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Abstract—The cost of design, test and fabrication of self-timed 

circuits remains prohibitive for their wider adoption in practice. 

Addressing this issue, researchers are trying to find ways for rapid 

prototyping of self-timed circuits in FPGAs. Combinational logic is 

realized in FPGAs by look-up tables (LUTs), which are typically 

built as a binary tree of 2-way multiplexers (MUX 2:1). This brings 

us to the idea of using MUX 2:1 in self-timed designs particularly, in 

quasi-delay-insensitive (QDI) circuits. Multiplexers however, realize 

a binate (non-monotone) Boolean function and therefore may cause 

logic hazards. A standard way for preventing these hazards requires 

designing of special circuit for MUX 2:1. On the other hand, there 

are indirect evidences that the multiplexers in some commercial 

FPGAs are hazard-free. Based on this assumption, we propose an 

original approach for realizing a multi-input C-element, which is 

widely used in QDI circuits. This paves the way for using hazard-

free MUX 2:1 in more complex self-timed elements. All the proposed 

circuits are designed and verified in a CAD tool Workcraft. 
 

Keywords—binate function; C-element; consensus cube; hazard; 
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I. INTRODUCTION 

Self-timed or asynchronous circuits do not use clock to ensure 

the validity of signals and operate in the mode of request-

acknowledge. As per definitions in [1] this is called a compliant 

operation mode between a circuit and its environment. The 

compliant operation is often considered at the level of individual 

logic gates. In [1], compliance is captured in the property of semi-

modularity. Let us briefly recall it here. A self-timed circuit is an 

interconnection of logic gates. Each logic gate is defined by its 

Boolean function. An output of a logic gate can be in a stable or 

in an excited state. In a stable state its output is in logical 0 or 

logical 1, and this value corresponds to the value of the Boolean 

function of the gate. In an excited state the gate’s output value is 

opposite to that of its Boolean function. The gate can thus either 

switch to the new stable state or return to the previous stable state. 

The effect of returning to the previous stable state is often called 

a hazard1, but in the theory of asynchronous circuits [1] it has 

been defined more rigorously by the concept of “violation of 

semimodularity”. There are two classes of self-timed circuits that 

are considered to be hazard-free. One is speed-independent (SI)2 

circuits [1], which assumes that gates have finite, but unbounded 

delays, and wires have zero delays. This implies in particular, that 

                                                           
1 As per original definitions of D.A. Huffman [12] hazards are linked with the 

property of Boolean functions (functional hazards) or logic gates (logic hazards) 

to produce spurious transitions in circuits operating in fundamental mode. 

the difference of delays in any branching of wires is also zero. 

The other class is quasi-delay-insensitive (QDI) circuits [2] that 

also assumes gates to have finite yet unbounded delays. With 

respect to wires QDI assumes that the difference between the 

delays of the branches is less than the minimum gate delay. This 

assumption is called the assumption of an isochronic fork.  

While in theory there is a subtle distinction between these two 

classes, SI (or more precisely semimodular SI) and QDI, mostly 

due to their different theoretical origins, in practice one can 

always modify the description of the SI circuit and consider it as 

a QDI circuit [3]. Therefore, avoiding some tedious explanations, 

we will in the following use the more widely used term QDI, 

which can be applied to semimodular SI circuits. Notably, in 

order to meet the requirements of QDI circuits, one requires to 

assume that each gate is atomic in the sense that its internal 

structure only has a delay element associated with the gate’s 

output, which we will call here the atomicity assumption. Within 

the class of QDI, in this work, we also use the term output-

persistence [3], which allows us to extend the class of semi-

modular circuits with the circuits that have inputs from the 

environment. So, the semimodularity condition can be applied 

only to the outputs of the circuit’s gates. 

A C-element (strictly speaking, Muller C-element [1]) is a logic 

circuit realizing a latch function (see Section II), and widely used 

in asynchronous systems for:  

1) the implementation of information processing (data path) 

with indication of inputs and outputs [4], [5], 

2) the indication of the completion of transient processes 

(completion detection) in the data path [6], [7], and 

3) the coordination of concurrent processes (control path) [3]. 

Most of the existing methods for designing SI and QDI circuits 

rely on the use of two-input or multi-input C-elements in either 

original or generalized form [3], [4]. It is often the case, however, 

that the library of logic gates may be restricted by the so-called 

simple gates, such as NAND2 and NOR2. Hence a problem of 

realizing a QDI circuit in a restricted basis arises. It is associated 

with the problem of QDI decomposition [3], which is pertinent 

for ASIC design, and even more so for FPGA-based design. 

Nowadays, not only FPGAs, but entire FPGA development 

boards are very low cost. This makes them extremely attractive 

for prototyping self-timed circuits. The main obstacle for that is 

the fact that FPGAs are intended for synchronous, clocked design. 

