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Abstract—Signal dependent Karhunen-Loéve transform
(KLT), also called factor analysis or principal component
analysis (PCA), has been of great interest in applied mathematics
and various engineering disciplines due to optimal performance.
However, implementation of KLT has always been the main
concern. Therefore, fixed transforms like discrete Fourier
(DFT) and discrete cosine (DCT) with efficient algorithms have
been successfully used as good approximations to KLT for
popular applications spanning from source coding to digital
communications. In this paper, we propose a simple method to
derive explicit KLT kernel, or to perform PCA, in closed-form
for first-order autoregressive, AR(1), discrete process. It is a
widely used approximation to many real world signals. The
merit of the proposed technique is shown. The novel method
introduced in this paper is expected to make real-time and
data-intensive applications of KLT, and PCA, more feasible.

Index Terms—Covariance analysis, principal component anal-
ysis (PCA), eigenanalysis, factor analysis, first-order autoregres-
sive process, signal dependent transform, explicit Karhunen-
Loéve Transform (KLT) kernel.

I. INTRODUCTION

Orthogonal block transform has been one of the pillars of
engineering mathematics that found its high impact use in
popular technologies including digital communications, image
and video compression, search engines, finance, and social
network analytics. The Karhunen-Loe¢ve transform (KLT), also
called principal component analysis (PCA), is the optimal
block transform where its basis functions are generated based
on a given signal covariance matrix. Hence, it is a signal
dependent transform. KLT has three steps to implement with
a computational cost attached to each one. First, the statistical
measurement of the random vector process is performed in
order to define the covariance matrix. Second, eigenvectors
(eigenmatrix) and eigenvalues for the given covariance matrix
are calculated. And finally, incoming random signal vector
is mapped to the eigenspace (subspace) by using the pre-
calculated eigenmatrix for the given covariance matrix. In con-
trast, the celebrated transforms like discrete cosine transform
(DCT) have their fixed kernels to define orthogonal matrix
of size N x N, and only require the third step regardless
of signal statistics [1, 2]. Although the former offers the
best orthogonal block transform, defining KLT basis for a
given signal demands prohibitive computational resources in
many cases [3]. Therefore, fixed transforms with efficient
implementations and acceptable performance have been the
most practical option for most engineering applications [2].
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Fast implementation of KLT is of great interest to several
disciplines, and there were prior attempts to derive closed-form
kernel expressions for certain classes of stochastic processes
reported in the literature [4, 5]. In particular, such a kernel
in its implicit form for processes with exponential correlation
was reported in multiple references [3—8]. That form requires
one to solve a transcendental tangent equation by using
either numerical techniques with convergence concerns, or to
implement complex methods for explicit expression of KLT
kernel. In this paper, we revisit an efficient root finding method
for a transcendental equation, and propose a simple method
to derive explicit KLT kernel for first-order autoregressive,
AR(1), discrete stochastic process. The derivation of explicit
KLT kernel for AR(1) process, introduced first in its implicit
form in [5], is also summarized in the paper. Furthermore, we
present a detailed implementation procedure for the proposed
technique in order to highlight its merit.

The structure of the paper is as follows. First, we treat
the the fundamentals of orthogonal block transforms in the
next section. Eigenanalysis of AR(1) signal model along with
the implicit closed-form KLT kernel expression utilizing root
locations of a transcendental tangent equation is highlighted
in Sec. III. The mathematical derivation steps to arrive at the
transcendental tangent equation of concern by analyzing the
characteristic values and functions of a continuous process
with exponential autocorrelation is presented in Sec. IV. In
Sec. V, we summarize an explicit root finding method for tran-
scendental equations introduced by Luck and Stevens in order
to address the problem at hand [9]. Then, we introduce an
efficient method to derive explicit expression for KLT kernel of
a discrete AR(1) process in Sec. VI. In Sec. VII, we compare
energy compaction performance of separable 2D KLT, derived
by using the proposed kernel derivation method, and DCT for
a test image. We also emphasize implementation advantages
of the proposed method in this section. The contribution of the
paper and concluding remarks are given in the last section.

