
Some Unusual Micropipeline Circuits1

Ganesh Gopalakrishnan

UUCS-93-015

Department of Computer Science
University of Utah

Salt Lake City, UT 84112, USA

Last Updated : December 11th, 1993.

Abstract
We present a few unusual Micropipelines (Sutherland, CACM, September 1989) that employ the

Muller C-ELEMENT or an extension of the C-ELEMENT called LockC (Liebchen and Gopalakrish
nan, ICCD, 1992). We first describe two variations of the two-dimensional Micropipeline structure
realized using ordinary C-ELEMENTs. These micropipelines can be used to control wavefront ar
rays (S.-Y.Kung et.al., IEEE Computer, 1987). Next, we present a ring style arbiter realized using
a LoCKC-based one-dimensional micropipeline. Finally, we present a solution to the symmetric
crossbar arbitration problem posed by Tamir and Chi (IEEE Trans. Parallel and Dist Systems,
Jan ’93) using a circuit that employs the two-dimensional micropipeline as well as the LockC. We
present various circuits to solve the symmetric crossbar arbitration problem, including ones that
consume very little power when idling.

1This work was supported in part by NSF Award MIP-9102558

S o m e U nusual M icro p ip e lin e C ircuits

GANESH GOPALAKRISHNAN* (ganesh@cs.utah.edu)
University of Utah
Dept, of Computer Science
Salt Lake City, Utah 84112, USA '

Keywords: Self-timed/Asynchronous Circuits, Micropipelines, Wavefront array processors, Arbiters, Lockable C-
ELEMENT

Abstract. We present a few unusual Micropipelines (Sutherland, CACM, September 1989) that employ the Muller
C-ELEMENT or an extension of the C-ELEMENT called LockC (Liebchen and Gopalakrishnan, ICCD, 1992). We first
describe two variations of the two-dimensional Micropipeline structure realized using ordinary C-elements. These
micropipelines can be used to control wavefront arrays (S.-Y.Kung et.al., IEEE Computer, 1987). Next, we present a
ring style arbiter realized using a LoCKC-based one-dimensional micropipeline. Finally, we present a solution to the
symmetric crossbar arbitration problem posed by Tamir and Chi (IEEE Trans. Parallel and Dist Systems, Jan ’93)
using a circuit that employs the two-dimensional micropipeline as well as the LockC. We present various circuits to
solve the symmetric crossbar arbitration problem, including ones that consume very little power when idling.

1 In trod u ction

The micropipeline is a well known asynchronous control structure proposed by Sutherland in
his Turing award lecture [1]. In this paper, we present an extension of micropipelines to higher
(spatial) dimensions; specifically, we propose a few organizations of two dimensional micropipelines.
In [1], Sutherland presents an analogy between one dimensional micropipelines and elastic media:
both support the propagation of elastic waves. Likewise, two-dimensional micropipelines propagate
waves that travel parallel to the diagonal.

Two-dimensional micropipelines are interesting for several reasons. In the past, several re
searchers have proposed rectangular circuit structures that support two-dimensional wave prop
agation. In [2, 3], S.-Y.Kung et.al. present several wavefront array processors. In [4], Tamir
and Chi present several applications of wavefront propagation in rectangular array structures for
performing symmetric cross-bar arbitration (detailed in Section 5.1). In this paper, we consider ap
plications similar to those studied by S.-Y.Kung et.al., and Tamir and Chi, except that we employ
Sutherland’s micropipeline structure (albeit with the two-dimensional extension) and a new circuit
component (the LockC [5]) to implement our circuits.

Another novelty of our approach, compared to the approaches taken by S.-Y.Kung et.al., and

’ Supported in part by NSF under award MIP-9102558. The author wishes to thank Armin Liebchen for his help
in developing LockC, Madhu Penugonda for discussions and his work in simulating a two-dimensional micropipeline,
Ratan Nalumasu for verifying a few wavefront arbiters using the SMV system, and the ASIC seminar group for
feedback.

