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1 Introduction

The classical Riemann-Roch theorem is a fundamental result in complex analysis and algebraic geometry.
In its original form, developed by Bernhard Riemann and his student Gustav Roch in the mid-19th century,
the theorem provided a connection between the analytic and topological properties of compact Riemann
surfaces. This connection arises from relating data about the zeroes and poles of meromorphic functions on
a surface to the genus of a surface. In the 1930s, Friedrich Karl Schmidt realized that this result could be
proved in a purely algebraic context for smooth projective curves over arbitrary algebraically closed fields.

Theorem 1.1. (Riemann-Roch) Let C be a smooth projective curve over an algebraically closed field k.
Then for any divisor D on C, we have

`(D)− `(KC −D) = deg(D)− g(C) + 1, (1.1)

where KC is the canonical divisor of C and g(C) is the genus of C, and for any divisor D, we denote by
deg(D) the degree of D and let `(D) = dimkH

0(C,L (C)) be the dimension of the corresponding Riemann-
Roch space.

In the 1950s, Hirzebruch generalized this result to higher dimensional complex varieties and arbitrary
vector bundles. Let E be a vector bundle on a smooth projective complex algebraic variety X, and denote
by E the corresponding locally free sheaf. We define the Euler-Poincaré characteristic of E to be

χ(X,E) =
∑
i≥0

(−1)i dimCH
i(X,E ). (1.2)

Note that dimCH
i(X,E ) <∞ for all i, since dimCH

i(X,E ) = 0 for i > dimX.

Theorem 1.2. (Hirzebruch-Riemann-Roch) Let E be a vector bundle on a smooth projective complex alge-
braic variety X. Then

χ(X,E) =

∫
X

ch(E) · td(TX), (1.3)

where ch(·) is the Chern character, td(·) is the Todd class, and TX is the tangent bundle to X (see Section
3.3 for relevant definitions).

Essentially, Hirzebruch’s theorem expresses a cohomological invariant of E in terms of appropriate char-
acteristic classes of X.

Let A∗(X) be the Chow ring of a quasi-projective non-singular variety X and let K(X) be the ring
induced by K0(X) ∼= K0(X). See §§2-4 for an explanation of these objects. Our goal will be the following
theorem:

Theorem 1.3. (Grothendieck-Riemann-Roch) Let f : X → Y be a proper morphism and let X and Y be
quasi-projective non-singular varieties over an algebraically closed field k. Let x ∈ K(X). Then the following
diagram commutes:

K(X)
ch(·) td(TX) //

f∗

��

A∗(X)⊗Z Q

f∗

��
K(Y )

ch(·) td(TY )
// A∗(Y )⊗Z Q .

(1.4)

Equivalently,

f∗(ch(x) · td(TX)) = ch(f∗(x)) · td(TY )). (1.5)
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The discovery of the Hirzebruch-Riemann-Roch theorem was a crucial moment for future generalizations
of the classical theorem. Continuing in a purely algebraic setting, Grothendieck used this theorem to arrive
at Grothendieck-Riemann-Roch. According to his philosophy of turning absolute statements about varieties
into “relative” statements about morphisms, Grothendieck replaced the variety in Hirzebruch-Riemann-Roch
with a morphism of schemes and the vector bundle with a coherent sheaf.

We will consider the broad strokes of Grothendieck’s generalization. First, the base field C was replaced
by an arbitrary base field; in this setting the analytic approach of Hirzebruch is not applicable. Second, the
underlying cohomology ring was replaced with the Chow ring. Finally, all coherent sheaves were considered,
not only the locally free category. Moreover, Grothendieck developed many new concepts along the way,
e.g., a K-theory for schemes, and formulated new approaches to intersection theory and characteristic classes.

If we re-write Hirzebruch’s theorem for a morphism, we get the following setup: let X be a compact
complex variety and let f : X → {point}. Then∑

i≥0

(−1)i dimRif∗ E = f∗(ch(E ) · td(TX)), (1.6)

where the morphism on the left-hand side is the direct image functor (global sections) and the morphism
on the right-hand side is the integration map. Now take X to be a projective smooth variety over arbitrary
field k with f : X → Spec(k). We want our new Riemann-Roch type theorem to be analogous to the above
equation. Start by embedding X into Pnk via a closed immersion i : X ↪→ Pnk . Then, one must prove the
above equation by replacing f with i and using facts about projective spaces. Grothendieck considered
morphisms f : X → Y of smooth projective varieties. This can be reduced to the above case, since f can
be factored as f = p ◦ i where p : PnY → Y and i : X ↪→ PnY . We shall see that this factorization property is
crucial to the proof of the theorem and further generalizations.

In what follows, all schemes will be connected, Noetherian, and quasi-projective over an algebraically
closed field k, unless otherwise noted. In particular, all varieties will be quasi-projective over k. The purpose
for these hypotheses will be discussed in the course of the essay.

1.1 Outline

We wish to prove the Grothendieck-Riemann-Roch theorem for non-singular quasi-projective varieties. This
requires a great deal of preparatory theory: the construction of the Chow ring, a discussion of characteristic
classes, and developing a K-theory for schemes. After dispensing with these requisite components, we will
prove the theorem, and then briefly discuss some generalizations and applications.

Section 2: Let X be a smooth scheme. Here we will construct the Chow ring A∗(X) of algebraic cycles
on X modulo rational equivalence. This is the algebro-geometric analogue to singular cohomology in alge-
braic topology.

Section 3: Here we discuss characteristic classes, in particular Chern and Todd classes, with values
taken in the Chow ring. These are our basic algebraic invariants of vector bundles. At this point we could
state and prove the Hirzebruch-Riemann-Roch theorem.

Section 4: In this section, we introduce K0(X), the ring generated by equivalence classes of locally free
sheaves, and K0(X), the group generated by equivalence classes of coherent sheaves, and show that for X
a smooth algebraic variety, there exists a group isomorphism K0(X) ' K0(X). This allows us to endow
K0(X) = K(X) with the structure of a commutative ring. We then show that the Chern character, defined
in the preceding section, yields a ring homomorphism K(X)→ A∗(X).
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Section 5: Here we complete the proof of Theorem 1.3.

Section 6: In this section, we discuss a general algebraic framework that is useful in the consideration
of Riemann-Roch type theorems.

Section 7: In this section, we briefly discuss some consequences of the Grothendieck-Riemann-Roch
theorem involving the γ-filtration.

2 Algebraic Cycles and the Construction of the Chow Ring

For any scheme X, we construct the associated Chow groups A∗(X) and show that these have a commutative
ring structure under the intersection product. A variety we will be a reduced and irreducible scheme, and a
subvariety of a scheme will be a closed subscheme which is a variety. The classical reference for these results
is [2]; a more complete exposition can be found there.

2.1 Algebraic Cycles

Definition 2.1. Let X be a scheme.The group of k-cycles on X, denoted by ZkX, is the free abelian group
generated by the k-dimensional subvarieties of X. For each k-dimensional subvariety V ⊂ X, we denote by
[V ] the corresponding element of ZkX. A k-cycle α on X is an element of ZkX, i.e., a finite formal sum∑

ni[Vi] (2.1)

where ni ∈ Z, and an algebraic cycle α on X is an element of the abelian group
⊕

k ZkX.

The group of k-cycles ZkX is rather large and cumbersome to work with. To remedy this, we define
the notion of rational equivalence, which gives rise to a subgroup RatkX ⊂ ZkX, which is the subgroup of
k-cycles that are rationally equivalent to zero. We recall that, for any (k + 1)-dimensional subvariety W of
X, and any f ∈ R(W )∗, the divisor of the function is

(f) =
∑

ordV (f)[V ], (2.2)

where we sum over all codimension one subvarieties V of W . Here ordV is the order of the function on
R(W )∗, the non-zero elements of the field of rational functions on W , defined by the local ring OV,W .

Definition 2.2. An algebraic cycle α on X is rationally equivalent to zero, written as α ∼ 0, if there are
subvarieties V1, . . . , Vk of X and a rational function fi for each Vi such that

α =

k∑
i=1

(fi) (2.3)

in ZkX. Furthermore, we say that two algebraic cycles α1, α2 are rationally equivalent if α1−α2 is rationally
equivalent to zero.

From this, we can give the definition of the Chow group.

Definition 2.3. The Chow group of k-cycles on X, denoted by Ak(X), is the quotient of ZkX b the subgroup
Ratk(X) of k-cycles rationally equivalent to 0. The direct sum

A∗(X) =
⊕
k

Ak(X) (2.4)
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is called the Chow group of X. Furthermore, if n = dim(X), we let

Ai(X) = An−i(X) (2.5)

for the classes of algebraic cycles of codimension i.

We have an alternate definition of rational equivalence to zero:

Definition 2.4. A cycle α in Zk(X) is rationally equivalent to zero iff there exist subvarieties V1, . . . , Vk of
X × P1 such that the projection maps πi : Vi → P1 are dominant and

α =

k∑
i=1

([Vi(0)]− [Vi(∞)]) (2.6)

in ZkX, where [Vi(0)] and [Vi(∞)] are the scheme-theoretic fibers above 0 and ∞.

We can also give a definition of A∗(X) that is of a more classical flavor: let X be a scheme and let
X1, . . . , Xk be irreducible components of X. Then each local ring OXi,X is zero-dimensional, i.e., Artinian,
and the length mi = `OXi,X

(OXi,X) as a module over itself is finite. We then define the fundamental cycle
of X as

[X] =

k∑
i=1

mi[Xi], (2.7)

which is an element of Z∗(X). However, by abuse of notation, we also write [X] for its image in the Chow
group. If dimXi = k for all i, then [X] ∈ ZkX. In this case AkX = ZkX is the free abelian group on
[X1], . . . , [Xk].

Let’s consider two simple examples:

Example 2.5. Since a scheme and its reduced scheme have the same subvarieties, the groups of cycles and
rational equivalence classes are isomorphic:

Ak(X) ∼= Ak(Xred). (2.8)

Example 2.6. If n = dim(X), then An(X) is the free abelian group on the set of n-dimensional irreducible
components of X. Furthermore, if X is a variety, then An−1(X) ∼= Cl(X), the divisor class group of X.

2.2 Proper Pushforward of Cycles

Let f : X → Y be a proper morphism of schemes. For any subvariety V in X, the image f(V ) is a subvariety
of Y with dim f(V ) ≤ dimY . Thus, we can define

f∗[V ] =

{
deg(V/f(V )) · [f(V )] dim(f(V )) = dim(V )

0 dim(f(V )) < dim(Z),
(2.9)

where deg(V/f(V )) = [k(V ) : k(f(V ))] is the degree of the corresponding extension of fields of rational
functions. Then we can linearly extend f∗ to a functorial homomorphism of abelian groups: f∗ : ZkX → ZkY .

Theorem 2.7. Let f : X → Y be a proper morphism of schemes. Suppose that α ∈ ZkX is rationally
equivalent to zero. Then f∗(α) is rationally equivalent to zero on Y .

Proof. Let us assume that α = (r), where r is a rational function on a (k+1)-dimensional subvariety V ⊂ X.
We replace X by V and Y by f(V ), so we can take Y to be a variety and f surjective. Then we get our
desired result from the following lemma:
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Lemma 2.8. Let f : X → Y be a proper, surjective morphism of varieties. Then

f∗((r)) =

{
(N(r)) dim(Y ) = dim(X)

0 dim(Y ) < dim(X),
(2.10)

where N(r) is the norm of r. That is, for any field extension K ↪→ L, every element r ∈ L determines a
K-linear endomorphism mr : L→ L via multiplication by r. Recall that the norm N(r) = det(mr).

For a proof of this lemma, refer to [2], Proposition 1.4.

From this theorem we can conclude that there is an induced homomorphism

f∗ : Ak(X) −→ Ak(Y ), (2.11)

and that A∗ is a covariant functor for proper morphisms.

We will need the following notion for the Hirzebruch-Riemann-Roch theorem:

Definition 2.9. Let S = Spec(k) and let f : X → S be the structure map. By Theorem 2.7, we get a map

f∗ : A0(X) −→ A0(S) ' Z, (2.12)

i.e., the degree of an algebraic 0-cycle, which we extend to A∗(X) by setting f∗(Ak(X)) = 0 for k > 0.Then
we have the integration map ∫

X

: A∗(X) −→ Z. (2.13)

Here the properness of f is crucial. Indeed, consider f : A1 → Spec(k). Clearly, any element of the affine
line is rationally equivalent to zero, but its pushforward is non-zero in

A∗(Spec(k)) = A0(Spec(k)) ' Z. (2.14)

2.3 Pullback of Algebraic Cycles

Now that we have the pushforward map, we want to define the pullback on algebraic cycles, which will
induce a map on the Chow groups. Consider a morphism of schemes f : X → Y . In order to define the
pullback map f∗ : A∗(Y )→ A∗(X), we require that f be a flat morphism of relative dimension n. Note that
we switch from A∗ to A∗ because the pushforward preserves the dimension of an algebraic cycle, whereas
the pullback preserves the codimension. We shall construct a few special cases of the pullback morphism in
increasing generality.

For a flat morphism f : X → Y and a subvariety V ⊂ Y , we set

f∗[V ] = [f−1(V )], (2.15)

where f−1(V ) is the inverse image scheme, i.e., a subscheme of X with pure dimension dim(V ) + n, and
[f−1(V )] is its associated algebraic cycle. This linearly extends to pullback homomorphisms

f∗ : Zk(Y ) −→ Zk+n(X). (2.16)

We want a result analogous to Theorem 2.7 for the pullback operation in order to induce a map on the
Chow groups.

Theorem 2.10. Let f : X → Y be a flat morphism of relative dimension n, and α a cycle on Y that is
rationally equivalent to zero. Then f∗(α) is rationally equivalent to zero as an algebraic (i+ n)-cycle on X.
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Proof. (Sketch) Here we use the second definition of rational equivalence and reduce to the case where
α = [V (0)] − [V (∞)] with V a closed variety of Y × P1. This amounts to proving a lemma that considers
the restriction of a divisor to the irreducible components of X, but doing so on the level of algebraic cycles.
See Theorem 1.7 of [2].

Thus, the pullback on the level of algebraic cycles induces a map on Chow groups:

f∗ : Ak(Y )→ Ak+n(X). (2.17)

Then A∗ is a contravariant functor for flat morphisms.

It is useful to consider the commutativity of the proper pushforward and flat pullback on the level of
algebraic cycles.

Theorem 2.11. Let g be flat and f proper. If the Cartesian diagram

X ′

f ′

��

g′ // X

f

��
Y ′

g // Y

(2.18)

commutes, then f ′ is proper and g′ is flat. Furthermore, f ′∗g
′∗(α) = g∗f∗(α) for all algebraic cycles α ∈ Z∗Y ′.

Proof. We may assume that X,Y are varieties, f is surjective, and α = [X]. Let f∗[X] = deg(X/Y )[Y ].
We must show that f ′∗[X

′] = deg(X ′/Y ′)[Y ′]. We can do this locally: for fields L,K, let Spec(L) = X
and Spec(K) = Y , and for local rings A,B, let Spec(A) = Y ′ and Spec(B) = X ′ with A Artinian and
B = A⊗K L. Then we simply apply the following lemma:

Lemma 2.12. Let A → B be a local homomorphism of local rings. Let d be the degree of the residue field
extension. A non-zero B-module M has finite length over A iff d < ∞ and M has finite length over B, in
which case `A(M) = d · `B(M).

Proof. We can reduce to the case where M = B/m and m is the maximal ideal of B. If p is the maximal
ideal of A, then

`A(M) = `A/p(B/m) = d, (2.19)

since length and vector space dimension coincide on a field.

We now have our desired result.

Example 2.13. Let f ′ : X ′ → X be a finite, flat morphism. We know that each point x ∈ X has an
affine neighborhood Ux such that the coordinate ring of f−1(Ux) is a finitely generated free-module over the
coordinate ring of U . If the rank of this module is d for all neighborhoods Ux, then f is of degree d. Then,
for all subvarieties, V ⊂ X, f∗f

∗[X] = d[V ] in Z∗(X). That is, the composition of maps

A∗(X)
f∗ // A∗(X ′)

f∗ // A∗(X) (2.20)

is simply multiplication by the degree d.

Finally, we close this subsection with a computationally useful proposition:
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Proposition 2.14. (Localization Sequence) Let Y be a closed subscheme of a scheme X. Set U = X − Y
with inclusion map j : U ↪→ X. Then

A∗(Y )
i∗ // A∗(X)

j∗ // A∗(U) // 0 (2.21)

is an exact sequence.