II. ORTHOGONAL TRANSFORMS

A family of linearly independent N orthonormal discrete-
time sequences, {¢r(n)}, on the interval 0 < n < N —1
satisfies the inner product relationship [2]
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0, otherwise
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Equivalently, the orthogonality is also expressed on the unit
circle of the complex plane, z = e/¥; —1 < w < m, as follows
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where ®,(e’*) is the discrete-time Fourier transform (DTFT)
of ¢r(n). In matrix form, {¢x(n)} are the rows of the
transform matrix, and also called basis functions

O = [pp(n)]: k,n=0,1,.... N —1, 3)
with the matrix orthogonality property stated as
o ! = 0 T =1, )

where *T indicates conjugated and transposed version of a
matrix and I is N x N identity matrix. A signal vector

T

x=[ 2(0) x(1) a(N-1) ], (5)

is mapped into the orthonormal space (subspace) through
forward transform operator

0 = Px, (6)
where 0 is transform coefficients vector as given
T
6= [ 6(0) 6(1) O(N —1) } . @)
Similarly, the inverse transform yields the signal vector

x=0716. ()

We assume that the vector x is populated by a wide-sense
stationary (WSS) stochastic process. Then, we have

E {2(n)} = p(n) = p

E{z(n)z*(n +m)} = Ryx(m)’ ©)

where F {-} is the expectation operator and R,.(m) is the
autocorrelation sequence of the WSS process x(n). The corre-
lation and covariance matrices of such a random vector process
x are defined, respectively,

R, = E{xx*T},
Rye(N —1) Ryz(N —2) R.2(0)
Co = B{(x—m) (x— )"} =Ry — ',
(10)
where
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Note that R, = C,, for a zero-mean WSS process where y =
0. Hence, one can derive the covariance matrix of transform

coefficients as follows

Ry = E{00""}
= E{oxx*To*T}
=®F {xx*"} T
= ®R, ", (12)
Energy preserving property of an orthonormal transform al-
lows the equality between signal variance and the average
of transform coefficient variances to maintain the following
equality

E {O*TB} =F {X*Tx} ,
N-1 N-1
E{070} = Y B{R) = 3 o,
k=0 k=0
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We focus on covariance matrix of first-order autoregressive
stochastic process in the next section of the paper. It will lead
us to the proposed derivation method for explicit KLT kernel
as follows.

III. EIGENANALYSIS OF AR(1) PROCESS

Random processes and information sources are mathemat-
ically described by a variety of signal models including au-
toregressive (AR), moving average (MA), and autoregressive
moving average (ARMA) types. AR source models, also called
all-pole models, have been successfully used in applications
including speech processing for decades [10]. First-order AR
model, AR(1), is a first approximation to many natural signals.
It has been successfully employed in applications including the
modeling of digital images [2, 11] and financial signals [12—
15], as well as trend forecasting in economics [16]. AR(1)
signal is generated through the first-order regression formula
written as [2]

z(n) = pr(n —1) +&(n),

where &(n) is a white noise sequence with zero-mean, i.e.
E{{n)é(n+k)} = 020k, E{¢(n)} = 0. The first-order
correlation coefficient, p, is real in the range of —1 < p < 1,
and the variance of x(n) is given as follows

(14)

1
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Autocorrelation sequence of x(n) is expressed as
Ree(k) = E{z(n)x(n+k)} = o2plFli k= 0,41, +2, .. ..
(16)

The resulting Toeplitz correlation matrix of size N x N is
shown as
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From linear algebra, it is known that an eigenvalue A\ and an
eigenvector ¢ with size N x 1 of a matrix R, with size N x N
must satisfy the eigenvalue equation [2—4]

R.¢ = Ao. (18)

It is rewritten as

such that (R, — AI) is singular where 0 is an N X 1 vector
with its elements all equal to zero. Namely,

det (Ry — AI) = 0. (20)

Since R, is a real and symmetric matrix, its eigenvectors
with different eigenvalues are linearly independent. Hence, this
determinant is a polynomial in A of degree IV, (20) has IV roots
and (19) has NN solutions for ¢ that result in the eigenpair set
{M\k,dr} where 0 < k < N — 1. Therefore, we can write
the eigendecomposition for R, with distinct eigenvectors as
follows
RzA*KTLT = A*KTLTA7
N—-1
R, = A pAAkLr = ) Mooy
k=0
where A = diag (\¢);k =0,1,...,N — 1, and kth column
of A%L . matrix is the kth eigenvector ¢, of R, with the
corresponding eigenvalue \.

