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The Binomial QMF-Wavelet Transform for 
Multiresolution Signal Decomposition 

Ali N.  Akansu, Member, IEEE, Richard A. Haddad, Senior Member, IEEE, and Hakan Caglar 

Abstract-This paper describes a class of orthogonal binomial 
filters that provide a set of basis functions for a bank of perfect 
reconstruction (PR) finite impulse response quadrature mirror 
filters (FIR QMF). These binomial QMF’s are shown to be the 
same filters as those derived from a discrete orthonormal 
wavelet transform approach by Daubechies. These filters are 
the unique maximally flat magnitude square PR QMF’s. It is 
shown that the binomial QMF outperforms the discrete cosine 
transform objectively for AR(1) sources and test images con- 
sidered. 

I. INTRODUCTION 
Perfect reconstruction quadrature mirror filters (PR 

QMF’s) have been proposed as structures suitable for hi- 
erarchical subband coding [ ll-[4], and also for multires- 
olution signal decomposition as might be used in image 
pyramid coding [ 5 ] .  More recently, multiresolution signal 
decomposition methods are being examined from the 
standpoint of the discrete wavelet transform for continu- 
ous-time signals [6]-[8]. In this paper, we describe a class 
of orthogonal binomial filters that provide basis functions 
for a perfect reconstruction bank of finite impulse re- 
sponse QMF’s. The orthonormal wavelet filters derived 
by Daubechies 171 from a discrete wavelet transform ap- 
proach are shown to be the same as the solutions inherent 
in the binomial-based filters. 

The energy compaction performance of the binomial 
QMF decomposition is computed and shown to be better 
than the DCT for the Markov source models, as well as 
real-world images considered. The proposed binomial 
structure is efficient, simple to implement on VLSI, and 
suitable for multiresolution signal decomposition and 
coding applications. 

11. THE BINOMIAL-HERMITE FAMILY 
The binomial-Hermite sequences [9] are a family of fi- 

nite duration discrete polynomials weighted by a Gauss- 
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ian-like binomial envelope. These sequences are orthog- 
onal on [0, NI with respect to a weighting function [lo]. 
The binomial sequence ( y )  is the generating function of 
this family; the other members are obtained by successive 
differencing of this kernel. 

In this section, we summarize a few features of the bi- 
nomial-Hermite family. The generating function of this 
family is 

otherwise. L O ?  
Successive differencing 

leads to 

where k ( “ )  is a polynomial in k of degree v 

A network realization of this family of filters is shown 
in Fig. 1.  This structure represents an interconnection of 
add and difference operators, in  a purely nonrecursive FIR 
form. Yet, another configuration arises from the represen- 
tation 

This form, ( 5 )  suggests the bank of filters shown in Fig. 
2.  The advantage of this structure is evident-the entire 
family is obtained by simply tapping off the appropriate 
point in Fig. 2. Since each (1 - z- ’ ) / ( l  + z - I )  block 
can be synthesized with one delay element, the pole-zero 
cancellation structure of Fig. 2 can be synthesized with 
2N delay elements as compared with N 2  delays in Fig. 1. 

1053-587>(/93$3.00 0 1993 lEEE 

Authorized licensed use limited to: Ali Akansu. Downloaded on April 22, 2009 at 16:57 from IEEE Xplore.  Restrictions apply.



14 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 41, NO. 1 ,  JANUARY 1993 

- f ( k )  

r I  

M k )  ~ - ~ L t - : ~ ~ - . +  1 ---I 1---I I-*-’ H 1 -*-I  /.-- 

Fig. 1 .  Bank of binomial-Hermite filters realized using N Z  delay elements. 
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The pole-zero cancellation implicit in ( 5 )  can be achieved 
exactly since all coefficients are k 1. However, care must 
be taken to clear all registers before data is inputted to the 
front end of the filter. That is to say, the initial state must 
be zero to ensure stability. At any rate, either realization 
is achieved without multiply operations. 

