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The Apollonius Circle as a Tucker Circle

Darij Grinberg and Paul Yiu

Abstract. We give a simple construction of the circular hull of the excircles of
a triangle as a Tucker circle.

1. Introduction

The Apollonius circle of a triangle is the circular hull of the excircles, the cir-
cle internally tangent to each of the excircles. This circle can be constructed by
making use of the famous Feuerbach theorem that the nine-point circle is tangent
externally to each of the excircles, and that the radical center of the excircles is the
Spieker pointX10, the incenter of the medial triangle. If we perform an inversion
with respect to the radical circle of the excircles, which is the circle orthogonal to
each of them, the excircles remain invariant, while the nine-point circle is inverted
into the Apollonius circle. The points of tangency of the Apollonius circle, being
the inversive images of the points of tangency of the nine-point circle, can be con-
structed by joining to these latter points to Spieker point to intersect the respective
excircles again.1 See Figure 1. In this paper, we give another simple construction
of the Apollonius circle by identifying it as a Tucker circle.
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Theorem 1. Let Ba and Ca be points respectively on the extensions of CA and BA
beyond A such that BaCa is antiparallel to BC and has length s, the semiperimeter
of triangle ABC . Likewise, let Cb, Ab be on the extensions of AB and CB beyond

Publication Date: December 16, 2002. Communicating Editor: Jean-Pierre Ehrmann.
1The tangency of this circle with each of the excircles is internal because the Spieker point, the

center of inversion, is contained in nine-point circle.
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B, with CbAb antiparallel to CA and of length s, Ac, Bc on the extensions of BC
and AC beyond C , with AcBc is antiparallel to AB and of length s. Then the six
points Ab, Ba, Ca, Ac, Bc, Cb are concyclic, and the circle containing them is the
Apollonius circle of triangle ABC .

The vertices of the Tucker hexagon can be constructed as follows. LetXb and
Xc be the points of tangency ofBC with excircles(Ib) and(Ic) respectively. Since
BXb andCXc each has lengths, the parallel ofAB throughXb intersectsAC at
C ′, and that ofAC throughXc intersectsAB atB′ such that the segmentB′C ′ is
parallel toBC and has lengths. The reflections ofB′ andC′ in the lineIbIc are the
pointsBa andCa such that triangleABaCa is similar toABC, with BaCa = s.
See Figure 3. The other vertices can be similarly constructed. In fact, the Tucker
circle can be constructed by locatingAc as the intersection ofBC and the parallel
throughCa to AC.
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2. Some basic results

We shall denote the side lengths of triangleABC by a, b, c.
R circumradius
r inradius
s semiperimeter
� area
ω Brocard angle

The Brocard angle is given by

cot ω =
a2 + b2 + c2

4� .
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Lemma 2. (1) abc = 4Rrs;
(2) ab + bc + ca = r2 + s2 + 4Rr;
(3) a2 + b2 + c2 = 2(s2 − r2 − 4Rr);
(4) (a + b)(b + c)(c + a) = 2s(r2 + s2 + 2Rr).

Proof. (1) follows from the formulae� = rs andR = abc
4� .

(2) follows from the Heron formula�2 = s(s − a)(s − b)(s − c) and

s3 − (s − a)(s − b)(s − c) = (ab + bc + ca)s + abc.

(3) follows from (2) anda2 + b2 + c2 = (a + b + c)2 − 2(ab + bc + ca).
(4) follows from(a + b)(b + c)(c + a) = (a + b + c)(ab + bc + ca)− abc. �

Unless explicitly stated, all coordinates we use in this paper arehomogeneous
barycentric coordinates. Here are the coordinates of some basic triangle centers.

circumcenter O (a2(b2 + c2 − a2) : b2(c2 + a2 − b2) : c2(a2 + b2 − c2))
incenter I (a : b : c)
Spieker point S (b + c : c + a : a + b)
symmedian point K (a2 : b2 : c2)

Note that the sum of the coordinates ofO is 16�2 = 16r2s2. 2 We shall also
make use of the following basic result on circles, whose proof we omit.

Proposition 3. Let p1, p2, p3 be the powers of A, B, C with respect to a circle C.
The power of a point with homogeneous barycentric coordinates (x : y : z) with
respect to the same circle is

(x + y + z)(p1x + p2y + p3z) − (a2yz + b2zx + c2xy)
(x + y + z)2

.

Hence, the equation of the circle is

a2yz + b2zx + c2xy = (x + y + z)(p1x + p2y + p3z).

3. The Spieker radical circle

The fact that the radical center of the excircles is the Spieker pointS is well
known. See, for example, [3]. We verify this fact by computing the power ofS
with respect to the excircles. This computation also gives the radius of the radical
circle.

Theorem 4. The radical circle of the excircles has center at the Spieker point
S = (b + c : c + a : a + b), and radius 1

2

√
r2 + s2.

