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SUMMARY

Decisions vital to the accomplishment of military

objectives are determined in large part by the intuitive
judgments and educated guesses of decision makers or experts
acting in their behalf. The critical role of intuitive

judgments makes it important to study the factors that limit
the accuracy of these judgments and to seek ways of improving

them. Previous work in ARPA's Advanced Decision Technology
Program has led to the discovery of major deficiencies in the

unaided, intuitive judgments of probabilities for uncertain

events. Of the many significant conclusions of this research,

the following merit special mention:

(1) Errors of judgment are often systematic rather
than random, manifesting bias rather than

confusion. People suffer from mental astigmatism
as well as from myopia, and any corrective

prescription should deal appropriately with this

diagnosis.

(2) There are no significant differences between the

judgmental processes of experts, intelligence
analysts, and physicians, to cite but a few,

confirm the presence of common biases in the
professional judgments of experts.

(3) Erroneous intuitions resemble visual illusions
in a crucial respect: both types of error remain

ACs1014 "i compellingly attractive even when the person is

DOC r;sectm J3 fully aware of their nature. In situations
UNANNOUN kely to produce illusions of sight or intuition,
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we must let our beliefs and actions be guided by

a critical and reflective assessment of reality,

rather than by our immediate impressions, however

compelling these may be.

This paper presents an approach to elicitation and

correction of intuitive forecasts, which attempts to retain

what is most valid in the intuitive process while correcting

some errors to which it is prone. This approach is applied

to two tasks that experts are often required to perform in

the context of forecasting or in the service of decision-making:

the prediction of uncertain quantities and the assessment of

probability distributions. The analysis of these tasks reveals

two common biases: non-regressiveness of predictions and

overconfidence .n the precision of estimates. In order tu

eliminate or reduce these biases, we propose specific

procedures for the elicitation of expert judgments and for the

assessment of corrected values. Our recommendations assume a

dialogue between an expert and an analyst, whose role is to

help the expert make most efficient use of his knowledge while

avoiding some of the common pitfalls of intuition. Experts

may, of course, act as their own analysts.
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I. INTRODUCTION

Any significant activity of forecasting involves a

large component of judgment, intuition and educated guesswork.

Indeed, the opinions of experts are the source of many
technological, political and social forecasts. Opinions and

intuitions play an important part even where the forecasts
are obtained by a mathematical model or a simulation.

Intuitive judgments enter in the choice of the variables that

are considered in such models, the impact factors that are
assigned to them, and the initial values that are assumed to

hold. The critical role of intuition in all varieties of
forecasting calls for an analysis of the factors that limit

the accuracy of expert judgments, and for the development of
procedures designed to improve their quality.

The question of how people think under conditions of

uncertainty has attracted increasing research interest in
recent years. A comprehensive review of the findings and

their implications has been assembled by Slovic, Fischhoff
and Lichtenstein (1977) and some common biases have been
described and analyzed by Tversky and Kahneman (1974).

Several conclusions that emerge from this body of research
are especially relevant to our present concern. First, errors

of judgment are often systematic rather than random,
manifesting bias rather than confusion. Thus, people suffer

from mental astigmatism as well as from myopia, and any
corrective prescription should fit this diagnosis. Second,

many errors of judgment are shared by experts and laymen

alike. Studies of stockbrokers (Stael von Holstein, 1972),

electrical engineers (Kidd, 1970), intelligence analysts
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(Brown, Kahr and Peterson, 1974) and physicians (Zieve, 1966),

to cite but a few, confirm the presence of common biases in

the professional judgments of experts. Third, erroneous

intuitions resemble visual illusions in an important respect:

the error remains compelling even when one is fully aware of

its nature. Awareness of a perceptual or cognitive illusion

does not by itself produce a more accurate perception of

reality. Hopefully, it may enable us to identify situations

in which our normal faith in our impressions must be suspended,

and where judgment should be controlled by a more critical

evaluation of the evidence.

This paper presents an approach to elicitation and

correction of intuitive forecasts, which attempts to retain

what is most valid in the intuitive process while correcting

some errors to which it is prone. This approach is applied

to two tasks that experts are often required to perform in

the context of forecasting or in the service of decision-

making: the prediction of uncertain quantities and the

assessment of probability distributions. The analysis of

these tasks reveals two conon biases: non-regressiveness of

predictions and overconfidence in the precision of estimates.