For a given N ,  we define the cross correlation of the 
sequences x, (n) ,  and x, (n )  by 

N 

pr.y(n) = xr(n> * x s ( - n )  C xr(k)xs(n + k )  * Ri-s(z) 
k = O  

111. TWO-CHANNEL PR-QMF BANK 
The conditions for perfect reconstruction in the proto- 

type two-channel FIR filter bank of Fig. 3 have been de- 
termined by several authors [ l ] ,  [4]. Tracing the signals 
through top and bottom branches gives the reconstructed 
signal as 

(1 1) R(z) = T ( z ) X ( z )  + S ( x ) X ( - z )  

T(z)  = ;[HI ( z )  K ,  ( I )  + H2 ( z )  K2 (z>l 

where 

S ( z )  = ;tH,(-z)Kl ( z )  + H2(-z)K2(z) l .  (12) (6) 
and 

Perfect reconstruction requires 

i) S(z) = 0 for all z (13) 
R, ( z )  = x, ( z  - I )  x, ( z )  . (7) 

p r s ( - n )  = LJ,,(n) v s, r .  (8) 

Now for any real cross correlation 
ii) T ( z )  = C Z - ~ ”  c a constant. (14) 

Furthermore, The choice of 

p , ( n )  = -p , , (n)  (s - r) is odd K , ( z )  = -H2(-z)  

p,(n) = p, , (n)  (s - r) is even. (9) 

We can build up higher order matrices from 
lower order ones. Using superscript notation, we can eas- 
ily show that 

satisfies the first requirement S(z) = 0 and eliminates the 
Next, with Odd, One can choose 

H*(z)  = Z - N H I ( - z - i )  (15) 

leaving us with the familiar R;:+”(z) = ( z  + 2 + z - l ) R y ( z )  

p;:+I’(k) = (6k+l + 26/, + 8k-I) * p ! y ) ( k ) .  

or T(z)  = ; z - N [ H ,  (Z>HI ( z - ’ )  + HI (-z)H1 ( - Z P ) l .  

(10) (16) 

Therefore, with these constraints, this perfect reconstruc- 
tion requirement reduces to finding an N ( z )  = HI ( z )  such 

These cross correlations will be used later in the design 
of binomial QMF. 
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P- 

that IV. THE BINOMIAL QMF 

Q ( z )  = H ( z ) H ( z - ' )  + H ( - z ) H ( - z - ' )  = constant It is now a straightforward matter to impose PR con- 
dition of (24)  on the binomial family. First, we take as 

= R ( z )  + R(- z ) .  ( 1 7 )  the low-pass filter 
This selection implies that all four filters are causal when- 
ever HI ( z )  is causal. h ( n )  = C erx r (n )  

a spectral density function and hence is representable by 
a finite series of the form H ( Z )  = C e r ( i  + z - l ) N - r ( i  - z - I ~  

( N -  I ) / 2  

r = O  The PR requirement (17) can be readily recast in an 
alternate time domain form. First, one notes that R ( z )  is or 

( N -  1 ) / 2  

r = O  

+ Y 0 Z 0  - - (1 + z - ' ) ( N +  (25) R(z) = yNZN + yN-lzN-l + * .  . 

yNZ-N (18) where F ( z )  is FIR filter of order (N - 1 ) / 2 .  For conven- 
ience, we take BO = 1 ,  and later impose the normalization 
of (23).  Substituting (25) into (20) gives 

+ . . .  
Then 

R(- z )  = - y N z N  + y N - I z N - '  - * * YOZO 6 -  1J/2 ( N -  1J/2 

- y l z - l  . . . - y N Y N .  (19) P ( n )  = ( r = O  erxr (n) )  s = O  esx,(n) 

Therefore, Q ( z )  consists only of even-powered z .  To force ( N -  1 ) / 2  ( N -  1J/2  

Q ( z )  = constant, it suffices to make all even-indexed coef- = C C ere,rxr(n) o x s ( 4 1  
r = O  T = O  ficients in R ( z )  equal to zero except yo. 

