
Some Unusual Micropipeline Circuits1 

Ganesh Gopalakrishnan

UUCS-93-015

Department of Computer Science 
University of Utah 

Salt Lake City, UT 84112, USA

Last Updated : December 11th, 1993.

Abstract
We present a few unusual Micropipelines (Sutherland, CACM, September 1989) that employ the 

Muller C-ELEMENT or an extension of the C-ELEMENT called LockC  (Liebchen and Gopalakrish
nan, ICCD, 1992). We first describe two variations of the two-dimensional Micropipeline structure 
realized using ordinary C-ELEMENTs. These micropipelines can be used to control wavefront ar
rays (S.-Y.Kung et.al., IEEE Computer, 1987). Next, we present a ring style arbiter realized using 
a LoCKC-based one-dimensional micropipeline. Finally, we present a solution to the symmetric 
crossbar arbitration problem posed by Tamir and Chi (IEEE Trans. Parallel and Dist Systems, 
Jan ’93) using a circuit that employs the two-dimensional micropipeline as well as the LockC. We 
present various circuits to solve the symmetric crossbar arbitration problem, including ones that 
consume very little power when idling.

1This work was supported in part by NSF Award MIP-9102558
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Abstract. We present a few unusual Micropipelines (Sutherland, CACM, September 1989) that employ the Muller 
C-ELEMENT or an extension of the C-ELEMENT called LockC (Liebchen and Gopalakrishnan, ICCD, 1992). We first 
describe two variations of the two-dimensional Micropipeline structure realized using ordinary C-elements. These 
micropipelines can be used to control wavefront arrays (S.-Y.Kung et.al., IEEE Computer, 1987). Next, we present a 
ring style arbiter realized using a LoCKC-based one-dimensional micropipeline. Finally, we present a solution to the 
symmetric crossbar arbitration problem posed by Tamir and Chi (IEEE Trans. Parallel and Dist Systems, Jan ’93) 
using a circuit that employs the two-dimensional micropipeline as well as the LockC. We present various circuits to 
solve the symmetric crossbar arbitration problem, including ones that consume very little power when idling.

1 In trod u ction

The micropipeline is a well known asynchronous control structure proposed by Sutherland in 
his Turing award lecture [1]. In this paper, we present an extension of micropipelines to higher 
(spatial) dimensions; specifically, we propose a few organizations of two dimensional micropipelines. 
In [1], Sutherland presents an analogy between one dimensional micropipelines and elastic media: 
both support the propagation of elastic waves. Likewise, two-dimensional micropipelines propagate 
waves that travel parallel to the diagonal.

Two-dimensional micropipelines are interesting for several reasons. In the past, several re
searchers have proposed rectangular circuit structures that support two-dimensional wave prop
agation. In [2, 3], S.-Y.Kung et.al. present several wavefront array processors. In [4], Tamir 
and Chi present several applications of wavefront propagation in rectangular array structures for 
performing symmetric cross-bar arbitration (detailed in Section 5.1). In this paper, we consider ap
plications similar to those studied by S.-Y.Kung et.al., and Tamir and Chi, except that we employ 
Sutherland’s micropipeline structure (albeit with the two-dimensional extension) and a new circuit 
component (the LockC  [5]) to implement our circuits.

Another novelty of our approach, compared to the approaches taken by S.-Y.Kung et.al., and

’ Supported in part by NSF under award MIP-9102558. The author wishes to thank Armin Liebchen for his help 
in developing LockC, Madhu Penugonda for discussions and his work in simulating a two-dimensional micropipeline, 
Ratan Nalumasu for verifying a few wavefront arbiters using the SMV system, and the ASIC seminar group for 
feedback.
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Tamir and Chi, is that we employ asynchronous circuits in our proposed designs. As recent work 
shows [6, 7, 1, 8, 9, 10], asynchronous circuits often possess many advantages over synchronous cir
cuits, including greater modularity, incremental expandability, absence of global clock distribution 
problems, and naturalness for applications involving phenomena such as pipelining, variable-rate 
computations, and arbitration. The last mentioned point is worth emphasizing. Implementing syn
chronously clocked arbiters that deal with purely asynchronous request signals is a difficult problem 
owing to the propensity of inviting failures due to metastability [11]. An additional feature of our 
work is that we employ new asynchronous circuit design paradigms such as two dimensional wave
front propagation and asynchronous locking of enabled C-ELEMENTS, which seem to lead to rather 
elegant and efficient circuits.