Proof. Any subvariety Z ⊂ U can be extended to a subvariety Z ′ ⊂ X, so we have an exact sequence

Zk(Y )
i∗ // Zk(X)

j∗ // Zk(U) // 0 . (2.22)

Now suppose that, for any algebraic cycle α ∈ Zk(X), j∗α is rationally equivalent to zero. Then

α =
∑
i=1

(ri), (2.23)

for a rational function ri on subvarieties Wi of U . The function ri corresponds to a rational function r′i on
W ′i and

j∗

(
α−

∑
i

(r′i)

)
= 0 (2.24)

in Zk(U). Thus,

α−
∑
i

(r′i) = i∗β (2.25)

for some cycle β ∈ Zk(Y ), so we are done.

2.4 Affine Bundles and Chow Groups

We now prove a proposition that allows us to compute the Chow groups over affine space. It will also be
essential to our development of characteristic classes. We consider affine bundles, a generalization of the
notion of vector bundles, in that there is no selection of linear structure on the fibers.

Definition 2.15. A scheme E with a morphism π : E → X is an affine bundle of rank n over X, if we can
cover X by opens Ui and there are isomorphisms

π−1(Ui) ∼= Ui × An, (2.26)

such that π |π−1(Ui) is the projection from Ui × An → Ui.

Proposition 2.16. Let π : E → X be an affine bundle of rank n. Then the flat pullback

π∗ : Ak(X) −→ Ak+n(E) (2.27)

is surjective for all k.

Proof. Take a closed subscheme Y ⊂ X such that U = X − Y is an affine open set over which E is trivial.
Then we have a commutative diagram

A∗(Y )

��

// A∗(X)

��

// A∗(U)

��

// 0

A∗(π
−1(Y )) // A∗(E) // A∗(π−1(U)) // 0

(2.28)
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where the vertical arrows are flat pullbacks and the rows are exact by the preceding localization sequence. It
suffices to prove the theorem for E |X and E |Y . By Noetherian induction, we may take X = U and assume
that E = X × An. We consider n = 1 since X × An+1 is a trivial A1-bundle over X × An.

We must prove that, for any (k + 1)-dimensional subvariety V ⊂ E, we can write

[V ] =
∑
j

nj [Zj × A1] (2.29)

as an element of A∗(E), where the Zj are k-dimensional subvarieties of X. We replace X by the closure of
π(V ), so we may assume that X is a variety and π maps V dominantly to X so that V = X ×A1 or V is a
divisor.

Assume that V is a divisor in E. Let A be the coordinate ring of X and K = k(X) is the field of rational
functions of X. Let p be the prime ideal of A corresponding to V , so the dominance of π gives that pK[t]
is non-zero, where K[t] is the coordinate ring of the generic fiber. Suppose that r ∈ K[t] generates pK[t] so

[V ]− [(r)] =
∑
i

ni[Vi] (2.30)

as an element of A∗(E), where the Vi are (k + 1)-dimensional subvarieties whose projections to X are not
dominant. Thus, Vi = π−1(Zi) for Zi = π(Vi) ⊂ X. Therefore,

[V ] = [(r)] +
∑
i

π∗[Zi], (2.31)

and we have the surjectivity of π∗.

Under suitable conditions, the flat pullback π∗ is an isomorphism (see §3.2 for the definition of c1, the
first Chern class, and P(E)):

Proposition 2.17. Let E be an affine bundle of rank r = e+ 1 on a scheme X with projection π : E → X.
Let p : P(E)→ X be the projectivization of E and O(1) the canonical line bundle on P(E). Then

1. The flat pullback is an isomorphism:

π∗ : Ak−r(X)
∼−→ Ak(E) (2.32)

for all k.

2. Each element β ∈ Ak(P(E)) is uniquely expressed as

β =

e∑
i=0

c1(O(1))i ∩ p∗(αi) (2.33)

for all αi ∈ Ak−e+i(X). Thus, the map

θE :

e⊕
i=0

Ak−e+i(X) −→ Ak(P(E)) (2.34)

is an isomorphism.

Proof. To prove that θE is surjective, we use the same inductive argument as above, in order to reduce E
to the trivial case. By induction on e, it suffices to prove that θF is surjective when θE is surjective and
F = E ⊕ 1, where 1 is the trivial line bundle X × A1 → X.

We note that P(E⊕1) = P(E)tE where i : P(E)→ P(E⊕1) is a closed embedding and j : E → P(E⊕1)
is an open embedding. Let q : P(E ⊕ 1)→ X be the projection. We modify our localization sequence:
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Ak(P(E))
i∗ // Ak(P(E ⊕ 1))

j∗ // Ak(E) // 0

Ak−r(X)

q∗

OO

π∗

88
(2.35)

We know that the top row is exact and that π∗ is surjective. Thus, given any β ∈ Ak(P(E ⊕ 1)) there is an
α ∈ Ak−r(X) such that j∗β = π∗α. Hence, β − q∗α ∈ ker j∗. By the exactness of the top row, and since we
inductively assume that θE is surjective, we have that

β − q∗α = i∗

(
e∑
i=0

c1(OE(1))i ∩ p∗(αi)

)
. (2.36)

We note that i∗(OF (1)) = OE(1). Then by the projection formula (see below):

e∑
i=0

c1(OF (1))i ∩ i∗p∗(αi) =

e∑
i=0

c1(OF (1))i · c1(OF (1)) · q∗(α). (2.37)

This last step, namely that i∗p
∗(α) = c1(OF (1)) ·q∗(α) holds because both sides are the effect of the pullback

of α to P(E ⊕ 1) and then intersecting with the divisor P(E ⊕ 1). That is, we have the following:

Lemma 2.18. For all α ∈ A∗(X)

c1(OF (1)) ∩ q∗α = i∗p
∗(α). (2.38)

Proof. It suffices to prove this for α = [V ] where V is a subvariety of X. We know that OF (1) has a section
vanishing on P(E), so the equality

c1(OF (1)) ∩ [q−1V ] = [p−1V ] (2.39)

follows from the definition of the Chern class.

Hence, β lies in the image of θ, proving surjectivity. To prove the uniqueness of (2), suppose there is a
non-trivial relation

β =

e∑
i=0

c1(O(1))i ∩ p∗(αi) = 0. (2.40)

Let ` be the largest integer such that α` 6= 0. Then

p∗(c1(O(1))e−` ∩ β) = α`, (2.41)

which is a contradiction. Hence, θ is an isomorphism.

Finally, to prove the injectivity of π∗ we again let F = E ⊕ 1. If π∗α = 0 with α 6= 0, then j∗q∗α = 0, so

q∗α = i∗

(
e∑
i=0

c1(OE(1))i ∩ p∗αi

)
=

e∑
i=0

c1(OF (1))i+1 ∩ q∗αi (2.42)

by the previous lemma. However, this is a contradiction as we proved the uniqueness of (2) for E ⊕ 1.

Corollary 2.19. The Chow groups of any open subset U ⊂ An are

Ai(U) =

{
Z i = 0

0 otherwise.
(2.43)

Proof. Apply the above proposition to An → {point} to deduce the result for U = An. Then, using the
localization sequence, A∗(An) surjects onto A∗(U).

11



2.5 The Chow Ring

From Proposition 2.17, we can define an important intersection operation: the Gysin homomorphisms. Using
these, we will construct the Chow ring. Refer to [2] for full details.

Definition 2.20. Let s be the zero section of a vector bundle E. Then s : X → E with π ◦ s = idX . The
Gysin homomorphisms

s∗ : AkE −→ Ak−rX (2.44)

are defined by

s∗(β) = (π∗)−1(β), (2.45)

where β is defined in Proposition 2.17 and r = rank(E).

Note that, for any subvariety V ⊂ E, or k-cycle β on E, regardless of how it intersects the zero section,
there is always a well-defined class s∗(β) in Ak−r(X). By the surjectivity of π∗, the homomorphism s∗ is
determined by s∗[π−1(V )] = [V ] for all V ⊂ X, and the fact that s∗ preserves rational equivalence. Using
this, we will define a more general Gysin homomorphism.

Let i : X → Y be a regular embedding of codimension d, and let f : Y ′ → Y be a morphism. Consider
the fiber square

X ′

g

��

j // Y ′

f

��
X

i
// Y

(2.46)

and define homomorphisms

i! : ZkY
′ → Ak−dX

′ (2.47)

explicitly by

i!
(∑

ni[Vi]
)

=
∑

niX · Vi, (2.48)

where X · Vi is the intersection product (see [2] 6.1). Now, we want i! to pass to rational equivalence, so we
give a slightly modified definition:

Definition 2.21. (Refined Gysin Homomorphism) We define i! as the composition

ZkY
′ σ // ZkC ′ // AkN

s∗ // Ak−dX ′ (2.49)

where C ′ = CX′Y
′ is a closed subcone of N = g∗NXY , σ : ZkY → ZkC is the specialization homomorphism

defined by σ[V ] = [CV ∩XV ] for any k-dimensional subvariety V of Y , and s∗ is the Gysin homomorphism
for zero-sections defined above. The specialization homomorphism σ passes to rational equivalence ([2] 5.2),
so i! does as well.

The induced homomorphisms

i! : AkY
′ → Ak−dX

′ (2.50)

are called refined Gysin homomorphisms. When Y ′ = Y and f = idY these are called simply Gysin homomorphisms
and are denoted i∗ : AkY → Ak−dX.
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Let X be a smooth scheme of dimension n. Then the diagonal embedding ∆ : X → X ×X is a regular
embedding of codimension n. This gives a product operation:

ApX ⊗AqX // Ap+q(X ×X)
∆∗ // Ap+q−nX , (2.51)

where ∆∗ is the Gysin homomorphism defined above. Taking the upper index, we get a global intersection
product:

Ap(X)⊗Aq(X) −→ Ap+q(X). (2.52)

Then A∗(X) is a commutative graded ring, called the Chow Ring.
Now consider f : X → Y a morphism of smooth schemes. Let

Γf := {(x, f(x)) : x ∈ X} ⊂ X × Y, (2.53)

be the graph morphism of f , which is a regular embedding. For x ∈ A∗X, y ∈ A∗Y , we define

x · y = Γ∗f (x× y) ∈ A∗X. (2.54)

Then A∗X is a graded module over A∗Y . Finally, since both X and Y are smooth, we can define a general
pullback

f∗ : A∗Y −→ A∗X (2.55)

by f∗(y) = [X] · y.
We should now make note of the projection formula mentioned in the previous section. For a morphism

f : X → Y , we can take both A∗(X) and A∗(Y ) to be A∗(Y )-modules. Then the proper pushforward
f∗ : A∗(X) → A∗(Y ) is a homomorphism of A∗(Y )-modules. Namely, we have a projection formula for
Chow groups:

f∗(f
∗(y) · x) = y · f∗(x) (2.56)

for all x ∈ A∗(X) and y ∈ A∗(Y ).
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3 Characteristic Classes on the Chow Ring

Here we discuss the basic theory of characteristic classes taking values in the Chow ring. This is typi-
cally done over the category of smooth manifolds; however, we would like a more functorial description, and
follow [3] in our development. In our construction of characteristic classes we assume all schemes are smooth.

A characteristic class is an element a(E) ∈ A∗(X) associated to a given vector bundle E on a scheme
X. This association is compatible with the pullback operation, but not with the pushforward. Indeed, the
Grothendieck-Riemann-Roch theorem studies the failure of commutativity of a particular characteristic class
and the (proper) pushforward on the Chow ring.

3.1 Invertible Sheaves

Characteristic classes may be formulated in sheaf-theoretic terms, as we have a functorial correspondence
between vector bundles and locally free sheaves. We recall some useful definitions and demonstrate this
correspondence.

Definition 3.1. An OX -module F is free if it is isomorphic to a direct sum of copies of OX . Also, F is
locally free if X can be covered by open sets U for which F |U is a free OX |U -module. Then we define
the rank of F on such an open set U to be the number of necessary copies of the structure sheaf. If X is
connected, then the rank of a locally free sheaf is constant. A locally free sheaf of rank 1 is said to be an
invertible sheaf.

We now define a vector bundle and show that this is equivalent to the notion of a locally free sheaf of
finite rank.

Definition 3.2. Let Y be a scheme. Then a (geometric) vector bundle of rank n over Y is a scheme X and
a morphism f : X → Y , along with the data:

1. An open covering {Ui}i∈I of Y .

2. Isomorphisms ϕi : f−1(Ui) → AnUi
such that for all i, j and any open subset Spec(A) ⊆ Ui ∩ Uj , the

automorphisms ϕ = ϕj ◦ ϕ−1
i of SpecA[x1, . . . , xn] is A-linear.

Proposition 3.3. There is a one-to-one correspondence between isomorphism classes of locally free sheaves
on Y of rank n and isomorphism classes of vector bundles of rank n over Y .

Proof. See exercise II.5.17 of [6]. Roughly speaking, if F is a locally free sheaf of rank n, we can select a
set of n generators x1, . . . , xn for the OX(U)-modules of F (U). They span an n-dimensional affine space
A[x1, . . . , xn] over U , where A is the coordinate ring over U . We change to another set of generators over
another open subset and write down the transition functions. Thus, we associate to F a vector bundle
structure. Conversely, if E is a vector bundle on X, locally we have F |U∼= U ×An with a basis x1, . . . , xn of
An over U . Then we can associate to F |U an OX(U)-module of rank n using x1, . . . , xn as generators.

Now we may use vector bundles and locally free sheaves interchangeably. Furthermore, we consider only
locally free sheaves of finite rank. Finally, the notions of tensor product, direct sum, exterior product, and
Hom agree with one another on vector bundles and locally free sheaves.

3.2 Chern Classes

Let X be a smooth scheme. Let Pic(X) be the group of invertible sheaves on X and let Cl(X) = A1(X) be
the divisor class group. Every divisor D on X determines (up to isomorphism) an invertible sheaf OX(D)
and every invertible sheaf is of this type. This induces an isomorphism Cl(X)

∼−→ Pic(X).
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Definition 3.4. For every L ∈ Pic(X), we define the first Chern class of L to be c1(L ) = [D], where
[D] ∈ Cl(X) is such that OX(D) = L in Pic(X). Clearly, the homomorphism c1 : Pic(X) → Cl(X) is the
inverse of Cl(X)

∼−→ Pic(X). Recall that this isomorphism Cl(X) ' Pic(X) holds only when X is factorial,
e.g., if X is smooth.

Definition 3.5. Let E be a vector bundle with a corresponding locally free sheaf E . The associated
projective bundle (the projectivization of E) is defined as

P(E) = Proj(S(E ))→ X, (3.1)

where the symmetric algebra is degree-graded. There is a canonical line bundle O(1) = OP(E)(1) on P(E),
whose fiber over (x, p) is the line in Ex corresponding to the point p.

Let p : E → X be a vector bundle of rank n and let π : P(E)→ X be the associated projective bundle.
Note that the pullback π∗ : A(X)→ A(P(E)) makes A(P(E)) into an A(X)-module.

Definition 3.6. Let u = c1(OP(E)(1)). There are unique elements ci ∈ Ai(X) with 1 ≤ i ≤ n such that

un − c1(E) · un−1 + c2(E) · un−2 − · · ·+ (−1)ncn(E) = 0. (3.2)

We call the ci(E) ∈ Ai(X) the Chern classes of E. Furthermore, we define the total Chern class of E to be

c(E) = 1 + c1(E) + · · ·+ cn(E) ∈ A∗(X). (3.3)

Definition 3.7. We define the Chern polynomial ct(E) ∈ A(X)[t] to be

ct(E) = 1 + c1(E)t+ · · ·+ cn(E)tn. (3.4)

In [5], Grothendieck developed a theory of Chern classes that assigns to a vector bundle E on a smooth
scheme X, a Chern class ci(E) ∈ Ai(X) for all i ≥ 0. The ci(E) have the following properties:

Theorem 3.8. Let E be a vector bundle. Then the Chern classes satisfy:

1. c0(E) = 1.

2. For an invertible sheaf OX(D), which is the line bundle corresponding to a divisor D, we have that
c1(OX(D)) = [D].

3. (Pullback) For a morphism f : X → Y of smooth quasi-projective varieties f∗(ci(E)) = ci(f
∗(E)) for

all i.

4. (Whitney Sum) If we have an exact sequence of vector bundles

0 // E′ // E // E′′ // 0 , (3.5)

ct(E) = ct(E
′)ct(E

′′) in A(X)[t].

5. ci(E) = 0 for all i > n where n = rank(E).