However, the y n  coefficients in R ( z )  are simply the ( N  - 1) /2  ( N -  1 ) / 2  

r = O  r = O  
samples of the autocorrelation p ( n )  given by = ere>Prs(n) 

N 

p ( n )  = c h ( k ) h ( k  + n)  = p ( - n )  
i = O  

def 
= h(n )  0 h ( n )  

where o indicates a correlation operation. This follows 
from the z-transform relationships 

R ( z )  = H ( z ) H ( z - ' )  +.+ h ( n )  * h ( - n )  = p ( n )  (21) 

where p ( n )  is the convolution of h ( n )  with h ( - n ) ,  or 
equivalently, the time autocorrelation (20) .  

Hence, we need to set p ( n )  = 0 for n even, and n # 
0. Therefore 

N 

p(2n) = C h ( k ) h ( k  + 2n) = 0 ,  n # 0.  (22) 
X = O  

If the normalization is imposed 
N 

C (h(k)I2  = 
k = O  

one obtains the PR requirement as 
N 

c h ( k ) h ( k  + 2n) 
k = O  

( N -  I J /2  ( N -  1J/2  ( N -  1)/2 

= C et.Prr(n) + C eresPrs(n) 
r = O  r = O  s = O  

r f  5 

(26) 

where prs(n)  is given by ( 6 )  and (8). Equation (9) implies 
that the second summation in (26) has only terms where 
the indices differ by an even integer. Therefore, the au- 
tocorrelation for the binomial half-bandwidth low-pass 
filter is 

( N -  1 ) / 2  

~ ( n )  = e:Prr(n) 
I1 = 0 

(27) 

1 (23) Finally, the PR requirement is 

p(n)  = 0, IZ = 2 ,  4 ,  * , N - 1. (28) 

This condition gives a set of ( N  - 1 ) / 2  nonlinear alge- 
braic equations, in the (N - 1 ) / 2  unknowns e l ,  e2, , 
O0- 

(24) = &,. 
These equations were solved using Macsyma. 
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1 - 2-1 

1 + 2-1 
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(1 +&)(I - 2-1) 

Low-pass High-pass 
W.1 

Fig. 4. Low-pass and high-pass QMF filters from binomial network 

e, = 1 
(1 + 2-1y I\ 

(I + z - ~ ) ~  (1 + 2-1)(1 - 2-1) 

-eo 
(1 - 2-1)2 Y I\ 

Fig. 5. Low-pass and high-pass QMF's using direct form binomial stmcture of Fig.  I 

The implementation of these half-bandwidth filters is TABLE I 
8, VALUES FOR N = 3. 5. 7 trivially simple and efficient using either the purely FIR 

latter is shown in Fig. 4 for N = 5 ,  wherein both low- 
structure, or the pole-zero cancellation configuration. The 0, Set 1 Set 2 Set 3 Set 4 

pass and high-pass filters are simultaneously realized. Fig. 
5 shows the QMF bank using the direct form. Coefficient 
Bo can be taken equal to unity, leaving only and O2 as 
tap weights. These are the only multiplications needed 
when using the binomial network as the half-bandwidth 
QMF rather than the six h ( n )  weights in a transversal 
structure. 

The values of O r ,  for N = 3 ,  5, 7 ,  (corresponding to 4, 
6, 8 tap filters, respectively) are given in Table I (where 

= 1). As seen, there is more than one filter solution for 
a given N .  For example, with N = 3 ,  one obtains 8, = 

h, and also e l  = -h. The positive O 1  corresponds to 

N = 3  

1 
;J -Js 0" 

0 ,  

N = 5  

N = l  

80 1 1 I 1 
8 ,  4.9892 -4.9892 1.0290 - 1.0290 

a minimum phase solution, while the negative O 1  provides 0 2  8.9461 8.9461 -2.9105 -2.9105 
5.9160 5.9160 -5.9160 5.9160 a nonminimum phase filter. The magnitude responses of 

both filters are identical. Although in our derivation, no 
linear phase constraint on h(n )  was imposed; it is note- 
worthy that the phase responses are almost linear, the 
nonminimum phase filters even more so. The magnitude 
and phase responses of these minimum phase binomial 
QMF's are given in Fig. 6 for the cases N = 3 ,  5 ,  7 .  