The remainder of this paper is organized as follows. In Section 2, we describe the two two
dimensional micropipeline architectures that we have identified, including some of their applications. 
In Section 3, we describe the design of the lockable C-ELEMENT. We also briefly describe the context 
in which LockC  was originally conceived. In Section 4, we describe the design of an arbiter based 
on a (one dimensional) micropipeline that uses LockC  in place of the standard Muller C-ELEMENT 
(on which most micropipeline designs are based). A way to avoid power wastage when idling is also 
discussed in this section. The idea behind this arbiter extends naturally to two dimensions, resulting 
in a symmetric crossbar arbiter based on a two dimensional micropipeline that uses LockC  in place 
of the C-ELEMENT. Called the wavefront arbiter by Tamir and Chi [4], we describe this design in 
Section 5. Finally, in Section 6, we present another wavefront arbiter design called the wrapped 
diagonal wavefront arbiter by Tamir and Chi. In Section 7, we present a symmetric crossbar arbiter 
that achieves the maximum possible number of connections. Concluding remarks are provided in 
Section 8.

2 T w o -d im en sio n a l M icrop ip elin es

Figures 1 and 2 show the proposed two-dimensional micropipeline topologies. The former takes 
lesser area, but can pack only a small number of wavefronts. More specifically, assuming that all 
the C-ELEMENTs have the same delay, the wavefronts are separated by 3 positions, as the following 
analysis shows (a C-ELEMENT with index i , j  is said to occupy position i +  j ) :

• When the Start transition is applied, wavefront #0  occupying position 0 is created at time
0. This wavefront also travels through the MERGE element to apply another transition on the 
C-ELEMENT at position 0. However, since this C-ELEMENT has not been re-enabled through 
its inverting input yet, it doesn’t fire as yet.

• Wavefront #0  at position 0 propagates to position 1 at time 1, and then to position 2 at time 
2.

• When at position 2, wavefront #0  re-enables the C-ELEMENT at position 0, which fires at 
time 3. This creates wavefront #1 occupying position 0. In addition, wavefront #0  now 
occupies position 3. This sequence repeats2.
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Figure 2 shows another two-dimensional micropipeline organization. This circuit takes more area 
because of the higher connectivity and higher in-degree of the C-ELEMENTS, compared to the circuit 
in Figure 1. However, this circuit can pack more wavefronts per C-ELEMENT; more specifically, 
assuming the same delay for the C-elements, the wavefronts will be two positions apart. A 
noteworthy feature of this array is that examined row-wise or column-wise, this micropipeline 
resembles a standard (single dimensional) micropipeline.

Two-dimensional micropipelines propagate waves parallel to their diagonal, exactly as the wave
front arrays proposed by S.-Y.Kung et.al. do. Also, it is easy to see that the wavefronts do not 
intersect. Therefore, two-dimensional micropipelines can be used to control wavefront array pro
cessors. As an example, consider one of the most widely quoted of wavefront array algorithms: 
matrix multiplication. Let 4x4 matrices A  and B  be multiplied to yield matrix C , as illustrated 
in Figure 3. (Note: This figure uses the micropipeline organization of Figure 1 although that of 
Figure 2 will also work correctly.) In this figure, it is assumed that there is one datapath cell ij  
associated with each C-ELEMENT ij  (which we do not draw, to avoid clutter).

