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ARTICLE

Human Genomic Deletions Mediated by Recombination
between Alu Elements
Shurjo K. Sen,* Kyudong Han,* Jianxin Wang, Jungnam Lee, Hui Wang, Pauline A. Callinan,
Matthew Dyer, Richard Cordaux, Ping Liang, and Mark A. Batzer

Recombination between Alu elements results in genomic deletions associated with many human genetic disorders. Here,
we compare the reference human and chimpanzee genomes to determine the magnitude of this recombination process
in the human lineage since the human-chimpanzee divergence ∼6 million years ago. Combining computational data
mining and wet-bench experimental verification, we identified 492 human-specific deletions (for a total of ∼400 kb)
attributable to this process, a significant component of the insertion/deletion spectrum of the human genome. The
majority of the deletions (295 of 492) coincide with known or predicted genes (including 3 that deleted functional exons,
as compared with orthologous chimpanzee genes), which implicates this process in creating a substantial portion of the
genomic differences between humans and chimpanzees. Overall, we found that Alu recombination-mediated genomic
deletion has had a much higher impact than was inferred from previously identified isolated events and that it continues
to contribute to the dynamic nature of the human genome.
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With a copy number of 11 million, Alu elements are one
of the most successful non-LTR (long terminal repeat) ret-
rotransposon families in the human genome.1 In addition
to classic retrotransposition-associated insertion mutations,
Alu elements can create genomic instability by the dele-
tion of host DNA sequences during their integration into
the genome and by creating genomic deletions associated
with intrachromosomal and interchromosomal recombi-
nation events.2,3 Multiple features predispose Alu elements
to successful recombination, including their proximity in
the genome (one insertion every 3 kb, on average), the
high GC content of their sequence (∼62.7%), and the re-
markable sequence similarity (70%–100%) among Alu sub-
families of widely different ages. Overall, the recombi-
nogenic nature of these elements is reflected in the various
forms of cancer and genetic disorders associated with Alu-
mediated recombination events.3–12

However, clinical studies of isolated disease-causing de-
letions, although useful from a medical viewpoint and in
demonstrating the existence of Alu recombination-medi-
ated deletions (ARMDs), do not adequately depict the over-
all contribution of this process to the architecture of the
genome and the associated impact on gene function. The
availability of a genome sequence for the common chim-
panzee (Pan troglodytes), the closest evolutionary relative
of the human lineage,13 has allowed us to perform a com-
parative genomic assessment of the extent of ARMD in
the human genome over the past ∼6 million years, since
the divergence of the human and chimpanzee lineages.14,15

In this study, we identified ∼400 kb of human-specific

ARMD, the distribution of which is biased toward gene-
dense regions of the genome, which raises the possibility
that ARMD may have played a role in the divergence of
humans and chimpanzees. About 60% of the ARMDs are
located in genes, and, in at least three instances, exons
have been deleted in human genes relative to their chim-
panzee orthologs. The nature of the altered genes suggests
that ARMD might have played a role in shaping the
unique traits of the human and chimpanzee lineages.
Mechanistically, we characterized the physical aspects of
the deletion process and proposed different models for
ARMD.

Material and Methods
Computational Data Mining for Identification of Candidate
ARMD Loci

We extracted 400 bp of 5′ and 3′ genomic sequence flanking all
human Alu elements (fig. 1). Next, we joined the two 400-bp
stretches to form a single sequence (the “query”). For each query,
the best match in the reference chimpanzee genome (PanTro1 [No-
vember 2003 freeze]) was identified. Then, the sequence stretch
in the chimpanzee genome between the two regions that aligned
with the two 400-bp halves of the query (the “hit”) was extracted
and aligned with the human Alu sequence initially used to design
the query (the “query Alu”), by use of a local installation of the
National Center for Biotechnology Information Blast 2 Sequences
Bl2seq utility. Following are the possible alignment results for
each sequence pair (see corresponding diagrams in fig. 1).

A. There is no match. In this case, an Alu insertion-mediated
deletion has occurred in the human genome at that locus.

B. There is only one alignment block, and:
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Figure 1. Computational data mining for human lineage-specific ARMD loci. A, No match between query Alu and hit (possible Alu
insertion–mediated deletion). B.1, Query Alu and hit are identical (shared ancestry of an Alu insertion). B.2, Hit is longer than query
Alu and the extra sequence is a poly(A) tract downstream of the query Alu (extension of the Alu poly(A) tail). B.3, Hit consists of
query Alu plus extra non-poly(A) sequence, and the following. B.3a, extra, non-poly(A) sequence is downstream of the query Alu poly(A)
tail (may be gene conversion event in the chimpanzee genome). B.3b, Extra, non-poly(A) sequence is upstream of the query Alu element
or there is extra sequence at both ends (possible Alu insertion–mediated deletion event). C.1, Beginning and end of the hit match
query Alu and the hit is at least 100 bp longer than query Alu (candidate human lineage-specific ARMD event). C.2, At least one end
of the hit has no match to query Alu (possible Alu insertion–mediated deletion).