2This is equivalent to the following version of Heron’s formula:

16�2 = 2a2b2 + 2b2c2 + 2c2a2 − a4 − b4 − c4.
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Proof. We compute the power of(b + c : c + a : a + b) with respect to theA-
excircle. The powers ofA, B, C with respect to theA-excircle are clearly

p1 = s2, p2 = (s − c)2, p3 = (s − b)2.

With x = b + c, y = c + a, z = a + b, we havex + y + z = 4s and

(x + y + z)(p1x + p2y + p3z) − (a2yz + b2zx + c2xy)

=4s(s2(b + c) + (s − c)2(c + a) + (s − b)2(a + b))

− (a2(c + a)(a + b) + b2(a + b)(b + c) + c2(b + c)(c + a))

=2s(2abc + (a + b + c)(a2 + b2 + c2)) − 2s(a3 + b3 + c3 + abc)

=2s(abc + a2(b + c) + b2(c + a) + c2(a + b))

=4s2(r2 + s2),

and the power of the Spieker point with respect to theA-excircle is1
4(r2 + s2).

This being symmetric ina, b, c, it is also the power of the same point with respect
to the other two excircles. The Spieker point is therefore the radical center of the
excircles, and the radius of the radical circle is1

2

√
r2 + s2. �

We call this circle the Spieker radical circle, and remark that the Spieker point is
the inferior of the incenter, namely, the image of the incenter under the homothety
h(G,− 1

2) at the centroidG.

4. The Apollonius circle

To find the Apollonius circle it is more convenient to consider its superior,i.e.,
its homothetic imageh(G,−2) in the centroidG with ratio −2. This homothety
transforms the nine-point circle and the Spieker radical circle into the circumcircle
O(R) and the circleI(

√
r2 + s2) respectively.

Let d be the distance betweenO andI. By Euler’s theorem,d2 = R2 − 2Rr.
On the lineOI we treatI as the origin, andO with coordinateR. The circumcircle
intersects the lineIO at the pointsd ± R. The inversive images of these points
have coordinatesr

2+s2

d±R . The inversive image is therefore a circle with radius

1
2

∣∣∣∣r
2 + s2

d − R
− r2 + s2

d + R

∣∣∣∣ =
∣∣∣∣R(r2 + s2)

d2 − R2

∣∣∣∣ =
r2 + s2

2r
.

The center is the pointQ′ with coordinate

1
2

(
r2 + s2

d − R
+

r2 + s2

d + R

)
=

d(r2 + s2)
d2 − R2

= −r2 + s2

2Rr
· d.

In other words,
IQ′ : IO = −(r2 + s2) : 2Rr.

Explicitly,

Q′ = I − r2 + s2

2Rr
(O − I) =

(r2 + s2 + 2Rr)I − (r2 + s2)O
2Rr

.

From this calculation we make the following conclusions.
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(1) The radius of the Apollonius circle isρ = r2+s2

4r .
(2) The Apollonius center, being the homothetic image ofQ′ underh(G,−1

2),
is the point3

Q =
1
2
(3G − Q′) =

6Rr · G + (r2 + s2)O − (r2 + s2 + 2Rr)I
4Rr

.

Various authors have noted thatQ lies on the Brocard axisOK, where the cen-
ters of Tucker circles lie. See, for example, [1, 9, 2, 7]. In [1], Aeppli states that if
dA, dB , dC are the distances of the verticesA, B, C to the line joining the center
of the Apollonius circle with the circumcenter ofABC, then

dA : dB : dC =
b2 − c2

a2
:
c2 − a2

b2
:
a2 − b2

c2
.

It follows that the barycentric equation of the line is

b2 − c2

a2
x +

c2 − a2

b2
y +

a2 − b2

c2
z = 0.

This is the well known barycentric equation of the Brocard axis. Thus, the Apollo-
nius center lies on the Brocard axis. Here, we writeQ explicitly in terms ofO and
K.

Proposition 5. Q = 1
4Rr

(
(s2 − r2)O − 1

2(a2 + b2 + c2)K
)
.

Proof.

Q =
1

4Rr

(
(r2 + s2)O + 6Rr · G − (r2 + s2 + 2Rr)I

)

=
1

4Rr

(
(s2 − r2)O + 2r2 · O + 6Rr · G − (r2 + s2 + 2Rr)I

)

=
1

16Rrs2

(
4s2(s2 − r2)O + 8r2s2 · O + 24Rrs2 · G − 4s2(r2 + s2 + 2Rr)I

)
.