The algorithm proposed by S.-Y.Kung et.al. works as follows. When a wavefront occupies 
position k , matrix elements situated nearest to cells Ok and kO are brought into the datapath cells

2As S.-Y.Kung et.al. point out in [2], wave propagation in this array resembles light-wave propagation as described 
by Huygen’s principle of light-wave propagation.
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Figure 4: A Lockable C-ELEMENT, LockC

Ok and kO. For example, in the beginning, when a wavefront occupies position 0, the elements b30 
and a03 are brought into datapath cell 00 . They are multiplied and the result is accumulated (with 
the accumulator starting at value 0). The next wavefront to occupy position 0 brings in b20 and 
a02 which are multiplied and added to the previous value accumulated at datapath cell 00 . Due 
to the diagonal movement of wavefronts, when a wavefront advances, it carries all the a elements 
that are in the array rightwards one step; it also carries all the b elements that are in the array 
downwards one step. This ensures that elements are correctly brought together to be multiplied 
and accumulated during each step of the algorithm. The C  matrix forms within the datapath cells, 
and can be brought out at the end.

3 L o c k C : A  Lockable C-ELEMENT

In [5], Liebchen and I have described a new device that we have fabricated and tested: an
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extension of the Muller C -elem ent, called LockC. LockC  works as follows. A lock command 
can be issued to it at an arbitrary point in time. This command has the effect of preventing the c 
output of LockC  from firing, the “next time” LockC  is enabled. In other words, if lock is asserted 
well before LockC  gets enabled3, locking succeeds. In this case, LockC  remains enabled until 
lock is de-asserted, when it continues to behave like a normal C-ELEMENT. On the other hand, if 
lock is applied close to when LockC  gets enabled, then (non-deterministically) LockC  can “fire” 
(making a — h — c) or not fire, and remain enabled. In the former case (i.e., when LockC  actually 
fired, apparently ignoring the lock request), the lock request will be honored the next time LockC 
gets enabled.

As described in [5], LockC  was invented to build reordering micropipelines. A reordering mi
cropipeline buffers data in a FIFO fashion, and its contents can be periodically examined and 
subject to peephole optimization. For example, in one application, the reordering micropipeline 
is used to buffer instructions targeted to a processor. In this application, the flow of instructions 
through the micropipeline can be periodically halted, two arbitrary adjacent instructions can be 
examined, and the instructions can be reordered before letting the flow of instructions resume. In
[5], we show how to build a Sutherland micropipeline using LockCs to realize a reordering mi
cropipeline. In this paper, we explore newer applications of LockC. For the sake of completeness, 
we will now thoroughly describe the external as well as internal behavior of LockC. In Section 4, 
and later, we will describe various applications of LockC.

Figure 4 describes the operation of LockC . The pinout of LockC  is shown on the top left-hand 
side. The Petri-net describes L ock C ’s external behavior. This Petri-net has two sections, namely 
the “Normal C-section” and the “Inhibiting Section” . We interpret this Petri net as follows. Each 
transition of the Petri net is labeled with a signal-transition of the form £+, y —, or z. The labels 
x +  and y — indicate a rise of x or a fall of y respectively, and a label of the form z connotes a 
change of z Js Boolean value. When a transition has tokens in all its enabling input places, and 
has no tokens in its inhibiting input places, the transition fires. The firing of a transition does the 
following things: it instantaneously removes one token from each of its enabling input places; then, 
after a bounded (but arbitrary) duration of time, it causes the associated signal-transition to occur, 
and simultaneously inserts one token into each of its output places.

The Normal C-section consists of two transitions a and b, whose firing eventually enables transi
tion c. After c fires, transitions a and b are eventually re-enabled. The Inhibiting Section receives 
lock— from the user. After lack— is generated, it is guaranteed that transition c cannot occur; it 
can occur only after lack+ is generated.

The circuit realization of LockC  shown here is different from that described in [5], and is, 
therefore, explained now. The input section consists of the normal pull-up and pull-down transistors 
of a two-input C-ELEMENT. A single N-type transistor connected to Lock disconnects the cross
coupled inverter pair from the input section. (We employ a single N-type transistor, as opposed 
to a transmission gate, to ensure sharper cut-off; ratioing is done to mitigate the effects of the 
threshold drop.) The inverter pair stores the internal state of LockC . When the inverter pair goes 
metastable4, the interlock transistors cutoff; the output state is, meanwhile, held steady by the

3 A C-element is enabled when a =  b = -ic.
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R S  flip-flop. We derive signal lack from m s. However, as signal m s can exhibit a non-monotonic 
change (as shown by the traces), we employ an OR-gate and a delay element (whose value is greater 
than A, the maximum duration for which m s could ever have negative slope) to mask-off the down- 
going portion of ms. When LockC  is unlocked by de-asserting lock, the OR-gate forces lack to 
be de-asserted after the OR-gate delay. Since DELAY is asymmetric (effective only for down-going 
transitions), it also resets immediately. Thus, LockC  is available for use again, very soon after 
lack is de-asserted.