B.1. The hit is identical to the query Alu. This is shared
ancestry of an Alu insertion.

B.2. The hit is longer than the query Alu, and the extra
sequence is entirely composed of a poly(A) tract down-
stream of the Alu sequence. This is a case of extension
of the Alu poly(A) tail.

B.3. The hit consists of the query Alu plus some extra non-
poly(A) sequence, and
B.3a. The extra, non-poly(A) sequence is downstream

of the poly(A) tail. This could be a gene conver-
sion event in the chimpanzee genome.

B.3b. The extra, non-poly(A) sequence is upstream of
the query Alu element or there is extra sequence
at both ends. This is a possible Alu insertion–
mediated deletion event in the human genome.

C. There is more than one alignment block, and
C.1. The beginning and end of the hit match the query

Alu and the hit is at least 100 bp longer than the query
Alu sequence (since this size would approximate the
expected lower ARMD size limit). This is a candidate
ARMD event in the human genome.

C.2. At least one end of the hit has no match to the query
Alu. This is another possible case for an Alu insertion–
mediated deletion in the human genome.

We retained all loci matching case C.1 as pairs of FASTA files
(i.e., the orthologous human and chimpanzee sequences). Each
human sequence contained the query Alu and its 400-bp flanking
sequences on each side, and each chimpanzee sequence con-
tained the entire hit that aligned with the query flanking se-
quences. All candidate ARMD loci were then manually inspected
and, if necessary, verified by wet-bench (PCR) analysis. Ortholo-
gous human and chimpanzee sequences for each locus are avail-
able from the “Publications” section of the Batzer Laboratory Web
site.



www.ajhg.org The American Journal of Human Genetics Volume 79 July 2006 43

Inspection of Target-Site Duplications

A typical Alu insertion is flanked on both sides by identical (or
nearly perfect) short, direct repeats (7–20 bp) termed “target-site
duplications” (TSDs).16 The single Alu element remaining at a
human candidate ARMD locus is characterized by the apparent
absence of TSDs, since it is composed of fragments from a pair
of Alu elements with mutually different TSDs, situated at the
orthologous ancestral locus (which persists in the chimpanzee
genome). This hallmark of the ARMD process offers a direct
means of confirming the “chimeric” origin of the human Alu
element at a deletion locus. Using this property as our basis for
verification, we manually inspected all candidate loci returned
by the computational analysis. In an unambiguous ARMD event,
the TSDs of the two Alu elements immediately upstream and
downstream of the deleted portion in the chimpanzee genome
were perfect matches with the 5′ and 3′ TSDs, respectively, of the
orthologous single human Alu element. In the next possible sce-
nario, the sequence on any one side of the human Alu element
(upstream or downstream) matched the TSDs of the chimpanzee
element on the corresponding side, but the other chimpanzee
Alu element itself lacked TSDs. However, the sequence immedi-
ately flanking this element on the side opposite to the deletion
was identical in both human and chimpanzee. In both these
cases, we accepted the computational detection as a valid ARMD
locus. At loci that showed slight deviations in the sequence ar-
chitecture from the unambiguous ARMD structures described
above (which raise the possibility that one of the two chimpanzee
Alu elements might be a chimpanzee-specific Alu insertion, as
opposed to a human-specific ARMD event), we designed oligo-
nucleotide primers in the nonrepetitive sequences flanking the
Alu elements in the chimpanzee genome, and we experimentally
confirmed by PCR (and, where required, by DNA sequencing) that
the deletion did exist and was specific to the human genome.

As an additional step to verify the potential ARMD loci that
we accepted/rejected solely on the basis of computational iden-
tification, we randomly chose two sets of 25 such insertions and
deletions and verified them by PCR. Accuracy rates for putative
deletion and insertion loci were 100% and 96%, respectively (4%
of putative insertions comprising the error were all deletions),
which confirmed the validity of our approach.

PCR Amplification and DNA Sequence Analysis of ARMD
Loci

We designed oligonucleotide primers using Primer3 software. De-
tailed information for each locus—including primer sequences, an-
nealing temperature, and PCR product sizes—is available from
the “Publications” section of the Batzer Laboratory Web site.

PCR amplification of each locus was performed in 25-ml reac-
tions with 10–50 ng genomic DNA, 200 nM of each oligonucleo-
tide primer, 200 mM dNTPs in 50 mM KCl, 1.5 mM MgCl2, 10
mM Tris-HCl (pH 8.4), and 2.5 units Taq DNA polymerase. The
conditions for the PCR were an initial denaturation step of 94�C
for 4 min; followed by 32 cycles of 1 min of denaturation at 94�C,
1 min of annealing at optimal annealing temperature, and 1 min
of extension at 72�C; followed by a final extension step at 72�C
for 10 min. PCR amplicons were separated on 2% agarose gels,
were stained with ethidium bromide, and were visualized using
UV fluorescence.

