}$ 一類的被積函數,教師可引導學生進行運算如下: $\int \frac{x^2-2x}{x^2-2x+1} dx = \int \frac{(x^2-2x+1)-1}{x^2-2x+1} dx = \int \left[1-\frac{1}{(x-1)^2}\right] dx = 1+\frac{1}{x-1} + C$ 應用 $\int (ax+b)^n dx = \frac{(ax+b)^{n+1}}{a(n+1)} + C, n = -1$ 學生無須知道把此類函數化成部分分數的一般方法,但若給出擴展式,學生應能求出各常數值,進而求解不定積分。 (2) 三角函數的積分法 (a) 形式如 $\int \sin mx \cos nx dx$, $\int \cos mx \cos nx dx$ 及 $\int \sin mx \sin nx dx$ 的積分。在處理這類積分之前,教師應與學生 溫習 和積互化公式 典型的例子有 $\int \sin 4x \cos 6x dx$ (b) 形式如 $\int \sin^m x \cos^n x dx$,
	内容	時配	 (4) 簡易歸約公式 分部積分法並不需要但宜給予學生簡易歸約公式作為求導逆運算的積分例題。下列顯示其方法。 (a) 證明 d/dx (sinⁿ⁻¹ x cos x) = (n-1)sinⁿ⁻² x - n sinⁿ x (b) 設 I_n代表積分 ∫ sinⁿ x dx , 證明 I_n = -sinⁿ⁻¹ x cos x/n + n-1/n I_{n-2}

分配	(c) 由此計算 I ₃ 及 I ₄₀
2	利用下圖及面積的概念,定積分 $\int_a^b f(x) dx$ 可定義為 $\sum_{i=1}^n f(\xi_i) \Delta x_i$ 的極限,
	$\int_a^b f(x) dx = \lim_{\Delta x \to 0} \sum_{i=1}^n f(\xi_i) \Delta x , 其中 \Delta x = \frac{b-a}{n}$
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	應明確指出定積分的簡易性質:
	$(1) \int_a^a f(x) \mathrm{d}x = 0$
	(2) $\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$
	(3) $\int_{a}^{b} kf(x) dx = k \int_{a}^{b} f(x) dx$
	(4) $\int_{a}^{b} [f(x) \pm g(x)] dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$
	(5) $\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$
	(6) $\int_{a}^{b} f(x) dx = \int_{a}^{b} f(u) du$
時間分配	教 學 建 議
	從定積分的定義看來,這些性質都是顯見的,然而教師無須加以證明。 對能力較高的學生,可對以下的性質及其推論加以討論:
	若 f 連續 , 且在閉區間 $[a,b]$ 內非負 , 則 $\int_a^b f(x) dx \ge 0$ 。等式成立的必要
	件為對閉區間 [a, b] 內所有的 x 值 , f(x)=0 。
	推論: $f(x) \ge g(x)$ 蘊涵 $\int_a^b f(x) dx \ge \int_a^b g(x) dx$
3	教師可介紹 $\int_a^x f(t) dt$ 為正值連續函數 $y = f(t)$, t 軸, 直線 $t = a$ 及 $t = a$
	所包圍的圖形的面積。並建立公式 $\int_a^x f(t) dt = [F(t)]_a^x = F(x) - F(a)$, 其
	$\frac{d}{dx}F(x) = f(x)$ 。應提供例子幫助學生了解該公式。 例一
	$\int_{1}^{2} (x^{2} - 1) dx = \left[\frac{x^{3}}{3} - x \right]_{1}^{2} = \left(\frac{2^{3}}{3} - 2 \right) - \left(\frac{1^{3}}{3} - 1 \right) = \frac{4}{3}$

	内容	時間 分配	教學建議
92	9.6 定積分的應用	-8 7	由 9.4 節可導出 $A=\int_a^b ydx$ 或 $A=\int_c^d xdy$ 等公式。下列兩圖有助於記憶上述公式。
		時間	教學建議
93	在計算體積時,學生祇需考慮以 x 軸 或 y 軸作旋轉軸的情況。	分配	数師應透過例題引導學生探討當部分曲線 $y=f(x)$ 低於 x 軸時所發生之情形,如下圖所示。此時, $\int_a^b f(x) dx$ 只會給出由 $a \cong b$ 面積的代數和。
			為了避免誤導的結果,可鼓勵學生在計算面積之前,先劃出相關的草圖。並且將 所求的面積應分為兩個部分(見上圖),先求 f(x)由 a 至 c 及由 c 至 b 的積分而後