4 A n  A rb ite r  B ased  on  Lo c k C

Figure 5 shows how an arbiter can be built using a (special case of a one-dimensional) Sutherland 
micropipeline that employs one-input LockC  elements. After power-up, the output state of all 
the LockC  elements is reset to zero, and their lock inputs are held de-asserted (high). The Start 
transition is then applied. This causes a single token to circulate in the loop. Since we only need 
one token to circulate, we should not re-enable C-ELEMENT i — 1, as soon as C-ELEMENT i fires 
(as in a standard micropipeline). Therefore, we should have only one input to our LockCs. (Note: 
One input LockCs are the same as Q-LATCHES, described in [12].)

Without loss of generality, consider a situation in which station 0 wants to access the shared 
resource guarded by the arbiter. It first asserts 10, and waits for aO to be asserted (to go low). 
Signal aO is lowered when LockC  asserts (lowers) the lack signal, and the parity between the input 
and the output of the LockC  gate is odd. The attainment of odd parity between the LockC  input 
and output indicates that LockC  has successfully trapped the circulating token. Since the output 
of LockC  cannot change after it asserts lack, the odd parity will be maintained (i.e., it cannot 
be a transient “glitch” ). Therefore, as soon as station 0 sees aO getting asserted, it can access the 
shared resource. Once the access of the shared resource is over, lock is de-asserted, causing lack 
also to be de-asserted.

Now consider the case when there is even-parity between the LockC  input and output even 
after lack has been asserted. This situation can arise only when the token is at a station numbered 
greater than 0. In this case, after all the stations with number higher than 0 have released the 
token, the token is guaranteed to come to station 0. When this happens, odd parity between the

4This can happen if, for example, when lock is asserted when the inverter pairs are half-way along in their state 
change.
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Figure 6: A Low Power Version of the One Dimensional Ring-Style Arbiter

LockC  input and output will be attained, causing aO to be asserted. Thus, each station follows a 
four-phase protocol with respect to 10 and aO (with 10 and aO being active low). An example usage 
of this arbiter appears in Figure 5.

Note that there is a one-sided timing constraint on raising for i G 0 ..  .3: after raising we 
must ensure that the lack signal of the corresponding LockC  has been generated and the XNOR 
gate has stabilized before ctj is raised. This is because as soon as at- is raised, U can be asserted 
(lowered) once again.

A low-power version of the one-dimensional arbiter given in Figure 5 is presented in Figure 6. 
This version prevents the token from idling around the loop when none of the lock inputs are 
asserted. In this sense, this circuit is similar to Martin’s token ring arbiter [13], although there are 
many differences between these circuits in terms of implementation. Since the token is prevented 
from idling around the loop, power consumption is reduced. This idea can be suitably incorporated 
into other arbiters discussed in this paper. The extra LockC acts as a place-holder for the token 
when no lock requests are active.

5 T h e  W a vefro n t A rb ite r

Figure 7 shows a square array of LockC  elements that implements a solution for the symmetric 
crossbar arbitration problem. This is a direct extension of the arbiter in Figure 5 to two dimensions. 
(We do not show the xoR-gate and the OR-gate associated with each LockC to avoid clutter.) In 
Section 5.1, we specify the symmetric crossbar arbitration problem. In Section 5.2, we explain the 
workings of the wavefront arbiter.

5.1 Sym m etric Crossbar Arbitration: Problem  Definition

Consider a crossbar switch that can connect row wires numbered 0 through 3 to column wires 
numbered 0 to 3, where the row and column wires are illustrated in Figure 7. Each row wire may 
be connected to at most one column wire. Similarly, each column wire may be connected to at 
most one row wire.