2 In the original work of D.E. Muller [1] a circuit is called SI if it has only one 

final class of behaviors reachable from the initial state. This is not sufficient to 

prevent hazards and therefore the concept of semimodularity is introduced. 
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The problems with self-timed design on FPGAs can be divided 

into two groups. The first involves problems with hazard-free 

realization of logic gates, and the second is related to delays in 

programmable interconnects and wires. In this paper we consider 

the problems only from the first group. 

Traditionally QDI circuits are realized in monotone logic basis 

(see Section II). This is not only because this basis is well-suited 

for decomposition [3], but also because monotone gates in CMOS 

technology occupy very small area on a chip. In some sense QDI 

circuits behave like a latch-based oscillator and therefore minimal 

basis for their realization differs from that for combinational 

logic. A proof that for building semimodular autonomous (having 

no inputs) circuits it is sufficient to have NAND2 and NOR2 gates 

with a fanout of two is given in [6]. Thus, the inclusion of binate 

(non-monotone) gates such as XOR and MUX into the realization 

basis makes the hazard-free QDI design a non-trivial problem, as 

has been shown, for example, in [8].  

Let us recall how FPGAs make use of multiplexers and what 

the internal circuit of 2-way multiplexers is. A LUT with 𝑛 inputs 

is built in an FPGA as a binary tree of 2𝑛 − 1 elementary 2-way 

multiplexers as shown in Fig. 1. It should be stressed that the LUT 

structure presumes that all multiplexers are fanout-free. This will 

be an important constraint for our implementations. Each gate 

AO22 in Fig. 1 along with the inverter and buffer is a model of 

MUX 2:1. Traditional realizations of such a MUX, starting from 

a relay, are given in Fig. 2. Although the realization on relay may 

seem too old, there are now LUTs built of nanoelectromechanical 

(NEM) relays [9]. The on-resistance of a switch should be low in 

the commutation of 0 and 1, therefore for 𝑉𝑑𝑑 ≤ 1𝑉  it is realized 

on a transmission gate [10]. 

       
(a)                                                             (b) 

Fig. 1: LUT with 3 inputs (a) and its model at the level of logic gates (b). 
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Fig. 2: MUX 2:1 based on relay (a), pass-transistor (b) and tristate inverter (c). 

                                                           
3 The term “generalized” covers both “symmetric” and “asymmetric” C-elements, 
depending on whether the set of literals in the set and reset are equal or not [4].  

This, however, requires twice as many transistors as the pass-

transistor circuit in Fig. 2(b). Yet another variant of MUX 2:1 is 

shown in Fig. 2(c). It is based on tristate inverter and used only to 

switch the outputs of two adjacent LUTs [11]. 

Each pair of inverter and buffer in Fig. 1(b) control a single 

layer of gates. In practice, the delays of the inverter and of the 

buffer are made approximately equal [10]. The column C0…C7 

in Fig. 1(b) corresponds to constants 𝑖0 … 𝑖7, which specify the 

LUT function as follows: 

𝑦 = ((𝑖0�̅� ∨ 𝑎𝑖1)𝑏 ̅ ∨ 𝑏(𝑖2�̅� ∨ 𝑎𝑖3))𝑐 ̅ ∨ 𝑐((𝑖4�̅� ∨ 𝑎𝑖5)𝑏 ̅ ∨ 𝑏(𝑖6�̅� ∨ 𝑎𝑖7)) (1) 

Sometimes (1) is written in the SOP form with minterms 𝑎�̃�̃𝑐�̃�𝑗, 

where 𝑗 = 0 … 7, and “∼” is a polarity. Let 𝑖0 … 𝑖7 in (1) are set 

for example to [00111111]. This after factoring out, will give us 

𝑦 = (𝑎̅ ∨ 𝑎)(𝑏𝑐 ̅ ∨ 𝑐(𝑏̅ ∨ 𝑏)). In case if the delays of {IL1, BL1} 

and {IL2, BL2} in Fig. 1(b) are zero, 𝑎̅ ∨ 𝑎 = 1 and 𝑏̅ ∨ 𝑏 = 1. 

This gives 𝑦 = 𝑏𝑐 ̅ ∨ 𝑐, which turns into 𝑦 = 𝑏 ∨ 𝑐 if the delays of 

{IL3, BL3} are zero. The problem of non-zero delays is linked to 

logic hazards [12] and discussed in Section IV. 

The objective of this paper is to study the feasibility of the MUX 

basis for realization of hazard-free asynchronous elements, in 

particular on LUTs with feedbacks. The contribution of this paper 

is in demonstrating the examples of the MUX 2:1 based circuits, 

which are hazard-free under different assumptions about delays 

within MUX 2:1. The paper proposes two types of the circuits. 