1

mailto:ganesh@cs.utah.edu

Tamir and Chi, is that we employ asynchronous circuits in our proposed designs. As recent work
shows [6, 7, 1, 8, 9, 10], asynchronous circuits often possess many advantages over synchronous cir
cuits, including greater modularity, incremental expandability, absence of global clock distribution
problems, and naturalness for applications involving phenomena such as pipelining, variable-rate
computations, and arbitration. The last mentioned point is worth emphasizing. Implementing syn
chronously clocked arbiters that deal with purely asynchronous request signals is a difficult problem
owing to the propensity of inviting failures due to metastability [11]. An additional feature of our
work is that we employ new asynchronous circuit design paradigms such as two dimensional wave
front propagation and asynchronous locking of enabled C-ELEMENTS, which seem to lead to rather
elegant and efficient circuits.

The remainder of this paper is organized as follows. In Section 2, we describe the two two
dimensional micropipeline architectures that we have identified, including some of their applications.
In Section 3, we describe the design of the lockable C-ELEMENT. We also briefly describe the context
in which LockC was originally conceived. In Section 4, we describe the design of an arbiter based
on a (one dimensional) micropipeline that uses LockC in place of the standard Muller C-ELEMENT
(on which most micropipeline designs are based). A way to avoid power wastage when idling is also
discussed in this section. The idea behind this arbiter extends naturally to two dimensions, resulting
in a symmetric crossbar arbiter based on a two dimensional micropipeline that uses LockC in place
of the C-ELEMENT. Called the wavefront arbiter by Tamir and Chi [4], we describe this design in
Section 5. Finally, in Section 6, we present another wavefront arbiter design called the wrapped
diagonal wavefront arbiter by Tamir and Chi. In Section 7, we present a symmetric crossbar arbiter
that achieves the maximum possible number of connections. Concluding remarks are provided in
Section 8.

2 T w o -d im en sio n a l M icrop ip elin es

Figures 1 and 2 show the proposed two-dimensional micropipeline topologies. The former takes
lesser area, but can pack only a small number of wavefronts. More specifically, assuming that all
the C-ELEMENTs have the same delay, the wavefronts are separated by 3 positions, as the following
analysis shows (a C-ELEMENT with index i , j is said to occupy position i + j) :

• When the Start transition is applied, wavefront #0 occupying position 0 is created at time
0. This wavefront also travels through the MERGE element to apply another transition on the
C-ELEMENT at position 0. However, since this C-ELEMENT has not been re-enabled through
its inverting input yet, it doesn’t fire as yet.

• Wavefront #0 at position 0 propagates to position 1 at time 1, and then to position 2 at time
2.

• When at position 2, wavefront #0 re-enables the C-ELEMENT at position 0, which fires at
time 3. This creates wavefront #1 occupying position 0. In addition, wavefront #0 now
occupies position 3. This sequence repeats2.

2

blO bll bl2 bl3

b20 b21 b22 b23

bOO bOl b02 b03

Figure 2 shows another two-dimensional micropipeline organization. This circuit takes more area
because of the higher connectivity and higher in-degree of the C-ELEMENTS, compared to the circuit
in Figure 1. However, this circuit can pack more wavefronts per C-ELEMENT; more specifically,
assuming the same delay for the C-elements, the wavefronts will be two positions apart. A
noteworthy feature of this array is that examined row-wise or column-wise, this micropipeline
resembles a standard (single dimensional) micropipeline.

Two-dimensional micropipelines propagate waves parallel to their diagonal, exactly as the wave
front arrays proposed by S.-Y.Kung et.al. do. Also, it is easy to see that the wavefronts do not
intersect. Therefore, two-dimensional micropipelines can be used to control wavefront array pro
cessors. As an example, consider one of the most widely quoted of wavefront array algorithms:
matrix multiplication. Let 4x4 matrices A and B be multiplied to yield matrix C , as illustrated
in Figure 3. (Note: This figure uses the micropipeline organization of Figure 1 although that of
Figure 2 will also work correctly.) In this figure, it is assumed that there is one datapath cell ij
associated with each C-ELEMENT ij (which we do not draw, to avoid clutter).

