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Hydromagnetic Equilibria and Force-Free Fields

By H. Grad and H. Rubin*

INTRODUCTION — ELEMENTARY PROPERTIES

The equations governing the equilibrium of a
perfectly conducting fluid in the presence of a magnetic
field are

Vp = JxB

V.B - О

or V{p + B2\2¡x) = (B-V)B/^

V.B = 0, (1)

where p is the fluid pressure, В the magnetic field,
and J the current density. These equations admit
a large variety of solutions, i.e., of equilibrium con-
figurations in which a conducting fluid is balanced by
a magnetic field. It is our purpose to survey these
possibilities with the expectation that, if a solution
has been found to exist mathematically (and is, in
addition, stable) it can actually be constructed by
sufficient exercise of experimental ingenuity. In this
context, it is extremely important to discover exactly
what data should be specified in order to determine
a solution uniquely.

In addition to certain general properties of these
equations, we shall consider their solution in terms
of arbitrary functions, the solution of well-posed
boundary value problems, and several alternative
formulations of the problem in terms of the calculus
of variations. In principle, either the differential
equations or the variational characterization can be
taken as the definition of equilibrium; the two are
only approximately equivalent. Moreover, a certain
type of variational formulation (slightly different
from that treated in this paper) can be instrumental
in a stability analysis, which is essential to give
physical meaning to an equilibrium configuration.1

By inspection of (1), since В and J are perpendicular
to V, p, we see that p is constant on В lines and on
J lines; equivalently, the В lines and J lines lie on
constant p surfaces.

In the case of a unidirectional magnetic field
(e.g., Bz(x,y)) the general solution is p + B2/2¡u
= constant. The fluid pressure is balanced by the

magnetic pressure; either p or В can be given ar-
bitrarily and the other one " filled in ".

The integral form of (1) is

= 0,

(2)

These equations are more fundamental than the
differential equations (1). They are equivalent to (1)
when the functions are smooth. In addition, at a
discontinuity surface, the integral relations (2) imply
that Bn vanishes and that p + B2\2¡x is continuous.
A discontinuity surface must be a flux surface;
otherwise the Maxwell magnetic stress tensor would
not be compatible with a scalar pressure.

A FLUID-DYNAMICAL ANALOGUE

Using an appropriate identification of variables,
equations (1) become identical to the equations of
steady incompressible inviscid flow. Setting the
fluid density equal to unity, these equations are

(u.V)u + VP*
V.u - 0

0
(3)
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where p* denotes the fluid pressure. The identifica-
tions are u ~ B/V/¿ and — p* ~ p + B2\2¡x ; the
negative of the pressure p in the magnetic case then
corresponds to the Bernoulli constant p* + u2/2.
The interesting case is rotational flow, for which the
vorticity V x u ^ O corresponding to J Ф 0.

It is interesting to consider the analogue of the
fluid-dynamical free boundary or cavitation problem in
which an irrotational flow is separated at a dis-
continuity surface (vortex sheet) from stagnant fluid
or a cavity. The separation surface is determined
by the extra boundary condition |u| = constant.
This is mathematically equivalent to a vacuum
magnetic field (J = 0) separated at an interface
(current sheet) from a field-free conducting fluid.
Since p is constant in the conducting fluid, we obtain
the free boundary condition |B| — constant.

Although the two problems are mathematically
identical, it is perfectly possible for a significant fluid-
dynamical problem to be uninteresting in the magnetic
analogue (e.g., a jet from an orifice, Fig. la) and vice
versa (e.g., the cusped equilibrium,2 Fig. lb).
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SOLUTION OF BOUNDARY VALUE PROBLEMS

The characteristics of a system of partial differential
equations 3 give immediate qualitative and possibly
quantitative information concerning relevant initial
value or boundary value problems. An elementary
calculation yields four characteristics for the sys-
tem (1). Two of the characteristics are purely ima-
ginary as for the potential equation. Corresponding
to these two characteristics, one would expect to
prescribe a single scalar boundary value on the entire
boundary of the domain, e.g., the normal component
Bn of the magnetic field.