One is quasi-binate circuits obtained by mapping unate gates into 

MUX 2:1. The other type is binate circuits built only from XOR 

and transparent latches. An important contribution of the paper is 

a set of new realizations of multi-input C-elements. Obtaining 

these realizations can be described as a combination of structural 

and behavioral refinements in the Workcraft CAD tool [13].  

 

II. THEORETIC BACKGROUND 

In this paper we need the following basic concepts [3]. A QDI 

circuit is a netlist of logic gates. A logic gate is called atomic if it 

instantaneously evaluates its Boolean function and has finite, but 

unbounded delay. A Boolean function 𝑓 (𝑥1, … , 𝑥𝑛) is called 

positive [negative] unate in variable 𝑥𝑖 if 𝑓(𝑥𝑖 = 1) ≥ 𝑓(𝑥𝑖 = 0) 

[𝑓(𝑥𝑖 = 1) ≤ 𝑓(𝑥𝑖 = 0)]. A function that is not unate in 𝑥𝑖 is 

binate in 𝑥𝑖. A function is called positive (negative) unate if it is 

positive (negative) unate in all variables, otherwise it is binate. 

Positive unate functions are also called monotone. Thus, the 

MUX 2:1 function 𝑦 = 𝑎𝑥̅ ∨ 𝑥𝑏 is binate. A positive unate in 𝑥𝑖 

function can be represented as 𝑓(𝒙) = 𝑓(𝑥𝑖 = 0) ∨ 𝑥𝑖𝑓 (𝑥𝑖 = 1) 

and therefore is related to the concept of generalized C-element3. 

It is given as: 

𝑦(𝒙, 𝑦) = 𝑆(𝒙) ∨ 𝑦�̅�    (𝒙) (2) 

where 𝑆(𝒙) and 𝑅(𝒙) are set and reset functions, which satisfy 

the condition 𝑆(𝒙)𝑅(𝒙) = 0, i.e., 𝑆(𝒙) and 𝑅(𝒙) are orthogonal. 

The behavior of a QDI circuit can be described in a concise and 

convenient way by signal transition graphs (STGs) [14], [15]. An 

STG is a particular type of a labeled Petri net, where transitions 

are associated with the changes in the values of binary signals. 



 

For example, a label “𝑥 +” is used to denote the transition of a 

signal 𝑥 from 0 to 1 (a rising edge), while “𝑥 −” is used for a 1 to 

0 transition (a falling edge). This labeling may differentiate 

between input, internal, and output signals. The arcs in an STG 

capture the causal relations between the signal transitions. An 

STG can include (explicit) Petri net places with multiple input 

and output transitions. Such an STG describes behavior with 

choice, which is associated with the non-deterministic selection 

of input transitions made by the environment. In this paper we 

consider only the so-called distributive circuits4 [6], which are 

described by STGs without places.  

There are special algorithms for synthesizing QDI circuits by an 

STG specification as well as algorithms using this specification 

to verify the obtained circuits for hazard-freedom. The circuit can 

be either autonomous or have inputs driven by the environment 

(cf. compliant operation [1], [6]). For the case of verification, the 

circuit is converted to the so-called circuit Petri net that itself is a 

type of STG. If the circuit is autonomous, its STG is checked 

against various properties, for example deadlocks. To verify the 

circuit having inputs and outputs, its circuit Petri net is composed 

with the STG model of the environment by means of parallel 

composition. This forms an STG of the closed system.  

In both synthesis and verification the most important property 

of the STG is output-persistence [3]. An STG is called output-

persistent if every signal transition being enabled eventually fires, 

that is once enabled transitions cannot be disabled. The internal 

and output signals of a circuit must be output-persistent, and the 

environment must provide persistency of the input signals. 

Stricter definitions can be found in [3]. In this paper we use 

Workcraft [13] for STG construction, simulation, verification and 

synthesis of QDI circuits. 

It is a common belief that the property of output-persistence 

guarantees absence of hazards. That is true only in case if a QDI 

circuit is built of monotone logic gates. However, there is a class 

of logic gates with inverted inputs, which potentially can exhibit 

“hidden” hazardous conditions akin to the problems of static 

hazards. Let us consider for example the function of a 2-way 

MUX, 𝑦 = 𝑎𝑥̅ ∨ 𝑥𝑏. If there is a some delay in the inverter for 𝑥 

in the cube 𝑎𝑥,̅ compared to the non-inverting input in cube 𝑥𝑏, a 

takeover between these two cubes may cause a hazard. Let for 

example 𝑎 = 𝑏 = 𝑥 = 𝑦 = 1 then cube 𝑥𝑏 = 1, and cube 𝑎𝑥̅ = 0. 

Let now 𝑥 switches from 1 to 0. Logically, there is a takeover of 

holding the output 𝑦 at 1, between 𝑥𝑏 and 𝑎𝑥.̅ So the state 𝑦 = 1 

should be stable. If the delay of 𝑥 ̅is smaller than the delay of the 

AO22 gate realizing the MUX and the delay model is inertial [3], 

the effect of takeover will not cause any hazard. Otherwise, there 

is a potential hazard. 