The algorithm proposed by S.-Y.Kung et.al. works as follows. When a wavefront occupies
position k , matrix elements situated nearest to cells Ok and kO are brought into the datapath cells

2As S.-Y.Kung et.al. point out in [2], wave propagation in this array resembles light-wave propagation as described
by Huygen’s principle of light-wave propagation.

4

Figure 4: A Lockable C-ELEMENT, LockC

Ok and kO. For example, in the beginning, when a wavefront occupies position 0, the elements b30
and a03 are brought into datapath cell 00 . They are multiplied and the result is accumulated (with
the accumulator starting at value 0). The next wavefront to occupy position 0 brings in b20 and
a02 which are multiplied and added to the previous value accumulated at datapath cell 00 . Due
to the diagonal movement of wavefronts, when a wavefront advances, it carries all the a elements
that are in the array rightwards one step; it also carries all the b elements that are in the array
downwards one step. This ensures that elements are correctly brought together to be multiplied
and accumulated during each step of the algorithm. The C matrix forms within the datapath cells,
and can be brought out at the end.

3 L o c k C : A Lockable C-ELEMENT

In [5], Liebchen and I have described a new device that we have fabricated and tested: an

5

extension of the Muller C -elem ent, called LockC. LockC works as follows. A lock command
can be issued to it at an arbitrary point in time. This command has the effect of preventing the c
output of LockC from firing, the “next time” LockC is enabled. In other words, if lock is asserted
well before LockC gets enabled3, locking succeeds. In this case, LockC remains enabled until
lock is de-asserted, when it continues to behave like a normal C-ELEMENT. On the other hand, if
lock is applied close to when LockC gets enabled, then (non-deterministically) LockC can “fire”
(making a — h — c) or not fire, and remain enabled. In the former case (i.e., when LockC actually
fired, apparently ignoring the lock request), the lock request will be honored the next time LockC
gets enabled.

As described in [5], LockC was invented to build reordering micropipelines. A reordering mi
cropipeline buffers data in a FIFO fashion, and its contents can be periodically examined and
subject to peephole optimization. For example, in one application, the reordering micropipeline
is used to buffer instructions targeted to a processor. In this application, the flow of instructions
through the micropipeline can be periodically halted, two arbitrary adjacent instructions can be
examined, and the instructions can be reordered before letting the flow of instructions resume. In
[5], we show how to build a Sutherland micropipeline using LockCs to realize a reordering mi
cropipeline. In this paper, we explore newer applications of LockC. For the sake of completeness,
we will now thoroughly describe the external as well as internal behavior of LockC. In Section 4,
and later, we will describe various applications of LockC.

Figure 4 describes the operation of LockC . The pinout of LockC is shown on the top left-hand
side. The Petri-net describes L ock C ’s external behavior. This Petri-net has two sections, namely
the “Normal C-section” and the “Inhibiting Section” . We interpret this Petri net as follows. Each
transition of the Petri net is labeled with a signal-transition of the form £+, y —, or z. The labels
x + and y — indicate a rise of x or a fall of y respectively, and a label of the form z connotes a
change of z Js Boolean value. When a transition has tokens in all its enabling input places, and
has no tokens in its inhibiting input places, the transition fires. The firing of a transition does the
following things: it instantaneously removes one token from each of its enabling input places; then,
after a bounded (but arbitrary) duration of time, it causes the associated signal-transition to occur,
and simultaneously inserts one token into each of its output places.

The Normal C-section consists of two transitions a and b, whose firing eventually enables transi
tion c. After c fires, transitions a and b are eventually re-enabled. The Inhibiting Section receives
lock— from the user. After lack— is generated, it is guaranteed that transition c cannot occur; it
can occur only after lack+ is generated.