The remaining two characteristics are real; viz., the
В lines counted twice. Corresponding to each real
characteristic, one would expect to be able to specify
a single scalar quantity at one end of each В line.
In a geometry as in Fig. 2 in which every В line

Figure la Figure 1b

intersects each end of the tube, one would expect to
give both additional quantities at one end or one
at each end. For example, one may conjecture that
the following specification of boundary values (in
addition to Bn on the whole surface) would be ap-
propriate where t, n designate tangential and normal
components :

Problem Ax: p given on Slf p given on S2 (com-
patibly) ;

Problem A2: p given on Sv Jn given on S1;
Problem A3: p given on Slt Jn given on 52;
Problem A4: Bt given on Sx (as well as Bn: the

vector В is thus given).

In these problems, we prescribe p on boundary
surfaces in such a way that the p lines are " simple "
(not closed) as shown in Fig. 3. Moreover, in Pro-
blem Alf since p is constant on В lines, matching
magnetic flux on both ends imposes a simple com-
patibility requirement on p. For example, if p is
given on Sx and the lines of constant p are specified
on S2, this condition fixes the values of p on these
given lines.

An iteration scheme for Problems A2 and A3

offering likelihood of convergence is as follows:

suppose that, at a certain stage of the iterations, we
have a vector field В satisfying V»B = 0 and the
boundary condition for Ъп- We find p everywhere
in the domain by carrying the boundary values of p
along these В lines. The component J ± perpendicular
to В is then obtained in the domain from the equation
V.p = J x B . We write J,, = oB for the parallel
component and employ the requirement V»J = 0
to obtain along each В line the ordinary differential
equation

B.Vcx + V-J± = 0 (4)

for a. The given " initial " condition for Jn at one
end allows this equation to be solved uniquely on
each line so that J is determined everywhere. We
now solve for a new В from V-B = 0, V X В = J
and the boundary condition for Bn, and then we
continue the iterations.

We next consider two-dimensional problems; i.e.,
problems in which no quantity depends on z. There
are several possibilities: (1) В can have the single
component Bz and J the two components Jx and ]y\
(2) В can have the two components Bx and By and J
the single component / z; (3) both В and J can be
general (three-component) vectors depending on
x and у alone.

The general solution in the first case has already been
given explicitly, p + B2¡2[Á — constant. In the
second case, the number of characteristics is three
rather than four; the В lines are counted only once.
The two-dimensional analogue to Problem Ax will be
considered later. Corresponding to Problems A2, A3

and A4 we have (see Fig. 4)

Figure 2 Figure 3

Figure 4

Problem Bx: p given on Сг or C2;
Problem B2: В given on Сг or C2.
In the third (general two-dimensional) case, the

characteristics are counted as in the full three-dimen-
sional case. Correspondingly we list:

Problem C2: p given on Ylt Jn given on I\;
Problem C3: p given on I\, Jn given on Г2;
Problem C4 : В given on I\ (as above, the analogue

to Problem Аг is left to later).
The two-dimensional Problems C2 and C3 are

equivalent.
With axial symmetry, the в coordinate corresponds

to the z coordinate of the two-dimensional case. We
have the same three subdivisions: (1) Be, Jr, ]z\
(2) Br> BZy Je\ (3) В and J general (three-component)
vectors depending on r and z alone. In the first
case, Be and p must be functions of r alone such that
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d¡8r(p (5)

In the second and third cases, we identify Problems
D-L, D2 and E2, E3, E4 in correspondence with Bv B2,
and C2, C3, C4, respectively.

Additional justification of the above conjectures
will be given later; here they are suggested merely
by the counting of characteristics.

The problem of force-free fields, viz., solution of the
system

(VxB)xB = 0 V.B = 0 (6)

is a special case of the equilibrium problem obtained
by specializing boundary values of pressure to p
= constant. We identify Problem F2 as the special
case of A2 or A3, F2 as the special case of C2 or C3,
and F3 as the special case of E2 or E3. Problems F2

and F3 are the two-dimensional and axially symmetric
versions of ¥г.