A standard way to prevent this hazard is to introduce a third, 

consensus cube 𝑎𝑏, which would extend the minimal SOP form 

of the MUX function to the so-called complete sum of prime 

implicants. Unfortunately, the traditional MUX realizations, like 

AO22 gate with input inverter, are fixed in their minimal form. 

Therefore, in our design we should take special precautions. With 

the aid of Workcraft we can detect cube takeovers for critical 

transitions that cause violation of the consensus conditions. 

 

                                                           
4 The term “distributive circuits” stems from [1] and is linked to the distributive 
lattice that is formed by the so-called cumulative states of the circuit. Later the 

Summary on the circuit classification used in this paper: 

1) QDI circuits are circuits insensitive to gate delays and wire 

delays up to the isochronic fork assumption. 

2) Semimodular circuits are (closed, i.e. having no inputs) QDI 

circuits that are free from hazards. They assume all gates 

being atomic, i.e. delays are attached to gate outputs. 

3) Distributive circuits are semimodular circuits which exhibit 

only AND causality (modelled by STGs without places). 

4) Output-persistent circuits are QDI circuits that are free from 

hazards, but unlike semimodular circuits, they can have 

inputs. Output-persistence can be checked using Workcraft. 

5) Circuits with binate consensus are QDI circuits in which for 

every 2 terms with a binate variable, there is a consensus 

cube, which prevents the circuit from a potential hazard.  

6) Circuits that have binary consensus violation (such as those 

using standard MUX) may experience static hazards unless 

their binate elements are designed appropriately.  

  

III. PROBLEMS WITH INITIAL DECOMPOSITION 

Consider a 2-input C-element, defined by 𝑦 = 𝑎𝑏 ∨ 𝑦(𝑎 ∨ 𝑏).  

Fig. 3(a) shows its realization on an atomic majority (MAJ3) gate 

with zero-delay feedback. The STG determining the environment 

of this C-element as two inverters is shown in Fig. 3(b).  

          
(a)                                         (b) 

Fig. 3: C-element realized on atomic MAJ3 gate (a) and its STG (b). 

A realization of the MAJ3 gate on a LUT does not guarantee that 

the obtained C-element would be output-persistent. Moreover, as 

shown in [16], such a C-element is hazard-free only in case of a 

single input change (SIC), which is a special case of the protocol 

shown in Fig. 3(b). However, SIC protocol is apparently used in 

asynchronous systems built on FPGAs [17], [18], [19].  

Fig. 4(a) shows a typical implementation of the MAJ3 gate on 

a 3-input LUT. To analyze it, we use the circuit in Fig. 1(b), where 

C0…C7 are set to [00010111]. Substituting them into (1), we get 

𝑦 = 𝑎𝑏𝑐 ̅ ∨ 𝑐(𝑎𝑏̅ ∨ 𝑏(𝑎̅ ∨ 𝑎)), where 𝑎̅ ∨ 𝑎 is a problem. Indeed, if 

IL1 and BL1 in Fig. 1(b) have different delays a hazard 1-0-1 will 

appear at the output of L1M4. We consider the hazards in more 

detail in Section IV that contains an important assumption. Based 

on this assumption, we conclude that L1M4 will be always in 1. 

Thus, the C-element can be represented by the circuit shown in 

Fig. 4(b), which is reduced to the circuit shown in Fig. 5(a), if 

each MUX is atomic and hazard-free. 
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(a)                                                              (b) 

Fig. 4: C-element realized on a single LUT3 (a) and its simplified circuit (b). 

behavior of distributive circuits was characterized by the class of STGs that has 
no places with choice and merge [3], [6]. 



 

     
(a)                                                     (b) 

Fig. 5: The circuit in Fig. 4(b) in another view (a) and merging of its gates (b). 

Verifying the circuit in Fig. 5(a) in Workcraft, we get a warning 

“output persistency is violated” and the following report: 

Event 'a-' disables signal 'L1R'. Event 'b-' disables signal 'L2R'. Event 'L2R+' 

disables signal 'y'. Violation trace: a+, b+, L1S+, L2S+, y+. 

This implies that L1R, L2R and what is most important, the 

output 𝑦 were excited, but did not fire. Let us now merge the gates 

AND and OR with the MUX as shown in Fig. 5(b) and run the 

verification again. Unfortunately, in this case we get the same 

warning, but now:  
Event 'a-' disables signal 'L1R'. Violation trace: a+, b+, L1S+, y+ 

In other words, there is no output hazard now, but the transition 

of L1R from 0 to 1 is not acknowledged yet. This effect is known 

in the context of sensitivity to the delays of wires [6]. If an input 

wire has a fork, the delay of each branch must be zero, otherwise 

the circuit may lose the property of output-persistence. In the next 

section we show under what conditions the circuits realized on 

MUX 2:1 can be hazard-free and output-persistent. 