A key ingredient in the proof of this theorem is the Splitting Principle, which will be of great utility later
on:

Theorem 3.9. (Splitting Principle) Let E be a vector bundle of rank n over a smooth scheme X. Then
there is a smooth scheme Y and a flat morphism f : Y → X such that

f∗ : A∗(X) −→ A∗(Y ) (3.6)

is a split monomorphism of abelian groups and there is a filtration

0 ⊂ E1 ⊂ · · · ⊂ En−1 ⊂ En = f∗E, (3.7)

where each Ei/Ei−1 is a line bundle.
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Before proving this theorem, we require a lemma:

Lemma 3.10. Let E be a vector bundle of rank n on a smooth scheme X. Let p : P(E) → X be the
corresponding projective bundle. Then for any α ∈ Ak(X),

p∗(c1(O(1))n−1 · p∗α) = α. (3.8)

Proof. We first check compatibility with proper morphisms. Let f : Y → X be a proper morphism and let
π be the projection of f∗(P(E)), then

f∗(π∗(c1(Of∗ P(E)(1))n−1 · π∗α) = p∗(c1(OP(E)(1))n−1 · p∗f∗(α)). (3.9)

Thus, we may consider α = [X] and p∗(α) = [P(E)]. Then we get

p∗(c1(O(1))n−1 · [P(E)]) = q[X], (3.10)

for some integer q. Now we prove a similar equality for flat morphisms. Let f : Y → X be flat. Then by
naturality:

π∗(c1(Of∗ P(E)(1))n−1 · π∗f∗(α)) = f∗p∗(c1(OP(E)(1))n−1 · π∗(α)). (3.11)

We can show this locally since any local inclusion is flat. Take E to be the trivial bundle, i.e., P(E) =
X × Pn−1. Then there is a section of O(1) with zero section X × Pn−2, so

c1(O(1)) · [X × Pn−1] = [X × Pn−2]. (3.12)

Iterate n− 1 times to get that q = 1 and we are done.

We now prove the Splitting Principle:

Proof. Induct on the rank n of E. The base case is immediate. As before, take P(E) to be the projective
bundle associated to E. By the above lemma, π∗ is injective on the Chow ring. We have an exact sequence

0 // O(−1) // π∗E // L // 0 , (3.13)

since the pullback bundle π∗E contains O(−1) as a rank 1 sub-bundle. Now consider L′ = π′∗L where
π′ : P(L) → P(E) is the projection. Then the pullback of π ◦ π′ is injective and there is a filtration
L′n−1 ⊂ L′n = L′ with line bundle quotients.

The main application of the Splitting Principle is in the following factorization of the total Chern class:

c(E) =

n∏
i=1

(1 + c1(Li)), (3.14)

where the Li are the quotient line bundles from the proof of the theorem. This is merely a “formal”
factorization in that we really factor the pullback of E by f . From this factorization, we may write

c(E) =

n∏
i=1

(1 + αi), (3.15)

where αi = c1(Li) are called the Chern roots of the splitting. Furthermore, note that ci(E) is the i-th
elementary symmetric polynomial in the Chern roots α1, . . . , αn. In particular, c1(E) = α1 + · · · + αn and
cn(E) = α1 · · ·αn. Thus, any symmetric polynomial in the Chern roots can be expressed in terms of Chern
classes and gives a well-defined invariant of E.
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Example 3.11. If the vector bundle E has a filtration with quotients Li, then its dual E∗ has a filtration
with quotients L∗n−i. Then, if we have Chern roots α1, . . . , αn for E, we will have Chern roots −α1, . . . , αn
for E∗. Thus,

ci(E
∗) = (−1)ici(E). (3.16)

Example 3.12. Again taking α1, . . . , αn to be the Chern roots of E, then

ct(∧pE) =
∏

i1<...<ip

(1 + (αi1 + · · ·+ αin)t). (3.17)

For the first Chern class:

c1(∧nE) = c1(E). (3.18)

Note that any exact sequence of vector bundles

0 // L // E // E′ // 0 (3.19)

where L is a line bundle induces a short exact sequence

0 // ∧p−1
E′ ⊗ L // ∧pE // ∧pE′ // 0 . (3.20)

3.3 The Chern and Todd Characters

Definition 3.13. The Chern character ch(E) of a vector bundle E is an element of A∗(X)⊗Z Q defined as

ch(E) =

n∑
i=1

exp(αi) (3.21)

with exp(x) =
∑∞
n=0 x

n/n! and the αi are Chern roots of E.

Here we have used A∗(X)Q in order to make sense of the 1/n! factors in the exponential series. Note that

ch(E ⊗ E′) = ch(E) · ch(E′), (3.22)

since the Chern roots of a tensor product add. Now consider a short exact sequence

0 // E′ // E // E′′ // 0 . (3.23)

Theorem 3.8(4) tells us that if the Chern roots of E′ are α1, . . . , αn and the Chern roots of E′′ are β1, . . . , βk,
then the Chern roots of E are α1, . . . , αn, β1, . . . , βk. Thus, we get

ch(E) =

n∑
i=1

exp(αi) +

k∑
j=1

exp(βj) = ch(E′) + ch(E′′). (3.24)

Since ch(E) is symmetric in the Chern roots, we can express it in terms of Chern classes:

ch(E) = r + c1 +
1

2
(c21 − 2c2) +

1

6
(c31 − 3c1c2 + c3) +

1

24
(c41 − 4c21c2 + 4c1c3 + 2c22 − 4c4) + · · · , (3.25)

where ci = ci(E) and r = rank(E). Here we have grouped the terms by equal degree in A∗(X)Q.

Now we define the Todd class of E:
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Definition 3.14. The Todd class td(E) of a vector bundle E is given by

td(E) =

r∏
i=1

Q(αi) (3.26)

where Q(x) is the power series

Q(x) =
x

1− e−x
= 1 +

1

2
x+

∞∑
k=1

(−1)k−1 Bk
(2k)!

x2k. (3.27)

The Bk are the k-th Bernoulli numbers and α1, . . . , αr are the Chern roots of E.
As with the Chern characters, we can express the Todd class in terms of Chern classes:

td(E) = 1 +
1

2
c1 +

1

12
(c21 + c2) +

1

24
c1c2 +

1

720
(−c41 + 4c21c2 + 3c22 + c1c3 − c4) + · · · . (3.28)

The relation,

td(E) =

n∏
i=1

Q(αi) ·
k∏
j=1

Q(βj) = td(E′) · td(E′′), (3.29)

holds using the same short exact sequence of vector bundles.
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4 K-theory of Schemes

In this section we introduce the K-groups K0(X) and K0(X) of a scheme X. These are abelian groups
constructed from the categories of locally free and coherent sheaves, respectively. Let Loc(X) be the category
of locally free sheaves, let Coh(X) be the category of coherent sheaves, and finally let Mod(X) be the category
of OX -modules. The primary goal of this section will be the proof of the fact that K0(X) and K0(X) are
equivalent on a non-singular quasi-projective variety.

Definition 4.1. Let A be a ring and M an A-module. We define the sheaf associated to M on Spec(A),

denoted by M̃ in the following way: for each prime ideal p ⊆ A, let Mp be the localization of M at p. Then,
for any open set U ⊆ Spec(A), we define

M̃(U) :=

s : U −→
⋃
p∈U

Mp : s(p) ∈Mp, locally s is a fraction m/f with m ∈M and f ∈ A

 . (4.1)

Proposition 4.2. Let A be a ring and let M be an A-module. Let M̃ be the sheaf associated to M on
X = Spec(A) and let OX be the structure sheaf of X. Then

1. M̃ is an OX-module;

2. For each p ∈ X, the stalks are localizations (M̃)p ∼= Mp.

Next, we recall the definition of a quasi-coherent sheaf:

Definition 4.3. Let X be a scheme. Then a sheaf of OX -modules F is quasi-coherent if X can be covered
by opens Ui = Spec(Ai), such that for all i there is an Ai-module Mi with F |Ui

∼= M̃i. We write Qcoh for
the category of quasi-coherent sheaves. Furthermore, F is called coherent if each Mi is a finitely generated
Ai-module.

Since we will construct K0(X) from the category Coh(X), we take all of our schemes to be Noetherian,
as coherent sheaves are well-behaved on Noetherian schemes only. We collect some useful properties of
quasi-coherent and coherent sheaves. See [6] II.5 for proofs.

Proposition 4.4. Let X = Spec(A) be an affine scheme, f ∈ A and let D(f) be the distinguished open
determined by f . For a quasi-coherent sheaf F on X:

1. If s ∈ Γ(X,F ) is a global section of F whose restriction to D(f) is zero, then there is some n > 0,
such that fns = 0.

2. Given a section t ∈ F (D(f)) of F over the open set D(f), then for some n > 0, fnt extends to a
global section of F over X.

Proposition 4.5. Let X be an affine scheme and let 0 → F ′ → F → F ′′ → 0 be an exact sequence of
OX-modules with F ′ quasi-coherent. Then

0 // Γ(X,F ′) // Γ(X,F ) // Γ(X,F ′′) // 0 (4.2)

is exact.

Proposition 4.6. Let X and Y be schemes and f : X → Y a morphism of scheme. Then the following
hold:

1. The kernel, cokernel, and image of any morphism of quasi-coherent sheaves are quasi-coherent. As-
suming X is Noetherian, the result holds for coherent sheaves.

19



2. If F is quasi-coherent sheaf of OY -modules, then f∗F is a quasi-coherent sheaf of OX-modules.

3. If X,Y are Noetherian, and if F is coherent, then f∗F is coherent.

4. Assume either X Noetherian or f quasi-compact and separated. Then if F is a quasi-coherent sheaf
of OX-modules, f∗F is a quasi-coherent sheaf of OY -modules.

Proposition 4.7. Let X be Noetherian and let U be an open subset of X. Let F be a coherent sheaf on U .
Then there is a coherent sheaf G such that G �U∼= F . Moreover, if there is a coherent sheaf G on X with
F ⊂ G �U , then there is a coherent sheaf F ′ on X which extends F such that F ′ ⊂ G .

We now recall the following result of Serre, which guarantees the existence of locally free resolutions for
coherent sheaves on quasi-projective schemes.

Theorem 4.8. (Serre) Let X ⊂ Pn be a quasi-projective scheme over a Noetherian ring A. Then any
coherent sheaf F on X can be written as a quotient of a sheaf E , where E is a finite direct sum of twisted
structure sheaves O(ni) with ni ∈ Z. In particular, we have an exact sequence E → F → 0 with E locally
free.

Proof. Consider X = Pn with F a coherent sheaf on X. We have an embedding i : X ↪→ Pn. Then there
is an extension F ′ of F to X, the closure of X in Pn. Then F ′ is the quotient of a direct sum of twisted
Serre sheaves, which is locally free on X by the Pn case. Hence, the restriction of F ′ to X is as well.

Now suppose that X = Pn and write OX = OPn . If we can generate F (n) = F ⊗OX
O(n), for some

n ∈ Z, by a finite number of global sections, then we are done. This would give⊕N
i=1 OX

// F (n) // 0 . (4.3)

Tensoring with O(−n) gives the result. Now we need to show the existence of these global sections. Cover
X with the usual affines Ui which have coordinate rings

Ai =

[
x0

xi
, . . . ,

xn
xi

]
. (4.4)

We have assumed that F is coherent, so FUi
= M̃i where the Mi are Ai-modules. For each i we have a finite

number of elements sij ∈Mi that generate the module. Then for some n, there is an xni sij that extends to a

global section tij of F (n) by the above proposition. On each open affine Ui, F (n) corresponds to some M̃ ′i
and xni : F → F (n) induces an isomorphism Mi

∼−→ M ′i , and hence the global sections tij ∈ Γ(X,F (n))
generate F (n) everywhere.

If X is a Noetherian scheme such that the last statement in the above theorem holds, we say that X has
enough locally frees.

4.1 Grothendieck Groups

Definition 4.9. Let C be a full additive subcategory of an abelian category A . Recall that a category is
additive if:

1. For any objects X,Y ∈ C , then HomC (X,Y ) has an abelian group structure.

2. For any objects X,Y, Z ∈ C , the map HomC (X,Y )×HomC (Y,Z)→ HomC (X,Z) is bilinear.

3. C has a zero object.

4. For any X,Y ∈ C , X × Y is in C .
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Furthermore, a category C is abelian if: every morphism in C has a kernel and cokernel, and every monomor-
phism is a kernel and every epimorphism is a cokernel.

We note that Coh(X) is abelian on any Noetherian scheme X, although Loc(X) is not. However, Loc(X)
is an exact category, i.e., a full additive subcategory C of an abelian category A such that if 0→ A′ → A→
A′′ → 0 is a short exact sequence in A with A′, A′′ ∈ C , then A ∈ C .

Definition 4.10. Let Ob(C ) be the class of objects of C , and let Q = Ob(C )/ ∼ be the set of isomorphism
classes. Let F (C ) be the free abelian group on Q, namely, any element of F (C ) can be written as a finite
formal sum ∑

nX [X] (4.5)

with [X] an isomorphism class of X ∈ Ob(C ) and nX ∈ Z. Furthermore, to any sequence S

0 // A // B // C // 0 (4.6)

in C which is exact in A , we associate the element G(S), generated by the symbol [B]− [A]− [C] in F (C ).
Let H(C ) be the subgroup generated by the elements of G(S). Then the Grothendieck group, denoted by
K(C ), is the quotient

K(C ) := F (C )/H(C ). (4.7)

Let G be an abelian group. Then a function ϕ : Q → G on the set of isomorphism classes of objects of
C is called additive, if for every short exact sequence 0→ A→ B → C → 0, the relation

ϕ(B) = ϕ(A) + ϕ(C) (4.8)

holds. The Grothendieck group K(C ) satisfies the following universal property:

Proposition 4.11. Let ϕ : Q→ G be an additive function. Then there is a unique abelian group homomor-
phism ϕ̃ : K(C )→ G, such that ϕ = ϕ̃ ◦ π, where π : Q→ K(C ) is the canonical projection.

Let X be a Noetherian scheme. The two Grothendieck groups that will be of interest to us are:

K0(X) = K(Loc(X)) = K(Vec(X)), (4.9)

where Vec(X) is the category of vector bundles on X, and

K0(X) = K(Coh(X)). (4.10)

Note that by construction, we have the relation [F 1⊕F 2] = [F 1] + [F 2] in both groups.

4.2 The Grothendieck Group of Coherent Sheaves

We establish some important properties of K0(X) for a Noetherian scheme X. We should note that the
category Coh(X) is a full abelian subcategory in the category of OX -modules. If X = Spec(A) is affine,
then the global section functor gives an equivalence of categories from Coh(X) to the category of finitely
generated A-modules (see [6] II.5). Indeed, for a ring A, we write K0(A) = K0(Spec(A)) and K0(A) is the
Grothendieck group associated to the category of finitely generated A-modules.

Let f : X → Y be proper morphism of schemes. Recall that for f : X → Y a continuous map of
topological spaces and any sheaf F on X, the direct image sheaf f∗F on Y is defined by

(f∗F )(V ) = F (f−1(V )) (4.11)

for any open set V ⊆ Y . Then f∗ is a functor from the category of sheaves on X to the category of sheaves
on Y .
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Example 4.12. For a closed immersion f : X → Y , the direct image coincides with the extension by zero
of a sheaf. In this case, f∗ is exact. For a field k and f : X → Spec(k), the pushforward is precisely Γ(X, ·),
which is left exact only. Its right derived functors in the category of sheaves on X are the cohomology
functors Hi(X, ·).

Definition 4.13. For f : X → Y a continuous map of topological spaces and i ≥ 0, the higher direct image functors
are defined to be the right derived functors

Rif∗ : Mod(X) −→Mod(Y ), (4.12)

of the direct image functor f∗.

Proposition 4.14. Let F be a coherent OX-module. Then Rif∗(F ) is the sheaf associated to the presheaf

U 7→ Hi
(
f−1(U),F �f−1(U)

)
(4.13)

on Y .

Proof. (Sketch) We note that H i(X,F ) is the sheaf associated to the presheaf above. This is a δ-functor
(see [5] III.i) from the category of sheaves of abelian groups on X to the same category on Y . When i = 0,
f∗F = H 0(X,F ). Furthermore, for some injective object I , the right derived functors vanish when i > 0.

Now I �f−1(U) for each open U is an injective object of Ab(f−1(U)). Thus, H i(X,I ) = 0 for i > 0.
Then by Theorem 1.3A in III.i of [5], we have a unique isomorphism Rif∗(·) 'H i(X, ·) of δ-functors.

Proposition 4.15. Again with X,Y topological spaces, and F any quasi-coherent sheaf on X, let Y =
Spec(A) be affine. Then

Rif∗(F ) ∼= ˜Hi(X,F ). (4.14)

Then Rif∗(F ) is quasi-coherent, even without Y being affine.