Table I1 provides the normalized 4, 6, 8 tap filter coef- 
ficients h ( n )  for both minimum and nonminimum phase 
cases. 

We may recognize that these filters are the unique max- 
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2 0 0  4 I 

- *  O0 1 
Fig. 6.  (a) Amplitude and (b) phase responses of minimum phase binomial 

QMF's for N = 3, 5 ,  7. 

TABLE I1 
BINOMIAL QMF-WAVELET FILTERS h (n) FOR = 3, 5 .  7 

4 
n tap 

6 
tap 

8 
tap 

- 
0 
I 
2 
3 
4 
5 
6 
7 

Miniphase 

0.48296291314453 0.33267055439701 
0.83651630373780 0.80689151040469 
0.22414386804201 0.45987749838630 

-0.12940952255126 -0.13501 102329922 
-0.08544 1272 12359 

0.03522629355424 

0.2303778 IO98452 
0.71484656725691 
0.63088077 I85926 

-0.02798376387108 
-0.18703481339693 

0.03084138344957 
0.032883018959 13 

~ 0.0 I059739842942 

- 

0 
1 
2 
3 
4 
5 
6 
7 

0 
1 
2 
3 
4 
5 
6 
7 

0 
1 
2 
3 
4 
5 
6 
7 

Nonminimum Phase 

-0. I294095225512 0.0352262935542 -0.0105973984294 
0.2241438680420 -0.08544 1272 1235 0.0328830 18959 1 
0.8365163037378 -0.13501 IO232992 0.0308413834495 
0.4829629131445 0.4598774983863 -0.1870348133969 

0.8068915 104046 -0.0279837638710 
0.3326705543970 0.63088077 18592 

0.7 148465672569 
0.2303778109845 

-0.0757657 137833 
-0.02963552921 17 

0.4976186593836 
0.8037387521 124 
0.2978578 127957 

-0.09921953 17257 
-0.0126039690937 

0.0322230981272 

0.0322230981272 
-0.0 I26039690937 
-0.0992 1953 I7257 

0.2978578127957 
0.8037387521 124 
0.4976 186593836 

-0.02963552921 17 
-0.0757657137833 

imally flat PR QMF solutions. In fact, it can be shown 
that the PR requirements of (17) are satisfied if we choose 
the 0, coefficients to satisfy maximally flat requirements 
at w = 0, and w = T .  Explicitly, with R ( w )  = IH(e j" ) (* ,  
we can set 8, to satisfy 

R(0)  = 1, R(7r) = 0 

Herrmann [ 111 provides the unique maximally flat func- 
tion on the interval [0, 11. This function can be easily 
mapped onto the Z plane to obtain the maximally flat mag- 
nitude square function R ( z )  [ 121, [19]. Now, one can ob- 
tain the corresponding H(z) from R ( z )  via factorization. 
This approach extends Herrmann's solution to the PR 
QMF case. The explicit form of R(z )  is given later in (31). 