CHARACTERIZATION OF THE MAGNETIC FIELD
IN A PRESSURE SURFACE

We first introduce the concept of a surface harmonic
vector field on a surface S (e.g., a constant p surface).
A tangential vector field X(2) = V(2)^ is said to be
a surface gradient (or irrotational vector field) if it is
the projection of a three-dimensional gradient or if

= 0

for every closed curve С which bounds a portion of 5.
The conjugate vector field nxX^2) = Y<2) (where n
is the normal to 5) is said to be a surface curl (or
solenoidal vector field); we have

YvWds = 0

where v denotes the normal in S to the curve C.
If X ( 2 ) = V ( V = n x V ( > (that is, if X<2) is

both irrotational and solenoidal), we call it harmonic
and say that ф and гр are conjugate surface harmonics.
In the special case where S is a plane, ф and гр satisfy
the Cauchy-Riemann equations.

In a simply-connected plane domain, a harmonic
vector X<2) is uniquely determined by the boundary
values of the normal or tangential components of
X(2). Specifying either at the boundary is equi-
valent (except for a trivial additive constant) to
specifying гр or ф at the boundary. Exactly the
same facts hold on an arbitrary surface 5.

In a multiply-connected domain, the solution to
such a boundary-value problem is uniquely determined
only when certain additional data called periods are
prescribed. These may be specified values of the
circulations <fX(2Wx on each independent closed
circuit or of the fluxes ¡XvWds on arcs which cut
these circuits (see Fig. 5). If these periods are non-
zero, the functions ф and гр are multiple-valued.

The above theory can be generalized to include
weighted surface harmonics which satisfy the equation

here ф and гр are conjugate harmonic with respect
to a positive weight function a.

Since J has no component normal to a pressure
surface Sp, we conclude that В is a surface gradient
on Sp] i.e.,

В = Щ- п(дф/дп). (8)

In Appendix I, it is shown that, since V«B = 0 and p
is constant on В lines, there exists a function w such
that

В = Vp X Voo = \Vp\n X V(2)co. (9)

We see that В is a weighted surface harmonic with
weight \Vp\ on any Sp. The weight \Vp\ arises in
converting from an actual three-dimensional sole-
noidal vector with V*B = 0 to a two-dimensional
area-weighted solenoidal vector. We note that В
will be an actual three-dimensional gradient instead
of a surface gradient only if J = 0 and, hence, p is
constant.

These remarks allow us to extend the previously
conjectured existence theorems to cases in which the
p lines on the boundary are closed curves (see Fig. 6).
On a surface Sp, the magnetic field is determined only
when, in addition to the normal component of В at
each end, we give a period, e.g., the mmf

(10)= Ф В-йс

on a curve С circling Sp. This argument suggests
the following modification of Problem Ax:

Problem Gx : p given on Slt p given on Slf т given
for each p.

X < 2 ) . d x

X (2) = (7)

Figure 5

We are now also able to insert the two-dimensional
(G2) and axially symmetric (G3) analogues of Ax:

Problem G2: p given on I\, т given for each p\
Problem G3: p given on Slt r given for each p.

In Problem G2, т is defined as the line integral of В
over a finite distance z, interpreting the figure to be
periodic in the z direction. In Problem G3, r = 2nBer.
In general, the value of r(p) can be interpreted as the
degree of " twist " of the magnetic lines on each
tubular p surface. It should be noted that Jn is an
alternative way of specifying this twist.