Proof. Quasi-coherence comes easily by looking at Y locally. Since the functor (̃·) from A-modules to Mod(Y )

is exact, both functors Rif∗(·) and H̃i(·) are δ-functors Qcoh(X)→Mod(Y ). One can embed F in a flabby
quasi-coherent sheaf, so both functors are effaceable for i > 0. Thus, we have a unique δ-functor isomorphism
between them. See [6] III.8 for full details.

Seeing that Rif∗(F ) is coherent is a little more difficult (and this is not true for an arbitrary morphism),
so we let f : X → Y be projective rather than proper. From Chow’s lemma, we can see that projective
morphisms are reasonably similar to proper morphisms ([6] II.iv Exercise 10). Now, in order to get coherence,
we must show that Hi(X,F ) is a finitely generated A-module when f : X → Spec(A) is projective. This is
a well-known theorem of Serre. We have a closed immersion i : X ↪→ PnA for some integer n. If F is coherent
on X, then i∗F is coherent on PnA and the cohomology coincides. Thus, we may reduce to the case X = PnA.
In this case, we use Čech cohomology computations to show that Hi(X,F ) is finitely generated for sheaves
OX(r), r ∈ Z. The same is true for direct sums of such sheaves.

For an arbitrary coherent sheaf F on X, use descending induction on i. For i > n, Hi(X,F ) vanishes,
since X can be covered by n+ 1 open affines. Now consider the short exact sequence

0 // K // E // F // 0 , (4.15)

where E is the direct sum of sheaves O(ri) and K is the kernel, which is also coherent. This gives a long
exact sequence of A-modules

· · · // Hi(X,E ) // Hi(X,F ) // Hi+1(X,K ) // · · · (4.16)
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Now, since A is Noetherian, we need only prove the finite generation of the left and right modules above
to get that Hi(X,F ) is finitely generated. Clearly, the left is finitely generated because E is the direct sum
of sheaves OX(ri). The right is finitely generated by the inductive hypothesis.

Of course, we want f : X → Y to be a proper morphism. Since we assume that X,Y are quasi-projective,
let i : X ↪→ Pn be a closed immersion. Let π : Pn×Y → Y be the projection onto the first factor. Then for
any proper morphism f : X → Y , we have the factorization

X
(i,f) // Pn×Y π // Y (4.17)

which gives f as a closed immersion into Pn×Y followed by projection. Thus, f is a projective morphism.

Corollary 4.16. Let f : X → Y be a proper morphism of quasi-projective schemes. Then f is projective
and Rif∗(F ) ∈ Coh(Y ) with F coherent on X.

We will always consider quasi-projective varieties, so we are always in the above situation. From the
preceding corollary, we get a number of essential facts. First, given any coherent sheaf F on X, the element
[Rif∗(F )] is well-defined in K0(Y ). Indeed, for any proper morphism f : X → Y and F ∈ Coh(X), we
define the pushforward on K0 as the homomorphism

f∗ : K0(X) −→ K0(Y ), [F ] 7→
∑
i≥0

(−1)i[Rif∗(F )]. (4.18)

This map is well-defined by Proposition 4.15, as there are only finitely many non-zero cohomology groups.
Furthermore, it is induced by the long exact sequence for right derived functors. However, we are not quite
finished, as we want to establish the naturality of f∗ on K0, which is rather difficult. We appeal to the
Grothendieck Spectral Sequence to get this result. This spectral sequence will also be required in our proof
of the Grothendieck-Riemann-Roch theorem for a closed immersion. This spectral sequence is also used in
versions of the theorem where X,Y are not quasi-projective to establish that Rif∗(F ) is coherent, and thus
the existence of f∗ on K0.

Recall the definition of a cohomological spectral sequence:

Definition 4.17. A spectral sequence in an abelian category A consists of the following data:

1. A family {Ep,qr } of objects of A with r ≥ a and beginning with Ea;

2. Morphisms dp,qr : Ep,qr → Ep+r,q−r+1
r that satisfy dp+r,q−r+1

r ◦ dp,qr = 0 where

Ep,qr+1
∼=

ker(dp,qr )

im(dp−r,q−r+1
r )

. (4.19)

A cohomological spectral sequence is said to be bounded if there are only finitely many nonzero terms in
each total degree in E∗∗a . Namely, for each p and q there is an r0 such that Ep,qr = Ep,qr+1 for all r ≥ r0. We
denote the stable value of the terms Ep,qr by Ep,q∞ and say that the bounded spectral sequence converges to
H∗ if we have a family of objects Hn of A , each having a finite filtration

0 = F tHn ⊆ · · ·F p+1Hn ⊆ F pHn · · · ⊆ F sHn = Hn (4.20)

such that

Ep,q∞
∼= F pHp+q/F p+1Hp+q. (4.21)

We write Ep,qa ⇒ Hp+q for bounded convergence.
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Theorem 4.18. (Grothendieck Spectral Sequence) Let F : B → C and G : A → B be left exact functors
of abelian categories, where A ,B have enough injectives. Suppose that G sends injective objects of A to
F -acyclic objects of B. Then for each A ∈ ob(A ), there is a first quadrant cohomological spectral sequence
with

Ep,q2 = (RpF )(Rq(G))(A)⇒ Rp+q(GF )(A). (4.22)

Proof. See 5.7 and 5.8 of [9] for a proof using hyper-derived functors.

From this theorem we have the naturality of f∗ on K0. We conclude this section by noting that K0 is
a covariant functor from the category of Noetherian, finite dimensional schemes with proper morphisms to
the category of abelian groups.

4.3 The Grothendieck Group of Locally Free Sheaves

Let f : X → Y be a morphisms of Noetherian schemes. For a coherent OX -module G on Y , the pullback
f∗ G is also coherent. This is also true for local freeness. However, f∗ is only right exact in general, so it
does not descend to a pullback on K0.

Lemma 4.19. The mappings E 7→ f∗ E and f 7→ f∗ form an exact functor Loc(Y )→ Loc(X).

Thus, K0 is a well-defined contravariant functor to the category of abelian groups. For [E ] ∈ K0(Y ), we
write f∗[E ] for [f∗ E ] ∈ K0(X). Finally, naturality (g ◦ f)∗ = f∗ ◦ g∗ is immediate.

It is important to note that we have a ring structure defined on K0(X) by ⊗OX
.

Lemma 4.20. Tensor product of locally free sheaves makes K0(X) a ring.

Proof. The tensor product gives a ring structure to the free abelian group Z[Q(Loc(X))] on the elements of
Q(Loc(X)). Let 0 → A → B → C → 0 be a short exact sequence of locally free OX -modules. Then the
subgroup

H = {[B]− [A]− [C]} (4.23)

is an ideal in Z[Q(Loc(X))], since locally free OX -modules are flat. Hence, the quotient,

K0(X) = Z[Q(Loc(X))]/H (4.24)

is a ring also.

This also defines K0(X) as a K0(X)-module under the same operation. Finally, note that the tensor
product commutes with pullback of sheaves, so that f∗ is a contravariant functor to the category of rings.

Remark 4.21. For any vector bundle E on X, there is a locally constant map: rk : X → Z sending
x ∈ X to the rank of Ex. This defines a homomorphism K0(X) → H0(X,Z). For a connected scheme,
ker(rk : K0(X)→ Z) is the beginning of the γ-filtration for K0(X). See §7.

Remark 4.22. All line bundles are invertible as elements of K0(X). That is, [L ]−1 = [H om(L ,OX)].
Recall that an invertible sheaf on a ringed space X is a locally free OX -module of rank 1 and that the Picard
group Pic(X) is the group of isomorphism classes of invertible sheaves on X under the operation ⊗OX

. It
can be shown that Pic(X) ∼= H1(X,O∗X)
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4.4 The Equality of K0(X) and K0(X)

We have an obvious homomorphism, called the Cartan homomorphism,

δ : K0(X) −→ K0(X) (4.25)

induced by the embedding Loc(X)→ Coh(X).

We also have a K-theory analogue to the projection formula on Chow groups:

Proposition 4.23. (Projection Formula) Let f : X → Y be a proper morphism of schemes. Then

f∗(f
∗(y) · x) = y · f∗(x), (4.26)

where x ∈ K0(X) and y ∈ K0(X).

Proof. It suffices to prove this for x = [F ] and y = [G ], where F is a coherent sheaf on X and G is a locally
free sheaf on Y . Note there is a natural isomorphism of coherent sheaves

f∗(f
∗(G ⊗F )) = G ⊗f∗(F ). (4.27)

This is a local statement, so we let Y = Spec(A) and G = Or
Y . Then, by the definition of f∗, we have that

f∗F = Or
X . This gives the above. Then, for any locally free sheaf G , the functor

E 7→ f∗(f
∗(G )⊗ E ) (4.28)

is left exact and its right derived functors coincide with those of E 7→ G ⊗f∗ E . Since G is flat, we get

Rif∗(F )⊗OY
G = Rif∗(F ⊗OX

f∗ G ), (4.29)

which implies the projection formula. Now let’s explicitly compute the formula:

f∗(f
∗[G ] · [F ]) =

∑
i≥0

(−1)i[Rif∗(f
∗(G ) ·F )] =

∑
i≥0

(−1)i[G ⊗Rif∗(F )] (4.30)

=
∑
i≥0

(−1)i[G ] · [Rif∗(F )] = [G ] · f∗[F ]. (4.31)

The second equality follows from (4.29) and the third equality comes from the definition of the K0(X)-module
structure.

With the Cartan homomorphism and the Projection formula in hand, we are now prepared to prove the
equality of K0(X) and K0(X) for X smooth and quasi-projective.

Lemma 4.24. Let F ∈ Coh(X). Select a finite locally free resolution 0 → G n → · · · → G 0 → F → 0 and
consider

ξ(F ) =

n∑
i=0

(−1)i[G i] ∈ K0(X), (4.32)

which is independent of the resolution and depends on F .

Proof. Let [G ·] ∈ K0(X) denote the value of ξ(F ) obtained by using the resolution G ·. Then let G · → F
and G ′· → F be two finite locally free resolutions of F .

By Lemma A.6, there is a third resolution G ′′· and surjections G ′′· → G ·, G ′′· → G ′·, which give the identity
map on H0. By Lemma A.3, these have length at most n = dim(X). Thus, we must show that [G ′′· ] = [G ·].
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Let G 1,· = ker(G ′′· → G ·). By Lemma A.1, this consists of only locally free sheaves. In the induced
long exact homology sequence, Hi(G

′′
· ) = 0 and Hi(G ·) = 0, which cause Hi(G 1,·) to vanish for all i. Thus,

[G 1,·] = 0 and

[G ′′· ] = [G ·] + [G 1,·] = [G ·]. (4.33)

Thus, we have a well-defined map ξ : Q(Coh(X)) → Q(Loc(X)), given by [F ] 7→
∑n
i=0(−1)i[G i]. This

map also respects exact sequences:

Lemma 4.25. For an exact sequence 0 → F ′ → F → F ′′ → 0 of coherent sheaves, we have that ξ(F ) =
ξ(F ′) + ξ(F ′′).

This lemma tells us that ξ descends to a homomorphism ξ : K0(X) → K0(X). We now prove that this
is the inverse to the Cartan homomorphism.

Theorem 4.26. For a non-singular quasi-projective variety X, the Cartan homomorphism δ : K0(X) →
K0(X) is an isomorphism.

Proof. Take F ∈ Coh(X) and G ∈ Loc(X). We need only prove

(ξ ◦ δ)[G ] = [G ], (δ ◦ ξ)[F ] = [F ]. (4.34)

Consider the resolution 0→ G → G → 0 of G . Then we have that

(ξ ◦ δ)[G ] = ξ[G ] = [G ]. (4.35)

Similarly, we choose a resolution 0→ G 0 → · · · → G 0 F → 0 to see that

(δ ◦ ξ)[F ] = δ ([G 0]− . . .+ (−1)n[G n]) = [G 0]− . . .+ (−1)n[G n] = [F ]. (4.36)

Therefore, since K0(X) has a ring structure given by the tensor product, K0(X) inherits this structure
by the Cartan homomorphism. Thus, when X is a non-singular quasi-projective variety, K0(X) = K0(X),
which we denote by K(X).

For F ,G ∈ Coh(X), we can now explicitly compute the product [F ] · [G ] ∈ K(X). Taking locally free
(that is, projective) resolutions and taking the derived functor of the tensor product, we have

[F ] · [G ] =
∑
i≥0

(−1)i[TorOX
i (F ,G )]. (4.37)

Some authors, in particular Borel-Serre, take this to be definitional.

We note that K(X) has what is called a λ-ring structure. In essence, exterior powers descend to K(X).
For a locally free sheaf G on X, we define

λi[G ] = [∧i G ] (4.38)

and linearly extend this to K(X). We also define a map

λ : K(X)→ K(X)[[t]] (4.39)

by writing

λt[G ] = 1 +
∑
i>1

λi[G ] · ti. (4.40)

In particular,

λ−1[G ] = 1− [G ]t+ [∧2 G ]t2 − · · ·+ (−1)r[∧r G ]tr, (4.41)

where r = rank(G ).
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5 Grothendieck-Riemann-Roch

We are now ready to prove the Grothendieck-Riemann-Roch theorem for non-singular quasi-projective vari-
eties over an algebraically closed field k; our exposition follows the original proof in [1]. We have introduced
K(X) as a more tractable alternative to the free abelian group of isomorphism classes of either coherent
OX -modules or locally free OX -modules, where both ch : K(X) → A∗(X)Q and td : K(X) → A∗(X)Q are
well-defined. Our theorem considers the naturality of the Chern character ring homomorphism with respect
to the proper pushforward, expressed as:

Theorem 5.1. (Grothendieck-Riemann-Roch) Let f : X → Y be a proper morphism, X and Y are quasi-
projective non-singular varieties over an algebraically closed field k. Let x ∈ K(X). Then the following
diagram commutes:

K(X)
ch(·) td(TX) //

f∗

��

A∗(X)⊗Z Q

f∗

��
K(Y )

ch(·) td(TY )
// A∗(Y )⊗Z Q .

(5.1)

Equivalently,

f∗(ch(x) · td(TX)) = ch(f∗(x)) · td(TY )). (5.2)

The proof of the theorem will be broken into two stages:

1. Establish that f : X × Pn → X is projection onto the first factor.

2. Show that f : Y → X is an immersion onto a closed subvariety.

Lemma 5.2. Let X
f−→ Y

g−→ Z be proper morphisms. Let x ∈ K(X) and set y = f∗(x). Then:

1. If GRR is true for (f, x) and for (g, y) respectively, then it is true for (fg, x).

2. If GRR is true for (g, y) and for (fg, x) and if g∗ is injective (on the Chow ring), then GRR is true
for (f, x).

Proof. 1. We have that

(fg)∗(ch(x) td(TX)) = g∗(ch(f∗(x)) td(TY )) (5.3)

= ch(g∗(f∗(x))) td(TX), (5.4)

where the first equality is by the GRR for (f, x) and the second equality by GRR for (g, y).

2. Setting

u = f∗(ch(x) td(TX)), v = ch(y) td(TY ) (5.5)

we wish to prove that u = v. However, it suffices to prove that g∗(u) = g∗(v). We see that

g∗(u) = (fg)∗(ch(x) td(TX)) (5.6)

= ch((fg)∗(x) td(TX)) (5.7)

= ch(g∗(y) td(TX)) (5.8)

= g∗(ch(y) td(TY )) (5.9)

= g∗(v), (5.10)

where the second equality holds by GRR for (fg, x) and the fourth equality holds by GRR for (g, y).
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Taking two quasi-projective varieties X and Y , we write their product as X×Y . Consider the projections
X × Y → X and X × Y → Y . These define homomorphisms K(X)→ K(X × Y ) and K(Y )→ K(X × Y ).
These induced pullback homomorphisms give another map

K(X)⊗K(Y )→ K(X × Y ) (5.11)

whose image consists of the tensor product x × y of two elements x ∈ X and y ∈ Y . We now prove a
statement analogous to Lemma 5.2 for this map.

Lemma 5.3. Let f : X → Y and f ′ : X ′ → Y ′ be proper morphisms, and let x ∈ K(X) and x′ ∈ K(X ′). If
GRR is true for (f, x) and for (f ′, x′), then it is true for (f × f ′, x⊗ x′), where f × f ′ : X ×X ′ → Y × Y ′.

Proof. The proof of this lemma is entirely analogous to the preceding one, but study how the pushforward
maps (K-pushforward and Chow pushforward) and the Chern character behave with the product map. Thus,
we have three statements to verify:

1. (f × f ′)∗(x⊗ x′) = f∗(x)⊗ f∗(x′)

2. (f × f ′)∗(η ⊗ η′) = f∗(η)⊗ f ′∗(η′)

3. ch(x⊗ x′) = ch(x)⊗ ch(x′),

where η ∈ A∗(X) and η′ ∈ A∗(X ′).
To prove (1) we invoke Proposition 4.15 and use the Künneth formula for coherent sheaf cohomology.