V. ORTHONORMAL WAVELET TRANSFORMS A N D  THE 
BINOMIAL QMF 

The orthonormality condition on wavelet transforms 
leads to the wavelet filters that are PR QMF's themselves. 
Therefore, the theory of orthonormal wavelet transforms 
is strongly associated with the theory of orthonormal two- 
band PR QMF filter banks. We have demonstrated that 
the binomial QMF's are identical to the wavelet filters 
proposed by Daubechies [7]. Since wavelet approxima- 
tions are made in the continuous domain, some regularity 
on the wavelet function is desired. This regularity ac- 
tually implies the degree of differentiability of the wavelet 
basis functions. It imposes conditions on the correspond- 
ing wavelet filters. Since the design of wavelet bases starts 
with the design of the wavelet filters, one should define 
the connection between the PR QMF design and the be- 
havior of the corresponding continuous-time wavelet 
functions. Daubechies showed that the number of zeros 
of the wavelet filters at w = 7r is related to the regularity 
of the corresponding wavelet function [7]. 

The regularity concept is unique to wavelet filters. 
Conventional PR QMF design does not invoke this re- 
quirement explicitly, except that the zero-mean condition 
on the high-pass QMF implies some degree of regularity. 
The binomial QMF has this feature inherent. The regu- 
larity tool suggested in [7] assumes a low-pass interscale 
sequence or filter of length N + 1 

Here, F ( z )  is a polynomial of degree ( N  + 1)/2 5 I 5 
N ,  such that k + I = N .  

If k = ( N  + 1)/2,  the maximum number of zeros of 
H ( z )  are located at w = 7r. Therefore, F ( z )  is of degree 
( N  - 1)/2.  But the binomial QMF, H(z) in (25), can now 
be written as 
H(z) = ( 1  + z-')"+I)/* 

( N -  I ) / *  

. C O,(l + ~ - ' ) " - ' ) ' ~ ' - ~ ( l  - z-')'' (29) 
r = O  
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hence 
( N -  1)/2 

F ( z )  = c O,(l + , - I ) [ ( N - l ) / * ] - r  (1 - , - I ) , . .  (30) 
r = O  

Combining this regular nature of H ( z )  with the PR re- 
quirement leads to the unique maximally flat magnitude 
square function [ 1 11, [ 121, [ 181 

R(z)  = H ( z ) H ( z - l )  
Z N ( l  + z - I ) N + I  " I ) / ?  

. (1 + Z - I ) N - 1 - 2 /  (1 - z - 1 ) 2 /  

- - 4Nt I / = 0  ( -U/  (;) 
( 3  1) 

therefore 

V ( z )  = F(z )F(z? )  

. (1 + Z - I ) N - l - 2 /  (1 - z- ')*' .  (32)  
V ( z )  in (32) is identical to the polynomial used in [7]. The 
magnitude square function R ( z )  is a linear combination of 
the lower-half, even-indexed binomial sequences with 
length 2N + 1 .  H ( z )  is now obtained via factorization. 

VI. PERFORMANCE OF BINOMIAL QMF-WAVELET 
TRANSFORM 

The performance of the binomial QMF signal decom- 
position scheme is compared with the industry standard- 
the discrete cosine transform (DCT) in this section. 

The energy compaction power of any unitary transform 
is a commonly used performance criterion in the litera- 
ture. The gain of transform coding over PCM at the same 
bit rate is defined as [ 131 

1 M - l  
- c U: 
M L = O  

GTC = (33) [ y 4 / M  

k = O  

where U: are transform coefficient variances. This mea- 
sure assumes that all coefficients, as well as the original 
signal, have the same rype probability density function. 
This assumption is clearly correct only for Gaussian 
sources. Nevertheless, it is known in the literature that 
this measure is consistent with the observed experimental 
coding performance for block transforms. 

Similarly, the gain of subband coding over PCM is de- 
fined as 

. M - l  

(34) 

Here a: is the variance of the signal in the Ith subband. 