Note that {\; = o7} Vk, for the given R, where o7 is the
variance of the kth transform coefficient, 6. The eigenvalues
of R, for an AR(1) process defined in (17) are derived to be
in the closed-form [5]
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(22)

where {wy} are the positive roots of the following transcen-
dental equation

(-
cos(w) — 2p + p? cos(w)’

tan(Nw) = (23)

that is equivalent to (See Appendix)

an (w5 ) +ytan ()| pan (05) - oot ()] =0

y=01+p)/(1=p), (24)

and the resulting KLT matrix of size NV x N is expressed in
the kernel as [5]

Axrr = [A(k,n)] = i sin [wk (n -

2\
= <kn<N-1.
Ck (N+)\k> ,0<k,n<

Note that the roots of the transcendental tangent equation in
(24), {wy}, are required in the KLT kernel expressed in (25).
There are a few well-known numerical methods like secant
method [17] to approximate roots of the tangent equation given
in (24) in order to solve it implicitly rather than explicitly.
Therefore, we focus on a root finding method described in
Sec. V to find explicit solutions to transcendental equations
including the tangent equation of (24). That method leads us
to an explicit definition of KLT kernel given in (25) for an
AR(1) process. However, we will first discuss the derivation
of characteristic values and functions of a continuous random
process with exponential autocorrelation in the next section
since it provides some very useful insights for AR(1) family.
The detailed derivations of results summarized in (22) and (23)
are given in Appendix.

N2—1>+(k—|—21)7r]

(25)

IV. CHARACTERISTIC VALUES AND FUNCTIONS OF A
CONTINUOUS RANDOM PROCESS WITH EXPONENTIAL
AUTOCORRELATION

In this section we revisit the classic problem of deriving
explicit solutions for characteristic values and functions of a
continuous random process with exponential autocorrelation
function since it offers useful insights for the problem at hand.
Note that this problem is discussed in detail on page 99 of
[8]. Similar discussions can also be found in [6, 7, 18] and
references therein.

We assume a continuous random process x(t) with zero-
mean, ie. F{x(t)} = 0, and exponential autocorrelation
function

Rua(7) = E{z()z(t +7)} = e "I, (26)

where —oo < 7 < co. We will find the orthogonal expansion
of x(t) for the interval —T'/2 < t < T/2. Therefore, we need
to derive the characteristic values and functions that satisfy
the following integral equation

T/2

/ e~olt=slg(s)ds = (1), 27)

—~T/2
where A is the characteristic value and ¢(t) is the correspond-
ing characteristic function. Note that in [8] the integral is
defined on the interval — T < t < T. In our discussion the
interval is from —7'/2 to T'/2 in order to be consistent with
the discrete case. The derivation steps for the discrete case are
given in the Appendix. Integral equation in (27) can be solved
by finding a linear differential equation that ¢(¢) must satisfy,
and then substituting the general solution of the differential
equation back in (27) to determine the value of \. In order to
drop the magnitude operator, (27) can be rewritten as [8]

t T/2
Ao(t) :/ e_“(t_s)(b(s)ds—i—/ e g(s)ds.
-T2 t
(28)



Then, both sides of the equality are differentiated to obtain

t
A (t) = —a / . e (=) p(s)ds

T/2
+a/ e~ p(s)ds, (29)
t

where f'(t) is the first-order derivative of f(¢). We differen-
tiate one more time and use Leibniz integral rule to obtain

T/2
Ao (t) = o? / e~elt=slp(s)ds — 20(t). (30)
—T/2
It follows from (27) and (30) that
2 —a\
o0+ 2Ny~ 61

Note that the characteristic function, ¢(t) must satisfy the
linear homogeneous differential equation of (31) in order to
satisfy the integral equation given in (27). It is shown on pages
99-101 of [8], and pages 187-190 of [18] that (31) has solution
only in the range of 0 < A < % as given

P(t) = 167 + cpe I, (32)

where b2 = —a (2 —aX) /A and 0 < b? < oo. It was also
shown in [8] and [18] that substituting (32) into (27) reveals
that solution is possible only when ¢; = #£cs. For ¢; = ¢3, b
satisfies the following equation

T
btan (b2> = .

It follows from (32) that for every positive by that satisfies
the transcendental equation in (33), we have the characteristic
function given as [8]

ok (t) = cx cos (bit) ,

where integer k£ > 0. Similarly, for ¢; = —ca, b satisfies the

following equation
T
b cot <b2) = —a.

Again, for every positive by that satisfies the transcendental
equation in (35), we have the characteristic function given as

(8]

(33)

(34)

(35)

d)k(t) = Cg sin (bkt) .