Then the statement follows by the definitions of the product maps. To prove (2), take a cycle α ∈ Z and
a cycle α′ ∈ Z ′. If either cycle is rationally equivalent to zero, then their product is rationally equivalent
to zero on the product variety. The third statement follows directly from the multiplicativity of the Chern
character on Loc(X). Thus, by these equalities, we have

(f × f ′)∗(ch(x⊗ x′) td(TX×X′)) = ch((f × f ′)∗(x⊗ x′)) td(TY×Y ′). (5.12)

By Lemma (5.3), in order to prove that f : X × Pn → X is the projection onto the first factor, we must
show that

1. The homomorphism K(X)⊗K(Pn)→ K(X × Pn) is surjective.

2. GRR is true for the case where Pn is simply a point. That is, Hirzebruch-Riemann-Roch holds:

χ(Pn,F ) =

∫
Pn

ch(F ) td(TPn) (5.13)

for any coherent sheaf F .

In order to prove the surjectivity of K(X)⊗K(Pn)→ K(X × Pn), we first need K-theoretic homotopy
properties.

5.1 Homotopy Properties for K(X)

Proposition 5.4. (Localization Sequence) Let X be a sub-variety (singular or non-singular) and let X ′ be
a closed sub-variety. Set U = X −X ′. We define a map K(X ′)→ K(X) by the extension of a sheaf on X ′

by zero, and define a map K(X)→ K(U) by sheaf restriction. Then the sequence

K(X ′) // K(X) // K(U) // 0 (5.14)

is exact.
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Proposition 5.5. If Y = A1, then the pullback homomorphism p∗ : K(X)→ K(X × Y ) is bijective.

Proof. Consider OX to be a sheaf on X × Y . Then we have an exact sequence

0 // OX×Y
ι // OX×Y // OX

// 0 . (5.15)

By the long exact sequence for Tor, TorOX×Y
p (OX ,F ) = 0 for p ≥ 2, provided that F is a coherent sheaf

on X × Y . Thus, we have a well-defined homomorphism

π : K(X × Y )→ K(X), (5.16)

given explicitly by

π(F ) = Tor
OX×Y

0 (OX ,F )− Tor
OX×Y

1 (OX ,F ). (5.17)

The composition p∗π = id, so p∗ is injective. We now consider K(X) ⊂ K(X × Y ) via the pullback
homomorphism.

Let X ′ ⊂ X be a closed subvariety and let U = X −X ′. We now demonstrate that K(X) ' K(X × Y )
by induction on n = dim(X). The following diagram is commutative with exact rows (by the Localization
Sequence):

K(X ′) //

��

K(X) //

��

K(U) //

��

0

K(X ′ × Y ) // K(X × Y ) // K(U × Y ) // 0

. (5.18)

By hypotheses the left-most vertical arrow is an isomorphism. Thus, every element z ∈ K(X × Y ) with
zU×Y ∈ K(U) is inside K(X) ⊂ K(X × Y ). This allows us to ignore subvarieties of X with dimension less
than n. In particular, we may suppose that X = Spec(A) is affine, non-singular, and irreducible. We then
make use of the following lemma:

Lemma 5.6. Let Z be an algebraic variety. The classes [OT ] generate K(Z) when T ⊂ Z is an irreducible
subvariety.

Proof. For a completely torsion coherent OZ-module F , supp(F ) ⊂ T . We need only consider Z = Spec(A),

so then F = M̃ , where M is an A-module. Then any torsion section m ∈ M has support on Spec(A/(f)),
where fm = 0.

Now induct on dim(Z). Let X ⊂ K(Z) be the subgroup generated by the structure sheaves of the
irreducible subvarieties. Then, when F is a coherent OX -module, [T (F )] ∈ X, where T (F ) is the torsion
subsheaf. Consider

0 // T (F ) // F // G // 0 ; (5.19)

we need to show that [G ] ∈ X. Let k(Z) be the field of rational functions on Z. Then

F ⊗k(Z) ∼= k(Z)n (5.20)

for some n, so G ∼= On
Z . Clearly, [On

Z ] ∈ k(Z) so we are done.

Applying this lemma, it suffices to show that [OT ] ∈ K(X) for all irreducible subvarieties T ⊂ X × Y .
By induction on n = dim(X), we consider the case where dim(T ) = n and ρ(T ) 6= X, where ρ : X × Y → X
is the projection. Let A be the coordinate ring of X and let p be the prime ideal of the coordinate ing
A[t] of X × Y corresponding to T . Since ρ(T ) is dense in X, we have A ∩ p = 0. Let S ⊂ A be the set of
invertible elements and K = AS be the field of fractions of A. Note that A[t]S = K[t]. Since p∩S = ∅, we
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can write p = p′ ∩A[t] for some non-zero prime p′ of K[t]. Thus, there is an irreducible polynomial P (t) with
coefficients in A such that p is the set of polynomials in A[t] that are divisible by P (t) in K[t]. Then

q := A[t]P (t) ⊂ p ⊂ A[t]. (5.21)

The sheaf Ot corresponds to the module A[t]/ p. Let F be the sheaf corresponding to A[t]/ q. By the
equivalence pS = qS , there is an invertible a ∈ A such that a · (p / q) = 0, hence OT is congruent, modulo an
element of K(X ′ × Y ) to F with dim(X ′) < dim(X). This gives an exact sequence

0 // OX×Y
P (t) // OX×Y F //// 0 , (5.22)

which shows that [F ] = 0 in K(X × Y ). Then

[OT ] ∈ im(X ′ × Y ) = imK(X ′) ⊂ K(X), (5.23)

and we are done.

Immediately, from induction on n = dim(X), we have:

Corollary 5.7. If Y = A1, then K(X) = K(X × Y ).

5.2 GRR for X × Pn → X

We now prove the surjectivity of K(X)⊗K(Pn)→ K(X × Pn).

Proposition 5.8. Let X be a variety. Then K(X)⊗K(Pn)→ K(X × Pn) is a surjective homomorphism.

Proof. We proceed by induction on n. The proposition is trivial for n = 0. For n > 0, let H be a hyperplane
of Pn and let U = Pn−H. Then the following diagram is commutative with exact rows:

K(X)⊗K(H) //

ϕ1

��

K(X)⊗K(Pn) //

ϕ2

��

K(X)⊗K(U) //

ϕ3

��

0

K(X ×H) // K(X × Pn) // K(X × U) // 0

. (5.24)

Note that ϕ1 is surjective by the inductive hypothesis. ϕ3 is as well, since Corollary (5.7) implies that
K(U) ' Z and K(X × U) ' K(X). Thus, ϕ2 is also surjective.

To conclude the proof that f : X × Pn → X is projection onto the first factor, we verify a Hirzebruch-
Riemann-Roch type result for Pn:

Proposition 5.9. Let F be a coherent sheaf on Pn. Then

χ(Pn,F ) =

∫
Pn

ch(F ) td(TPn). (5.25)

Proof. Let x = [H] ∈ A1(Pn) be the class of a hyperplane. Then

td(TPn) =
xn+1

(1− e−x)n+1
. (5.26)

By Theorem 4.8, we can write [F ] as a Z-linear combination of twisted structure sheaves. Thus, it suffices
to prove our formula for the divisor sheaf O(r) = F associated to rH. Computing the Chern character, we
obtain:

ch(O(r)) = ch(O(1))r = erx. (5.27)

30



Remark 5.10. (Cohomology Computation) We recall that H`(Pn,O(r)) is a vector space over a field k ([6]
III.5) with the following properties:

1. dimH`(Pn,O(r)) = 0 for 0 < ` < n and all r ∈ Z.

2. dimH0(Pn,O(r)) =


(
n+ r

r

)
r ≥ 0

0 else.

3. dimHn(Pn,O(r)) =


(
−r − 1

−n− r − 1

)
r ≤ −n− 1

0 else.

Thus, the Euler characteristic is

χ(Pn,O(r)) = dimkH
0(Pn,O(r)) + (−1)n dimkH

n(Pn,O(r)) =

(
n+ r
n

)
. (5.28)

Now, we need only show that∫
Pn

ch(F ) td(TPn) =

∫
erxxn+1

(1− e−x)n+1
=

(
n+ r
n

)
. (5.29)

Expressing this formula in terms of residues, and letting y = 1− e−x, we obtain:∫
Pn

ch(O(r)) td(TPn) = resx=0

(
erx

(1− e−x)n+1
dx

)
= resy=0

(
(1− y)−r−1

yn+1
dy

)
=

(
n+ r
n

)
. (5.30)

Corollary 5.11. GRR is true for projection onto the first factor X × Pn → X.

5.3 GRR for Divisors

From Corollary 5.11, it suffices to show that GRR holds for closed immersions. Here we prove the intermediate
case of the inclusion of a divisor. Then, we blow up along the divisor and prove that this is sufficient for the
general case of a closed immersion.

Let Y be a closed sub-variety of X, let i : Y → X be the inclusion of Y in X, and let J be the ideal
sheaf of Y . Then we have an exact sequence

0 //J // OX
r // OY

// 0 (5.31)

where r : OX → OY is the restriction map. We write

N = NY,X = H omOY
(J /J 2,OY ) (5.32)

for the normal sheaf of Y in X. This is locally free since its dual N ∗ = J /J 2 is. We write p =
codim(Y,X).

Now, if D is a divisor on X, then O(D) is the invertible sheaf determined by D. We construct this locally
on Spec(A) ⊂ X as the rank one subsheaf of the field of fractions sheaf of A. This is generated by the inverse
of a local defining function for D. The relation

c(O(D)) = 1 + [D] (5.33)

holds.
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5.3.1 Algebraic Interlude: Koszul Complexes

Definition 5.12. Let A be a Noetherian ring. For any A-module M , x ∈ A is M -regular if x : M → M is
injective. A sequence x1, . . . , xn ∈ A is a regular sequence for M if:

1. x1 is regular as an element, and xi is (M/(x1, . . . , xi−1)M)-regular for all i.

2. M/(x1, . . . , xn)M 6= 0.

Example 5.13. If F 6= 0, G 6= 0 are homogeneous polynomials of positive degree with gcd(F,G) = 1 in
S = k[X0, . . . , Xn] then F,G are S-regular.

We use regular sequences to define the Koszul Complex of an A-module M and a sequence x1, . . . , xr ∈ A.
Let E be a free A-module with basis e1, . . . , er. Then the Koszul complex (for M) is the sequence

0 // M ⊗
∧r

E
d // M ⊗

∧r−1
E // · · · // M ⊗ E // M (5.34)

with A-linear differential

d(ei1 ∧ · · · ∧ eip) =
∑
j

(−1)j−1xijei1 ∧ · · · ∧ eip . (5.35)

When M = A the entire Koszul complex is exact. In general we have the following

Theorem 5.14. If x = x1, . . . , xn is an M -regular sequence, then

Hp(K·(x,M)) =

{
0, p 6= 0

M/(xM), p = 0
(5.36)

for Koszul complex K·.

This construction is of consequence for our theorem because we can replace A by OX and M by an
OX -module F . We then obtain a locally free resolution of F . In the following Proposition, we prove the
case F = OY .

Proposition 5.15. Let Y1, . . . , Ym be non-singular sub varieties of X such that

Yi−1 ∩ · · · ∩ Y1 (5.37)

meets Yi transversely for i = 2, . . . ,m. Then in K(X)

[OY1∩···∩Ym
] =

∏
i

[OYi
]. (5.38)

Remark 5.16. We say that two subvarieties Yi, Yj of X meet transversely if the set of defining functions
for both generate the maximal ideal of the stalk OX,x at any point x ∈ Yi ∩ Yj .
Proof. By induction, it suffices to prove the case where two sub varieties Y,Z meet transversely. Definition-
ally, [OY ] · [OZ ] is the alternating sum of TorOX

i (OY ,OZ). If Y ∩ Z = 0, then both the left and right hand
sides of (5.38) are clearly zero.

Now take some a ∈ Y ∩ Z. Write local defining functions f1, . . . , fp for Y and g1, . . . , gq for Z about a.
We tensor the Koszul complex for OY with OZ to obtain the exact sequence

0 // OZ ⊗k
∧p

E // · · · // OZ ⊗kE // OZ . (5.39)

As elements of OZ,a = OX,a /(g1, . . . , gq), the fi form a regular sequence. Thus, the Koszul complex homology

gives the derived functors TorOX
i (OY ,OZ). By Theorem 5.14, all homology groups vanish except for p = 0,

which is precisely OZ,a /(f1, . . . , fp) = OY ∩Z,a. Hence

Tor0 = [OY ] · [OZ ] = [OY ∩Z ] (5.40)

as desired.
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Corollary 5.17. Let Y be a non-singular hyperplane section of X and let k be the dimension of X. Then
(1− [OY ])k+1 = 0.

Proof. We know that [OY1 ] = [OY1 ] for any two non-singular hyperplane sections of X. Furthermore, by the
exact sequence

0 // O(Y )−1 // OX
// OY

// 0 (5.41)

we have [OY ] = 1 − [O(Y )]−1. Applying the previous proposition, (1 − [O(Y )]−1)k+1 = 0. Multiplying
through by ±[O(Y )]k+1 gives the desired result.

Proposition 5.18. For any y ∈ K(Y ),

i∗i∗(y) = y · λ−1(N ∗). (5.42)

In particular, i∗[OY ] = λ−1(N ∗).

Proof. By linearity it suffices to prove for the case where y = [F ] for some locally free sheaf F . Since F is
locally free i∗[F ] = [i∗F ], so we write

i∗i∗[F ] =
∑
j≥0

(−1)j [TorOX
j (F ,OY )]. (5.43)

Also, by the freeness of F and λi(N ∗), we have

[F ] · λ−1(N ∗) = [F ] ·
(
1− [N ∗]t+ [∧2N ∗]t2 − . . .

)
(5.44)

= [F ] · [F ⊗OY
N ∗]t+ [F ⊗OY

∧2 N ∗]t2 − . . . (5.45)

From the normal sheaf isomorphism N 'J /J 2, it suffices to prove

1. TorOX
1 (F ,OY ) = F ⊗OY

J /J 2

2. TorOX
i (F ,OY ) = F ⊗OY

∧i TorOX
1 (OY ,OY ) = F ⊗OY

λi
(

TorOX
1 (OY ,OY )

)
.

The exterior product in (2) is well-defined by virtue of the local freeness of TorOX
1 (OY ,OY ); thus, (1) must

be proved first.
We apply the long exact sequence for Tor to (5.31) and obtain the exact sequence

0 // TorOX
1 (F ,OY ) //J ⊗OX

F
ϕ // F , (5.46)

where ϕ is given by ϕ(u ⊗ v) = uv. We know that F is supported on Y and is annihilated by J . Thus,
the middle arrow is an isomorphism. Furthermore, the image of J 2 ⊗F is zero in J ⊗F , so we have an
isomorphism with F ⊗OX

J /J 2. Finally, the tensor product is unchanged over OY rather than OX , so we
have (1).

To prove (2), we use the Koszul complex from the previous proposition. We know the homology groups
for the Koszul complex for the sheaf F are precisely TorOX

i (F ,OY ) by the definition of Tor as a derived
functor. Now, the local defining functions for Y are the sections of J and annihilate F , so the differentials
in the complex are all zero. This gives

TorOX
i (F ,OY ) = F ⊗k ∧i E = F ⊗OY

(OY ⊗k ∧i E). (5.47)

That is, the homology groups and the terms of the complex are the same. We take F = OY and i = 1, so
we have TorOX

1 (OY ,OY ) = OY ⊗kE. From the above equality, we obtain

TorOX
i (F ,OY ) = F ⊗OY

i∧
TorOX

1 (OY ,OY ). (5.48)

This completes the proof.
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Proposition 5.19. Let D be a divisor on X and L = O(D) |D. Then

1. L = ND,X .

2. [OD] = 1− [O(D)]−1.

3. i∗i∗ = y · (1− [L ]−1) for all y ∈ K(D).

Proof. 1. Let U = {Ui}i∈I be an open cover of X such that the divisor D is given by fi = 0 on Ui and
dfi 6= 0 on D ∩ Ui. For Uij = Ui ∩ Uj take gij = fi/fj as the transition function. Note that N ∗ is
trivial on Ui, but dfi = gijdfj on D ∩ Uij , so N ∗ is defined on U by g−1

ij .

2. Consider the exact sequence

0 //J // OX
// OD

// 0 (5.49)

and take J = L (D)∗. The result follows immediately.