Individual PCR products were purified from the gels with Wiz-
ard gel purification kits (Promega) and were cloned into vectors
by use of TOPO-TA Cloning kits (Invitrogen). For each sample,

three colonies were randomly selected and were sequenced on
an Applied Biosystems ABI3130XL automated DNA sequencer.
Each clone was sequenced in both directions with use of M13
forward and reverse primers. The sequence tracks were analyzed
using the Seqman program in the DNASTAR suite and were
aligned using BioEdit sequence alignment software. Gorilla and
orangutan sequences generated during the course of this study
have been submitted to GenBank under accession numbers
DQ363502–363524.

Loci verified by PCR were screened on a panel of five primate
species, including Homo sapiens (HeLa; cell line ATCC CCL-2), P.
troglodytes (common chimpanzee; cell line AG06939B), Pan pan-
iscus (bonobo or pygmy chimpanzee; cell line AG05253B), Gorilla
gorilla (western lowland gorilla; cell line AG05251), and Pongo
pygmaeus (orangutan; cell line ATCC CR6301). To evaluate poly-
morphism rates, we amplified 50 randomly picked ARMD loci on
a panel of genomic DNA, from 80 human individuals (20 from
each of four populations: African American, South American, Eu-
ropean, and Asian), that was available from previous studies in
our lab.

Monte Carlo Simulations of GC and Alu Content

To test whether the GC and Alu contents of the sequences deleted
through ARMD differed statistically from the rest of the genome,
we performed Monte Carlo simulations comparing the observed
deletions to two other sets of sequences. Both these sets com-
prised randomly extracted sequences equal in number to the ob-
served deletions (492) and mimicked the observed size distribu-
tion of ARMD events. The first set was extracted from the regions
immediately adjacent to randomly picked Alu elements anno-
tated in the reference human genome sequence (called “RSNA”
hereafter). The second set comprised sequences randomly ex-
tracted from the entire genome sequence, with no additional
parameters incorporated (called “RSG” hereafter). We used 5,000
randomized replicates of both sets. For both observed and sim-
ulated sets of sequences, we calculated GC content using in-house
Perl scripts, whereas the Alu content was analyzed using a locally
installed copy of the RepeatMasker Web server. Additionally, to
make our estimate of observed percentage Alu content conser-
vative, we trimmed the deleted sequence at each locus to remove
remaining fragments of the two Alu elements that caused the
ARMD event.

Statistical significances of the differences in GC and Alu content
were based on Z scores obtained by comparing observed values
(from the actual set of deleted sequences) with the mean value
obtained from the 5,000 randomly extracted sequence sets.17 All
computer programs used are available from the authors on request.

Results
A Whole-Genome Analysis of Human-Specific ARMD Events

To identify putative ARMD loci, we first computationally
compared the human and chimpanzee genomes. Subse-
quently, we manually inspected and, if needed, experi-
mentally verified individual loci. Of the 1,332 computa-
tionally predicted deletions that we initially recovered,
461 were discarded after manual inspection (table 1). The
causes for rejection of computationally predicted ARMD
loci were: (a) insertion of an Alu or other retroelement
at the orthologous chimpanzee locus, which leads to the
presence of sequence that the computer erroneously as-
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Table 1. Summary of Human-Specific ARMD Events

Classification
No. of
Loci

Computationally predicted deletion loci 1,332
Discarded after manual inspection 461
Candidate ARMD events: 871

False-positive events (Alu insertion in chimpanzee): 379
Confirmed by PCR analysis 189
Analysis based on TSD structure 190

ARMDs: 492
Confirmed by PCR analysis 163
Analysis based on TSD structure 329

Figure 2. ARMD in the human genome: individual ARMD candidate loci amplified by PCR. A, Agarose-gel chromatograph of PCR products
derived from an authentic human-specific ARMD event. B, Agarose-gel chromatograph of PCR products derived from an ARMD false-
positive event (Alu insertion in chimpanzee). The DNA templates used in each reaction are shown above the chromatographs.