For both cases the corresponding eigenvalues are expressed as

(8]

(36)

2c

A = —5—3-
T a2

(37
Note that the roots of transcendental equations given in (33)
and (35) provide the even and odd indexed characteristic
values and functions, respectively. These two equations can
be combined as a product

() ()] 0o

Similarly, for every positive b;, that satisfies the transcendental
equation in (38), we have the characteristic function given as

(39)

f1(t) = cpsin (bkt " Uf“)”) ,

2

Note that (37), (38), and (39) are the continuous analogs of
(22), (24), and (25), respectively. Moreover, it is worth noting
that the constant, cg, in (39) can be found by normalizing the
characteristic functions such that

T/2
nmmﬁ=[wﬁmwwrﬂ, (40)

. 9 1/2
ko T+ M\ ’

The definition of the constant given in (41) is analogous to
the one in (25).

leading to

(41)

V. AN EFFICIENT METHOD FOR EXPLICIT SOLUTION OF A
TRANSCENDENTAL EQUATION

Finding solutions of a transcendental equation has always
been of great interest in various fields [19-21]. There are
a number of numerical methods reported in the literature
offering approximate solutions to such equations. Although
these techniques are sufficient for many cases, it is quite
desirable to have exact explicit solutions for this class of
equations leading to analytical treatment of problems at hand
as reported in [22, 23]. Most of them are based on the approach
of formulating a Riemann problem and finding the solution for
the resulting transcendental equation by utilizing a canonical
solution of the problem. It was shown that the implementation
of this method may easily become quite difficult [23-26].
Therefore, the topic has been active and several researchers
proposed new techniques to improve the efficiency of finding
solutions for a transcendental equation [19-23]. Note that such
a tool is needed to solve (23) in order to write an explicit
expression for KLT kernel of (25). Therefore, we employ
a relatively new method to handle such a problem. It is
computationally efficient and easy to implement as described
below.

Herein, we focus on a simple method of formulating exact
explicit solution for the roots of transcendental equations using
Cauchy’s integral theorem from complex analysis [27] that
was introduced by Luck and Stevens in [9]. The method
determines the roots of a transcendental function by locating
the singularities of its reciprocal function. In this section, we
follow the derivation steps detailed in [9] for explicit solutions
of such functions in order to better explain its implementation
that is of our interest as emphasized in the following section.

Cauchy’s theorem states that if a function is analytic in a
simple connected region containing the closed curve C, the
path integral of the function around the curve C' is zero. On
the other hand, if a function, f(z), contains a singularity at
zo somewhere inside C' but analytic elsewhere in the
region, then the singularity can be removed by multiplying
f(z) with (z — 2p), i.e. a pole-zero cancellation. Cauchy’s
theorem implies that the path integral of the new function

z =



(z — 20) f(2) around C must be zero

%(z — 20) f(2)dz = 0.

c

(42)

The evaluation of the integral yields a first-order polynomial in
zo with constant coefficients, and its solution for zy provides
the location of the singularity [9]

L ¢ 2f(2)dz
0 ﬁc f(2)dz "

This is an explicit expression for the singularity of the function
f(2). Now, a root finding problem is restated as a singularity
at the root. Note that (43) gives the location of the desired
root and it can be evaluated for any closed path by employing
either an analytical or a numerical technique. Luck and Stevens
in [9] suggested a simple method for evaluation of (43) that
results in a particularly easy calculation by using a circle in the
complex plane that circumscribes the root. The closed curve
C is described as a circle in the complex plane with its center
h and radius R, expressed as

(43)

z=h+ Re?,
dz = jRe?db, (44)
where 0 < 0 < 27, h € R, and R € R. Values of h and R
do not matter as long as the circle circumscribes the root z.
Cauchy’s argument principle [28] or graphical methods may

be used to determine the number of roots enclosed by the path
C. Let

w(0) = f(2)]._pypeso = f(h+ Re). (45)
Then (43) becomes [9]
2T w(B)er20dg
2=h+R|—F5———|. (46)
o w(0)es?do

One can easily evaluate (46) by employing Fourier analysis
since the nth Fourier series coefficient for any x(t) is calcu-

lated as
1 271'

A, x(t)el M dt. 47)

:%O

It is observed that the term in brackets in (46) is equal to
the ratio of the second Fourier series coefficient over the
first one for the function w(#). Fourier series coefficients
can be easily calculated numerically by using discrete Fourier
transform (DFT) or by using its fast implementation, i.e. fast
Fourier transform (FFT). Note that given f(z) is analytic at h,
multiplying f(z) by a factor (z —h) = Re’? does not change
the location of the singularities of f(z). It means that for a
given singularity the term in brackets is also equal to any ratio
of the (m+ 1)th to the mth Fourier series coefficients of w(6)
for m > 1 [9]. Therefore, it is very easy to implement as we
discuss it further in the following section.
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Figure 1. Functions tan (b) and B/b for various values of B where By = 1,
By =2, and B3 = 3.

VI. A SIMPLE METHOD FOR EXPLICIT KLT KERNEL OF
AR(1) DISCRETE PROCESS

In this section, we highlight the theory behind the proposed
KLT kernel derivation method for AR(1) discrete process by
utilizing classical research on continuous random process with
exponential autocorrelation function. Moreover, we summarize
and present a step-by-step implementation of the novel tech-
nique reported herein for the explicit expression of the kernel.