The circuit realization of LockC shown here is different from that described in [5], and is,
therefore, explained now. The input section consists of the normal pull-up and pull-down transistors
of a two-input C-ELEMENT. A single N-type transistor connected to Lock disconnects the cross
coupled inverter pair from the input section. (We employ a single N-type transistor, as opposed
to a transmission gate, to ensure sharper cut-off; ratioing is done to mitigate the effects of the
threshold drop.) The inverter pair stores the internal state of LockC . When the inverter pair goes
metastable4, the interlock transistors cutoff; the output state is, meanwhile, held steady by the

3 A C-element is enabled when a = b = -ic.

6

10 11 13 13

R S flip-flop. We derive signal lack from m s. However, as signal m s can exhibit a non-monotonic
change (as shown by the traces), we employ an OR-gate and a delay element (whose value is greater
than A, the maximum duration for which m s could ever have negative slope) to mask-off the down-
going portion of ms. When LockC is unlocked by de-asserting lock, the OR-gate forces lack to
be de-asserted after the OR-gate delay. Since DELAY is asymmetric (effective only for down-going
transitions), it also resets immediately. Thus, LockC is available for use again, very soon after
lack is de-asserted.

4 A n A rb ite r B ased on Lo c k C

Figure 5 shows how an arbiter can be built using a (special case of a one-dimensional) Sutherland
micropipeline that employs one-input LockC elements. After power-up, the output state of all
the LockC elements is reset to zero, and their lock inputs are held de-asserted (high). The Start
transition is then applied. This causes a single token to circulate in the loop. Since we only need
one token to circulate, we should not re-enable C-ELEMENT i — 1, as soon as C-ELEMENT i fires
(as in a standard micropipeline). Therefore, we should have only one input to our LockCs. (Note:
One input LockCs are the same as Q-LATCHES, described in [12].)

Without loss of generality, consider a situation in which station 0 wants to access the shared
resource guarded by the arbiter. It first asserts 10, and waits for aO to be asserted (to go low).
Signal aO is lowered when LockC asserts (lowers) the lack signal, and the parity between the input
and the output of the LockC gate is odd. The attainment of odd parity between the LockC input
and output indicates that LockC has successfully trapped the circulating token. Since the output
of LockC cannot change after it asserts lack, the odd parity will be maintained (i.e., it cannot
be a transient “glitch”). Therefore, as soon as station 0 sees aO getting asserted, it can access the
shared resource. Once the access of the shared resource is over, lock is de-asserted, causing lack
also to be de-asserted.

Now consider the case when there is even-parity between the LockC input and output even
after lack has been asserted. This situation can arise only when the token is at a station numbered
greater than 0. In this case, after all the stations with number higher than 0 have released the
token, the token is guaranteed to come to station 0. When this happens, odd parity between the

4This can happen if, for example, when lock is asserted when the inverter pairs are half-way along in their state
change.

7

io ii 12 is nand(IO,11,12,13)

a0 a l a.2 a3

Figure 6: A Low Power Version of the One Dimensional Ring-Style Arbiter

LockC input and output will be attained, causing aO to be asserted. Thus, each station follows a
four-phase protocol with respect to 10 and aO (with 10 and aO being active low). An example usage
of this arbiter appears in Figure 5.

Note that there is a one-sided timing constraint on raising for i G 0 .. .3: after raising we
must ensure that the lack signal of the corresponding LockC has been generated and the XNOR
gate has stabilized before ctj is raised. This is because as soon as at- is raised, U can be asserted
(lowered) once again.

A low-power version of the one-dimensional arbiter given in Figure 5 is presented in Figure 6.
This version prevents the token from idling around the loop when none of the lock inputs are
asserted. In this sense, this circuit is similar to Martin’s token ring arbiter [13], although there are
many differences between these circuits in terms of implementation. Since the token is prevented
from idling around the loop, power consumption is reduced. This idea can be suitably incorporated
into other arbiters discussed in this paper. The extra LockC acts as a place-holder for the token
when no lock requests are active.