3. This is simply an application of the previous proposition and (1).

It remains to be shown that

ch(i∗(y)) = i∗(ch(y) · td(N )−1), (5.50)

which is sufficient to demonstrate our case of the closed immersion. Indeed, from the following exact sequence

0 // OX
// OX|Y // NY,X

// 0 (5.51)

we have that i∗ td(TX) = td(TY ) · td(N ). Thus, for any y ∈ K(Y ),

i∗(ch(y) · td(N )−1) = i∗(ch(y) · td(TY ) · i∗(td(TX)−1)) = i∗(ch(y) · td(TY )) · td(TX)−1, (5.52)

and (5.50) suffices. We prove this for the special case of Y = D and divisor on X.

Proposition 5.20. Equation (5.50) holds for Y = D a divisor on X and y = i∗(x) where x ∈ K(X).

Proof. We use the projection formula:

f∗(y · f∗(x)) = f∗(y) · x (5.53)

and (2) in Proposition 5.19 to obtain

ch(i∗i
∗(x)) = ch(x · i∗(1)) = ch(x · (1− [D]−1)). (5.54)

Recall that x→ ch(x) is a ring homomorphism and that (as noted above) c(O(D)) = 1 + [D]. Set y = i∗(x),
so the left-hand side of (5.50) becomes

ch(i∗(y)) = ch(x) ch(1− [O(D)]−1) = ch(x) · (1− e−[D]). (5.55)

Furthermore, the right-hand side of (5.50) becomes

i∗(ch(i∗(x)) · td(O)−1) = i∗(i
∗ ch(x) · i∗ td(O(D))−1) (5.56)

= ch(x) · td(O(D))−1 · i∗(1) (5.57)

= ch(x) · td(O(D))−1 · [D]. (5.58)

Finally, we know that td(O(D)) = [D] · (1− e−[D])−1, so we have (5.51).

Remark 5.21. This final term [D] · (1− e−[D])−1 is precisely the failure of commutativity of ch(·) and f∗.
This accounts for the appearance of the Todd class in more general versions of GRR.
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5.4 Blowing Up Along the Divisor

Corollary 5.22. GRR is true for closed immersion i : Y → X where X = Y ×Pn and i maps a ∈ Y 7→ (a, p),
where p ∈ Pn.

Proof. By Lemma 5.3 and the fact that GRR is true for the identity i : Y → Y , we need only prove the
proposition for i : {a} → Pn. Finally, since K({a}) ' Z, we consider 1 ∈ K({a}).

By Proposition 5.20 we know that GRR holds for the divisor case (n = 1). Thus, by induction, we
consider the map u : {a} → H for some hyperplane H of projective space. It suffices to prove that GRR is
true for v : H → Pn. This will follow from the divisor case once we have that u∗(1) ∈ v∗(K(Pn)).

Let Z be another hyperplane in Pn and L a line in H such that {a} = L ∩ Z ∩H. By Proposition 5.15,
we have that

[OY ] = [OL] · [OH∩Z ]. (5.59)

Then, by (2) of Proposition 5.19, we have [OH∩Z ] = 1− [O(H ∩ Z)]−1. Furthermore, as Z is a hyperplane,
we have the identification O(H ∩ Z) = O(H) |H . Finally, (3) of Proposition 5.19 gives

u∗(1) = [OY ] = v∗v∗[OL] (5.60)

with [OY ] ∈ K(H) and v∗[OL] ∈ K(Pn).

Corollary 5.23. If Equation (5.50) holds for 2 dim(Y ) ≤ dim(X)− 2, then it holds in general.

Proof. We have that GRR is true for X → X × Pn. Form the composition Y → X → X × Pn and use
(2) of Lemma 5.2 to see that GRR is true for Y → X. Simply select n sufficiently large enough such that
dim(X) + n− 2 ≥ 2 dim(Y ) to finish the proof.

We consider the blow-up commutative diagram:

Y ′
j //

g

��

X ′

f

��
Y

i // X

(5.61)

where X is a non-singular variety, i : Y → X is the inclusion of the nonsingular subvariety Y into X.
Furthermore, f : X ′ → X is the blowup of X along Y , j : Y ′ → X ′ is the inclusion of the exceptional divisor,
and g is the restriction f |Y ′ . As before, p = codim(Y,X), so g becomes a projective bundle with fiber Pp−1.

We denote the normal bundle of Y in X by N and Ñ = g∗N its pullback to Y ′. Let L be the line bundle
corresponding to the exceptional divisor Y ′ in X ′. Finally, define F = Ñ/L, which is a locally free sheaf of
rank p− 1.

We will prove that GRR is true for a closed immersion i : Y → X of two non-singular, quasi-projective
varieties using a series of lemmata.

Lemma 5.24. Let G be a rank k vector bundle over a variety X. Then

ch(λ−1G) = ck(G∗) td(G∗)−1 (5.62)

Proof. We write

c(G) =

k∏
i=1

(1 + ai) (5.63)
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by the Splitting Principle. Furthermore,

c(G∗) =

k∏
i=1

(1− ai), and c(∧jG) =
∏

i1<···<ij

(1 + ai1 + · · ·+ aij ). (5.64)

Thus, the top Chern class for G∗ is

ck(G∗) = (−1)ka1, . . . , ak. (5.65)

Finally, from the definition of the Todd class

ch(λ−1(G)) =

k∏
i=1

(1− eai) = td(G∗)ck(G∗). (5.66)

The next four lemmata are particular to the blow-up diagram.

Lemma 5.25. We have that f∗(1) = 1 for f∗ : A∗(X ′)→ A∗(X). Then f∗f
∗ = idA∗(X).

Proof. The map f : X ′ → X is an isomorphism except at the exceptional divisor. As such, it has a local
degree 1. This tells us that f∗ maps 1 ∈ A∗(X ′) 7→ 1 ∈ A∗(X), i.e., fundamental cycles to fundamental
cycles.

Lemma 5.26. The proper pushforward g∗ : A∗(Y ′)→ A(Y ) satisfies g∗(cp−1(F )) = 1.

Proof. The pushforward g∗ lowers the geometric codimension, i.e., degree by dim(Y ′)−dim(Y ) = p−1, which
corresponds to integration on the fiber. Then the restriction of L to the fiber Pp−1 is isomorphic to kp−{0},
i.e., the principal fiber of the group k∗ with base Pp−1. Then, the first Chern class is c1(L) = −[H] where H is
a hyperplane in the fiber Pp−1. We have that g∗([H]p−1) = 1 and g∗([H])i = 0 for 0 ≤ i < p−1 by dimensional

computation. Recall that Ñ/L = F , so c(Ñ) = (1 − [H])c(F ) and c(F ) = g∗c(N) · (1 + [H] + [H]2 + · · · ).
Then

c(F ) = c(Ñ) · (1− [H])−1 = g∗c(N) · (1 + [H] + [H]2 + · · · ). (5.67)

Hence,

cp−1(F ) = [H]p−1 + g∗(c1(N)) · [H]p−2 + · · ·+ g∗(cp−1(N)). (5.68)

We apply the pushforward to obtain

g∗(cp−1(F )) = g∗([H]p−1) + c1(N)g∗([H]p−2) + · · ·+ cp−1(N)g∗(1). (5.69)

Thus, g∗(cp−1(F )) = 1.

Lemma 5.27. For all y ∈ K(Y ), we have f∗i∗(y) = j∗(g
∗(y)λ−1(F ∗)).

Proof. We continue to write J = JY for the ideal sheaf of Y ⊂ X and J ′ = JY ′ for the ideal sheaf of
Y ′ ⊂ X ′. Furthermore, J /J 2 is the sheaf of germs of sections of E∗ and J ′/J 2 is the sheaf of germs
of sections of L∗. Finally, J /J 2 ⊗OY

OY ′ is the sheaf of germs of sections of g∗(E∗) = E′∗. Taking an
element u ∈Jx mapping to u ◦ f ∈Jf−1(x) defines a surjective homomorphism of OY ′ -modules

µ : J /J 2 ⊗OY
OY ′ −→J ′/J ′2 (5.70)

36



This corresponds to a map µ′ : E′∗ → L∗ and thus an injection L ↪→ E′. We have that ker(µ) is the sheaf
OY ′(F

∗) of germs of sections of F ∗, which is locally free. Then E′∗/ ker(µ) = L∗ and [ker(µ)] = [F ∗] in
K(Y ′). Therefore, we have an exact sequence

0 // OY ′(F
∗) //J /J 2 ⊗OY

OY ′
µ //J ′/J ′2 // 0. (5.71)

By linearity, we need only prove the lemma for y = [G ], where G is a locally free sheaf. Then g∗(y) =
[G ⊗OY

OY ′ ] is locally free on Y ′ and

g∗(y) · λ−1(F ∗) =
∑
i≥0

(−1)i[G ⊗OY
OY ′ ⊗OY ′ OY ′(λ

i[F ∗])] (5.72)

=
∑
i≥0

(−1)i[G ⊗OY
OY ′(λ

i[F ∗])]. (5.73)

Also, f∗i∗(y) is the alternating sum of TorOX
i (G ,OX′). Thus, our proof of the lemma reduces to the following

Tor equalities:

1. TorOX
i (OY ,OX′) = λi TorOX

1 (OY ,OX′) (i ≥ 1).

2. [TorOX
i (OY ,OX′) = [OY ′(F

∗)]].

3. TorOX
j (G ,OX′) = G ⊗OY

TorOX
j (OY ,OX′) (j ≥ 1).

We prove (1) using the Koszul complex

0 // OX′ ⊗k
∧p

E // · · · // OX′ . (5.74)

We need only consider a neighborhood of b′ ∈ Y ′, as both sides of (1) vanish outside of Y ′. We take U ⊂ X
open and containing b = g(b′). The local coordinate expression of the blow-up is given by

U ′ = f−1(U) = {(x, y) : xifj(y)− xjfi(y) = 0} , (5.75)

where f1, . . . , fp locally define Y ∩ U in U and [x0 : . . . : xp−1] are the homogeneous coordinates for fibers
Pp−1 of f . We let U = {Ui} be the affine open cover of Pp−1, so then U ′i = f−1(Ui ∩ U) form an open cover
of U ′. We take b′ ∈ U ′j and observe that our Koszul complex becomes

0 // OX′ ⊗k
∧p

E′ // · · · // OX′ , (5.76)

where E′ has basis {e′i} and differential

d(1⊗ e′j) = fj ⊗ 1 d(1⊗ e′i) =

(
fi − fj

xi
xj

)
⊗ 1, (5.77)

when i 6= j. Then the cycles of this complex (of exterior power s) are precisely

Zs = OX′ ⊗k
s∧(

e′1, . . . , ê
′
j , . . . , e

′
p

)
(5.78)

and the boundaries are

Bs = fj · OX′ ⊗k
s∧(

e′1, . . . , ê
′
j , . . . , e

′
p

)
. (5.79)
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Thus,

TorOX
i (OY ,OX′) ' OY ′ ⊗k

i∧(
e′1, . . . , ê

′
j , . . . , e

′
p

)
. (5.80)

This proves (1).
We now prove (2). From the short exact sequence

0 //J // OX
// OY

// 0 , (5.81)

we get

0 // TorOX
1 (OY ,OX′) //J ⊗OX

OX′
g // OX′ (5.82)

in the associated long exact sequence since OX ⊗OX
OX′ = OX′ and TorOX

1 (OX ,OX′) vanishes. We want
to show that g in the above sequence is precisely our surjective homomorphism µ. Note that

TorOX
1 (OY ,OX′)⊗OX′ OY ′ = TorOX

1 (OY ,OX′)⊗OY ′ OY ′ = TorOX
1 (OY ,OX′). (5.83)

Then the defining short exact sequence for J ′, analogous to (5.82), has

Tor
OX′
1 (J ′,OY ′) // TorOX

1 (OY ,OX′)⊗OX′ OY ′
//J ⊗OX

OX′ ⊗OX′ OY ′
//J ′⊗OX′ OY ′

// 0

(5.84)

in its associated long exact sequence for TorOX′ (·,OX′). Also, J ′ = OX′([Y
′]−1), which is locally free, and

Tor
OX′
1 (J ′,OY ′) = 0. This, along with the above piece of the Tor long exact sequence and (5.84) gives the

short exact sequence

0 // TorOX
1 (OY ,OX′) //J ⊗OX

OY ′
g //J ′⊗OX′ OY ′

// 0. (5.85)

Hence the image of J 2⊗OX
OY ′ in J ⊗OX

OY ′ is zero as is the image of J ′2⊗OX′ OY ′ in J ′⊗OX′ OY ′ .
Then we have

J ⊗OX
OY ′ = J /J 2⊗OY

OY ′ , J ′⊗OX′ OY ′ = J ′ /J ′2, (5.86)

thus verifying the equivalence of µ and g. Finally, comparing this to (5.72) gives (2) as an equality of sheaves.
Finally, we prove (3). Let

T (G ,OX′) = G ⊗OY
OY ⊗OX′ , (5.87)

which is functorial in G and OX′ . We wish to compute the left derived functors LiT either in G or OX′ .
We use the E2 spectral terms

Eij2 = TorOY
i (TorOX

j (OX′ ,OY ),G ), E′ji2 = TorOX
j (TorOY

i (G ,OY ),OX′). (5.88)

Indeed, for some i > 0, these terms will coincide. Thus,

E0j
2 = E′j02 = LjT (G ,OX′). (5.89)

Finally, E0j
2 = G ⊗OY

TorOX
j (OY ,OX′) and E′j02 = TorOX

j (G ,OX′), so (3) holds.

We require one more lemma in order to finish our proof of GRR:
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Lemma 5.28. If p ≥ dim(Y ) + 2, then λ−1(F ∗) ≡ 0 mod (1− L∗).

However, the proof of this lemma requires a further result on vector bundles:

Lemma 5.29. Let q = dim(Y ) and let G be a vector bundle of rank p = q + k on Y , where k ≥ 0. Then
λs([G]− k) = 0 for s ≥ q + 1.

Proof. Let ` be the line bundle of a hyperplane section of Y . Then, by Proposition 5.15, we have that

(1− [`])q+1 = 0, (5.90)

hence [`] = 1 + u ∈ K(Y ) satisfies uq+1 = 0, and

[`]n =

q∑
i=0

(
n

i

)
ui. (5.91)

We compute the exterior powers and see that

λt([G] · [`]n − k) =

q∏
i=1

λt([G] · ui)(
n
i) · (1− t)−k. (5.92)

Then we see that the respective coefficients are of the form

λs([G] · [`]n − k) =

ms∑
i=1

Bs,iPs,i(n), (5.93)

where Bs,i ∈ K(Y ) and the Ps,i(n) are polynomials with rational coefficients and integer values when n is
sufficiently large. A theorem of Hilbert states that the Ps,i can be expressed as a Z-linear combination of(

x

j

)
= x(x− 1) · · · (x− j + 1)

j!
, (5.94)

so we write

λs([G] · [`]n − k) =

ns∑
i=0

As,i

(
n

i

)
, (5.95)

where As,i ∈ K(Y ). For n > n0, the bundle G⊗ `n is ample, so it contains a trivial fiber of rank k. Hence,
we have the identification [G] · [`]n − k = [G′] for some fiber G′ of rank q. Also, λs[G′] = 0 for s ≥ q + 1.

Now it suffices to prove the following: if

P (n) =

m∑
i=0

Ai

(
n

i

)
= 0 (5.96)

with Ai ∈ K(Y ) for n > n0, then Ai = 0 for all i. We induct on m and consider the difference between
consecutive values of P

P (n+ 1)− P (n) =

m∑
i=0

Ai

((
n+ 1

i

)
−
(
n

i

))
=

m∑
i=0

Ai

(
n

i− 1

)
=

m−1∑
0

Aj+1

(
n

j

)
. (5.97)

Since P (n + 1) − P (n) = 0 for n > n0, the Ai vanish by the inductive hypothesis and the observation that
A0 = 0.

Proof. (Lemma 5.28) First we prove two necessary formulae:
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1. λk([G ]− 1) = (−1)kλ−1[G ].

2. λt([G ] · (1− [L ])) ≡ 1 mod (1− [L ]).

Let G be a locally free sheaf of rank k on Y . Then

λt([G ]− 1) = λt[G ]/λt(1) = λt[G ] · (1 + t)−1 = λt[G ] · (1− t+ t2 − t3 + . . .). (5.98)

Comparing terms of equal degree in t, we have (1). To prove (2), let L be an invertible sheaf on Y . Then

λi([G ] · [L ]) = [L ]i · λi[G ] =⇒ λi([G ] · [L ]) ≡ λi[G ] mod (1− [L ]). (5.99)

Then we have (2). In particular, if G 1,G 2 are both locally free sheaves on Y , the relation [G 1] ≡ [G 2]
mod (1− [L ]) implies that λi[G 1] ≡ λi[G 2] mod (1− [L ]) for i ≥ 1.