In order to eliminate or reduce these biases, we propose

specific procedures for the elicitation of expert judgments

and for the assessment of corrected values. Our recommendations

assume a dialogue between an expert and an analyst, whose role

is to help the expert make most efficient use of his knowledge

while avoiding some of the common pitfalls of intuition.

Experts may, of course, act as their own analysts.
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The rationale for our recommendations derives from a

psychological analysis of judgmental biases. We have had

some experience with the implementation of the proposed

methods, which indicates that they are feasible. It should

be emphasized, however, that the recommended procedures

have not been subjected to systematic evaluation. They

should be regarded as suggestions for improved practice, and
as an illustration of a general approach to debiasing, rather

than as a well established methodology of elicitation.
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2. SINGULAR AND DISTRIBUTIONAL DATA

Experts are often required to provide a best guess,

estimate or prediction concerning an uncertain quantity

such as the value of the Dow-Jones index on a particular day,

the future sales of a product, or the outcome of an election.

We shall distinguish two types of information that are

available to the forecaster: singular and distributional.

Singular information, or case data, consists of evidence

about the particular case under consideration. Distributional

information, or base-rate data, consists of knowledge about

the distribution of outcomes in similar situations. In

predicting the sales of a new novel, for example, what one

knows about the author, the style, and the plot is singular

information, whereas what one knows about the sales of novels

is distributional information. Similarly, in predicting the

longevity of a patient, the singular information includes

his age, state of health and past medical history, whereas

the distributional information consists of the relevant

population statistics. The singular information describes

the specific features of the problem that distinguish it

from others, while the distributional information characterizes

the outcomes that have been observed in cases of the same

general class. The present concept of distributional data does

not coincide with the Bayesian concept of a prior probability

distribution. The former is defined by the nature of the

data, whereas the latter is defined in terms of the sequence

of information acquisition.

Many prediction problems are essentially unique, in

the sense that little, if any, relevant distributional

information is available. Examples are the forecast of demand
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for nuclear energy in the year 2000, or of the date by which

an effective cure for leukemia will be found. In such

problems, the expert must rely exclusively on singular

information. However, the evidence suggests that people

are insufficiently sensitive to distributional data even when

such data are available. Indeed, recent research suggests

that people rely primarily on singular information, even

when it is scanty and unreliable, and give insufficient

weight to distributional information (see, e.g., Kahneman

and Tversky, 1973; Tversky and Kahneman, 1977).

The context of planning provides many examples in

which the distribution of outcomes in past experience is

ignored. Scientists and writers, for example, are notoriously

prone to underestimate the time required to complete a

project, even when they have considerable experience of past

failures to live up to planned schedules. A similar bias

has been documented in engineers' estimates of the

completion time for repairs of power stations (Kidd, 1970).

Although this 'planning fallacy' is sometimes attributable to

motivational factors such as wishful thinking, it frequently

occurs even when underestimation of duration or cost is

actually penalized.

The planning fallacy is a consequence of the tendency

to neglect distributional data, and to adopt what may be

termed an 'internal approach' to prediction, where one focuses

on the constituents of the specific problem rather than on

the distribution of outcomes in similar cases. The internal

approach to the evaluation of plans is likely to produce

underestimation. A building can only be completed on time,

for example, if there are no delays in the delivery of
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materials, no strikes, no unusual weather conditions, etc.
Although each of these disturbances is unlikely, the

probability that at least one of them will occur may be
substantial. This combinatorial consideration, however,

is not adequately represented in people's intuitions

(Bar-Hillel, 1973). Attempts to combat this error by
adding a slippage factor are rarely adequate, since the

adjusted value tends to remain too close to the initial
value that acts as an anchor (Tversky and Kahneman, 1974).

The adoption of an 'external approach', which treats the
specific problem as one of many, could help overcome this

bias. In this approach, one does not attempt to define

the specific manner in which a plan might fail. Rather,

one relates the problem at hand to the distribution of

completion time for similar projects. We suggest that more
reasonable estimates are likely to be obtained by asking

the external question "how long do such projects usually

last?", and not merely the internal question "what are the
specific factors and difficulties that operate in the

particular problem?"