sumed to be deleted in the human genome (38 cases), (b)
authentic deletion products in the human genome that
were not products of Alu-Alu recombination (211 cases),
and (c) computational errors in alignment of the human
and chimpanzee genomes (212 cases). On the basis of se-
quence architecture, the remaining 871 loci represented
putative ARMD events in the human lineage. All of these
loci were further manually inspected and were analyzed,
for comparison of the ancestral predeletion and human
postdeletion states, by use of a TSD-based strategy as de-
scribed above (see the “Material and Methods” section).
In addition, we experimentally verified the authenticity
of 352 candidate ARMD loci by PCR (table 1 and fig. 2).
To be conservative, we discarded all loci in which an al-
ternative mechanism (e.g., random genomic deletion), dis-
tinct from ARMD, could have produced the deletion. Spe-
cifically, ARMD events can be distinguished from random
genomic deletions occurring at Alu insertion sites because
an ARMD event reconstitutes an uninterrupted chimeric
Alu element (i.e., with no internal deletion), whereas the
probability of this happening through chance alone (as
would be the case with a random deletion) is remote. In-
deed, the probability of two ∼280-bp Alu elements break-
ing by chance at a homologous site is only 1 in ∼80,000
(1 in in 280). Hence, although we cannot formally280 # 1
exclude the possibility that a few random deletions may
precisely mimic the ARMD process, we believe the overall

impact of these nonauthentic events on our estimates
would be minimal.

The manual verification of the 871 loci resulted in a
final data set of 492 ARMD events spanning the entire
human genome (table 1). Nine ARMD loci on the Y chro-
mosome were all located in the pseudoautosomal part of
this chromosome and hence were identical copies of de-
letion loci on the X chromosome. As a result, each event
was counted only once during the analysis. In general, the
loci analyzed in this study suggest that the combination
of computational data mining and experimental valida-
tion is the “gold standard” when conducting comparative
genomic searches for lineage-specific deletions. As we ob-
served during the course of this study, lineage-specific in-
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Figure 3. Density of ARMD events and all Alu insertions on in-
dividual human chromosomes.

Figure 4. Alu subfamily composition in ARMD events. A, Propor-
tion of Alu elements involved in ARMD events (unblackened bars)
versus total number of Alu elements (blackened bars) for each
subfamily. B, Subfamily ratios of upstream and downstream Alu
elements involved in ARMD events (unblackened and blackened
bars, respectively).

sertions in one genome stand a risk of being characterized
as deletions in the other when only two genomes are com-
pared in a computational analysis. In our analysis, we min-
imized the chances of including such events by using three
other hominoid genomes as controls during experimental
verification of the events.

Extent of Genomic Deletion and Size Distribution of ARMD
Events

The number of ARMD events is positively correlated with
the number of Alu elements present on each chromo-
some ( ; ). This is expected, since physicalr p 0.69 P ! .0005
proximity between repetitive elements strongly predis-
poses them to recombination.18 Simultaneous mapping of
ARMD loci and all Alu insertions on each chromosome
highlights the tendency for deletions to cluster with regions
of high local Alu density (fig. 3). Additionally, sequence
analysis of the Alu elements involved in ARMD events
indicates that the number of elements from each Alu sub-
family (fig. 4) is proportional to their genomewide copy
number,6 with no bias observed for elements from older
subfamilies (such as AluJ) that would have had more time
for recombination because of their age. This implies that
Alu elements throughout the genome have similar chances
of recombining with each other, as opposed to a mech-
anism of preferential recombination between members of
an individual subfamily, and that proximity between the
elements is the major factor involved in the process. Ad-
ditional evidence supporting this position comes from the
fact that ∼40% (197 of 492) of ARMD events result from
inter–Alu subfamily recombinations. However, within this
context, the amount of sequence identity between the two
elements at a locus also appears to be proportional to their
chances of successful recombination, since young AluY
elements are overrepresented at ARMD loci compared
with their total number in the genome, whereas the op-
posite is true for older, highly diverged AluJ elements.

The total amount of genomic sequence deleted by this
process in the human lineage (i.e., after the human-chim-
panzee divergence ∼6 million years ago) is estimated to
be 396,420 bp. This is probably a conservative estimate,
since our comparative analysis of the human and chim-
panzee genomes detects ARMD events only between Alu
elements that were inserted before the human-chimpan-
zee divergence. Therefore, it would miss ARMD loci in-
volving newly inserted human-specific Alu elements.19,20

However, the contribution of human-specific Alu elements
to ARMD is probably relatively limited, given that there

are only ∼7,000 such insertions,13 as compared with 11 mil-
lion Alu elements shared between the human and chim-
panzee genomes.

The ARMDs range in size between 101 bp and 7,255 bp,
with an average size of ∼806 bp. A histogram of the size
frequency distribution of ARMDs reveals a skew toward
shorter ARMD sizes, with ∼75% (368 of 492) of the dele-
tions shorter than 1 kb (fig. 5). Thus, the median ARMD
length of 468 bp better represents the most common size
category. However, in terms of total genomic sequence
deleted, the ∼25% ARMD events 11 kb were responsible
for ∼62% (245,263 of 396,420 bp) of the total sequence
deleted. Our computational analyses did not return any
ARMD loci with deletions !100 bp. Strictly speaking, Alu-
Alu recombination elements should not cause deletions
of !300 bp (i.e., the length of a complete Alu element),
because, even if the recombining elements were imme-
diately adjacent to each other, this would be the smallest
possible amount of sequence deleted. However, the in-
dividual left and right monomers of the dimeric Alu ele-
ment can freely exist in the genome, and these types of
elements are accounted for in our study. This resulted in
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Figure 5. Size distribution of human-specific ARMD events, displayed in 100-bp bin sizes

the ability of our study to detect deletions smaller than
the expected minimum of ∼300 bp.