We now use these in our proof of the lemma. Applying (1) to F ∗,

(−1)p−1λ−1[F ∗] = λp−1([F ∗]− 1). (5.100)

We have that N ∗/F ∗ = L ∗, so [F ∗]− 1 ≡ [N ′∗]− 2 mod (1− [L ∗]), and (2) then implies that

(−1)p−1λ−1[F ∗] ≡ λp−1([N ′∗]− 2) mod (1− [L ∗]). (5.101)

Finally, since λp−1([N ′∗]−2) = g∗λp−1([N ∗]−2), it suffices to show that λp−1([N ∗]−2) ≡ 0 mod (1−[L ∗]).
This follows directly from the above lemma.

Finally, we are in a position to prove:

Proposition 5.30. GRR is true for a closed immersion i : Y → X where X,Y are non-singular, quasi-
projective varieties.

Proof. By Corollary 5.23 and the preceding results, it suffices to prove

ch(i∗(y)) = i∗(ch(y) · td(N )−1) (5.102)

when y ∈ K(Y ) and p ≥ dim(Y ) + 2. By Lemma 5.28, we have that g∗(y) · λ−1[F ∗] ≡ mod (1 − [L ∗]).
By Proposition 5.19, this lies in the inverse image j∗(K(X ′)), so we apply the divisor case of GRR to
j : Y ′ → X ′. Thus,

ch(j∗(g
∗(y) · λ−1[F ∗])) = j∗(ch(g∗(y) · λ−1[F ∗]) · td(L )−1). (5.103)

Now, in order to prove (5.104), we establish the following equalities:

1. f∗(ch(j∗(g
∗(y) · λ−1[F ∗]))) = ch(i∗(y))

2. f∗(j∗(ch(g∗(y) · λ−1[F ∗]) · td(L )−1)) = i∗(ch(y) · td(N )−1)

By Lemma 5.27, we observe that the left-hand side of (1) is equal to

f∗(ch(f∗i∗(y))) = f∗f
∗(ch(i∗(y))) = ch(i∗(y)), (5.104)

where the last equality follows from Lemma 5.25. Proving (2) requires a little more work. First, we have

ch(g∗(y) · λ−1[F ∗]) = ch(g∗(y)) · ch(λ−1[F ∗]) = g∗(ch(y)) · ch(λ−1[F ∗]), (5.105)

which, by Lemma 5.24, is equal to

g∗(ch(y)) · cp−1(F ) · td(F )−1. (5.106)
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Furthermore, N ′/L = F implies that

g∗(td(N )) = td(N ′) = td(N ) · td(L ). (5.107)

We apply this to (5.106):

ch(g∗ · λ−1[F ∗] · td(L )−1) = cp−1(F ) · g∗(ch(y) · td(N )−1). (5.108)

Now apply the proper push forward g∗ to the left-hand side and invoke Lemma 5.28

g∗(ch(g∗(y) · λ−1[F ∗] · td(L )−1) = ch(y) · td(N )−1. (5.109)

Finally, we return to our commutative blow-up diagram, which yields f∗j∗ = i∗g∗, and apply i∗ to obtain

f∗j∗(ch(g∗(y) · λ−1[F ∗]) · td(L )−1) = i∗(ch(y) · td(N )−1), (5.110)

which gives (2), and therefore proves the proposition.

Recalling the reduction of Theorem 5.1 (GRR) to the following components:

1. Establish that f : X × Pn → X is projection onto the first factor,

2. Show that f : Y → X is an immersion onto a closed subvariety,

which were respectively established in Corollary 5.11 and Proposition 5.30, the Grothendieck-Riemann-Roch
theorem for non-singular, quasi-projective varieties is finished.

5.5 Applications

In this brief subsection, we continue to follow [1]; however, we provide further applications later in this paper.
Of course, we would be remiss to not include the necessary specialization of Theorem 5.1:

Corollary 5.31. The Grothendieck-Riemann-Roch Theorem implies the Hirzebruch-Riemann-Roch Theo-
rem: for any vector bundle E on a smooth, projective n-dimensional variety X, we have that

χ(X,E) =

∫
X

ch(E) · td(TX). (5.111)

In particular, χ(X,OX) = deg(td(TX)).

Proof. We have already suggested the method of proof in the introduction. Let E be the locally free sheaf
corresponding to E. Consider f : X → Y and Y = {point} and apply the Grothendieck-Riemann-Roch
theorem. In this case, the pushforward f∗ on the Chow ring is simply the degree map

∫
X

. Now we need only
show that ch(f∗[E ]) = χ(X,E). We know that K(point) ∼= Z. Then

f∗[E] =
∑
i≥0

(−1)i[Rif∗(E )] =
∑
i≥0

(−1)i[ ˜Hi(X,E )], (5.112)

by Propositions 4.15. The Chern character takes the rank on Y = {point}. Thus,

ch(f∗[E ]) =
∑
i≥0

(−1)irank(Hi(X,E )) = χ(X,E). (5.113)

The following application is due to Hirzebruch, regarding integration on a complex algebraic fiber bundle.
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Proposition 5.32. Let p : E → B be a complex algebraic fiber bundle with fiber F . Then

p∗(td(TF )) = gtodd(F ) · 1, (5.114)

where gtodd(X) is the Todd genus of a variety X, defined to be the degree of td(TX).

Proof. Consider the short exact sequence

0 // TF // TE // p∗TB // 0 . (5.115)

Using this and the naturally of the Todd class, we have td(TE) = p∗ td(TB) · td(TF ). Then

p∗ td(TE) = td(TB) · p∗ td(TF ), (5.116)

by the Projection formula. Now apply GRR to p and the trivial fiber 1 ∈ K(X) on X:

p∗(td(TX)) = td(TB) · ch(p∗(1)). (5.117)

From (5.110), we get

ch(p∗(1)) = p∗(td(TF )). (5.118)

Now we wish to compute p∗(1). Let U ⊂ B be an open affine for which p : X → U is trivial. Then,
Hi(U,OU ) = 0 for i > 1. Invoking the Künneth formula,

Hq(U × F,OX) =
∑
i+j=q

Hi(U,OU )⊗Hj(F,OF ) = OU (U)⊗Hk(F,OF ). (5.119)

The structure group G of our fiber bundle p : E → B acts trivially on Hk(F,OF ). Hence,

p∗(1) = [OB ] ·

∑
k≥0

(−1)k[Hk(F,OF )]

 . (5.120)

Since p∗(1) is a linear combination of the classes of trivial vector bundles,

ch(p∗(1)) =
∑
k

(−1)k dimHk(F,OF ) ⊂ A0(B). (5.121)

Hence, gtodd(F ) = td(TF ) · [F ] = ch(p∗(1)).
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6 Riemann-Roch Algebra

In this section we follow the approach of [3] in formulating “Riemann-Roch functors,” i.e., covariant-
contravariant pairs satisfying particular axioms with a natural transformation between the contravariant
parts. In this approach Riemann-Roch type theorems can be proved in an entirely algebraic setting, inde-
pendent of underlying geometric considerations.

6.1 A General Situation

Consider two contravariant functors K and A from a category to the category of rings, and a natural
transformation ϕ : K → A. Since the Chern character considered in §5 is the most important example of
this transformation, any such homomorphism

ϕX : K(X) −→ A(X) (6.1)

is simply called a character.

For some morphism f : X → Y , we have pullback homomorphisms:

fK : K(Y )→ K(X), fA : A(Y )→ A(X). (6.2)

When acting as functors to abelian groups, K and A also exhibit covariant behavior with pushforward
homomorphisms

fK : K(X)→ K(Y ), fA : A(X)→ A(Y ). (6.3)

In general, these pushforwards do not commute with the character. However, we can construct an element
τf ∈ A(X) such that the following commutes:

K(X)

fK

��

τf ·ϕX // A(X)

fA

��
K(Y )

ϕY

// A(Y )

(6.4)

When this diagram is commutative a Riemann-Roch type theorem is said to hold. We have already noted
a common thread in Riemann-Roch theorems: for a morphism f : X → Y under consideration, we have a
factorization:

X
i // Pn

p // Y , (6.5)

where i is a closed embedding and p the projection map. From this property we will construct an abstract
formalism of Riemann-Roch functors that allows us to deduce very general Riemann-Roch theorems from
the simple case of i an elementary embedding and p a bundle projection.

6.2 Riemann-Roch Functors

Consider a category C and simultaneously contra- and covariant functors H on C . For each X ∈ ob(C ), H
associates a ring H(X), and for each morphism f : X → Y , homomorphisms

fH : H(Y )→ H(X), fH : H(X)→ H(Y ). (6.6)

These homomorphisms satisfy the following axioms:
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A(1): X 7→ H(X) is a contravariant functor from C to rings via fH .

A(2): X 7→ H(X) is a covariant functor from C to abelian groups via fH .

A(3): For all morphisms f : X → Y and all x ∈ H(X), y ∈ H(Y ), we have a natural projection formula:

fH(x · fH(y)) = fH(x) · y. (6.7)

In particular, fH(fH(y)) = fH(1)y.
In our version of the Grothendieck-Riemann-Roch theorem, these homomorphisms were simply f∗ and

f∗.

Definition 6.1. A Riemann-Roch functor is a triple (K,ϕ,A), where K and A are functors satisfying axioms
A(1)-A(3), and ϕ : K → A is a morphism of contravariant functors, i.e., where for each X, ϕX : K(X) →
A(X) is a ring homomorphism, and

fAϕY (y) = ϕX(fK(y)) (6.8)

for all f : X → Y, y ∈ K(Y ).

We call ϕ the Riemann-Roch character (the Chern character in the previous section). We say that
Riemann-Roch holds for a morphism f if, for some τf ∈ A(X), the following diagram is commutative:

K(X)

fK

��

τf ·ϕ // A(X)

fA

��
K(Y )

ϕ // A(Y )

(6.9)

Equivalently, for all x ∈ A(X),

ϕY fK(x) = fA(τf · ϕX(x)). (6.10)

We call τf the Riemann-Roch multiplier. This element is the measure of the failure of ϕ to be covariantly
functorial. Recall that in the case for non-singular quasi-projective varieties,

τf = td(TX). (6.11)

In particular, when Y is a divisor D on X: td(O(D)) = [D] · (1− e−[D])−1.
The general conditions for Riemann-Roch to hold are given by:

Theorem 6.2. Let f : X → Y and g : Y → Z be morphisms. Assume that Riemann-Roch holds for f and
g with associated multipliers τf and τg. Then Riemann-Roch holds for the composition g ◦ f with multiplier

τg◦f = fA(τg) · τf . (6.12)

Proof. Consider:

ϕZ(gKfK(x)) = gA(τg · ϕY fK(x)) (6.13)

= gA(τg · fA(τf · ϕX(x))) = gAfA(fA(τg) · τf · ϕX(x)), (6.14)

where the equalities follow from Riemann-Roch for g, f , and the projection formula, respectively.

This next theorem gives a means to determine Riemann-Roch multipliers for certain embeddings.
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Theorem 6.3. If fK : K(Y )→ K(X) is surjective, and there is an element τ ∈ A(Y ) such that

ϕY (fK(1)) = fA(1)τ, (6.15)

then Riemann-Roch holds for f with multiplier

τf = fA(τ). (6.16)

Proof. For some x ∈ K(X), let x = fK(y), where y ∈ K(Y ). Then compute

ϕfK(x) = ϕfKf
K(y) = ϕ(fK(1)y) = ϕ(fK(1))ϕ(y) = fA(1)τϕ(y) (6.17)

= fA(fA(τϕ(y))) = fA(fA(τ)fAϕ(y)) = fA(fA(τ)ϕfK(y)) = fA(τfϕ(x)). (6.18)

6.3 Chern Class Functors

We can specify Riemann-Roch functors to the case of Chern classes. A Chern class functor on C is a triple
(K, c,A) where K and A are functors satisfying axioms A(1)-A(3) for each X ∈ C and c is a Chern class
homomorphism:

cX : K(X) −→ 1 +A(X)+. (6.19)

This homomorphism must satisfy the following axioms:

C(1): Each K(X) is a λ-ring with involution, and fK is a homomorphism of λ-rings.

C(2): Each A(X) is a graded ring, and fA is a graded ring homomorphism of degree 0.

C(3): For f : X → Y and y ∈ K(Y ), we have

fAc(y) = c(fK(y)). (6.20)

We know that fA and fK are ring homomorphisms, so when A is a Q-algebra, we have the functorial
rules

fA ch(y) = ch(fK(y)), fA td(y) = td(fK(y)). (6.21)

Thus, if X 7→ (K(X), cX , A(X)) is a Chern class functor, then

X 7→ (K(X), chX , A(X)⊗Z Q) (6.22)

is a Riemann-Roch functor.

6.4 Elementary Embeddings and Projections

A morphism f : X → Y is an elementary embedding with respect to the Chern class functor (K, c,A) if

fK : K(Y ) −→ K(X) (6.23)

is surjective, and there exists a positive element q ∈ K(Y ) (the principal element) such that

fK(1) = λ−1(q), fA(1) = ctop(q∗). (6.24)

The surjectivity condition on fK holds when there is a morphism p : Y → X where p ◦ f = idX .

We can explicitly determine our multiplier using the principal element. For (K, ch, AQ) we have the
following:
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Theorem 6.4. Riemann-Roch holds for elementary embeddings, with multiplier

τf = td(fKq∗)−1. (6.25)

Proof. This theorem follows from Theorem 6.3 and the fact that td(x) ch(λ−1(x∗)) = ctop(x) (see Lemma
5.24) for some positive element x.

We can also consider the “dual” situation where f : X → Y is an elementary projection, which imposes
isomorphism conditions on fK : K(X) → K(Y ). We will not go into a full exposition of this, but again we
can explicitly find the Riemann-Roch multiplier τf for this case.

This section tells us that, to prove Riemann-Roch for a morphism f with respect to (K, ch, A), it suffices
to factor f = p ◦ i, where p is an elementary projection and i is an elementary embedding (or admits a basic
deformation to an elementary embedding).
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7 Grothendieck’s γ-Filtration

In this section we explore a celebrated consequence of the Grothendieck-Riemann-Roch theorem: the Chern
character induces a multiplicative isomorphism

ch : K0(X)⊗Z Q ∼−→ A∗(X)⊗Z Q . (7.1)

This can be generalized further; indeed, we consider the λ-ring structure ofK(X) and using Grothendieck’s
γ-filtration, construct a graded object GrK(X) such that we have the following isomorphism:

ch : K(X)⊗Z Q ∼−→ GrK(X)⊗Z Q . (7.2)

This γ-filtration was developed by Grothendieck in order to replace the more natural “topological”
filtration on K0(X). Let X be a Noetherian scheme. Then, the topological filtration is given by FnX/Fn+1X
where FnX is the subgroup of K0(X) generated by the classes of sheaves F for which codim(supp(F )) > n.
There are, however, two issues with the topological filtration:

1. It can be applied to K0(X) only when K0(X) = K0(X).

2. Even when we have this equality, we do not know if it is compatible with the ring structure of K0(X).
An affirmative answer is only known for varieties over a field.

Grothendieck tackled these problems by defining the γ-filtration on K0(X). We shall describe this filtration,
construct a new graded K(X) associated to it, and finally prove that the Chern character is an isomorphism.
This could be done in the algebraic context of the above section; however, we restrict ourselves to the more
classical methods in [7].

Definition 7.1. There are operations γi : K(X)→ K(X) for i = 0, 1, 2, . . . given by

γt(x) =

∞∑
i=0

γi(x)ti = λ t
1−t

(x) =
∑

λi(x)(t+ t2 + · · · ) ∈ 1 + tK(X)[[t]]. (7.3)

Such operations also satisfy:

P(1): γt(x+ y) = γt(x) · γt(y);

P(2): γt(1) = 1 + t
1−t = 1

1−t ; γt(−1) = 1− t;

P(3): Let ` be the class of some invertible sheaf F . Then

γt(`− 1) = γt(`)γt(−1) = 1 + t(`− 1), γt(1− `) =
1

γt(`− 1)
=

∞∑
i=0

(1− `)iti. (7.4)

Definition 7.2. There is a filtration on the ring K(X) given by

F 1K(X) = ker(ε : K(X)→ Z), (7.5)

where ε is the homomorphism that maps the class of a locally free sheaf on X to the rank of its stalk.
Furthermore, we define FnK(X) to be the Z-module generated by elements {γr1x1, . . . , γ

rk
k xk} where xi ∈

F 1K(X) and
∑
ri ≥ n.