A. Continuous Random Process with Exponential Autocorre-
lation

Now, we will derive an explicit expression for the roots of
the transcendental equation that are required in the definition
of the continuous characteristic function depicted in (33) and
(35). We will focus on (33) stating that the discussion is similar
for (35). Let « = B and T' = 2 in (33) and rewrite it as follows

btan (b) = B. (48)
One must calculate the positive roots of (48), b,, > 0, in
order to determine the even indexed characteristic values and
functions given in (37) and (39), respectively. Fig. 1 displays
functions tan (b) and B/b for various values of B. It is
apparent from the figure that for the m# root, a suitable choice
for the closed path C' is a circle of radius R = /4 centered
at hy, = (m — 3/4) w. A straightforward way to configure the
equation given in (48) to provide a singularity is to simply use
the inverse of rearranged (48) as follows [9]

1
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Applying (46) to (49) results in an explicit expression for the
mth root. This expression can be evaluated by calculating a
pair of adjacently indexed coefficients of size-L DFT (coeffi-
cients of two adjacent harmonics) as described in Sec. V or
by using a numerical integration method. Therefore, w,, (0) of
(45) for this case is defined as



Wi (0) = f (A + Reje)

1
~ (hy + Rei?)sin (hy, + Rei?) — B cos (hy, + Rei?)’
(50)
where 0 < 6 < 2w. Hence, the mth root is located at
2w (0)€720d0
by = hm + R 0271. - . oy
o Wm(0)el?dl

The MATLAB™ code given in Alg. 1 shows the simplicity
of this root finding method to solve transcendental equations.
The computational cost of deriving explicit KLT kernel for
an AR(1) discrete process expressed in (25) is shown to be
quite attractive and emphasized in the next subsection. It is
observed from (51) and Alg. 1 (last line) that we do not
need all DFT (FFT) coefficients to solve the problem since
it requires only two Fourier series coefficients. Therefore, it is
possible to further improve the computational cost of the root
finding method displayed in Alg. 1 by employing a discrete
summation operator to implement (47) numerically. Hence,
it will have a computational complexity of O(N) instead of
O (NlogN) required for FFT algorithms.

B. AR(1) Discrete Process

In order to derive an explicit expression for the roots of the
transcendental equation that are required in the definition of
the discrete KLT kernel given in (24), we need to calculate
the first V/2 positive roots of two transcendental equations as
given [5]

(52)
(53)

where N is the transform size, v = (1+p) /(1 — p), and
p is the first-order correlation coefficient for AR(1) discrete
process. Derivations of (52) and (53) are provided in the
Appendix for readers of interest. Roots of (52) and (53)
correspond to the odd and even indexed eigenvalues and eigen-
vectors, respectively. Fig. 2 displays functions tan (wN/2) and
—~tan (w/2) for N = 8 and various values of p. It is apparent

Algorithm 1 MATLAB™ code of the method to calculate
roots of transcendental equation given in (48). For B = 2, first
root is calculated as 1.076873986311804 using this function.

L = 128; % FFT size. See (51)
B = 2; % See (48)
m = 1; % Root index. See (51)
h = (m-3/4)xpi; $ Center of the circle in b. See (44)
R = pi/4; % Radius of the circle in b. See (44)
th = linspace (0, 2xpix(1-1/L), L); % Theta. See (44)
b = h+Rxexp (lixth); % Points on the circle. See (44)
w = 1./(b.*sin(b)-Bxcos (b)) ; % See (50)
W = fft(conj(w),L); % See (51)
b_m = h + R«W(3)/W(2) % mth root. See (51)

5 ——

tan(wN/2)
—_—_ = fyltan(wlz)
3t — = —yztan(mlz)
—y3tan(w/2)

V]

1 15 2
W/t

Figure 2.  Functions tan (wN/2) and —vtan (w/2) for N = 8 and
various values of p with p1 0.9, p2 = 0.6, and p3 = 0.2 where
vi=0+pi)/(1—p;)i=1,23.

from the figure that for the m#h root of (52), a suitable choice
for the closed path C' in (43) is a circle of radius

R, (54)

/2N m <2
/N m>2’
centered at h,, = (m —1/4) (2r/N) where 1 < m < N/2.