At any instant in time, each row-wire may simultaneously request to be connected to several 
column wires; the symmetric crossbar arbiter has to decide which column wire to connect the row
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All gates labeled "xy" above are lockc elements

Shadow cast by locking element 12

This circuit cannot make connections In this region 
while element 12 Is locked. However the crisscrossing 
1-d arbiters circuit given later can make such connections.

Figure 7: The Wavefront Arbiter

wire to. Since all the different rows may be making similar requests concurrently, it must also be 
guaranteed that if a row wire is connected to a certain column, then none of the other rows are 
connected to the same column. For example, if the set of requests made by row wire 0 is the set 
of column wires { 0 ,2}, that of row wire 1 is the set of column wires { 0 , 1}, that of row wire 2 is 
{ l } ,  and that of row wire 3 is {2 ,3 }, then one set of legal connections consists of row wire 0 to 
column 0; row wire 1 to column 1; row wire 2 to no column wire (as column 1 is already taken); 
and row wire 3 to column wire 3. A better (in terms of utilization) set of connections is: row wire
0 to column 2; row wire 1 to column 0; row wire 2 to column 1; and row wire 3 to column wire 3. 
Since there are many switches arbitrating for exclusive access to row- and column-wires, we must 
avoid possible deadlocks due to “hold and wait” .

A formal definition of the symmetric crossbar arbitration problem for an N  X N  switch matrix is 
as follows (with our solutions as well as that of Tamir and Chi only trying to approximately solve 
the problem). Let ik,k £ N  denote the requests on row wire k. (Numbers are viewed as sets; e.g. 
4 - {0 ,1 ,2 ,3 }.) Each ik is of the form . . .  (N  — l )J*>w- ‘ for k G N  and jkj  > 0 for



I 6 N .  For example, 02132°31 indicates 2 requests for column-wire 0, 3 for column-wire 1, none for 
column-wire 2, and 1 for column-wire 3. The problem is to find kx, x £ N, kx £ N  U { — 1}, where 
(kx is the column wire assigned to row x—with -1 indicating ’’ none assigned” ) such that

Equation 1 says that we assign a column wire only if that column is requested. Equation 2 says that 
we do not allocate the same column wire to more than one row wire. Equation 3 uses a suitable 
definition of C ount(x ) (for example i f  x >  0 then 1 else x), and tries to maximize the number of

The solutions proposed by Tamir and Chi rely on the classic idea of using a total ordering on 
resource numbers. We can think of the switches as resources and the wires as processes contenting 
for the switches. Then, the switch positions can be used for the ordering. Using this idea, we can 
examine the switches in the order in which they are visited by diagonal wavefronts flowing from 
the top-left corner to the bottom-right corner. This leads us to the design of wavefront arbiters.

The operation of the wavefront arbiter presented in Figure 7 is as follows. Assuming that all the 
LockCs are initially unlocked, a Start transition ripples through the array, initially creating a 
wavefront at position 0, which then moves on to position 1, 2, and so on. When it reaches position
6, the LockC  at that position repeats the above sequence of wave propagation. Thus, at any time,

Now, assume that station 12 wants to arbitrate (get access to row-wire 1, and column wire 
2). It asserts the lock input of LockC  number 12, and awaits the assertion of lack, as well as 
the attainment of a state in which the a and b inputs are different from the c output. When 
this happens, we can be sure that the wavefront has been successfully blocked by LockC  number
12. When the OR-gate associated with this LockC  asserts its 112 signal, crossbar switch 12 can 
connect row-wire 1, and column wire 2. After the message has been routed, station 12 will de-assert 
lock, causing the de-assertion of 112 as well. The wavefront can now proceed beyond station 12, 
triggering the C-ELEMENTs 13 and 22 on its course. Consider the situation in which the wavefront 
is at position 3, and is blocked only by one node— namely 12—at position 3. The wavefront can 
still continue to move forwards. However, it cannot enter the “shadow” cast by element 12 (the 
shadow includes all switches with row numbers > 1 and column numbers > 2) 5.