The tendency to neglect distributional information

and to rely mainly on singular information is enhanced by
any factor which increases the perceived uniqueness of the

problem. The relevance of distributional data can be masked
by detailed acquaintance with the specific case, or by intense

involvement in it. The perceived uniqueness of a problem is

also influenced by the formulation of the question which the

expert is required to answer. For example, the question of
how much the development of a new product will cost may induce

an internal approach where total costs are broken down into

components. The equivalent question of the percentage by

which costs will exceed the current budget is likely to call
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to mind the distribution of cost-overruns for developments

of the same general kind. Thus, a change of units, e.g.
from costs to overruns, could alter the manner in which the

problem is viewed.

The prevalent tendency to underweight, or ignore,

distributional information is perhaps the major error of

intuitive prediction. The consideration of distributional

information, of course, does not guarantee the accuracy of

forecasts. It does, however, provide some protection
against completely unrealistic predictions. The analyst

should therefore make every effort to frame the forecasting

problem so as to facilitate the utilization of all the

distributional information that is available to the expert.
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3. REGRESSION AND INTUITIVE PREDICTION

In most problems of prediction, the expert has both
singular information about the specific case and distributional

information about the outcomes in similar cases. Examples are

the counselor who predicts the likely achievements of a
student, the banker who assesses the earning potential of

a small business, the publisher who estimates the sales of
a textbook, or the economist who forecasts some index of

economic growth.

How do people predict in such situations?

Psychological research (Kahneman and Tversky, 1973; Ross,

1977) suggests that the intuitive predictions are generated

according to a simple matching rule: the predicted value is

selected so that the standing of the case in the distribution
of outcomes matches its standing in the distribution of

impressions. The following example illustrates this rule.

An editor reviewed the manuscript of a novel and was favorably
impressed. He said: "This book reads like a best-seller.

Among the books of this type that were published in recent

years, I would say that only one in twenty impressed me more".

If the editor were now asked to estimate the sales of this
novel, he would probably predict that it will be in the top

5% of the distribution of sales.

There is considerable evidence that people often

predict by matching prediction to impression. However, this

rule of prediction is unsound because it fails to take

uncertainty into account. The editor of our e.ample would

surely admit that sales of books are highly unpredictable.

In such a situation of high uncertainty, the best prediction
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of the sales of a book should fall somewhere between the

value that matches one's impression and the average sales

for books of its type.

One of the basic principles of statistical prediction,

which is also one of the least intuitive, is that the

extremeness of predictions must be moderated by considerations

of predictability. Imagine, for example, that the publisher

knows from past experience that the sales of books are quite

unrelated to his initial impressions. Manuscripts that

impressed him favorably and manuscripts that he disliked

were equally likely to sell well or poorly. In such a case

of zero predictability, the publisher's best guess about

sales should be the same for all books (e.g., the average of

the relevant category), regardless of his personal impression

of the individual books. Predictions are allowed to match

impressions only in the case of perfect predictability. In

intermediate situations, which are of course the most common,

the prediction should be regressive, i.e., it should fall

between the class average and the value that best represents

one's impression of the case at hand. The lower the

predictability, the closer should the prediction be to the

class average. Intuitive predictions are typically non-

regressive: people often make extreme predictions on the

basis of information whose reliability and predictive validity

are known to be low.

The rationale for regressive prediction is most clearly

seen in the prediction of the result of a repeated performance

or a replication. The laws of chance entail that a very high

score on the first observation is likely to be followed by

a somewhat lower score on the second, while a poor score on
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the first observation is likely to be followed by a higher

score on the second. Thus, if we examine a group of firms

that did exceptionally well last year we shall probably find

that, on average, their current performance is somewhat

disappointing. Conversely, if we select firms that did poorly

last year we shall find that, on average, they are doing

relatively better this year. This phenomenon, known as

regression towards the mean, is a mathematical consequence

of the presence of uncertainty. The best prediction for a

repeated performance of an individual, a product, or a

company is therefore less extreme (i.e., closer to the

average) than the initial score. As was pointed out

earlier, intuitive predictions violate this principle.

People often make predictions as if measures of performance

were equally likely to change toward the average and away

from it.

The error of non-regressive prediction is common

among experts as well as among laymen. Furthermore,

familiarity with the statistics of prediction does not

eliminate the erroneous strategy of matching predictions

to impressions (Kahneman and Tversky, 1973). Thus, when

an expert makes an intuitive prediction that is based on

impression-matching, the analyst has grounds to suspect that

the estimate is non-regressive, and therefore non-optimal.