 

IV. PROPOSED APPROACH 

The above problems do not allow us to consider the entire 

LUT as an atomic gate and therefore we need to lower the level 

of abstraction. If we have already obtained a QDI decomposition 

of a circuit and want to map it into the MUX basis, we can assume 

that MUX 2:1 is atomic. This provides output persistence, but 

hazards may still appear due to internal delays.  

Let for example the variables [𝑎, 𝑏, 𝑦] change according to the 

transition diagram shown in Fig. 6(a). If this order of firings is 

realized on the monotone gate 𝑦 = 𝑎 ∨ 𝑏, there are no hazards. 

However, if we realize the same on the MUX 2:1 model shown 

in Fig. 6(b), the single input change from 111 to 101 may lead to 

a hazard 1-0-1 (logic static-1 hazard). Indeed, if IM is slower than 

BM and 𝑏 is changing from 1 to 0, then the bottom AND forces 

the OR to switch from 1 to 0. Note that the considered circuit is 

output persistent under the given environment only if the inverter 

IM has zero delay. It can be shown that other input changes 

(single and multiple5) do not cause hazards.  

With the transition diagram shown in Fig. 7(a) the situation is a 

bit different. Here, we realize 𝑦 = 𝑎̅ ∨ 𝑏, and the diagram contains 

two transitions (𝑎 − and 𝑎 +) that may lead to hazards in the 

MUX model shown in Fig. 7(b). For example, if BM is slower 

than IM and 𝑏 is in 1, the transition 𝑎 + leads to a hazard 1-0-1.  

     1        
(a)                                                            (b) 

Fig. 6: Transition diagram for 𝑦 = 𝑎 ∨ 𝑏 gate (a) and its SOP model with 

external inverter and buffer (b). 

                                                           
5 Note that a hazard-free MUX 2:1 can be used for building multilevel circuits that 

are hazard-free under single and multiple input changes [29], [30]. 
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(a)                                                             (b) 

Fig. 7: Transition diagram for 𝑦 = 𝑎̅ ∨ 𝑏 gate (a) and its SOP model with 

external inverter and buffer (b). 

The fact that 𝑎 − is followed by 𝑎 + does not present a serious 

cause for concern since we assume that the delay of propagating 

the 𝑎 − through IM and BM is considerably smaller than a 

concurrent path that exists in the circuit. As will be shown in all 

examples of our circuits for C-elements, this constraint of relative 

timing (for definition see [20]) easily holds. Thus, the only 

concerning case would be the cube takeover described above in 

Fig. 6 and Fig. 7. Of course, these hazards can be prevented in the 

standard way, but there is no such an option in FPGAs. 

On the other hand, the very fact that the circuit in Fig. 2(c) uses 

the tristate inverter implies that the MUX can hold the previous 

state6 on the output capacitance. Moreover, it is assumed in [8] 

that the pass-transistor based MUX in Fig. 2(b) holds the previous 

state longer than the difference between the delays of BM and IM. 

Based on this assumption we can claim that the mapping of any 

monotone gate (with no more than 3 inputs) into MUX 2:1 will 

be hazard-free. The remaining question is how “genuine” binate 

gates will map into MUX 2:1, which is used for example, to 

realize 𝑦 = 𝑎𝑏̅ ∨ 𝑏𝑦. In this case we have to assume that the 

following conditions are satisfied: transition 𝑏 + must happen 

well before 𝑎 +, and similarly, well before 𝑎 −. Then, if 𝑏 − 

happens in parallel with 𝑎 + or 𝑎 −, we can again rely on the 

temporary retention of the MUX state on the output capacitance. 

A general procedure for designing QDI circuits in the MUX 2:1 

basis from the STG specification can be formulated as follows: 

1) synthesize a complex gate circuit from a given initial STG. 

2) if the obtained circuit fits the fanout-free structure of a LUT, 

map it into MUX 2:1, else refine the STG and go to 1). 

3) verify the MUX circuit for the absence of deadlocks and for 

output persistence. If both of these verifications succeeded, 

end, else correct the STG and go to 1). 

The synthesis here means mapping into gates that are specified in 

the library. Since MUX 2:1 has 3 inputs, we restrict the Workcraft 

library by gates having no more than 3 inputs. The second step of 

the procedure is non-formal and may require a lot of iterations. 

To get around this obstacle, we start from a circuit that is already 

realized on simple gates and potentially suited for realization on 

a LUT. Such a circuits will be called a “prototype”. To fit it to the 

structure of a LUT, we convert “problematic” forks (nodes) to 

wires. To this end, we first convert the circuit along with the given 

environment to the circuit Petri net. Then we contract some signal 

transitions and go to 1) to see how this affects the circuit structure. 