SOLUTION IN TERMS OF ARBITRARY FUNCTIONS

First we consider the general two-dimensional case
in which Bx, By, Bz depend only on x, y. Since



HYDROMAGNETIC EQUILIBRIA AND FORCE-FREE FIELDS 193

and

Figure 6 Figure 7

V»B = 0, we can introduce a stream function
гр(х, у) for the Bx, By components of the field; we then
have

дгр __дгр (11)

ду у дх

so that
B = n x V ^ + n 5 2 (12)

where n=(0, 0, 1). It can be seen that p and Bz

are constant on the curves of constant гр in the x,y
plane. However, p and Bz may be multiple-valued
functions of гр. The stream function гр(х,у) satisfies
the non-linear potential equation

/0=0 (13)
where

(14)

p' and /' refer to derivatives with respect to гр. In
(13), р(гр) and ¡(гр) are arbitrary functions of гр.
Hence, our system of four first-order equations has
been reduced to a single second-order equation
containing two arbitrary functions. One can expect
a solution to be determined by specifying the ar-
bitrary functions and boundary values for гр as for
the s tandard two-dimensional potential equation.
For solutions depending on x only, the equation

(15)

can be integrated explicitly giving many interesting
equilibrium configurations.

I n t h e case of axial symmetry in which Br, Be, Bz

depend only on r, z, we introduce a stream function
ip(r, z) such t h a t

r Tz

1 дгр

and, hence

В + nBd

(16)

(17)

where n = (nr, n0, nz) = (0, 1, 0). Here гр (r, z)
satisfies the equation

= 0
where

(18)

(19)

(20)

In the case of cylindrical symmetry, in which there
is dependence on r alone, we may give any two of
p, гр and Be as functions of r and immediately com-
pute the other.

Interesting special solutions of Eq. (15)andEq. (18)
can be found by separation of variables after taking
/' and p' to be linear in гр. In some cases eigenvalue
problems arise. It is thus clear that uniqueness
cannot be expected in general. However, it is
possible to prove uniqueness as well as existence even
with quite arbitrary ¡(гр) and р(гр) for domains which
are not too large.

The force-free special cases are obtained by the
simple expedient of setting p' (гр) — 0. 4

The reduction in terms of arbitrary functions offers
support for the conjectured existence of solutions to
Problems ~BV C2 or C3, D l f E2 or E3, F2, and F3. In
each case, the boundary data over and above Bn

serve to determine the functions р(гр) and ¡(гр).

VARIATIONAL ANALYSIS.
ADDITIONAL BOUNDARY VALUE PROBLEMS

I t is well known t h a t solutions of the fluid free-
surface problem can be described as those vector
functions n(x) which make stationary the functional
\\u2dV when the fluid volume is held fixed. Analo-
gously, in the magnetic case we vary \B2\2¡idV
holding the volume of the magnetic domain fixed.
Or we can drop the restriction to constant volume
and, as suggested by the Lagrange multiplier rule,
vary

JVm JVm 2/л

— I PodV-{- constant
JVf

= I (-7—B2—p)dV+constant.
Jvf+vm

 2V

Here Vm represents the vacuum (magnetic) domain
and Vf the conducting fluid domain; the sum Vm

+ Vf is fixed. The pressure p takes the value zero
in the vacuum and the constant value p0 in the
fluid. We shall see that , if interpreted properly, the
same functional,

r i
(22)

serves for the general equilibrium problem with fluid
and magnetic field mixed; here p as well as В will be
a function of x, y, z. The class of admissible pairs
(B, p) allowed to compete in the variation of the
given functional is restricted by the conditions t h a t
В be solenoidal and p be constant on the В lines of the
associated B,



194 SESSION A-5 P/386 H. GRAD and H. RUBIN

(23)

as well as by boundary conditions that will vary from
problem to problem.

A simple way of incorporating both constraints (23)
is to represent В in the form

В (24)

(see Appendix I). The function со may be multiple-
valued if the p surfaces are not simple.

We perform the variation, obtaining

= jv{B. {VôpxVco+VpxVôœ) - ôp}dV

= {v{ôp(J-Vœ-l)-dœ(J.Vp)}dV

-(j) {dp{BxVco)-dœ{BxVp)}*ndS = 0. (25)

For arbitrary variations of dp and ôco in the volume
integral, we conclude

J . Vco = 1
J-Vp =0 (26)

from which we easily obtain \Jp = J x В as the
Euler equation.