Similar to the continuous case, we reconfigure (52) and rather
look for the poles of its reciprocal function

1

= . 55
9(w) tan (wWN/2) + v tan (w/2) (55)
The function w(é) of (45) for this case is defined as
Wi (0) = g (hin + Rie??)
1
 tan [(hin + Rmei?) %] + 7y tan [(hy, + Rimel?) 3] ’
(56)
where 0 < 6 < 2w. Hence, the m¢h root is located at
OQTF Wy, (0)e720d0
Wi = P + Rop | 20 . (57)
2T W, (0) €390

The procedure is the same for deriving the roots of (53) with
the exceptions that (56) must be modified as follows
1
W, (0) = - , ,
©) tan [(hm + R,pe??) %] — %cot [(hm + R,,ei?) %]
(58)
and a suitable choice for the closed path C'is a circle of radius

R,, = /N centered at
(m — 1/2) (21/N)

fim = {(m —1)(27/N)

that can be determined by generating a plot similar to the ones
in Figs. 1 and 2.

Finally, we summarize the steps of the proposed method to
derive an explicit KLT kernel of dimension N expressed in

<92
= (59)

m > 2
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Figure 3.  The roots of the transcendental tangent equation, {wg}, as a
function of p for N = 8.

(25) for an arbitrary discrete data set by employing an AR(1)
approximation as follows.

1) Estimate the first-order correlation coefficient p =
Rao(1)/Rew(0) = E{z(n)z(n+1)} /E{z(n)z(n)}
of AR(1) model for the given data set {x(n)} where
n is the index of random variables (or discrete-time)
and -1 < p < 1.

2) Calculate the positive roots {wy} of the polynomial
given in (24) by substituting (56) and (58) into (57)
for odd and even values of k, respectively, and use the
following indexing

_— k/2+1 k even
Cl(k+1)/2 kodd
3) Plug in the values of p and {wy} in (22) and (25) to

calculate the eigenvalues )\, and eigenvectors defining
the KLT matrix A g7, respectively.

(60)

Remark 1. The computational cost of the proposed method
to derive KLT matrix of size N x N for an arbitrary signal
source has two distinct components. Namely, the calculation
of the first-order correlation coefficient p for the given signal
set, and the calculation of the roots {wy} of (24) that are
plugged in (25) in order to generate the resulting transform
matrix A 7. The roots {wy} of the transcendental tangent
equation, calculated by using (57), as a function of p and for
N = 8 are displayed in Fig. 3. Similarly, the values of {wy}
for p =0.95 and N =4, 8, 16 are tabulated in Table 1.

Remark 2. Other processes like higher order AR, autoregres-
sive moving average (ARMA), and moving average (MA)
can also be approximated by using AR(1) modeling [10].
Therefore, the proposed method to derive explicit KLT kernel
for AR(1) discrete process may also be beneficial for other
stochastic processes of interest.

Remark 3. It was reported in the literature that the signal
independent DCT kernel is identical to the KLT kernel of
AR(1) discrete process in the limit when p — 1 [29].

VII. PERFORMANCE COMPARISON

We present comparative performance of the proposed KLT
kernel derivation method and competing techniques. The com-

Figure 4. Monochrome LENA image of size 256 x 256 pixels used as the
test signal.

Table II
GAIN OF TRANSFORM CODING, G¥C, OF SEPARABLE 2D KLT AND DCT
TRANSFORMS FOR LENA IMAGE WITH BLOCK SIZES N = 4,8, 16, 32,64
WHERE ESTIMATED pp, = 0.93 AND p,, = 0.97, CALCULATED FROM THE
h v
ENTIRE IMAGE, ARE USED TO GENERATE A, » AND A%/ FOR ALL
VALUES OF N.

N 4 8 16 32 64
DCT 3691 67.16 90.68 105.53 114.03
KLT 37.11 67.77 9159 10648 114.80

parison is twofold. First, we compare energy compaction
performance of KLT derived by the new technique and DCT
for the monochrome test image LENA. This metric has been
widely used in source coding [2]. Second, we compare KLT
kernels obtained by the new derivation method and the popular
numerical technique called divide and conquer (D&Q) [3, 30].
This comparison includes their respective computational cost
and discrepancies between the two kernels for the same
statistics.

A. Energy Compaction

Although there are various performance metrics including
decorrelation efficiency, the gain of transform coding over
pulse code modulation (PCM) of an N x N unitary transform
for a given input correlation is particularly significant and
widely utilized in transform theory as defined [2]

1 N-1 2
N 20k=0 %k

1
N—-1 9\N
Hk:o O

where o7 is the variance of the k¢h transform coefficient. Note
that KLT is the unique block transform that optimally repacks
the signal energy among the perfectly decorrelated (pairwise
uncorrelated) coefficients for the given autocorrelation matrix
R.,. Fixed transform DCT has been shown to be an attractive
approximation to KLT particularly for highly correlated pro-
cesses due to its affordable computational cost with acceptable
performance [1, 2]. In this section, we highlight the energy
compaction performance of KLT generated based on an AR(1)
approximation to signal correlations and DCT for a still frame
image. Note that this comparison uses first-order correlation
coefficients for horizontal and vertical dimensions that are
estimated once and for the entire image.