Once a suitable circuit has been obtained, we map its gates to 

the MUX basis using the stamps shown in Table I. Each stamp is 

specified by an admissible behavior obtained by a projection of 

an STG describing the entire circuit on the corresponding gate. 

All the listed behaviors require MUX 2:1 to be hazard-free. 

6 This state holding is reminiscent of what happens in a dynamic C-element, whose 

generalization can be used in acyclic charge-storage circuits introduced in [31]. 
 



 

Table I: Some behaviors realized by 2- and 3-input combinational gates and 
latches, which can be replaced by the corresponding MUX 2:1 stamps.   

№ Behavior Gate/Latch MUX stamp 
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It is important to stress that there are such behaviors for AO21 

and OA21 gates and based on them latches that cannot be realized 

by a single MUX 2:1. For example, the STG shown in Fig. 8 

describes two unate circuits of a C-element [20], [21] which have 

no equivalent MUX 2:1 realization. This counterexample allows 

us to conjecture that if the used MUX 2:1 are hazard-free, then 

quasi-binate circuits (considered in the next section) is a subset of 

the circuits realized in the basis of 3-input AOI and OAI gates.  

 
Fig. 8: Behavior that cannot be realized on two MUX 2:1. 

 

V. QUASI-BINATE CIRCUITS 

If we consider MUX 2:1 as an atomic gate and assume that it 

is hazard-free, the problems with realization of a C-element on a 

LUT are reduced to finding an initial QDI decomposition. Let us 

recall the basic facts about the operation of a C-element. AND 

(OR) logic performs AND causal [3] synchronization in the phase 

0-1 (1-0). Thus, we can select as prototypes some circuits that 

exploit this property. The C-element is a latch that uses set (𝑆) 

and reset (𝑅) signals. We can provide them in two different ways. 

One is a full-cycle protocol with mutually exclusive 𝑆 and 𝑅. The 

other way is with overlapping 𝑆 and 𝑅. In both cases we can use 

the latch from row 9 of Table I, since 𝑆 and 𝑅 are unlocked in 

                                                           
7 Two circuits that have the same signals and are described by the same STG will 
be called isomorphic. 

terms of complete state coding (CSC) [3]. For the first case the 

order of firings (projection) can be written as: 

𝑆 + ⋯ 𝐿 + ⋯ 𝑆 − ⋯ 𝑦 + ⋯ 𝑅 + ⋯ 𝐿 − ⋯ 𝑅 − ⋯  𝑦 − ⋯ (3) 

where 𝐿 is an auxiliary latch, 𝑦 is an output of C-element, and 

“⋯” means transitions of some internal signals. So, in the first 

case we have to use a combination of a latch (to solve the CSC) 

and indicator producing the output 𝑦. As seen from the following 

projection, in the second case it is sufficient to have only the 

output latch 𝑦, since the phases of 𝑆 and 𝑅 are matched with 𝑦. 

�̅�    + ⋯ 𝑆 + ⋯ 𝑦 + ⋯ 𝑆 − ⋯ �̅�    − ⋯ 𝑦 − ⋯ (4) 

As a prototype for the first case we take the circuit from [22] 

and use the procedure described in Section IV. The resulting 

circuit is shown in Fig. 9(a). It is fully symmetric not only by the 

structure, but also by behavior, as seen from the STG in Fig. 9(b). 

Since this STG does not contain places, the circuit is distributive. 

Note that we can detach the bubble from the AOB gate and turn 

it to an external inverter, without violation of output-persistency. 

Moreover, the wire connecting the latch AO with the SET and 

RST gates can have arbitrary delay.  

  
(a)                                                       (b) 

Fig. 9: Unate circuit of a 3-input C-element (a) and its STG (b). 

Let us introduce a response delay as the number of transitions of 

internal signals needed to acknowledge the transition of a certain 

input at the output. The response delays may differ for transitions 

“+” and “−” and therefore we separate these delays by “/”. For 

example, the response delay for 𝑎 + in Fig. 9(b) is determined by 

trace SET-, AO-, SET+, while for 𝑎 − it is RST+, AO+, RST-. 

We write it as “response delay: a±3/3”. Since NAND4 and NOR4 

in Fig. 9(a) cannot be realized on MUX 2:1, we decompose them 

as shown in Fig. 10(a). Fortunately, this decomposition preserves 

output persistence. Now, using the MUX stamps from Table I, we 

can isomorphically7 map the unate circuit of Fig. 10(a) into a 

quasi-binate circuit shown in Fig. 11. 

 
(a) 

 
(b) 

Fig. 10: Circuit in Fig. 9(a) after decomposition (a) and its STG (b). 