Next we turn to the boundary variation and first
consider the case of simple p surfaces (Fig. 3), with
p given at both ends Si and S2. It can easily be
verified that there is no contribution to the variation
(25) from S3 on which Bn = 0. On 5j and S2, from
ôBn = 0we conclude that ôco is a function of p ; how-
ever, we are certainly free to fix the value of со at
one end of each p line on S1} and this makes coô = 0
everywhere. We then have :

Theorem 1 : In the tubular geometry of Fig. 2, if p
is given (compatibly) at the ends S± and S2 in such
a way that the p lines are simple, then Q is made
stationary by any solution of the system (1) which
satisfies these boundary conditions. This theorem
corresponds to the conditions of Problem Av

Next consider tubular p surfaces (Fig. 6). Since
со and ф (see Eq. (8)) may be multiple-valued, we
cut the domain on a surface S which extends from the
axis of the nested surfaces Sp to the outer boundary
S3 (Fig. 7), The boundary integral in (25) must now
be taken over both sides of S as well as Slf S2 and
S3. As in the previous case, the contribution from
S3 vanishes. A little manipulation shows that the
contribution from the cut S also vanishes. On Sx or
S2, since ôBn = 0, we must have а со = f(p). We
obtain for this part of the variation,

( 2 7 )

Sx to S2 on a given pressure surface. In order to
have Q stationary we must either fix this twist be-
forehand so that ôco2~ ôco1 = 0 or else specify that
r(p) == 0; the latter is a natural boundary condition
in this problem. To specify the twist for a class of
admissible vector fields B, we require the magnetic
lines which originate on a ray С on Бг to end on
another given ray C" on S2 (Fig. 8). We have:

Theorem 2: With tubular p surfaces, p given com-
patibly at the ends S± and S2 and two given rays С
and C" identified, Q is stationary if В and p satisfy (1).
If the twist is not specified, Q is stationary for a solu-
tion of (1) which satisfies r(p) = 0. There are
really two ways of specifying twist, since the spe-
cification of r(p) or the identification of two rays
С and C" are, in an intuitive sense, equivalent.

It is easy to alter the problem by the use of the
Lagrange multiplier rule so as to be able to specify r
instead of the twist. This variational formulation
corresponds to Problems Glf G2 and G3.

Some modifications of these variational problems
are necessary to obtain force-free fields. We drop
the term p in the variational functional, and obtain

M= í —B4V.
2/л

(28)

Instead of the representation B=VpXVoj we now
take

(29)

where n is no longer identified with the pressure. It
is now easy to verify the following theorems:

Theorem 3: For admissible sets (B, n) with simple
TI surfaces and n given compatibly on S1 and S2, M is
stationary when В is force-free.

Theorem 4: For admissible sets (В,л) with tubular
n surfaces and n given compatibly on Sx and S2 as
well as the twist from Sx to S2, M is stationary when
В is force-free.

If one is willing to place a large burden on the
verification of the compatibility of given boundary
data, then it is possible to formulate problems in
which p (or n) is given at both ends Sx and S2 without
regard to the simplicity of p lines. We have:

Theorem 5 : Consider admissible classes {B,p) [or
(В, л)] which satisfy V «B = 0 and p [or л] constant
on В lines, p [or jr] given compatibly at both ends, and
a fixed (compatible) identification of the ends of
each В line. Then Q [or M] is rendered stationary
when (B, p) satisfies V£ = J x B [JxB = 0].

using Eq. (11.11) of Appendix II. The difference
дсо2—dcox represents the variation of the twist from Figure 8
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This theorem follows when we note that assignment
of Bn and p [or 7t\ at both ends uniquely fixes the
correspondence between В lines if the p surface
\_n surfaces] are simple, and if they are not simple, the
additional specification of twist serves the same
purpose. Physically, the boundary condition that
the ends of each В line be fixed corresponds to a
perfectly conducting fluid in contact with perfectly
conducting end walls Sx and S2. In the force-free
case, the reference is to a so-called " pressureless
plasma " in which the gas pressure is negligible com-
pared to the magnetic pressure, but which is, never-
theless a good conductor; that is physically realizable
since the conductivity of a plasma is independent of
its density.