We calculate the horizontal and vertical first-order correla-
tion coefficients, and define the resulting 2D AR(1) correlation
model [2], respectively, for size 256 x 256 LENA image

Gro = , 61)



Table T
THE VALUES OF {wy } FOR p = 0.95 AND N = 4, 8, 16.

0 1 2 3 4 5 6

7 8 9 10 11 13 15

0.157 0.815 1.584 2362
0.109 0423 0801 1.188
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Figure 5. (a) Computation time, in seconds, to calculate A7 pg and
Agrr e (with L = 256,512,1024) for p = 0.95 and 16 < N < 1024,
(b) Corresponding distances, dy, measured with (65) for different N and L.

displayed in Fig. 4 as follows [2]

2 |m| |n|

R-TI (m7 ’I'L) = Jmph pv ) (62)
where m,n = 0,£1,4+2,...,£255 and
1
oy = (63)

T (A =pY)
Then, we employ the proposed method to generate the corre-
sponding A%, . and AY . matrices of size N x N by using
(25). Now, we perform separable 2D transforms of various
block sizes on LENA image by using A%, and A%,
in horizontal and vertical dimensions, respectively. Similarly,
we use A pcr matrix in both dimensions for the DCT case
generated from the fixed kernel [1]

Apcr =[A(k,n)] = 1 cos

. [(Qn + 1)]@77}
o= {W

2N
k=0

VN2 k#£0

Now, we calculate ch from (61) for these two separable 2D
transforms of various sizes for LENA image as tabulated in
Table II. It is observed from Table II that KLT slightly outper-
forms DCT as expected [2, 29]. An adaptive KLT method that
mimics variations of signal correlations may provide improved
energy compaction with additional implementation cost.

,0<k,n<N-1 (64)

B. Kernel Derivation Efficiency

Herein, we compare the computational cost of generating
KLT kernel for the given statistics by employing D&Q [3, 30]
and the proposed method expressed in (25). Moreover, we
measure the distance between the kernels generated by the two
competing derivation methods. The distance metric between
the two kernels is defined as follows

dy = || Ak L. poAKLT.DG — Ak Ly pAKLTE|,, (65

where ||-||, is the norm-2, Axr7.po and Agrr g are the
N x N KLT matrices obtained by using D&Q and the proposed
derivation method for explicit kernel (25), respectively. Note
that the performance of the proposed derivation method in
terms of precision and computational speed highly depends on
the FFT size L, used in evaluating (57). Therefore, the distance
metric, dy, of (65) and the time it takes to calculate the kernel
by using (25) are affected by the value of L. Computation
times (in seconds) to generate A7 pg and Axrr g (using
the values of L = 256, 5121024) for the case of p = 0.95 and
16 < N < 1024 are displayed in Fig. 5.a. Both computations
are performed by using one thread on a single processor.
The machine used for the simulations has Intel® Core™ i5-
520M CPU and 8 GB of RAM. It is observed from Fig. 5.a
that the proposed method significantly outperforms the D&Q
algorithm for larger values of NN. Moreover, corresponding
distances, dp, measured with (65) for various N and L are
displayed in Fig. 5.b. They show that the proposed method is
significantly faster than the currently used numerical methods
with negligible discrepancy between the two kernels. It is
highlighted that the time complexity of D&Q algorithm is
O(N3) [30] where the proposed method requires O(LN') for
the FFT size of L in root finding, and the transform size of V.
Furthermore, the proposed KLT kernel derivation algorithm
has the so-called embarrassingly parallel nature. Hence, it
can be easily implemented to be run on multiple threads and
processors for any k. Therefore, its implementation speed can
be improved to make it faster than the one displayed in Fig.
S.a.