 

1

0

 
Fig. 11: LUT suited quasi-binate circuit of a 3-input C-element isomorphic to 

the circuit in Fig. 10(a). Response delays: a±8/8, b±7/7, c±6/6.  

To map the circuit in Fig. 11 into an FPGA, we need two 4-input 

LUTs, since L4S and L4R have a fanout greater than one. Note 

that the chains L1S…L3S and L1R…L3R are actually diagonal 

borders in the structure of LUT3 shown in Fig. 1(b). Thus, for 

L1S…L3S the constants C0….C6 should be set to 1, and C7 to 0. 

This means that for a 4-input LUT the constants C0…C14 should 

be set to 1, and C15 to 0. The chain L1R…L4R is realized by the 

second 4-input LUT, where C0 should be set to 1, and C1…C15 

to 0. Note that the constants in Fig. 11 are formed inside the LUTs 

when C0…C15 pass through MUX 2:1. Since we assume that the 

multiplexers are hazard-free, the internal constants are stable.  

Typically, the outputs of LUTs are connected pairwise to an 

external multiplexer that realized on tristate inverter as shown in 

Fig. 2(c). This can be either RMUX or MUX. However, we still 

need an additional multiplexer and, what is often not available, 

the corresponding interconnects. Thus, theoretically the circuit in 

Fig. 11 can be mapped into an FPGA as shown in Fig. 12. 

 
Fig. 12: FPGA implementation of the circuit in Fig. 11.  

As in the circuit of Fig. 9(a), the wire connecting RMUX with 

L1S and L1R in Fig. 11 can have arbitrary delay, therefore we can 

weaken the requirement for its fork to the inputs of L1S and L1R. 

If we want to have a larger number of inputs in the quasi-binate 

circuit in Fig. 11, we can insert the corresponding MUX stamps 

into the set and reset chains. Moreover, this circuit can be used 

for realization of asymmetric C-elements like those used in NCL 

logic [5]. It is evident from the STG in Fig. 10(b) that the shortest 

response delay is 6, that is the circuit in Fig. 11 is relatively slow. 

There is yet another problem that can appear in practice. As 

evident from Fig. 12, the inputs 𝑎, 𝑏, 𝑐 are common for (physically 

adjacent) LUT4a and LUT4b. This means that the forks in the 

corresponding wires must be isochronic. Whether this can be 

accomplished in commercial FPGAs is yet unknown. Let us 

suppose that we can increase the speed by introducing additional 

feedbacks. In this case the problem of isochronic forks turns into 

a problem of minimal delay in each of the feedbacks [6], which 

for some feedbacks can be solved by relative timing assumptions.  

As a prototype for the second case (with overlapping 𝑆 and 𝑅) 

we take the circuit from [23] and refine it using the procedure 

from Section IV. This gives the circuit shown in Fig. 13(a). 

       
 (a)                                        (b) 

Fig. 13: Unate cross-circuit of a 2-input C-element (a) and its STG (b). 

From the STG in Fig. 13(b) we can see that the response delays 

of 𝑎 and 𝑏 are asymmetric. Fig. 14 shows an isomorphic mapping 

of the unate circuit in Fig. 13(a) into a quasi-binate one. 

0

1
 

Fig. 14: LUT suited quasi-binate circuit of a 2-input C-element isomorphic to 
the circuit in Fig. 13(a). Response delays: a±2/3, b±3/2. 

Unfortunately, we did not find a method allowing the unate circuit 

in Fig. 13(a) to have a larger number of inputs with minimum 

number of cross-feedbacks. The latter is necessary because of the 

fanout-free structure of a LUT. However, we can apply heuristics 

and try to combine the ideas behind the circuits in Fig. 9(a) and 

in Fig. 13(a). For this we use the procedure from Section IV and 

obtain the circuit shown in Fig. 15(a). 

   
(a)                                                           (b) 

Fig. 15: Unate combined circuit of a 3-input C-element (a) and its STG (b). 

Since the STG in Fig. 15(b) does not contain places, the circuit in 

Fig. 15(a) is distributive. As before, the response delays of 𝑎 and 

𝑏 are asymmetric, but that of 𝑐 is symmetric. AND3 and OR3 in 

Fig. 15(a) should be decomposed into 2-input gates. We can 

either keep the structural symmetry of feedbacks or make them 

asymmetric. Fig. 16(a) shows one of the variants of symmetric 

decomposition obtained by the procedure from Section IV.  

 
(a) 

 
(b) 

Fig. 16: Circuit in Fig. 15(a) after decomposition (a) and its STG (b). 



 

It is evident from the STG in Fig. 16(b) that the response delays 

of 𝑎, 𝑏 and 𝑐 are ±4/6, ±6/4 and ±3/3 respectively. An isomorphic 

mapping of the unate circuit in Fig. 16(a) into the MUX basis is 

shown in Fig. 17. 
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Fig. 17: LUT suited quasi-binate circuit of a 3-input C-element isomorphic to 

the circuit in Fig. 16(a). Response delays: a±4/6, b±6/4, c±3/3. 