The wavefront arbiter prevents a row or a column from being connected multiple times, for the 
following reasons. Assume that the wavefront is successfully blocked by LockC  xy. Then, it cannot 
be passing through switches xa for a <  y, and by for 6 < x, for, it has already departed from these

5To take a physical analogy, the wavefront behaves like “an elastic rod thrown lengthwise at a rigid pole” , as

(1)
(2)
(3)



Figure 8: The Wrapped Diagonal Arbiter Showing the Wrapped Diagonals

locations before coming to location xy. It cannot be passing through the switches in the shadow 
cast by xy  (all switches with row number > x and column number > y), for those LockC  elements 
can fire only after the LockC  at x y  has fired. Thus, row-wire x and the column-wire y  cannot be 
having other connections made on them. If a LockC  other than xy  is also locked, the situation 
can only get better in terms of avoiding deadlocks as well as conflicting wire usages. The scheme 
avoids deadlocks because a row and a column wire passing through a switch are allocated together, 
and never piece-meal.

Actually the above solution is an overkill: it is perfectly safe to allow connections to be made in 
the umbra of the shadow cast by xy  (switches whose row numbers are > x and column numbers are 
> y—see Figure 7), because the corresponding rows and columns are free. In Section 7, we present 
a circuit that achieves this.

6 T h e  W ra p p ed -d ia g o n a l A rb ite r

The scheme in Figure 7 is inefficient because only one diagonal (wavefront) is supported. As 
Tamir and Chi show, it is possible to have two diagonals, with a given minimum spacing constraint, 
such that arbitration decisions are allowed to be made on points situated on both the diagonals. 
Figure 8 shows the various “wrapped diagonals” . Initially, there is a wrapped diagonal occupying 
position 0. In the next time step, this wrapped diagonal moves forwards to occupy position 1. 
At the next time step, it occupies position 2, and then position 3. When this wavefront leaves 
position 3, it moves to position 4, and also enables a wavefront to get formed at position 0. Thus,
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Figure 9: Wrapped Diagonal Arbiter: Achieving Spacing Between Diagonals

a wrapped diagonal has formed, with its ends occupying positions 0 and 4. Moving along, the ends 
of the wrapped diagonal occupies positions 1 and 5, and then 2 and 6. The next wrapped diagonal 
occupies only position 3. After it leaves position 3, the above sequence repeats, with the ends of 
a wrapped diagonal at positions 0 and 4, and so on. Each wrapped diagonal passes through the 
largest possible number of switches that do not have any row- or column wires in common 6. Thus, 
they capture the largest number of conflict-free concurrent connections possible.

The required spacing between the wrapped diagonals is achieved by arranging the re-enabling 
input for the LockCs to come from those LockCs that are “sufficiently far away” , as shown in 
Figure 9. (Not all connections are shown, to avoid clutter.) The connections shown in this figure 
imply that the L ockC  at 00 is prevented from firing until after all the LockCs at position 3 have 
fired. This prevents the next wavefront at position 0 from being formed until the wavefront at 
position 3 is about to move on to position 4. This allows positions 0 and 4 to get one wavefront, 
each, which they can choose to “trap” using the locks of the associated LockCs. Similar connections 
are necessary from position 4’s outputs going to position l ’s inputs, and position 5’s outputs to 
position 2’s inputs.

Actually, it is not necessary to connect every output of position 3 to an input of position 0, 
and so on. Rather, a small, regular set of such connections suffice, as shown in Figure 10. The 
connections in this figure can be derived by the following line of reasoning. Clearly, the wavefront 
at position 3 must have vacated positions 30 and 03 before a wavefront is permitted at position 00 
(to avoid conflicting on column 0 or row 0, respectively). However, positions 21 and 12 need not be 
vacated before allowing a wavefront onto position 00. Before letting a wavefront into positions 10 
and 01, however, the wavefront must have vacated positions 21, 31, 12, and 13. It actually suffices

6By the “pigeon-hole principle”.
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Figure 10: Wrapped Diagonal Arbiter: Least Constraint Version

to check whether the wavefront has vacated positions 31 and 13 alone, because the firing of the 
cells 31 and 13 is an indirect acknowledgement of the fact that the cells 21 and 12, respectively, 
have also fired.