TABLE I11 
EVERGY COMPACTION COMPARISON: DCT VERSUS BINOMIAL QMF FOR 

SEVERAL AR(1) SOURCES 

4 x 4 trans. or 
Four-band 
QMF (two 
levels) 

8 X 8 trans. or 
Eight-band 
QMF (three 
level) 

p G ,  4-tap 6-tap %tap 16-tap 

0.95 5.71 6.43 6.77 6.91 7.08 
0.85 2.59 2.82 2.95 3.01 3.07 
0.75 1.84 1.95 2.02 2.05 2.09 
0.65 1.49 1.56 1.60 1.62 1.64 
0.5 1.23 1.26 1.28 1.29 1.30 
0.95 7.63 8.01 8.53 8.74 8.99 
0.85 3.03 3.11 3.27 3.34 3.42 
0.75 2.03 2.06 2.14 2.17 2.22 
0.65 1.59 1.60 1.65 1.67 1.69 
0.5 1.27 1.28 1.30 1.31 1.32 

TABLE IV 
ENERGY COMPACTION COMPARISON: DCT VERSUS BINOMIAL QMF FOR 

SEVERAL TEST IMAGES 

tiTc 4-tap 6-tap 8-tap 

4 x 4 2-D trans. or LENA 
16-band regular BUILDING 
tree CAMERAMAN 

BRAIN 
8 X 8 2-D trans. or LENA 

64-band regular BUILDING 
tree CAMERAMAN 

BRAIN 

16.002 
14. I07 
14.232 
3.295 

21.988 
20.083 
19.099 
3.788 

16.70 18.99 20.37 
15.37 16.94 18.17 
15.45 16.91 17.98 
3.25 3.32 3.42 

19.38 22.12 24.03 
18.82 21.09 22.71 
18.43 20.34 21.45 
3.73 3.82 3.93 

This formula holds for a regular tree structure, implying 
equal bandwidths. It should be emphasized that this mea- 
sure is valid only for unitary transforms or filter banks. It 
is properly modified for nonunitary transforms or unequal 
bandwidth filter banks, which are beyond the focus of this 
paper [14l, [181. 

We assume a Markov 1 source model with autocorre- 
lation 

R ( k )  = P I L ' ,  k = 0, f l ,  * * , (35) 
and calculated G T C  and G s B C  for different cases. These 
results are displayed in Table 111. Equations ( 3 3 )  and (34) 
are easily extended to the two-dimensional case for sep- 
arable transforms and separable QMF's. 

The energy compaction performance of the two tech- 
niques is also tested for several standard images. These 
results are given in Table IV. 

The results demonstrate that the six-tap binomial QMF 
compacts the input signal energy better than the compa- 
rable sized DCT for both theoretical source models as well 
as for the standard test images considered. 

The objective performance of binomial QMF and the 
optimal PR QMF designed based on energy compaction 
are very close for AR( 1) sources [ 151. 

In [ 161, binomial QMF's have been successfully em- 
ployed for subband compression of high-definition tele- 
vision (HDTV). They compared the performance of sev- 
eral well-known filter banks at bit rates 0.5, 0.75, 1, 1.25 
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and higher bits/pixel. It is reported that six- and eight- 

Johnston filters of lengths 12, 16, and 32 [17]. 

sition: Trunsforms. Subhund~s and Wa\vIets. 
1992. 

design technique based on Bernstein polynomial approximation,” 
IEEE Truns. Signul Processing, to be published, July 1993 

New York: Academic, 

tap QMF’s rated the best with [ 191 H, Caglar and A, N, Akansu, “A generalized, parametric PR-QMF 

VII. CONCLUSIONS 
An efficient perfect reconstruction binomial QMF 

structure is developed. The new configuration utilizes the 
binomial network that has only addition operations. This 
approach provides a set of unique filter solutions with the 
maximally flat magnitude square functions. The phase re- 
sponses of these filters are almost linear. These filters are 
the same as the orthonormal wavelet filters derived by 
Daubechies [7]. 

The binomial QMF-wavelet signal decomposition 
structures have better energy compaction than the indus- 
try standard DCT for Markov sources and the standard 
test images considered. Their good subjective perfor- 
mance for subband coding of HDTV was reported in [ 161. 
These QMF’s have a very simple algorithm to implement 
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