3.1 A Corrective Procedure for Prediction

How can the expert be guided to produce properly

regressive predictions? How can he be led to use the

singular and the distributional information that is available

to him, in accordance with the principles of statistical
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prediction? In this section we propose a five-step procedure

that is designed to achieve these objectives.

3.1.1 Step 1: Selection of a Reference Class. The goal

of this stage is to identify a class to which the case at

hand can be referred meaningfully, and for which the

distribution of outcomes is known, or can be assessed with

reasonable confidence.

In the prediction of the sales of a book, or of the

gross earnings of a film, for example, the selection of a

reference class is straightforward. It is relatively easy,

in these cases, to define an appropriate class of books or

films for which the distribution of sales or revenue is known.

There are prediction problems (e.g., forecasting the

cost of developing a novel product, or the time by which it

will reach the market), for which a reference class is

difficult to identify, because the various instances appear

to be so different from each other that they cannot be

compared meaningfully. As was noted earlier, however, this

problem can sometimes be overcome by redefining the quantity

that is to be predicted. Development projects in different

technologies, for example, may be easier to compare in terms

of percentage of cost-overruns than in terms of absolute

costs. The prediction of costs calls the expert's attention

to the unique characteristics of each project. The prediction

of cost-overruns, in contrast, highlights the determinants

of realism in planning, which are common to many different

projects. Consequently, it may be easier to define a reference

class in the latter formulation than in the former.

3-4
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More often than not, the expert will think of several

classes to which the problem could be referred, and a choice

among these alternatives will be necessary. For example,

the reference class for the prediction of the sales of a book

could consist of other books by the same author, of books on

the same topic, or of books of the same general type, e.g.,

hard-cover novels. The choice of a reference class often

involves a trade-off between conflicting criteria. Thus,

the most inclusive class may allow for the best estimate of

the distribution of outcomes but it may be too heterogeneous

to permit a meaningful comparison to the book at hand. The

class of books by the same author, on the other hand, may

provide the most natural basis for comparison, but the book

in question could well fall outside the range of previously

observed outcomes. In this example, the class of books on

the same topic could be the most appropriate.

3.1.2 Step 2: Assessment of the Distribution For The

Reference Class. There are problems, e.g., sales of books,

where statistics regarding the distribution of outcomes are

available. In other problems, the relevant distribution

must be estimated on the basis of various sources of

information. In particular, the expert should provide an

estimate of the class average, and some additional estimates

that reflect the range of variability of outcomes. Sample

questions are: "How many copies are sold, on the average,

for books in this category?" "What proportion of the books

in that class sell more than 15,000 copies?"

Many forecasting problems are characterized by the

absence of directly relevant distributional data. This is

always the case in long-term forecasting, where the relevant
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distribution pertains to outcomes in the distant future.

Consider, for example, an attempt to predict England's share

of the world market in personalized urban transportation

systems, in the year 2000. It may be useful to recast this

problem as follows: "What is the likely distribution, over

various domains of advanced technology, of England's share

of the world market in the year 2000? How do you expect the

particular case of transportation systems to compare to other

technologies?" Note that the distribution of outcomes is not

known in this problem. However, the required distribution

could probably be estimated, on the basis of the distribution

of values for England's present share of the world market

in different technologies, adjusted by an assessment of the

long-term trend of England's changing position in world trade.

3.1.3 Step 3: Intuitive Estimation. One part of the

information which the expert has about a problem is summarized

by the distribution of outcomes in the reference class. In

addition, the expert usually has a considerable amount of

singular information about the particular case, which

distinguishes it from other members of the class. The expert

should now be asked to make an intuitive estimate on the basis

of this singular information. As was noted above, this

intuitive estimate is likely to be non-regressive. The

objective of the next two steps of the procedure is to correct

this bias and obtain a more adequate estimate.

3.1.4 Step 4: Assessment of Predictability. The expert

should now assess the degree to which the type of information

which is available in this case permits accurate prediction of

outcomes. In the context of linear prediction, the appropriate

3-6
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measure of predictability is p, the product-moment correlation

between predictions and outcomes. Where there exist records

of past predictions and outcomes, the required value could be

estimated from these records. In the absence of such data,

one must rely on subjective assessments of predictability.

A statistically sophisticated expert may be able to provide

a direct estimate of p on the basis of his experience. When

statistical sophistication is lacking, the analyst should

resort to less direct procedures.