It is interesting to compare the variational problem
for the force-free field with the classical Dirichlet's
principle which states that M is minimized subject
to given Bn (and V-B = 0) when VxB = 0.
The additional requirement that the ends of each
В line be fixed prevents this minimum from being
attained and yields (VxB)xB = 0 as the Euler
equation instead of VxB = 0.

As a final example, we take as our domain the
interior of a topological torus and look for solutions
which have the outer boundary of the torus as a
constant pressure surface. No boundary values can
be given since no В lines are accessible. However,
the variational formulation itself suggests what data
are required to obtain a well-posed problem. As
before, we take admissible sets (B, p) which satisfy
В = VpxVœ, where the p surfaces now are nested
toruses about some closed curve Co as axis. For
simplicity we take p to be monotone, p0 > p > plf
where p0 is the value taken on the axis Co and px
is the value taken on the outer boundary. To make со
single valued, it is necessary to introduce two sur-
faces Sx and S2 as cuts; Sx is a transverse cut across
the torus (leaving ends similar to Бг and S2 of Fig. 2),
and S2 extends from the axis Co to the outer boundary.
The only contribution to the variation (25) is on the
cuts; we have

ÔQ = [ [ôp~]{VcoxB).ndS (30)

- Г __[ôœ]VpxB)-ndS.

Since p (therefore ôp) is single valued, [dp] = 0.
The periods [co] are given by

Ci

(31)

where C¿ are the independent closed curves on the
torus Sv. In Appendix II it is shown that

(32)

where Фг(а) represents the magnetic flux across that

part of Si for which рг < p < a. From Eq. (11.11)
of Appendix II, we obtain the form

(33)

where p0 and рг are the values taken by p on the
axis Co and on the outer boundary of the torus,
respectively. We now state:

Theorem 6 : In the class of admissible (B, p) defined
by V.B = 0, B*Vp = 0 and given Фг(р), Ф2{р)
(or аг(р), o2(p)) for po>p>p!, Q is stationary
when Vp=JxB.5

We can obtain a formulation with given ri(p)
rather than Фг(р) by modifying Q according to the
conventional Lagrange multiplier rule.

For force-free fields, exactly the same analysis
yields the result that Q is stationary if Фг is a given
function of Ф2 and Ф2 attains the fixed values Ф2 and
0 on Co and on the outer boundary; in parametric
form we give Фг(п) and Ф2{п).

As a special case of a toroidal geometry, we can
take a problem with cylindrical symmetry (de-
pendence on r alone) and introduce periodicity to
provide the toroidal topology. In this case, the above
conjectures are trivially proved.

We summarize various sets of data which are be-
lieved to define definite equilibrium configurations.
In the tubular domain of Fig. 2, we specify Bn as
shown and we also specify p and Jn at one end or p
at one end and Jn at the other. The justification lies
in the counting of characteristics, in a heuristically
appealing iteration scheme and in a direct verification
by integrating in terms of arbitrary functions in
certain special cases. Or we can specify p at one
end and the corresponding terminal points of each
В line in a manner compatible with the given values
of Bn. This is confirmed by counting of charac-
teristics supplemented by the known properties of
surface harmonics, by variational analysis and by
integration in terms of arbitrary functions in certain
special cases. In the toroidal geometry, we conclude
that the two fluxes Ф%{р) or mmfs r%(p) can be
specified arbitrarily; the justification is proved by
variational analysis and by explicit solution in special
cases.