It is immediate that this is a filtration. Also, Fn is an ideal for all n since

xγr1(x1) · · · γrk(xk) = (x− ε(x))γr1(x1) · · · γrk(xk) + ε(x)(· · · ), (7.6)

and the first term is in Fn+1.
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Proposition 7.3. When the additive subgroup of the ring K(X) is generated by classes of invertible sheaves
on X

F iK(X) = (F 1K(X))i. (7.7)

Proof. Let `i be classes of invertible sheaves on X. We have that

(`1 − 1) · · · (`i − 1) = γ1(`1 − 1) · · · γi(`i − 1), (7.8)

so (F 1K(X))i ⊂ F iK(X). Conversely, we need only prove that γi(x) ∈ (F 1)i for all i ≥ 1 and x ∈ K. This
is immediate by γj(1− `) and γj(`− 1), which were calculated in P(3).

Example 7.4. Take ` = k(O(1)). Then F iK(Prk) = ((`− 1)i).

Proposition 7.5. Suppose there is an ample sheaf on X. Then F 1K(X) is the nilradical of the ring K(X).

Proof. It follows from the Splitting Principle that we need only show that elements of the form ` − 1 are
nilpotent. We know there is an ample sheaf OX(1) on X where we have a twisting operation, so for a
sufficiently large integer n there is an integer m and an exact sequence

Om
X

// L −1(n) // 0 . (7.9)

Thus,

L ⊗Om
X(−n) // OX

// 0. (7.10)

Let `1 = [OX(1)]. Then the kernel of the final homomorphism above is locally free with rank m− 1. Thus,
in K(X), we have

0 = λm(m``−n1 − 1) =

m∑
i=0

(−1)m−iλi(m``−n1 ) (7.11)

= (−1)mλ−1(m``−n1 ) = (−1)m(λ−m(``−n1 ))m = (−1)m(1− ``−n1 )m. (7.12)

Finally we note that

(1− `) = 1− ``−n1 + `(`−n1 − 1), (7.13)

and both summands are nilpotent if n is large enough.

Corollary 7.6. If x ∈ F 1K(X), then γt(x) is a polynomial.

We now compute a specific example of this filtration:

Theorem 7.7. Let E ∈ Loc(X) be of rank r + 1, and let x = [OP(E )(1))]− 1. Then

F kK(P(E )) =

r∑
i=0

F k−iK(X)xi. (7.14)

Proof. We begin by showing that this equality holds for the infinite sum

∞∑
i=0

F k−iK(X)xi = ΩkK(P(E )). (7.15)
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Ωk is a filtration of the ring K(P(E )) and Ωk(K(P(E )) ⊂ F kK(P(E )). We must prove the reverse inclusion.
It suffices to show that

γk(y) ∈ ΩkK(P(E )) (7.16)

for all k ≥ 1 and all y in a set of generators for F 1K(P(E )).
For this system of generators we choose elements α(`m − 1) where α ∈ K(X), ` = x + 1,m ≥ 1, and

β ∈ F 1K(X).
It is clear that γk(K(X)) ⊂ ΩkK(P(E )). Then we must show

γk(α(`m − 1)) ⊂ Ωk(K(P(E )). (7.17)

Let `1, `2 be the classes of two invertible sheaves F 1,F 2 on a scheme. Set x1 = `1 − 1, x2 = `2 − 1 and
x1,2 = `1`2 − 1. Then, by P(3) and the fact that x1,2 = x1x2 + x1 + x2, we have

γk(x1x2) = γk(x1,2 − x1 − x2) =
∑

p+q+r=k

γpx1,2γ
q(−x1)γr(−x2) (7.18)

=
∑
q+r=k

(−x1)q(−x2)r + (x1x2 + x1 + x2)
∑

q+r=k−1

(−x1)q(−x2)r =

∞∑
i=0

Pi,k(x1)xi2, (7.19)

where the non-zero lowest term of the polynomial Pi,k has deg ≥ k − i. Now set α =
∑
j(`

j
1 − 1). Letting

xj1 − `
j
1 − 1, by P(1) we have

γk(αx2) =

∞∑
i=0

Qi(x
j
1)xi2, (7.20)

where Qi is the symmetric polynomial in the xj1 such that the lowest non-zero homogeneous component has

degree ≥ k − i. Let Sn be the n-th elementary symmetric function in the xji . Weight Sn by n to see that

Qix
j
1 can be written as a polynomial Ri(Sn) where each non-zero monomial has weight ≥ k − i. By P(1),

Sn = γn(α), so

γk(α(`m − 1)) =

∞∑
i=0

Ri(γ
1α, · · · , γkα, ] · · · )(`m − 1)i, (7.21)

where Ri(γ
1α, · · · , γkα, · · · ) ∈ F k−iK(X). By the Splitting Principle, this is true for arbitrary α ∈ K(X)

that represent classes of F −rk(F ) with F ∈ Loc(X). These α generate the entire additive group K(X).
Finally, noting that

(`m − 1)i = xi(`m−1 + · · ·+ 1)i = xif(x), (7.22)

where f is a polynomial with integer coefficients, we get

F kK(P(E )) =

∞∑
i=0

F k−iK(X)xi. (7.23)

Now to show that this infinite sum is equal to
∑r
i=0 F

k−iK(X)xi, we use a polynomial identity for x over
K(X):

Lemma 7.8. For e = [E ] and r + 1 the rank of E , we have that

r+1∑
i=0

(−1)iγi(e− r − 1)xr+1−i = 0. (7.24)
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Proof. We have that

γt(e− r − 1) =
γt(e)

γt(r + 1)
= (1− t)r+1λ t

1−t
(e) =

r+1∑
i=0

λi(e)ti(1− t)r+1−i, (7.25)

and so γt(e− r − 1) is a polynomial of degree ≤ r + 1. Thus,

r+1∑
i=0

γi(e− r − 1)tr+1−i = trγ1/t(e− r − 1) =

r+1∑
i=0

λi(e)(t− 1)r+1−i. (7.26)

Setting t = 1− ` = −x, we have

r+1∑
i=0

γi(e− r − 1)(−1)ixr+1−i =

r+1∑
i=0

λi(e)(−1)r+1−i`r+1−i = 0, (7.27)

which proves the lemma.

Thus, for all k ≥ r + 1, we have

xk ∈
k−1∑
i=0

F k−iK(X)xi. (7.28)

Inducting on k − r:

xk ∈
r∑
i=0

F k−iK(X)xi, (7.29)

and we are done.

Corollary 7.9. In the same situation as above:

f∗(F
kK(P(E ))) ⊂ F k−rK(X). (7.30)

Proof. By the Projection formula

f∗(f
∗y · xi) = f∗(x

j) · y, (7.31)

we have

f∗(F
iK(X) · xj) ∈ F iK(X). (7.32)

Invoking the previous theorem, we have our result.

7.1 The Chern character isomorphism

We can associate a graded ring to the γ-filtration defined in the previous subsection:

GrK(X) =

∞⊕
k=0

F kK(X)/F k+1K(X). (7.33)

We write Gri for the i-th graded component of F k/F k+1.

Our goal will be the following theorem:
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Theorem 7.10. The Chern character induces an isomorphism of K(X)⊗Z Q with GrK(X)⊗Z Q.

In order to prove this result, we will define a generalized Chern character for this situation, show that it
is a ring homomorphism, and finally construct its inverse.

Definition 7.11. Let E ∈ Loc(X). Then

ci(E ) = γi([E ]− rk(E )) mod F i+1K(X) ∈ GriK(X) (7.34)

is the i-th Chern class of E for i ≥ 1.

This definition of the Chern class inherits all necessary properties of a characteristic class:

CC(1): For an invertible sheaf L on a scheme X, we have

ci(L ) =

{
[L ]− 1 mod F 2K(X), i = 1

0 i > 1.
(7.35)

CC(2): For any morphism f : Y → X of schemes, we have

ci(f
∗(E )) = Grf∗(ci(E )), (7.36)

where Grf∗ : GrK(X)→ GrK(Y ) is induced by the ring homomorphism f∗ compatible with the γ-filtration.

CC(3): Setting ct(E ) = 1 +
∑∞
i=1 ci(E )ti, we have

ct(E ) = c1(E ′) · ct(E ′′), (7.37)

for any short exact sequence 0→ E ′ → E → E ′′ → 0.

CC(4): We have that

GrK(P(E )) = GrK(X)[x] (7.38)

where x = [OP(E )]− 1 mod F 2K(P(E )) satisfies

r+1∑
i=0

(−1)ici(E )xi = 0. (7.39)

(7.40)

CC(5): When i > rk(E ), ci(E ) = 0. Also, the mapping E 7→ ct(E ) can b extended to a group homomor-
phism

ct : K(X) −→ 1 +

∞⊕
i=1

GriK(X)ti. (7.41)

Note that all of these properties are simply reformulations of Grothendieck’s axiomatization of charac-
teristic classes.

Definition 7.12. The Chern character of a locally free sheaf E on a scheme X is the element

ch(E ) ∈ GrK(X)⊗Z Q (7.42)
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given by

ch(E ) =
∑

exp(αi(E )), (7.43)

where the αi(E ) come from the identity

ct(E ) =

rk(E )∏
i=1

(1 + αi(E )t). (7.44)

Proposition 7.13. There is a ring homomorphism

ch : K(X) −→ GrK(X)⊗Z Q (7.45)

uniquely determined by ch([E ]) = ch(E ) for all locally free sheaves E of finite rank on X.

Proof. From CC(3), for any exact sequence of locally free sheaves 0→ E ′ → E → E ′′ → 0, we have

ch(E ) = ch(E ′) + ch(E ′′). (7.46)

By the Splitting principle and CC(1), we have∏
i

(1 + αi(E
′⊗E ′′)t) =

∏
i,j

(1 + (αi(E
′) + αj(E

′′))t, (7.47)

so ch(E ′⊗E ′′) = ch(E ′) · ch(E ′′).

In order to prove that the Chern character is an isomorphism, we must construct its inverse: the Adams
operation.

Definition 7.14. Consider a λ-ring K. The Adams power series and Adams operations ψj : K → K are
given by

ψt(x) = ε(x)− t d
dt

log λ−t(x) =

∞∑
j=0

ψj(x)tj (7.48)

Proposition 7.15. The Adams operations ψj satisfy:

1. ψj(`) = `j if ` is the class of an invertible sheaf.

2. For all j, the map ψj is a ring homomorphism.

3. ψi(ψj(x)) = ψij(x) for all x ∈ K and all i, j.

The properties are essentially immediate. However, the behavior of the Adams operations with respect
to the γ-filtration is much less trivial.

Proposition 7.16. Let j ≥ 1. Let n ≥ 0 be an integer. If x ∈ Fn, then

ψj(x)− jnx ∈ Fn+1K(X). (7.49)

Thus, GrnK is an eigenspace for Grψj with eigenvalue jn.
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Proof. The result is trivial for n = 0. It suffices to prove the result for elements x = γny where y runs
through an additive basis of the additive group X. We take classes of locally free sheaves for y and apply
the Splitting principle and Theorem 7.7, in order to reduce to the case where

x =

n∏
k=1

(`k − 1) (7.50)

and as usual `i are classes of invertible sheaves. Then

ψj(x) =

n∏
k=1

(`k − 1) =

n∏
j=1

(`k − 1)

n∏
k=1

(`j−1
k + · · · 1). (7.51)

We see that

`j−1
k + · · ·+ 1 ≡ j mod F 1K(X). (7.52)

Thus, ψj(x) ≡ jnx mod Fn+1K(X).

Corollary 7.17. Let Vm be the subspace of K(X) ⊗Z Q corresponding to the eigenvalue jm of the Adam
operator ψj for j ≥ 2. Then, if F d+1K(X) = 0 for some integer d, we have

K(X)⊗Z Q =

d⊕
m=0

Vm (7.53)

and the Vm is independent of j.

Proof. From the above proposition, it follows that

d∏
n=0

(ψj − jn) = 0 (7.54)

as an operator of K(X), and thus we can write the identity operator on K(X) ⊗ Q as a decomposition of
direct sum pairwise orthogonal projections

1 =

d∑
n=0

∏
m6=n

(ψj − jm)/(jn − jm). (7.55)

Then the image of the m-th projection is just Vm.

To verify the independence from j, we write Vm as Vm,j . From the above proposition,∏
m 6=n

(ψj − jn)(ψm − km) = 0 (7.56)

for any k ∈ N. Thus, Vm,j ⊂ Vm,k and so Vm,j = Vm.k = Vm by symmetry.

We now define a ring homomorphism

g : GrK(X)⊗Q −→ K(X)⊗Q . (7.57)

For each non-zero x ∈ GrmK(X) ⊗ Q with m ≥ 1, let g(x) ∈ K(X) ⊗ Q denote the element g(x) ∈
FmK(X)⊗Q such that

1. x = g(x) mod Fm+1K(X)⊗Q
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2. ψp(g(x)) = pmg(x), p ≥ 2

Note that g is a well-defined ring homomorphism because g(x) is single-valued.
We can now prove out main result, Theorem 7.10, by showing that ch and g are ring homomorphisms

inverse to one another:

Proof. We consider elements x in the subring K(X) (resp. GrK(X)) generated by classes of invertible
sheaves. Let x = `− 1 mod F 2K(X) ∈ Gr1K(X) with ` the class of an invertible sheaf. Then

g(x) = log(1 + (`− 1)) =

∞∑
n=1

(−1)n
(`− 1)n

n
. (7.58)

It is immediate that the right-hand side mod F 2 is equal to ` − 1 in F 1/F 2 = Gr1. Then, since ψj is a
ring homomorphism, we can apply ψj term-wise to get the eigenspace property for the expression on the
right-hand side.

Now, simply by definition,

ch(`− 1) = ex − 1 ∈ GrK(X)⊗Q, (7.59)

and so

g ◦ ch(`− 1) = `− 1, ch ◦g(x) = x (7.60)

and we are done.
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A Lemmata for §4.4

Here we collect a few results needed to prove the equality of K0(X) and K0(X).

Proposition A.1. Let 0 → E → F → F ′ be an exact sequence of OX-modules with F ,F ′ locally free
sheaves. Then E is locally free.

Theorem A.2. (Syzygy Theorem) Let A be a regular local ring of dimension n and M a finitely generated
A-module. Then M has a resolution by free A-modules of length n.

Lemma A.3. Suppose that X is non-singular with dim(X) = n. Let F be a coherent sheaf and suppose
that

0 // K // G k
// · · · // G 1

// G 0
// F // 0 (A.1)

is an exact sequence of coherent sheaves, with G i a locally free sheaf on X when 0 ≤ i ≤ k. Then K ∈ Loc(X)
whenever k ≥ n− 1.

Proof. First, note that K is coherent. We can localize the sequence and apply the Syzygy theorem to
conclude that Kx is a finitely generated free OX,x-module when k ≥ dim OX,x−1. Finally, observe that

n− 1 ≥ codim({x}, X)− 1 = dim OX,x−1 for all x ∈ X.

Corollary A.4. Let X be a non-singular quasi-projective variety and let F ∈ Coh(X). Then there is a
finite locally free resolution of F . That is,

0 // G n
// G n−1

// · · ·G 0
//// F // 0 (A.2)

with G i ∈ Loc(X) for all i.

Lemma A.5. Suppose that X is quasi-projective. Let A ,B,C ∈ Coh(X) and let u : A → B and v : C → B
be surjective morphisms. Then there is a locally free OX-module E and morphisms u′ : E → A and
v′ : E → C such that the compositions u ◦ v′ and v ◦ u′ are surjective:

E

u′

��

v′ // A

u

��
C

v
// B

. (A.3)

Proof. Let D be the sub sheaf of A ⊕C of pairs (x, y) which have the same image in B. Then the projections
D → A and D → C are surjective, since u and v are, and form a commutative square. Furthermore, D is
coherent. Now by Serre’s theorem, write D as the quotient of a locally free sheaf E → D , and define u′ and
v′ by composing the projections with the quotient map.

Lemma A.6. Suppose that X is quasi-projective. Let 0→M → E → B → 0 and 0→M ′ → E ′ → B′ → 0
be two exact sequences in Mod(X) with E ,E ′ ∈ Loc(X). Suppose that B′′ ∈Mod(X) and we have surjections
B′′ → B and B′,′ → B′. Then we have a commutative diagram

0 //M // E // B // 0

0 //M ′′

OO

��

// E ′′

OO

��

// B′′

OO

��

// 0

0 //M ′ // E ′ // B′ // 0

(A.4)

where all rows are exact and all vertical morphisms are surjective.

Proof. This amounts to checking the requisite properties. See [1].
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