5 T h e W a vefro n t A rb ite r

Figure 7 shows a square array of LockC elements that implements a solution for the symmetric
crossbar arbitration problem. This is a direct extension of the arbiter in Figure 5 to two dimensions.
(We do not show the xoR-gate and the OR-gate associated with each LockC to avoid clutter.) In
Section 5.1, we specify the symmetric crossbar arbitration problem. In Section 5.2, we explain the
workings of the wavefront arbiter.

5.1 Sym m etric Crossbar Arbitration: Problem Definition

Consider a crossbar switch that can connect row wires numbered 0 through 3 to column wires
numbered 0 to 3, where the row and column wires are illustrated in Figure 7. Each row wire may
be connected to at most one column wire. Similarly, each column wire may be connected to at
most one row wire.

At any instant in time, each row-wire may simultaneously request to be connected to several
column wires; the symmetric crossbar arbiter has to decide which column wire to connect the row

8

All gates labeled "xy" above are lockc elements

Shadow cast by locking element 12

This circuit cannot make connections In this region
while element 12 Is locked. However the crisscrossing
1-d arbiters circuit given later can make such connections.

Figure 7: The Wavefront Arbiter

wire to. Since all the different rows may be making similar requests concurrently, it must also be
guaranteed that if a row wire is connected to a certain column, then none of the other rows are
connected to the same column. For example, if the set of requests made by row wire 0 is the set
of column wires { 0 ,2}, that of row wire 1 is the set of column wires { 0 , 1}, that of row wire 2 is
{ l } , and that of row wire 3 is {2 ,3 }, then one set of legal connections consists of row wire 0 to
column 0; row wire 1 to column 1; row wire 2 to no column wire (as column 1 is already taken);
and row wire 3 to column wire 3. A better (in terms of utilization) set of connections is: row wire
0 to column 2; row wire 1 to column 0; row wire 2 to column 1; and row wire 3 to column wire 3.
Since there are many switches arbitrating for exclusive access to row- and column-wires, we must
avoid possible deadlocks due to “hold and wait” .

A formal definition of the symmetric crossbar arbitration problem for an N X N switch matrix is
as follows (with our solutions as well as that of Tamir and Chi only trying to approximately solve
the problem). Let ik,k £ N denote the requests on row wire k. (Numbers are viewed as sets; e.g.
4 - {0 ,1 ,2 ,3 }.) Each ik is of the form . . . (N — l)J*>w- ‘ for k G N and jkj > 0 for

I 6 N . For example, 02132°31 indicates 2 requests for column-wire 0, 3 for column-wire 1, none for
column-wire 2, and 1 for column-wire 3. The problem is to find kx, x £ N, kx £ N U { — 1}, where
(kx is the column wire assigned to row x—with -1 indicating ’’ none assigned”) such that

Equation 1 says that we assign a column wire only if that column is requested. Equation 2 says that
we do not allocate the same column wire to more than one row wire. Equation 3 uses a suitable
definition of C ount(x) (for example i f x > 0 then 1 else x), and tries to maximize the number of

The solutions proposed by Tamir and Chi rely on the classic idea of using a total ordering on
resource numbers. We can think of the switches as resources and the wires as processes contenting
for the switches. Then, the switch positions can be used for the ordering. Using this idea, we can
examine the switches in the order in which they are visited by diagonal wavefronts flowing from
the top-left corner to the bottom-right corner. This leads us to the design of wavefront arbiters.