One such procedure requires the expert to compare the

predictability of the variable with which he is concerned to

the predictability of other variables. For example, the expert

could be fairly confident that his ability to predict the

sales of books exceeds the ability of sportcasters to predict

point-spread in football games, but is not as good as the

ability of weather forecasters to predict temperature two days

ahead of time. A skillful and diligent analyst could construct

a rough scale of predictability based on computed correlations

between predictions and outcomes for a set of phenomena that

range from highly predictable (e.g., temperature) to highly

unpredictable (e.g., stock prices). He would then be in a

position to ask the expert to locate the predictability of

the target quantity on this scale, thereby providing a

numerical estimate of p.

An alternative method for assessing predictability

involves questions such as "if you were to consider two

novels that you are about to publish, how often would you be

right in predicting which of the two will sell more copies?"
An estimate of the ordinal correlation between predictions
and outcomes can now be obtained as follows: If p is the

estimated proportion of pairs in which the order of outcomes
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was correctly predicted, then T - 2p - I provides an index

of predictive accuracy, which ranges from zero when predictions

are at chance level to unity when predictions are perfectly

accurate. In many situations T can be used as a crude

approximation for p.

Estimates of predictability are not easy to make, and

they should be examined carefully. The expert could be

subject to the hindsight fallacy (Fischhoff, 1975), which

leads to an overestimate of the predictability of outcomes.

He could also be subject to an availability bias (Tversky and

Kahneman, 1973), and mostly recall surprises or memorable

cases where strong initial impressions were later confirmed.

3.1.5 Step 5: Correction of the Intuitive Estimate. To

correct for non-regressiveness, the intuitive estimate should

be adjusted toward the average of the reference class. If

the intuitive estimate was non-regressive, then under fairly

general conditions the distance between the intuitive estimate

and the average of the class should be reduced by a factor of

p, where p is the correlation coefficient. This procedure

provides an estimate of the quantity, which is hopefully free

of the non-regression error.

For example, suppose that the expert's intuitive

prediction of the sales of a given book is 12,000 and that,

on the average, books in that category sell 4,000 copies.

Suppose further that the expert believes that he would

correctly order pairs of manuscripts by their future sales

on 80% of comparisons. In this case, T = 1.6 - 1 = .6, and

the regressed estimate of sales would be 4,000 + .6(12,000 -

4,000) - 8,800.

3-8
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The effect of this correction will be substantial when

the intuitive estimate is relatively extreme and predictability

is moderate or low. The rationale for the computation should

be carefully explained to the expert, who will then decide

whether to stand by his original prediction, adopt the computed

estimate, or correct his assessment to some intermediate value.

The procedure that we have outlined is open to several

objections, which are likely to arise in the interaction

between analyst and expert. First, the expert could question

the assumption that his initial intuitive estimate was

non-regressive. Fortunately, this assumption can be verified

by asking the expert to estimate (i) the proportion of cases

in the reference class (e.g., of manuscripts) which would

have made a stronger impression on him; (ii) the proportion

of cases in the reference class for which the outcome exceeds

his intuitive prediction (e.g., the proiortion of books that

sold more than 12,000 copies). If the two proportions are

approximately the same, then the prediction was surely

non-regressive.

A more general objection may question the basic idea

that predictions should be regressive. The expert could point

out, correctly, that the present procedure will usually

yield conservative predictions that are not far from the

average of the class, and is very unlikely to predict an

exceptional outcome, which lies beyond all previously

observed values. The answer to this objection is that a

fallible predictor can retain a chance to correctly predict

a few exceptional outcomes only at the cost of erroneously

identifying many other cases as exceptional. Non-regressive

predictions over-predict: they are associated with a

3-9
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substantial probability that any high prediction is an

overestimate and any low prediction is an underestimate.

In most situations, this bias is costly, and should be

eliminated.
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4. THE OVERCONFIDENCE EFFECT

A forecaster is often required to provide, in addition

to his best estimate of a quantity, some indication of

confidence in his estimate or, equivalently, some expression

of his uncertainty about the value of the quantity, (see,

e.g., Spetzler and Stael von Holstein, 1975). These judgments

can take the form of confidence intervals or probability

distributions. To construct confidence intervals, the expert

selects a value X of the uncertain quantity , such that he

has a probability w that the outcome will fall below X,

i.e., P( < X ) = w. Values obtained in this manner are

called fractiles. A probability distribution can be

constructed by assessing fractiles, e.g., X0 1, X2 5, X5 0,

X9 9. The range between symmetric fractiles is called a

(symmetric) confidence interval. For example, the interval

between X0 1 and X9 9 is the 98% confidence interval: the

expert's probability is .98 that the true value will be

contained within the interval, and only .02 that it will be

below X0 1 or above X9 9.