Structural Characteristics of ARMD Events

Pairs of Alu elements that recombined to cause human
genomic deletions were in parallel orientation in almost
all cases (490 of 492). Most probably, this is a direct con-
sequence of the increased length of hybridization avail-
able from this arrangement, since the parallel orientation
would allow for homology over longer stretches between
pairs of Alu elements located on the homologous chromo-
somes during recombination. Analysis of the Alu trios at
each locus (i.e., two pre-ARMD Alu elements in chimpan-
zee and one postdeletion element in human) suggests four
possible recombination mechanisms. Of these, unequal
recombination between adjacent Alu elements on homolo-
gous chromosomes (fig. 6A, left panel) accounts for ∼74%
(366 of 492) of the deletions, whereas the other three pu-
tative mechanisms were less frequent (fig. 6B–6D). Our
study captures both intrachromosomal (fig. 6A, right
panel) and interchromosomal (fig. 6A, left panel) recom-
bination-mediated deletions.

For each deletion, we located the points on the Alu con-

sensus sequence where the two intact chimpanzee Alu el-
ements involved in the recombination were broken and
subsequently attached to each other to form the resulting
single human Alu element. Plotting the frequency distri-
bution of recombination breakpoints at different positions
on the Alu consensus sequence revealed a recombination
“hotspot” encompassing positions 21–48 (fig. 7), which
is consistent with an earlier study based on a smaller data
set.21 To uncover the reasons underlying the observed “ad-
hesive” nature of this part of the Alu element, we aligned
the consensus sequences of 10 Alu subfamilies (AluJo,
AluJb, AluSx, AluSp, AluSq, AluSg, AluSg1, AluSc, AluY, and
AluYd8) and analyzed the levels of conservation and GC
content of regions that tended to recombine at frequencies
exceeding the mean (0.08) across all positions in our ARMD
events. This analysis indicated that both parameters were
substantially higher in these regions than in the rest of
the Alu sequence, with the major inferred recombination
hotspot referred to above showing 160% GC (as compared
with the ∼62.7% average GC content for the 10 Alu con-
sensus sequences) and complete conservation across all
subfamilies. Although these factors may be responsible for
higher recombination frequencies in this region, other



Figure 6. Four different types of recombination between Alu elements. Black and gray lines represent flanking and intervening regions, respectively. Dotted red circles denote
recombining regions, and red and pink arrows represent TSDs of the two elements, respectively. A, Interchromosomal (left) and intrachromosomal (right) recombination between
two Alu elements (light blue and green). B, Recombination between two Alu elements, one of which previously inserted into the other (L and R indicate left and right Alu monomers).
C, Recombination between left and right Alu monomers on two different elements. D, Recombination between oppositely oriented Alu elements (only two cases observed).
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Figure 7. Recombination window between Alu elements and percentage frequencies of breakage (during recombination) at different
positions along an Alu consensus sequence. The structure of a typical Alu element is shown in the lower panel. The length of the Alu
consensus sequence is ∼282 bp, excluding the 3′ poly(A) tail. The element consists of left (light blue) and right (purple) monomers.
The left monomer contains an RNA polymerase III promoter (green boxes A and B). TSDs (red boxes), usually 7–20 bp long, are created
at each end during the Alu insertion process.

reasons are also plausible, such as the location of this
stretch near the L1 endonuclease cleavage site at the 5′

end of the Alu element, which makes it closer to putative
breakage sites during the recombination process.

Genomic Environment of ARMD Events

Alu elements in the human genome show a preference for
high–GC content areas, except for the most recently in-
tegrated subfamilies.1,22 However, since only a fraction
(984 of ∼1.2 million) of the total number of Alu insertions
is associated with the ARMD process, it may well be that,
in this respect, the deletions themselves behave differently
from the Alu family as a whole. To characterize the se-
quence context in which ARMD events occur, we calcu-
lated the percentage of GC content in 20-kb windows of
flanking sequence centered on the ARMD loci. Compared
with previous analyses of Alu and L1 insertion-mediated
(as opposed to postinsertional recombination–mediated)
genomic deletions,2,23 which are preferentially localized in
low–GC content neighborhoods (∼38% GC), ARMD events
tend to occur in high–GC content regions (∼45% GC con-
tent, on average). This is also substantially higher than
the ∼41% global average GC content of the human ge-
nome.1 Since high–GC content areas of the genome also
show higher gene density,1,24 we analyzed 4 Mb (2 Mb in
each direction) of sequence flanking ARMD events, for the
presence of known and predicted human RefSeq genes.
We found the gene density around ARMD events to be,
on average, one gene per 66 kb, which, as expected, is