The operation of the wavefront arbiter presented in Figure 7 is as follows. Assuming that all the
LockCs are initially unlocked, a Start transition ripples through the array, initially creating a
wavefront at position 0, which then moves on to position 1, 2, and so on. When it reaches position
6, the LockC at that position repeats the above sequence of wave propagation. Thus, at any time,

Now, assume that station 12 wants to arbitrate (get access to row-wire 1, and column wire
2). It asserts the lock input of LockC number 12, and awaits the assertion of lack, as well as
the attainment of a state in which the a and b inputs are different from the c output. When
this happens, we can be sure that the wavefront has been successfully blocked by LockC number
12. When the OR-gate associated with this LockC asserts its 112 signal, crossbar switch 12 can
connect row-wire 1, and column wire 2. After the message has been routed, station 12 will de-assert
lock, causing the de-assertion of 112 as well. The wavefront can now proceed beyond station 12,
triggering the C-ELEMENTs 13 and 22 on its course. Consider the situation in which the wavefront
is at position 3, and is blocked only by one node— namely 12—at position 3. The wavefront can
still continue to move forwards. However, it cannot enter the “shadow” cast by element 12 (the
shadow includes all switches with row numbers > 1 and column numbers > 2) 5.

The wavefront arbiter prevents a row or a column from being connected multiple times, for the
following reasons. Assume that the wavefront is successfully blocked by LockC xy. Then, it cannot
be passing through switches xa for a < y, and by for 6 < x, for, it has already departed from these

5To take a physical analogy, the wavefront behaves like “an elastic rod thrown lengthwise at a rigid pole” , as

(1)
(2)
(3)

Figure 8: The Wrapped Diagonal Arbiter Showing the Wrapped Diagonals

locations before coming to location xy. It cannot be passing through the switches in the shadow
cast by xy (all switches with row number > x and column number > y), for those LockC elements
can fire only after the LockC at x y has fired. Thus, row-wire x and the column-wire y cannot be
having other connections made on them. If a LockC other than xy is also locked, the situation
can only get better in terms of avoiding deadlocks as well as conflicting wire usages. The scheme
avoids deadlocks because a row and a column wire passing through a switch are allocated together,
and never piece-meal.

Actually the above solution is an overkill: it is perfectly safe to allow connections to be made in
the umbra of the shadow cast by xy (switches whose row numbers are > x and column numbers are
> y—see Figure 7), because the corresponding rows and columns are free. In Section 7, we present
a circuit that achieves this.

6 T h e W ra p p ed -d ia g o n a l A rb ite r

The scheme in Figure 7 is inefficient because only one diagonal (wavefront) is supported. As
Tamir and Chi show, it is possible to have two diagonals, with a given minimum spacing constraint,
such that arbitration decisions are allowed to be made on points situated on both the diagonals.
Figure 8 shows the various “wrapped diagonals” . Initially, there is a wrapped diagonal occupying
position 0. In the next time step, this wrapped diagonal moves forwards to occupy position 1.
At the next time step, it occupies position 2, and then position 3. When this wavefront leaves
position 3, it moves to position 4, and also enables a wavefront to get formed at position 0. Thus,

11

Figure 9: Wrapped Diagonal Arbiter: Achieving Spacing Between Diagonals

a wrapped diagonal has formed, with its ends occupying positions 0 and 4. Moving along, the ends
of the wrapped diagonal occupies positions 1 and 5, and then 2 and 6. The next wrapped diagonal
occupies only position 3. After it leaves position 3, the above sequence repeats, with the ends of
a wrapped diagonal at positions 0 and 4, and so on. Each wrapped diagonal passes through the
largest possible number of switches that do not have any row- or column wires in common 6. Thus,
they capture the largest number of conflict-free concurrent connections possible.

The required spacing between the wrapped diagonals is achieved by arranging the re-enabling
input for the LockCs to come from those LockCs that are “sufficiently far away” , as shown in
Figure 9. (Not all connections are shown, to avoid clutter.) The connections shown in this figure
imply that the L ockC at 00 is prevented from firing until after all the LockCs at position 3 have
fired. This prevents the next wavefront at position 0 from being formed until the wavefront at
position 3 is about to move on to position 4. This allows positions 0 and 4 to get one wavefront,
each, which they can choose to “trap” using the locks of the associated LockCs. Similar connections
are necessary from position 4’s outputs going to position l ’s inputs, and position 5’s outputs to
position 2’s inputs.