Consider, for example, a publisher who attempts to

forecast the sales of a new textbook. Suppose he thinks that

there is only one chance in 100 that the book will sell less

than 3,000 copies (i.e., X01 = 3,000), and that there is a

probability of .99 that the book will sell less than 25,000

copies (i.e., X9 9 - 25,000). The range between 3,000 and

25,000 is the 98% confidence interval for the number of

copies that will be sold. Another expert may select X0 1 =

5,000 and X9 9 - 15,000 for the sales of the same textbook.

4-1



The narrower confidence interval of the second expert

expresses greater confidence in his ability to predict the

sales of the book in question.

Stimulated by the widely cited unpublished work of

Alpert and Raiffa (1969), a considerable amount of research

has established the existence of a highly consistent bias in

the setting of confidence intervals and probability

distributions. The bias can be demonstrdted by noting the

proportion of cases in which the actual value of the uncertain

quantity falls outside the confidence interval, in a large

number of problems. These cases are called surprises. If

the expert's confidence adequately reflects his knowledge,

the true value should fall outside the 98% confidence interval

(i.e., below X01 or above X9 9 ) on approximately 2% of problems.

If the percentage of surprises is much higher, the judge is

said to be overconfident: his confidence intervals are

narrower than his knowledge justifies. Conversely, a

proportion of surprises that is much lower than the designated

value exhibits underconfidence.

A large number of studies recently reviewed by

Lichtenstein, Fischhoff and Phillips (1977) have reported

considerable overconfidence in the estimation of uncertain

quantities. For 98% confidence intervals, where the rate

of surprises should be 2%, the actual proportion of surprises

is typically above 25%1 All one need do to verify this

effect is to select a few quantities from a standard almanac

(e.g., population of countries, air distance between cities,

yearly consumption of various foods), ask a few friends to

assess X01 and X99 for each of these quantities, and record

the percentage of surprises.
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There is some evidence that the degree of overconfidence

increases with ignorance. For example, we found 28% of

surprises in assessments of the air distance between New Delhi

and Peking, which compares to 15% for assessments of the

distance between London and Tel Aviv. The two distances, in

fact, are approximately equal. Naturally, the confidence

intervals were considerably wider in the former problem,

about which our respondents knew little than in the latter

problem, about which they knew more. Confidence intervals

were too narrow in both problems, as indicated by the high

rate of surprises, but overconfidence was much more pronounced

in the more difficult question.

It appears that overconfidence does not occur when

the expert has considerable information about the conditional

distribution of the outcomes. In extensive studies of

confidence intervals given by weather forecasters for the

temperature on the next day, Murphy and Winkler (1974, 1977)

found that the proportion of surprises corresponded quite

precisely to the designated probabilities. We believe that

this exception to the overconfidence effect is due to the

repetitive nature of the situation with which these experts

are concerned, and to the availability of feedback about the

outcome following each forecast. The recurrence of an

identifiable pattern of indicators, which is followed by

different outcomes on different occasions, allows the expert

to learn the distribution of outcomes which is associated

with that pattern. In this case, the forecaster could judge

the probability of different outcomes in terms of their

relative frequency. Since people are fairly accurate in

their perception of relative frequency (see, e.g., Vlek,

1970), the overconfidence effect is not expected to occur

in essentially repetitive situations.
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Few forecasting tasks are likely to offer the scope

for frequency learning which is available to the meteorologist.

In the absence of such distributional data, confidence

intervals can only be assessed on the basis of singular

information, and overconfidence prevails.

Psychological studies of judgment under uncertainty

implicate several factors that contribute to the overconfidence

effect. First, peoole are not sufficiently sensitive to some

factors that determine the quality of evidence, e.g., the

amount and the reliability of the available information, and

often express high confidence in predictions that are based

on small samples of unreliable data. Studies of naive and

sophisticated respondents (Tversky and Kahneman, 1971;

Kahneman and Tversky, 1972) showed that the confidence in

conclusions based on sample data did not vary sufficiently

with the size of the sample. Similarly, it has been shown

that people predict a person's occupation with unwarranted

confidence from a brief and unreliable description of his

personality (Kahneman and Tversky, 1973). Apparently, sample

size and reliability have little impact on judgments of

confidence, contrary to the normative principles of statistics.