APPENDIX I

REPRESENTATION OF AN INCOMPRESSIBLE
VECTOR FIELD IN TERMS OF T W O STREAM

FUNCTIONS

We note, for arbitrary <f>(x,y,z), ip{x,y,z) and
arbitrary ос(ф, ip) (which means that oc is constant
on the intersection of ф = constant and ip = cons-
tant), that

V-(aV^xV^)—0. (I.I)

We remark further that, if (I.I) holds for o¿{x)y,z)J
ф(х,у, z), y)(x,y, z) in a domain where ф and ip are
independent functions (i.e., V^xV^^O), then it
follows t h a t <x = <х(ф, y>).
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Next consider a solenoidal vector field B and a
small region of space which is simply covered by the
В lines which intersect a transverse surface S. We
have:

Theorem I . I : There exist functions ф, гр, а(ф, гр) such
t h a t В = осХ7фхХ7гр.

To prove Theorem LI we choose any independent
ф and гр on S (i.e., ф = constant and гр = constant
form a coordinate system). We then carry the values
of ф and гр off S on the В lines. Since Х?ф X V^
is parallel to B, we conclude that В = осУфхЧгр and,
hence, OL = ос(ф, гр) by the above remark.

We note that the flux through S,

== BndS = афагр, (1.2)

which justifies the terminology " stream functions ".
We again take an arbitrary vector field В with

V • В = 0 and a small region and assert :

Theorem 2 : There exist ф, гр such that В = V^
x V f In fact, if ф is any given function which is
constant on В lines, then there exists гр such that
В = ЧфхУгр.

Choose ф arbitrarily on S so that the ф curves are
simple. Introduce s as the arc length on а ф curve,
v as the normal to the ф curve in S. Note that
if В = ЧфхЧгр then Bn = (дф/дгЦдф/дБ). This
suggests that we construct гр as

f(s)=\~^dS,J B (1.3)

integrated along each ф line (the value of гр at one
end of each ф line can be arbitrarily assigned). As
before, we carry the values of ф and гр off S as
constants on В lines. From the previous theorem,
В = с№фхХ7гр. By the construction of гр} a = 1
on S; since a is constant on each В line, a = 1
throughout.

If the ф lines are taken as closed curves, then the
construction yields а гр which is not single valued,
and a cut should be introduced.

APPENDIX II

INTEGRATION FORMULAS

We shall use two basic formulas. First, given two
functions f(x) and g(x) defined in a space x — (%>...,
xn), we have

where

„ = [ f{dS/\Vg\). (II.2)

The integral (II. 1) over the shell a < g < b is written
as an iterated integral first on the surface Sg, then
with respect to g.6 The second identity is,

Js =JS афагр =Jc фагр = ~jc граф;

(II.3)

here S is an arbitrary surface in three-space with С
as its boundary.7 The surface S may have to be cut
to make ф and гр single valued. If S is a torus, on
which there are the two independent closed curves
Сг and C2, this formula reduces to

fs (LIA)

where

are the periods of ф and гр, respectively.
We apply these formulas to obtain the identity

for an equilibrium B, i.e., for В satisfying

В = У№ф == VpxVœ.

Using (II.2) and then (II.3) we verify

dS

Js9

(И.7)

\vp\
(B2~}v — I

JSt

С 2 Г

~JsP

 C0X ~J
In the special case of a torus, we have

j B4V = I {гг{р)а2{р) — r2{p)i
Ja<b<p J

(11.8)

where

Oi(p) =

n(P)

с,

(II.9)

(11.10)

B-dx.

On a transverse surface S, we compute

1<Р<ь (BxV/>.n)¿S = -j\(p)dp. (11.11)

We have n as the normal to S, and introduce v as the
normal in S to a p curve, and S as arc length along a
p curve (Fig. 9). The proof is

Figure 9
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<В х V^>.n>v= Í (В x V^.n)
Jcp

= 1 (BxV.n)^S = — ф B*dx = -
•s Cp *J Cp

Again, on a transverse surface S,

ds

ds

<Bn)p = f [Vp X Vco-n)
Jcp

Consequently,

or

= o(j>). (11.13)

(11.14)

(т(/.) = Ф'(#). (11.15)

Taking signs into account, we can rewrite (II.9) as

L P < b

 B4v=fb (т1ф1#+*«*«
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