Actually, it is not necessary to connect every output of position 3 to an input of position 0,
and so on. Rather, a small, regular set of such connections suffice, as shown in Figure 10. The
connections in this figure can be derived by the following line of reasoning. Clearly, the wavefront
at position 3 must have vacated positions 30 and 03 before a wavefront is permitted at position 00
(to avoid conflicting on column 0 or row 0, respectively). However, positions 21 and 12 need not be
vacated before allowing a wavefront onto position 00. Before letting a wavefront into positions 10
and 01, however, the wavefront must have vacated positions 21, 31, 12, and 13. It actually suffices

6By the “pigeon-hole principle”.

12

1 /

j —

V
5 / •»— '

I ------

t ' p
' <; l)

t—

V

!

V

V

I
r V

> /

/

I i o /
<»— >

t

r V

T

t

V

n

t V

/

I
L

a
t

A l l these
gate a are
LockC s

Figure 10: Wrapped Diagonal Arbiter: Least Constraint Version

to check whether the wavefront has vacated positions 31 and 13 alone, because the firing of the
cells 31 and 13 is an indirect acknowledgement of the fact that the cells 21 and 12, respectively,
have also fired.

By avoiding the barrier synchronizations implicit in the wrapped diagonal scheme suggested by
Figure 9, the scheme in Figure 10 can achieve higher performance.

7 C risscrossing O ne D im en sion al A rb iters

Figure 11 presents a symmetric crossbar arbiter that can achieve the maximum number of non
conflicting connections as defined by Equations 1 through 3 of Section 5.1. This arbiter essentially
consists of N one-dimensional arbiters of the kind described in Figure 5 arranged row-wise and the
same number of one-dimensional arbiters arranged column-wise in a crisscrossing fashion (thus it
takes more area than the circuit in Figure 10). The basic building block, called L + x+ o, consists
of a LockC element, an XNOR gate and an OR gate, similar to a stage of Figure 5. Connecting the
two L + x+ o cells at any coordinate position in the manner shown in Figure 11 makes sure that at
any coordinate position, the column-token is trapped before the row-token is trapped. This is to
prevent deadlocks.

The crisscrossing one-dimensional arbiter array works as follows. When a lock is requested at
location (i , j), the ith row first traps the single token circulating around the ith row at location
(i, j) . Thereafter, the jth column traps the single token circulating around the jth column at
location When both these steps are over, the external acknowledge signal is generated.

13

l+x+o consists
of a one-input
lockc, the XNOR
gate that detects
that a token has
been trapped,
and the OR gate
that generates
the acknowledge
The input to
l+x+o is the lock
signal and the
output is the
ack signal.

Figure 11: Crisscrossing One Dimensional Arbiters

8 C on clu d in g R em a rk s

A new architectural idea (two-dimensional micropipelines) as well as new applications for a
recently proposed circuit element (LockC) were presented. The circuits described in this paper
are unusual in several ways. The idea of two-dimensional micropipelines is believed to be new.
The computational paradigm underlying our arbiter circuits—locking moving wavefronts in a two
dimensional micropipeline—is also believed to be new.

The circuits proposed by S.-Y.Kung et.al. in [3] are synchronous in nature. They are conceptually
mismatched with the computational paradigm put forwards by S.-Y.Kung et.al. (which is that of
asynchronous dataflow computation!). Also, their circuits require the use of synchronizers that
allow sufficient time for metastable states to exit, entailing a loss of performance. In contrast, our
proposal to use two-dimensional micropipelines to control wavefront arrays appears conceptually
simpler, as well as elegantly matches the computational paradigm followed by wavefront arrays.
Although two-dimensional micropipelines seem to have a larger spread between two successive
wavefronts than necessary, they could have shorter cycle-times, as the critical path includes only a
few LockCs.