Insensitivity to the quality of evidence could help

explain the overconfidence effect. In many problems of

prediction and estimation, available information is limited,

incomplete, and unreliable. If people derive almost as much

confidence from poor data as from good data, they are likely

to produce overly narrow confidence intervals when their

information is of inferior quality. That is, they will have

too much confidence in the statement that the actual value of

the uncertain quantity is included in a narrow range around
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the best estimate. This account is supported by the

observation that overconfidence is reduced when one has more

information about a particular problem, i.e., when the

quality of the evidence is high. In fact, overconfidence

could disappear in the presence of a large quantity of

reliable data.

Oversensitivity to the consistency of available data

is a second cause of overconfidence. People tend to draw

more confidence from a small body of consistent data than from

a much larger body of less consistent data. For example, we

instructed subjects to predict students' class standing on

the basis of grades obtained in the freshman year. Our

subjects made essentially the same prediction on the basis of

a single B in one course and on the basis of A in one course

and C in another. However, they expressed much more

confidence in predicting from a single grade than from an

inconsistent pair of grades, a pattern which is not readily

justified on statistical grounds. Similarly, we suspect that

the public is likely to have more confidence in a conclusion

that was unanimously supported by a panel of three experts

than in a conclusion that was supported by ten experts in a

panel of twelve. This pattern is also difficult to justify.

The effect of consistency indirectly contributes to

overconfidence. In their search for coherence, people often

see patterns where none exist, reinterpret data so as to

increase their apparent consistency, and ignore evidence that

does not fit their views. in this manner, people are likely

to overestimate the consistency of data, and to derive too

much confidence from them.
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Two additional factors that contribute to

overconfidence in the assessment of uncertain quantities are

conditionality and anchoring. Conditionality refers to the

adoption of unstated assumptions regarding the assessed

quantity. An expert who attempts to estimate the future

revenue of a firm, for example, typically assumes normal

operating conditions, and may not take into account the

possibility that these conditions could change because of

war, depression or sabotage. Indeed, experts often claim

that their expertise is limited to normal conditions, and

that if these conditions are drastically altered "all bets

are off". A probability distribution that is conditioned

on restrictive assumptions reflects only part of the existing

uncertainty regarding the quantity, and is therefore likely

to yield too many surprises.

Anchoring refers to the biasing effect of an initial

value on subsequent judgments. When constructing a probability

distribution over a quantity, one normally considers a best

guess before assessing extreme fractiles. The best guess

therefore acts as an anchor, and the extreme fractiles,

e.g., X01 and X99 , are pulled toward it. This common bias

further contributes to the setting of confidence intervals

that are overly narrow.

4.1 Debiasing Confidence Intervals

Because the choice of action is often sensitive to the

possibility of extreme outcomes, the best estimate of an

uncertain quantity may be less relevant to decision making than

the 98% confidence interval. The presence of a large

overconfidence bias in the setting of such intervals implies
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that the element of uncertainty is typically underestimated

in risky decisions. The elimination of overconfidence is

therefore an important objective in an attempt to improve the

quality of the intuitive judgments that serve decision making.

The preceding analysis of overconfidence suggests that

this effect may be quite difficult to overcome. Merely

acquainting people with the phenomenon and exhorting them to
"spread those extreme fractiles!" does little to reduce the

bias (Alpert and Raiffa, 1969). The attempt to do so may

destroy the intuitive basis for the initial judgment, without

substituting an alternative for it: how is one to know how

far the extreme fractiles should be spread? Indeed, the

overconfidence effect may be too large to yield to such

blandishments. For most people, a change in the probability

of an event from .02 to .30 is a qualitative shift, which

alters the character of the event from very unlikely to

fairly probable. Since this is the magnitude of the shift

that is required to abolish overconfidence, the basic view

of the problem must be modified for the corrected fractiles

to be intuitively acceptable. This becomes vividly evident

when one first constructs a probability distribution, then

attempts to reallocate 30% of the total area of the distribution

outside the original 98% confidence interval. The attempt could

induce a sense of confusion, a loss of any confident intuition

about the problem and a tendency to wild guessing.