By avoiding the barrier synchronizations implicit in the wrapped diagonal scheme suggested by 
Figure 9, the scheme in Figure 10 can achieve higher performance.

7 C risscrossing O ne D im en sion al A rb iters

Figure 11 presents a symmetric crossbar arbiter that can achieve the maximum number of non
conflicting connections as defined by Equations 1 through 3 of Section 5.1. This arbiter essentially 
consists of N one-dimensional arbiters of the kind described in Figure 5 arranged row-wise and the 
same number of one-dimensional arbiters arranged column-wise in a crisscrossing fashion (thus it 
takes more area than the circuit in Figure 10). The basic building block, called L + x+ o, consists 
of a LockC element, an XNOR gate and an OR gate, similar to a stage of Figure 5. Connecting the 
two L + x+ o  cells at any coordinate position in the manner shown in Figure 11 makes sure that at 
any coordinate position, the column-token is trapped before the row-token is trapped. This is to 
prevent deadlocks.

The crisscrossing one-dimensional arbiter array works as follows. When a lock is requested at 
location (i , j ), the ith row first traps the single token circulating around the ith row at location 
(i, j ) .  Thereafter, the jth column traps the single token circulating around the jth column at 
location When both these steps are over, the external acknowledge signal is generated.
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l+x+o consists 
of a one-input 
lockc, the XNOR 
gate that detects 
that a token has 
been trapped, 
and the OR gate 
that generates 
the acknowledge
The input to 
l+x+o is the lock 
signal and the 
output is the 
ack signal.

Figure 11: Crisscrossing One Dimensional Arbiters

8 C on clu d in g  R em a rk s

A new architectural idea (two-dimensional micropipelines) as well as new applications for a 
recently proposed circuit element (LockC) were presented. The circuits described in this paper 
are unusual in several ways. The idea of two-dimensional micropipelines is believed to be new. 
The computational paradigm underlying our arbiter circuits—locking moving wavefronts in a two
dimensional micropipeline—is also believed to be new.

The circuits proposed by S.-Y.Kung et.al. in [3] are synchronous in nature. They are conceptually 
mismatched with the computational paradigm put forwards by S.-Y.Kung et.al. (which is that of 
asynchronous dataflow computation!). Also, their circuits require the use of synchronizers that 
allow sufficient time for metastable states to exit, entailing a loss of performance. In contrast, our 
proposal to use two-dimensional micropipelines to control wavefront arrays appears conceptually 
simpler, as well as elegantly matches the computational paradigm followed by wavefront arrays. 
Although two-dimensional micropipelines seem to have a larger spread between two successive 
wavefronts than necessary, they could have shorter cycle-times, as the critical path includes only a 
few LockCs.

Compared to Tamir and Chi’s circuits, our circuits do not need an extra shift-register stage or 
a clock distribution network. In Tamir and Chi’s scheme, there is a tacit assumption that out
standing requests for switch connections are examined at the beginning of every clock cycle. Since 
these requests can come truly asynchronously with the clock in a message routing network (where 
these arbiters find application), designers are required to adopt suitable metastability handling 
techniques—an issue that Tamir and Chi do not address. The use of synchronizers that allow 
sufficient time for the metastable states to exit entails a loss of performance. In contrast, our 
circuits operate truly asynchronously, and metastability handling is inherent in the design of the
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L o ck C  elements. Since L o ck C  elements delay the generation of lack only so long as their internal 
metastability lasts, only rarely will lack be noticeably delayed, as the probability of the arrival of 
the wavefront coinciding with the assertion of lock is low. Our circuits also guarantee fairness: 
every request will eventually be honored, as the wavefronts, by their nature, take off from where 
they were trapped due to locking.

As discussed in Section 4, if the arbiter discussed in this paper are equipped with an extra stage 
of LockCs, the idling token(s) can be trapped there when the arbiter is not making connections, 
thus saving power.

At present, we have a working MOSIS chip containing LockC . We also have simulated the 
two-dimensional micropipeline array successfully. The wrapped diagonal arbiter, least constraint 
version (Figure 10) has been modeled in Computational Tree Logic using the SM V language [14] 
and verified for its correctness. We plan to build test-chips for the remaining circuits shortly.
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