higher than the global average gene density (approxi-
mately one gene per 150 kb)24 and the average gene den-
sity in the vicinity of L1 insertion-mediated deletions (ap-
proximately one gene per 200 kb).23 Thus, ARMD events
seem to be concentrated in gene-rich regions of the hu-
man genome. The tendency for clustering of ARMD events
and genes becomes even more apparent when their den-
sities are plotted side by side on each chromosome (fig.
8). Interestingly, the neighboring GC content showed
a significant negative correlation with the deletion size
( ; ).r p �0.17 P ! .0001

About 45% (219 of 492) of ARMD events were located
within known or predicted human RefSeq genes, and an
additional ∼15% (76 of 492) were in intergenic regions
of the human genome but were located within predicted
chimpanzee genes. Since �25% of the human genome
represents currently known genes (including both exon
and intron sequences),24–26 the relative density of ARMD
events within genic regions is remarkably high. This would
indicate that, a priori, the probability of this process in-
terfering with gene function is higher than the two ret-
rotransposon insertion-mediated deletion mechanisms
mentioned above. To test this hypothesis, we extracted
the ancestral prerecombination sequence at each ARMD
locus (i.e., the sequence present in the chimpanzee ge-
nome but deleted in the human genome) and analyzed
its location in the chimpanzee genome to see whether it
mapped to a protein-coding region. In three instances, the
ARMD event deleted an entire exon from a gene that is
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Figure 8. Density of ARMD events and RefSeq genes on individual
human chromosomes.

Table 2. Genomic DNA
Sequences Deleted by ARMD

Classification Amount

Alua 192,102
MIR 4,780
7SL RNA 306
L1 41,491
L2 7,312
L3 163
LTR 23,336
MER1 3,575
MER2 2,555
Other DNA repeat elements 669
Simple repeat 2,255
Nonrepetitive DNA 117,876

Total 396,420

a Includes truncated Alu elements.

functional in the chimpanzee genome. To confirm that
these three ARMD loci did not represent assembly errors,
we resequenced them in the human and chimpanzee ge-
nomes. One of the three genes, LOC471177, is a model
chimpanzee gene similar to the human CHRNA9 gene
(MIM 605116), a member of the ligand-gated ionic chan-
nel family that is associated with cochlea hair cell devel-
opment.27 Of the other two, LOC452742 is similar to the
human model gene LOC440141 (which encodes the mi-
tochondrial ribosomal protein S31), and LOC471116 en-
codes a hypothetical protein with a conserved high–mo-
lecular weight glutenin subunit.

Characteristics of the Genomic Sequences Lost during ARMD

Previous analyses have suggested that recombination may
be responsible for the bias toward high–GC content areas
observed for Alu elements in the human genome.1,28–30 If
so, one would expect that ARMD events preferentially re-
move low–GC content sequence, consequently causing a
shift in the opposite direction. However, simulation re-
sults revealed that the GC content of both RSNA and RSG
(41.9% and 41.4%, respectively) were significantly lower
than the ∼45.4% GC content of the observed deleted se-
quences ( in both cases). Moreover, the RSNAP ! .00001
and RSG Alu contents (20.6% and 11.4%, respectively) also
had significantly lower values when compared with the
Alu content of the observed deleted sequences (27.0%;

, compared with both RSNA and RSG). In addi-P ! .0001
tion to Alu elements, repetitive DNA from elements of
other families, for a total of 86,442 bp, was removed by
ARMD (table 2).

Discussion
Role of the ARMD Process in Human Genome Evolution

Retrotransposons such as Alu elements are associated with
size expansion in primate genomes.31,32 This is a conse-
quence of their increasing copy number and also an in-
direct result of their implication in homology-mediated
segmental duplications.33 For example, the high retrotrans-
position activity of the Alu family in the human lineage
has been responsible for the addition of ∼2.1 Mb to the
human genome within the past ∼6 million years.13,34 In
this context, our study provides the first comprehensive
assessment of a postretrotransposition process that has
had an appreciable impact on the dynamics of human
genome–size evolution. Previous in vivo evolutionary
analyses have characterized human and chimpanzee ge-
nomic deletions generated on Alu and L1 insertions2,23

However, the combined extent of human-specific deletion
attributable to these mechanisms is an order of magnitude
lower than that resulting from ARMD (∼30 kb for Alu and
L1 insertion–mediated deletions combined, vs. ∼400 kb
for ARMD alone). The relative amounts of sequence in-
serted (by Alu retrotransposition) and deleted (by ARMD)
imply an Alu-mediated sequence turnover rate of ∼20%
(i.e., ∼400-kb deleted sequence vs. ∼2.1-Mb inserted se-
quence) in the human genome within the past ∼6 million
years. This indicates that ARMD is capable of mitigating,
at least partially, the increase in genome size caused by
new retrotransposon insertions.