What can be done, then, to eliminate the overconfidence

bias in intuitive assessments of confidence intervals and

probability distributions? The most radical suggestion is to

replace such assessments by computations. This is sometimes

possible, when appropriate information is available.
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Consider, for example, a publisher who wishes to

estimate the 90% confidence interval for the sales of a new

textbook. Instead of making an intuitive estimate of the

interval, which is likely to be too narrow, the publisher

could proceed as follows. First, he should assess X05 and

X95 for the distribution of sales of textbooks in the

appropriate reference class. This provides a 90% confidence

interval for the class. The width of the 90% confidence

interval for the particular book can now be estimated from

the width of the corresponding interval for the class.

The statistical theory of prediction entails a simple

relation between a confidence interval for an individual case

and the corresponding confidence interval for the reference

class. This relation is mediated by predictability, i.e.,

by the correlation between predictions and outcomes (e.g.,

between predicted and actual sales). Under standard

assumptions (e.g., linear regression, normal distributions)

the width of the confidence interval for an individual case

is c Vi - P where c is the width of the interval for the

class and p is the correlation between predicted and actual

values. Thus, if one has assessed p to be .40, the interval

between X05 and X95 for the particular book should be 92% of

the interval between the corresponding fractiles in its class

(.92 = /l - .40 ). Many of our students find this statistical

relation counter-intuitive: a gain of 8% in precision is

smaller than would be expected on the basis of a correlation

of .40.

The computational procedure that was illustrated for

the prediction of the sales of a book is applicable, in
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principle, whenever the statistical assumptions are met at

least approximately, and when there are sufficient

distributional data. If the relevant data are sparse, the

assessment of extreme fractiles cannot be reliable. The

main advantage of this procedure is that it relies on an

assessment of the distribution in the reference class, which

is likely to be more precise and less biased than intuitions

about a particular case.

In a less radical vein, the computational approach

can provide a check on subjective probability distributions

obtained in the standard manner. When an expert who admits

that predictability is low sets confidence intervals for

a particular case that are much narrower than corresponding

intervals for the reference class, there are strong grounds

to suspect that he is overconfident. In such cases, the

analyst would do well to suggest to the expert that his

confidence interval should be bracketed between his initial

assessment for the case and his estimate for the class.

The procedures of the debiasing of confidence

intervals and for the correction of non-regressive predictions

share the same rationale. The need for correction arises in

both cases because of the inadequate sensitivity of intuition

to considerations of predictability. The suggested procedures

involve an assessment of predictability and the explicit use

of distribution data. The corrections consist of regressing

the expert's intuitive best guess toward the average of the

reference class, and expanding his intuitive confidence

interval toward the corresponding interval for the class.
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5. CONCLUDING REMARKS

Our view of forecasting rests on the following notions.

First, that most predictions and forecasts contain an

irreducible intuitive component. Second, that the intuitive

predictions of knowledgeable individuals contain much useful

information. Third, that these intuitive judgments are often

biased in a predictable manner. Hence, the problem is not

whether to accept intuitive predictions at face value or to

reject them, but rather how they can be debiased and improved.

The analysis of human judgment shows that many biases

of intuition stem from the tendency to give little or no

weight to certain types of information, e.g., the base-rate

frequency of outcomes and their predictability. The strategy

of debiasing which has been presented in this paper attempts

to elicit from the expert relevant information which he would

normally neglect, and to help him integrate this information

with his intuitive impressions in a manner that respects basic

principles of statistical prediction. This approach has been

illustrated in an analysis of two tasks, the prediction of

uncertain values and the assessment of r-nfidence intervals.

The basic approach of adapting procedures of forecasting and

decision-making to the recognized limitations of human

judgment could be extended to many other activities, such as

the evaluation of evidence from multiple sources, the design

of effective communication between expert and decision-maker,

and the weighting of advantages and disadvantages of

alternative policies.
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20. (continued)

analysis of these judgments reveals two major biases:
non-regressiveness of predictions and overconfidence.
Both biases are traced to people's tendency to give
insufficient weight to certain types of information,
e.g., the base-rate frequency of outcomes and their
predictability. The corrective procedures described
in this paper are designed to elicit from experts
relevant information which they would normally neglect,
and to help them integrate this information with their
intuitive impressions in a manner that respects basic
principles of statistical prediction.
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