VIII. CONCLUSIONS

We introduced a simple method to derive explicit KLT ker-
nel for AR(1) discrete process. The mathematical foundations
of the proposed method and its ease of implementation were
detailed in the paper. The merit of the proposed kernel deriva-
tion method was highlighted by performance comparisons
with DCT, and the numerical D&Q algorithm. The proposed
method can be easily implemented on high performance com-
puting devices with highly parallel architectures such as field
programmable gate array (FPGA) and graphics processing unit
(GPU) for data intensive and real-time applications.
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Dover

APPENDIX

We provide the proof of (22), (23), and (25) that were first
reported in [5] without detailed derivations. For a discrete
random signal, x(n), discrete Karhunen-Logve (K-L) series
expansion is written as

N—-1
> Rua(n,m)dr(m) = Agi(n), (A1)

m=0
where m and n are the independent discrete random variables.
Riz(n,m) = E{z(n)z(n+m)}, m,n=0,1,...,N — 1, is
the autocorrelation function of the random signal, A is the kzh
eigenvalue, and ¢y (n) is the corresponding ksh eigenfunction.
For AR(1) discrete process [2]

Ry(n,m) = Ry(n —m) = pl"=™!, (A2)

Hence, the discrete K-L series expansion for an AR(1) process
from (A.1) and (A.2) is stated as follows

N-1

> PGk (m) = Ak (n).

m=0

(A3)

In order to eliminate the magnitude operator, (A.3) can be
rewritten in the form

n N-—-1
Yo mee(m)+ Y p" T k(m) = Midi(n). (A4)
m=0 m=n+1

From the continuous case, (32), we have the solution for the
kth eigenvector [8, 18]

Pr(t) = e/ + cpe ™I, (A.5)

where c¢; and ¢y are arbitrary constants, ¢ is the independent
continuous variable, —7/2 <t < T/2, and wy = by. Let us
shift this eigenfunction by 7'/2 and discretize at the sampling
grid t, = nT,, 0 <n < N—1where T, =T/ (N —1).
Accordingly, sampled eigenfunction is written as

Br(n) = c1@ (=T o gpemden (=T (A 6)

We consider the case where ¢; = ¢ noting that the case for
c1 = —co is similar. Now, we rewrite (A.6) for ¢y = ¢y as

o) = encos o (- Y1

Now, we substitute (A.7) in (A.4) and define a new indepen-
dent discrete variable p = m — (N — 1)/2 in order to rewrite
(A.3) as follows

(A7)

N-—-1
. 2 N-—-1
n—p——1
> p"PTT cos (wip)
p=—N—1
N-—1

T cos (wip)

>

N-—1
p=n+1— >

= A\ COs [wk (n— N2_1>] .

(A.8)



We focus on the first summation on the left in (A.8) stating Using trigonometric identities, the relationship between wy, and
that the result for the second summation on the left is similar. p in (A.18) is rewritten as follows

We rewrite the first summation as N 1—p Wi
noNo1 e N1 tan wkg = T, cot (?) . (A.19)
1 o —Ledwr) —jwr )P P
PLA Z;_l (p"e "+ Z; ) e e Similarly, for the case of c; —cy, following the same
P=—"3 p== (A9) procedure, the relationship between wy, and p is shown to be
; N 1
Using the fact that tan (wp s ) = — TP tan (ﬂ) . (A.20)
2 1—p 2
6N2+1
Z B = 7ﬁ7 (A.10)  Finally, from (A.19) and (A.20), it is observed that wy, are the
n=Ni positive roots of the equation

and following simple steps, it is shown that (A.9). Hence, the N w N 1 w
first summation on the left side of (A.8), is equal to [tan (W2> + 7y tan (2)] [tan (W2> - ; cot (5) =0,

"2 cos (w1) — pcos (wa) — p" Tt cos (w3) + cos (w4) (A2D)
1= 2pcos (wn) + 72 where 7 = (1+ p) /(1 — p). Using trigonometric identities
F (A.11) (A.21) can be rewritten as
Similarly, the second summation on the left side of (A.8) is tan (V) = (1 - p?) sin (w) A2
p cos (wi) + peos (wz) — p " cos (w) — p° c08 (Wa)  (hat is the same transcendental equation expressed in (23).
1 —2pcos (wy) + p? ’
(A.12)
where
w = wi [(N —1) /2]
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puting, high performance computing, data-intensive
research in signal processing, multi-resolution sig-

for both (A.11) and (A.12). Now, we turn our attention to
(A.8) and solve for \g. Discrete K-L expansion given in (A.3)
can also be written in the frequency domain by using Fourier

transform as follows nal processing, statistical signal processing, pattern
jw jw jw classification, neural networks, genetic algorithms; and their applications
Sz(e )(I)k(e ) = A\ Py, (e ) (A14) i quantitative finance, electronic trading, digital communications, digital
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where S, (e’¥) is the power spectral density (PSD) of an

AR(1) discrete process, and expressed as

) 1— p?
Jwy [n—m| 14
S, (%) f{p } e A1

where F {-} is the Fourier transform operator. Fourier trans-
form of the eigenfunction in (A.7) is calculated as

(") = F {on(n)}
= cre i T [0(w—wg) +6(w+wg)], (A.16)
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1 —2pcos (wg) + p?

L8

Ak =
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