The scope of retrotransposon-mediated reduction of ge-
nome size further broadens when we consider that L1 el-
ements (another mobile DNA family) are capable of cre-
ating deletions by a recombination process analogous to
ARMD.33,35 The higher average distance between L1 inser-
tions in the human genome (one element per 6.3 kb)1 as
well as the lower GC content of L1 elements (∼43%, ex-
cluding the poly(A) tail)36 may be contributing factors to
the paucity of L1-mediated recombination events as com-
pared with ARMD events. Even so, the greater length of
L1 elements (∼6 kb vs. ∼300 bp for Alu elements)36 and
their high copy number (∼520,000 elements)1 still indicate
that this family may represent another source of retro-
transposon recombination-mediated deletions in the hu-
man genome. However, a broader comparative genomic
study of such retrotransposon recombination-mediated
deletion mechanisms in both the human and chimpanzee
lineages is needed before the comprehensive role of trans-
posable elements in primate genome–size evolution can
be determined. In this respect, at least in the case of plants,
studies have already shown that the genome of Arabidopsis
thaliana uses recombination-mediated deletion to counter-
balance genome expansion, which may be one of the rea-
sons for its remarkably compact size.37

Recent analyses of human-genome variation have em-
phasized the importance of deletions in creating genetic
diversity among humans.38–41 Our results offer insight into
one of the mechanisms that may contribute to the crea-
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tion of such deletions. Interestingly, the majority of the
deletion variants identified in the recent studies cited
above39–41 are polymorphic between human individuals or
populations. Although their contribution to between-in-
dividual genetic diversity is undisputed, the persistence of
these deletions over evolutionary time cannot be taken
for granted. By contrast, the deletions reported in our
study have a low polymorphism rate (15%) among the 80
diverse human genomes we genotyped. This may repre-
sent the difference in the comparative time scales of these
between-human genomic deletion variants39,40 and our
human-chimpanzee comparison. In an earlier analysis,23

we showed that only a fraction of the deletions caused by
in vitro L1 retrotransposition42–44 persist in the human ge-
nome over evolutionary time. Additionally, comparative
genomic studies across a range of organisms indicate that
genomic deletions that ultimately reach fixation tend to
be smaller than those detected before any selective force
operates (i.e., in cell culture analyses).45 Analogous to this
situation, ARMD events (which had a median length of
468 bp) were, in general, smaller than the deletion variants
characterized by the recent studies of human-genome var-
iation, which had a range of 1–745 kb.39–41 Since our study
focuses on a longer evolutionary time scale and would pref-
erentially capture those ARMD events that have not been
selected against, it is possible that the deletions we de-
tected represent the smaller evolutionary remainder of a
group of older and perhaps larger deletions.

ARMD as an Agent in Human-Chimpanzee Divergence

The human and chimpanzee genomes are character-
ized by only ∼1.4% divergence at the nucleotide-sequence
level.13,46–48 With the completion of the draft chimpanzee
genome, the focus has shifted to identifying differences
rather than locating similarities. Regarding actual genetic
change, although a comprehensive assessment of protein-
coding portions of the chimpanzee genome is not yet avail-
able, functional classes of genes that are under accelerated
evolution in one lineage or the other have been charac-
terized by recent studies.49,50

In the context of possible events that have altered gene
structure or expression between the human and chim-
panzee lineages, our study illustrates almost 300 lineage-
specific deletions within protein-coding human or chim-
panzee RefSeq genes; it is conceivable that at least some
of these ARMD events contributed to phenotypic diver-
gence. Gene shuffling by recombination between Alu el-
ements has already been reported in the human genome.51

Furthermore, in at least two documented instances, Alu
elements have caused hominoid lineage-specific exon de-
letions in functional genes: through an insertion-medi-
ated deletion in the human CMAH gene52 and through
ARMD in the human ELN gene.53 In the present study, we
show three additional instances in which ARMD has caused
the loss of an exon in a human gene, as compared with
its chimpanzee ortholog. Of particular interest is the de-
letion of the fourth exon in the predicted chimpanzee

gene LOC471177, which is orthologous to the human
CHRNA9 gene. In the human lineage, CHRNA9 is an iono-
tropic receptor with a probable role in the modulation of
auditory stimuli.27,54 Modifications in the function of this
gene may lead to a reduction in basilar membrane move-
ment and thus affect the dynamic range of hearing. Al-
though the characterization of the actual gene expression
pathways that underlie the differences of humans and
chimpanzees has just begun, preliminary data suggest that
differences in auditory genes may comprise a subset of the
total change.49 This is reflected in the fact that the tonal
range of normal human speech is probably outside the
optimal reception of the chimpanzee auditory system.55

Thus, it is conceivable that CHRNA9 is a member of the
group of genes (such as FOXP2 and TECTA) that may be
responsible for the unique auditory and olfactory traits
that distinguish humans and chimpanzees.49,56 Even ex-
cluding the three ARMD events listed above that deleted
exons, 292 other events located within genes have deleted
229,205 bp of intronic sequence. Although further anal-
ysis will be required for conclusive assignment of specific
roles, if any, to the deleted intronic sequences, it is possible
that some of them may be associated with alteration of
splicing patterns.