Consider the sum of the last three terms. By Lemma 2, we have

8r2s2 · O + 24Rrs2 · G − 4s2(r2 + s2 + 2Rr)I

=8r2s2 · O + abc · 2s · 3G − 2s(a + b)(b + c)(c + a)I

=
1
2
(a2(b2 + c2 − a2), b2(c2 + a2 − b2), c2(a2 + b2 − c2))

+ (a + b + c)abc(1, 1, 1) − (a + b)(b + c)(c + a)(a, b, c).

3This point isX970 of [7].
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Consider the first component.

1
2

(
a2(b2 + c2 − a2) + 2abc(a + b + c) − 2(a + b)(b + c)(c + a)a

)

=
1
2

(
a2(b2 + 2bc + c2 − a2) + 2abc(a + b + c) − 2a((a + b)(b + c)(c + a) + abc)

)

=
1
2

(
a2(a + b + c)(b + c − a) + 2abc(a + b + c) − 2a(a + b + c)(ab + bc + ca)

)
=s(a2(b + c − a) + 2abc − 2a(ab + bc + ca))

=s(a2(b + c − a) − 2a(ab + ca))

=a2s(b + c − a − 2(b + c))

= − a2 · 2s2.

Similarly, the other two components are−b2 · 2s2 and−c2 · 2s2. It follows that

Q =
1

16Rrs2

(
4s2(s2 − r2)O − 2s2(a2, b2, c2)

)

=
1

4Rr

(
(s2 − r2)O − 1

2
(a2 + b2 + c2)K

)
. (1)

�

5. The Apollonius circle as a Tucker circle

It is well known that the centers of Tucker circles also lie on the Brocard axis.
According to [8], a Tucker hexagon/circle has three principal parameters:

• the chordal angleφ ∈ (−π
2 , π

2

]
,

• the radius of the Tucker circle

rφ =
∣∣∣∣ R

cos φ + cot ω sin φ

∣∣∣∣ ,

• the length of the equal antiparallels

dφ = 2rφ · sin φ.

This lengthdφ is negative forφ < 0. In this way, for a givendφ, there is one
and only one Tucker hexagon withdφ as the length of the antiparallel segments.
In other words, a Tucker circle can be uniquely identified bydφ. The center of
the Tucker circle is the isogonal conjugate of the Kiepert perspectorK

(
π
2 − φ

)
.

Explicitly, this is the point

4� cot φ · O + (a2 + b2 + c2)K
4� cot φ + (a2 + b2 + c2)

.

Comparison with (1) shows that4� cot φ = −2(s2 − r2). Equivalently,

tan φ = − 2rs
s2 − r2

.
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This means thatφ = −2 arctan r
s . Clearly, sinces > r,

cos φ =
s2 − r2

r2 + s2
, sin φ = − 2rs

r2 + s2
.

Now, the radius of the Tucker circle with chordal angleφ = −2 arctan r
s is

given by

rφ =
∣∣∣∣ R

cos φ + cot ω sin φ

∣∣∣∣ =
r2 + s2

4r
.

This is exactly the radius of the Apollonius circle. We therefore conclude that
the Apollonius circle is the Tucker circle with chordal angle−2 arctan r

s . The
common length of the antiparallels is

dφ = 2rφ · sin φ = 2 · r2 + s2

4r
· −2rs
r2 + s2

= −s.

This proves Theorem 1 and justifies the construction in Figure 3.

6. Concluding remarks

We record the coordinates of the vertices of the Tucker hexagon.4

Bc = (−as : 0 : as + bc), Cb = (−as : as + bc : 0),
Ab = (0 : cs + ab : −cs), Ba = (cs + ab : 0 : −cs),
Ca = (bs + ca : −bs : 0), Ac = (0 : −bs : bs + ca).

From these, the power ofA with respect to the Apollonian circle is

−cs

a

(
b +

as

c

)
=

−s(bc + as)
a

.

Similarly, by computing the powers ofB andC, we obtain the equation of the
Apollonius circle as

a2yz + b2zx + c2xy + s(x + y + z)
∑
cyclic

bc + as

a
x = 0.

Finally, with reference to Figure 1, Iwata and Fukagawa [5] have shown that
trianglesF ′

aF
′
bF

′
c andABC are perspective at a pointP on the lineIQ with IP :

PQ = −r : ρ. 5 They also remarked without proof that according to a Japanese
wooden tablet dating from 1797,

ρ =
1
4

(
s4

rarbrc
+

rarbrc

s2

)
,

which is equivalent toρ = r2+s2

4r established above.

4These coordinates are also given by Jean-Pierre Ehrmann [2].
5This perspector is the Apollonius pointX181 =

(
a2(b+c)2

s−a
: b2(c+a)2

s−b
: c2(a+b)2

s−c

)
in [7]. In

fact, the coordinates ofF ′
a are(−a2(a(b+c)+(b2+c2))2 : 4b2(c+a)2s(s−c) : 4c2(a+b)2s(s−b));

similarly for F ′
b andF ′

c.
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