 

VI. BINATE CIRCUIT 

For realizing a C-element we can also use “genuine” binate 

gates such as XOR and transparent latches. As a prototype for this 

case, we take the autonomous circuit of a binary counter [24]. In 

this circuit we can isolate the functional part of the C-element, 

while the rest of the parts can be considered as the environment. 

Thus, we obtain the circuit shown in Fig. 18(a), where the wires 

represented by DM and DX can have arbitrary delays.  

    
(a)                                                             (b) 

Fig. 18: Binate circuit of a 2-input C-element (a) and its STG (b). 
Response delays without DM and DX: a±2/2, b±3/3. 

As evident from the STG in Fig. 18(b), the signal XOR has 4 

transitions that indicates the binate nature of the circuit. It is also 

evident from this STG that the response delays of 𝑎 and 𝑏 are 

symmetric. Verifying the circuit in Fig. 18(a) in Workcraft, we 

get violation of binate consensus for both MX1 and MX2. Thus, 

these multiplexers should be hazard-free. Note that in this binate 

circuit we need to have access to data inputs of both MUX 2:1. 

The same access is required in the full adder built of multiplexers 

and XOR gate. Such an adder is typically used in commercial 

FPGAs and we hope that in some of them it can be reconfigured 

to realize the circuit in Fig. 18(a). 

 

VII. CONCLUSION AND DISCUSSION 

It has been shown in the paper that hazard-free MUX 2:1 can 

be used for building the circuits of multi-input C-element. Two 

new types of the MUX based circuits have been introduced. One 

is quasi-binate circuits, which are built originally on monotone 

gates and then mapped into MUX 2:1. We conjecture that these 

circuits are a subset of the circuits based on 3-input AOI and OAI 

gates. The circuits of the second type are inherently binate, since 

they are built of transparent latches and XOR gates. All the 

presented circuits have been obtained and verified in Workcraft. 

The transistor realizations of the multiplexers used in FPGAs 

have been shown. They differ from the traditional ones realized 

in the minimal SOP (POS) form by behavior in transients. We 

assume that the FPGA multiplexers during a race of the control 

signals are in a high impedance state and hold their previous state 

on the output capacitance. For the minimal SOP (POS) form this 

behavior emulates the consensus cube. It is important to notice 

two specific things related to MUX based circuits. One is that any 

latch built on pass-transistor based MUX requires a buffer at the 

output. The other thing is that any MUX with a feedback may 

start to oscillate under certain conditions, such as stuck-at faults. 

Although the proposed circuits can in principle, be realized on 

FPGAs, there are at least two problems that require future study. 

One is that certain wires need to have delay smaller than a delay 

of some path in the circuit. Such a path consists of other wires, 

interconnects and logic gates. The other problem is that the fork 

of every input wire inside a LUT should be isochronic. There are 

several published results that can help in coping with the above 

problems. The internal delays of a LUT and routing delays within 

a slice of a commercial FPGA have been characterized in [25]. 

The latter are also given in [26] along with the routing delays 

between two slices. As it turns out, a long routing wire carrying a 

logical 1, reduces the delay of an adjacent long wire. This effect 

is studied in [27]. Having the exact information about wires and 

interconnects and wires, we could use assumptions on relative 

timing, which are available in Workcraft. 

Using the MUX basis can be promising from the point of view 

of new technologies. We have already mentioned the NEM relay 

based MUX [9], which is closest to atomic gate and similarly to 

the pass-transistor circuit, is bidirectional. Thus, it can be used for 

realization of free choice in the circuits and generally speaking, 

allows revisiting the old idea of bidirectional SI nets [28]. 

 

VIII. FUTURE WORK 

The proposed circuits have been obtained heuristically and 

require stricter analysis and classification both in terms of hazards 

and design. More specifically the directions for further studies 

can be formulated as follows: 

1) To analyze programmable interconnects, wires in feedbacks 

and internal LUT circuit from the point of view of delays, 

relative timing and isochronic forks.  

2) To conduct experiments on real FPGA boards, especially 

with the “scalable” circuit in Fig. 11. Unfortunately, those 

FPGAs that contain two detached multiplexers often do not 

allow forks at the terminals of these multiplexers. 

3) To generate all possible projections for MUX 2:1 and then 

select only those that do not lead to hazards at all or lead 

only to static hazards.  

4) To devise a systematic approach that filters out the circuits, 

which only seem (by logic transforms) to be in the MUX 

basis, but do not fulfil the behavioral criteria (such as the 

output persistence and binate consensus) 

5) To compare the quasi-binate basis with 3-input {AOI, OAI} 

basis and demonstrate how restriction of fanout influences 

this comparison. 
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