Does ARMD Play a Role in Modifying Alu Distribution?

Recently integrated or young Alu elements are inserted
relatively randomly in the genome; by contrast, older Alu
elements are preferentially found in GC-rich areas of the
genome.1,22 Both selective and neutral explanations have
been offered for this uneven genomic distribution of Alu
elements. However, a selective process1 is inconsistent
with polymorphism patterns of recently integrated Alu
elements.22 An alternative explanation for the enrichment
of Alu elements in GC-rich regions over time involves their
preferential loss from GC-poor regions,1,28–30 a process that
might be influenced by ARMD.

However, the high GC content of deleted sequences,
along with the preferential occurrence of ARMD events in
GC-rich regions, argues against this possibility. To result
in the Alu distribution shift, the deletions would need to
be much larger in GC-poor than in GC-rich regions.22 Con-
sistent with this hypothesis, our results indicate that ARMD
size is negatively correlated with GC content. However,
although ARMD events are significantly larger in GC-poor
(i.e., !41% genome average) than in GC-rich (i.e., 141%
genome average) regions (∼1,100 vs. ∼700 bp; t test P p

), three times as many ARMD events occurred in GC-.0007
rich as in GC-poor regions (369 vs. 123). Consequently,
the net amount of sequence deleted from GC-poor regions
is half that of GC-rich regions (∼135 kb vs. ∼261 kb). Given
that GC-poor regions encompass ∼58% of the genome,1

it is unlikely that ARMD has played a substantial role in
mediating the shift in the Alu distribution toward heavy
isochores.13 Nevertheless, other types of deletions could
contribute more significantly to the yet-unexplained Alu
genomic distribution shift.



www.ajhg.org The American Journal of Human Genetics Volume 79 July 2006 51

Interestingly, the results from the simulations we per-
formed suggest that sequences deleted through ARMD con-
tain a statistically significant excess of Alu elements. This
implies that the ARMD process may contribute to effective
removal of Alu elements from regions in which they have
reached high densities. Given the fact that abnormally
high Alu density within a particular genomic region would
also make it prone to recombination-mediated deletions,
this result may reflect a selective force that counteracts
the deletion process.

A Potential Mechanism of Double-Strand Break (DSB) Repair

Previous analyses have demonstrated the ability of both
LTR and non-LTR retrotransposons to cause DSBs in ge-
nomic DNA.57,58 In particular, the role of the L1 family in
the creation and subsequent resolution of DSBs has been
extensively analyzed.43 In vitro, cell-culture studies have
shown that homology-directed repair is a major mecha-
nism for patching such breaks and that recombination be-
tween repetitive elements is one possible pathway for this
process.59 Recombination rates are highly increased on ar-
tificially induced DSBs in cultured cells, which further im-
plicates this mechanism in “tying up the loose ends” at
potentially deleterious DSB loci.60

In vitro, a 3:1 excess of recombination deletions versus
conservative noncrossover situations was detected in a
study of homology-mediated repair at a single predefined
DSB locus.60 In this context, some of the loci in our study
may represent instances of homology-mediated DSB re-
pair, in which the presence of highly conserved Alu se-
quences on both sides of the break has facilitated its patch-
ing. This would be particularly true for loci at which the
deletion would otherwise be selectively neutral, since the
act of repairing a potentially lethal DSB would give it an
instant advantage, if only for propagation to the imme-
diately next generation.

Conclusion

As high-throughput sequencing techniques become more
advanced, the focus of evolutionary studies is shifting more
toward genomewide analyses. Our study represents such
a situation: we have comprehensively analyzed a major
deletion mechanism in the human genome that was pre-
viously known only as a result of mutations in isolated
disease-causing loci. In view of the fact that deletions are
being recognized as an important class of genetic vari-
ants that contribute to human diversity and evolution,39–

41 ARMD represents one of the major mechanisms for gen-
erating such deletions in humans. Moreover, the frequent
occurrence of ARMD in gene-rich regions of the genome
demonstrates the importance of this process in both bio-
medical and evolutionary studies. Overall, our results open
the field to further studies of deletions caused by recom-
bination between mobile elements and demonstrate one
of the possible ways by which the human lineage may
have developed a set of unique genetic traits.
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