Compared to Tamir and Chi’s circuits, our circuits do not need an extra shift-register stage or
a clock distribution network. In Tamir and Chi’s scheme, there is a tacit assumption that out
standing requests for switch connections are examined at the beginning of every clock cycle. Since
these requests can come truly asynchronously with the clock in a message routing network (where
these arbiters find application), designers are required to adopt suitable metastability handling
techniques—an issue that Tamir and Chi do not address. The use of synchronizers that allow
sufficient time for the metastable states to exit entails a loss of performance. In contrast, our
circuits operate truly asynchronously, and metastability handling is inherent in the design of the

14

L o ck C elements. Since L o ck C elements delay the generation of lack only so long as their internal
metastability lasts, only rarely will lack be noticeably delayed, as the probability of the arrival of
the wavefront coinciding with the assertion of lock is low. Our circuits also guarantee fairness:
every request will eventually be honored, as the wavefronts, by their nature, take off from where
they were trapped due to locking.

As discussed in Section 4, if the arbiter discussed in this paper are equipped with an extra stage
of LockCs, the idling token(s) can be trapped there when the arbiter is not making connections,
thus saving power.

At present, we have a working MOSIS chip containing LockC . We also have simulated the
two-dimensional micropipeline array successfully. The wrapped diagonal arbiter, least constraint
version (Figure 10) has been modeled in Computational Tree Logic using the SM V language [14]
and verified for its correctness. We plan to build test-chips for the remaining circuits shortly.

R eferen ces

1. Ivan Sutherland. Micropipelines. Communications of the ACM , June 1989. The 1988 A C M Turing
Award Lecture.

2. S.Y. Kung, R.J. Gal-Ezer, and K.S.Arun. Wavefront array processor: Architecture, language, and ap
plications. In Proceedings, Conference on Advanced Research in VLSI, MIT, pages 4-19. Artech House
Inc., 1982.

3. S.Y. Kung, S.C. Lo, S.N. Jean, and J.N.Hwang. Wavefront array processor— concept to implementation.
IEEE Computer, 20(7) :18—35, July 1987.

4. Yuval Tamir and Hsin-Chou Chi. Symmetric crossbar arbitration. IEEE Transactions on Parallel and
Distributed Systems, 4(1): 13—27, January 1993.

5. Armin Liebchen and Ganesh Gopalakrishnan. Dynamic reordering of high latency transactions in time-
warp simulation using a modified micropipeline. In International Conference on Computer Design
(ICCD), pages 336-340, 1992.

6. John Brzozowski and Carl-Johan Seger. Advances in Asynchronous Circuit Theory: Part I: Gate and
Unbounded Intertial Delay Models; and Part II: Bounded Intertial Delay Models, MOS Circuits, Design
Techniques. Technical report, University of Waterloo, 1990.

7. Ganesh Gopalakrishnan and Prabhat Jain. Some recent asynchronous system design methodologies.
Technical Report UUCS-TR-90-016, Dept, of Computer Science, University of Utah, Salt Lake City, UT
84112, 1990.

8. C. A. Mead and L. Conway. An Introduction to VLSI Systems. Addison Wesley, 1980. Chapter 7,
entitled “System Timing”.

9. Articles in the Minitrack “Asynchronous and Self-Timed Circuits and Systems,” o f the Computer Ar
chitecture Track o f the 26th Hawaiian International Conference on System Sciences, January, 1993.
(Minitrack Organizers: Ganesh Gopalakrishnan and Erik Brunvand.).

10. Workshop on “Asynchronous and Self-Timed Systems,” University o f Manchester, March 1993. (Orga
nizer: Steve Furber).

15

11. T.J.Chaney and C.E.Molnar. Anomalous behavior of synchronizer and arbiter circuits. IEEE Transac
tions on Computers, C-22(4):421-422, April 1973.

12. Erik Brunvand. Parts-r-us. a chip aparts(s).... Technical Report CMU-CS-87-119, Carnegie Mellon
University, May 1987.

13. A. Martin. Distributed Mutual Exclusion on a Ring of Processes. Science of Computer Programming,
5:265-276, 1985. •

14. Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic Press, 1993.

16