	內容	時間 分配	教 學 建 議		
94	内谷 分配		教 學 建 議 例 求曲線 $y=x(x-1)(x-3)$ 及 x 軸所圍成之圖形面積。 在例中,可要求學生自己繪出草圖。 然後, $\int_0^1 x(x-1)(x-3)dx = \frac{5}{12}$		
	內容	時間	教學建議		
95		分配	不需要教授 $A=\frac{1}{2}\int_{\theta_1}^{\theta_2} r^2 d\theta$ 的公式以及當 x 與以同時都以第三參數 t 表達的情況。 可用類似的方法處理繞著坐標軸 及空心旋轉體的體積。學生需要學習圓盤法。對能力較高的學生,也可視情況引進圓柱外殼法。下為一例。 例 求半徑為 a 之球體體積。 將球體視為一半徑為 a 的圓形所產生的旋轉體。應用圓盤法: 球體體積 $=\int_{-a}^{a} \pi y^2 dx$ $=\int_{-a}^{a} \pi (a^2-x^2) dx$ $=\frac{4\pi a^3}{3}$		

65

	內容	時間 分配	教 學 建 議
96		28	應給予學生適量的例題。圓錐體體積、球體體積等,都是有趣的例子。學生應留意到解答這類題目時,經常要找尋曲線與坐標軸、和曲線與曲線之間的交點。為此,事先描繪各有關曲線草圖,有助於解答問題。 例 在圖中,曲線 y = sin 2x 及 y = sin x 相交於 P 點。試求 P 的坐標,並以此求陰影部分繞 x-軸旋轉所成旋轉體的體積。
		20	

單元 10 複數 刪去整個單元

這 是 空 白 頁

參考書目

書名	編著者	<u>出版年份</u>	<u>出版社</u>
數學課程全面檢討報告	課程發展議會	2000	政府印務局
課程發展路向 學會學習終身學習 全人發展	課程發展議會	2001	政府印務局
幼獅數學大辭典(上、下)	數學教研室	1982	幼獅文化事業
中學教學全書 數學卷	張奠宙	1996	上海教育
高中三角學	陳明哲	1976	中央書局
基礎微積分	邵之泉、華青等	1987	知識
數學和數學家的故事(1-7)	李學數	1978-1997	廣角鏡
數學歷史典故	梁宗巨	1995	九章
數學歸納法	華羅庚	1989	商務
標準高等代數學(上、下)	陳明哲	1978	中央書局
標準解析幾何	陳明哲	1976	中央書局
3 Unit Mathematics Books 1 & 2	S.B. Jones & K.E. Couchman	1983	Shakespeare Head Press
A History of Mathematics	C.B. Boyer & U. Merzbach	1991	John Wiley & Sons

<u>書名</u>	<u>編著者</u>	<u>出版年份</u>	<u>出版社</u>
A Century of Calculus Part I 1894-1968 (The Raymond W. Brink Selected Mathematical Papers)	T.M. Apostol, et al.	1992	The Mathematical Association of America
A Century of Calculus Part II 1969-1991	T.M. Apostol, et al.	1992	The Mathematical Association of America
Additional Mathematics	H. Morrison & A. Hughes	1994	John Murray
Additional Mathematics Made Simple	P. Murray	1979	A Howard & Wyndham Company
Advanced Level Pure Mathematics	C.J. Tranter	1975	The English Universities Press Ltd.
College Mathematics Vol. 1 & 2	H.S. Thong T.Y. Chiang & K.K. Meng	1984	Pan Pacific
Computer Aided Learning: Trigonometry and Definite Integral	Education Department	1999	Education Department
Improving Mathematics Teaching with DERIVE	B. Kutzler	1996	Chartwell-Bratt
Pure Mathematics	Hodge & Wood	1979	Blackie

<u>書名</u>	編著者	<u>出版年份</u>	出版社
Symbolic Manipulation by	A. Oldknow &	1996	The
Computers and Calculators –	J. Flower		Mathematical
Information, Ideas and			Association
Implications for Mathematics			
Teaching 14 – 21			
The Tutorial Algebra Vol. 1	Briggs & Bryan	1960	University
			Tutorial Press Ltd