
Good afternoon. My name is Zhou Xuanyi and I’m a rendering

programmer at Santa Monica Studio. Today I’ll be presenting the neural

network-based image upsampling system in God of War: Ragnarok.

I’m going to first talk about the motivations and goals for the system. I’ll

also be introducing BC7 image compression that our method works

with.

Then, I’m going to cover how the system is designed. What we’re going

to focus on is how we adapt simple tools to fit our specific needs.

After that, I’m going to talk about how we implemented and optimized

the system to run on a PS5. This will include high-level implementation

choices as well as a fair amount of in-depth and low-level details that

primarily focuses on optimization.

We started working on the system with this set of goals:

[click]

We hoped that upsampling textures at run-time would help us save disk

space – Artists author textures for PS4, and we upsample these

textures on PS5 while keeping roughly the same package size.

[click]

We hoped to upsample as many textures as we can,

[click]

and since most of them are BC compressed, we started out focusing on

one of the most complex versions of BC which is BC7.

[click]

We wanted to use a single network to handle both upsampling and

compression, and output directly to BC.

[click]

The player is always moving from one level to another, and upsampling must

keep up.

We intended to use any excess GPU time to perform upsampling, so the

method has to be adaptive as well.

We’ll see during the presentation how much of these goals we were able to

achieve, and to what extent.

RGBA8Unorm RGBA8Snorm

×

Let’s first talk about BC7, or Block Compression Seven.

[click]

It’s a GPU-friendly compression method designed for 8 bits per

channel, RGBA images,

[click]

and it operates on 4-pixel by 4-pixel blocks, where each compressed

block is 16 bytes. Effectively, it compresses an image to one fourth of

its original size.

[click]

The fundamental assumption behind BC compression is that a block

contains similarly colored pixels. Each pixel can then be represented

with linear interpolation between two colors that are shared across the

block.

[click]

Each BC7 block can choose from 8 different modes.

[click]

Some modes can partition a block into sets of pixels that use different colors

as endpoints.

Here’s an example of a mode with two subsets of indices. It has too much

contrast to be compressed with decent quality with only one pair of endpoints.

The choice of which pair of endpoint to use for a pixel is based on a hard-

coded pattern that changes depending on which mode and partition is used.

Some modes also support rotation, where a color channel is swapped with the

alpha channel after all other decoding has finished.

There are 64 partition patterns for modes with 2 sets of endpoints, and

a different 64 patterns for modes with 3 sets. Each color denotes a set

of pixels that use a different pair of endpoints. Each individual block that

uses a mode that supports partition, can choose from one of these.

https://rockets2000.wordpress.com/2015/05/19/bc7-partitions-subsets/

This table shows the details of each BC7 mode. We’re not going to dive

deep into the specifics; rather, this is just for an intuitive understanding

of how much the modes differ from each other, and the complexities it

causes.

[click]

Here’s an example. The “channels” column specify how many bits are

used to represent each channel of the endpoint. Thus, mode 0 will be

encoding endpoints with a much lower precision than mode 3, since it’s

using 3 less bits per channel.

[click]

Another example is that the last four modes support alpha channels

while the first four modes don’t.

Let’s look at how the neural networks are designed and trained.

Since BC7 has 8 distinct modes, the natural first step is to separate

them out into different networks.

[click]

The team at R&D Center US Laboratory kindly provided the

implementation of this version.

[click]

For each mode, we use a multilayer perceptron with four hidden layers

that are 512 wide.

[click]

We convert the input BC7 blocks into vectors of parameters. This

includes the colors used as endpoints and indices used to interpolate

between them. Depending on the mode, this also includes partition or

rotation used by the block encoded as a one-hot vector.

An example for mode 1 can be seen in the table.

[click]

Because each block in the low-resolution image corresponds to four blocks in

the upsampled image, this method outputs 4 blocks at once.

⋮

Comparing BC7 block parameters directly would be suboptimal

because there are multiple ways to encode the same block.

Instead, we initially used an additional neural network to decode the

outputs into 4x4 pixel blocks.

[click]

Here’s what the process looks like: The input blocks go through one of

the networks, then the result is decoded and compared with the

reference.

[click]

The decoder networks are trained in advance with randomly generated

inputs. Their parameters are then fixed when we train the upsample

networks.

Here are the results of this first version on the right. Compared with

bilinear upsampling on the left, it does sharpen the image somewhat.

[click]

But it also introduces lots of visible artifacts, like here where the grass

blade is broken.

So, what went wrong? If we look, there are a few apparent issues.

[click]

First of all, we don’t know which mode to use for each output block. This

version uses the mode of the input block for all 4 output blocks, which is

suboptimal.

[click]

For 1 input block and 4 output blocks with 8 modes each, there are over

30,000 combinations.

[click]

Regarding upsampling quality, since partition information is encoded in

the inputs and outputs, the network essentially has to learn the hard-

coded partition patterns. This increases the number of parameters

needed and introduces discontinues in the problem space.

[click]

We don’t have a means to provide any context information – the networks are

unable to see any pixels that are out of the input 4x4 chunk.

[click]

And finally, the neural network decoder also introduces a small amount of

error.

As a first step to solving these issues, we tried splitting the problem into

smaller ones.

[click]

Firstly, since the GPU has dedicated hardware for BC7 decoding, we

can use the pixel values directly for network input. This also means that

we don’t need to output 4 blocks at a time.

[click]

To determine which mode to use, we add a small neural network which

we call the “mode predictor”.

[click]

For convenience, we call partitions or rotations within one mode

“submodes”.

[click]

We separate different submodes into different networks that no longer

need to care about partition or rotation. However, this re-introduces the issue

of requiring a lot of networks;

[click]

Specifically, there are a total of 281 submodes that we need to consider.

When observing the outputs of a conventional compressor, only a few

submodes would be frequently used, and would often produce better results

than most other modes despite not being optimal.

[click]

Therefore, we created a dataset of blocks and ran them through the

compressor using every single submode, giving us compression errors. We

then ran a beam search on this data to find a combination of a small number of

submodes that produce high-quality results when used in conjunction.

We selected 4 submodes in the end.

[NOTES]

16 + 64 + 64 + 64 + 4 + 4 + 1 + 64 = 281

Beam search:

Since we have a lot of data, we quantized all output PSNR values to 8 bits so

that it’s easier to fit the entire dataset into memory. The reason we’re using a

beam search is also to reduce memory usage.

It turned out to be a bit of an overkill – just counting the frequencies of modes

chosen by the compiler yields pretty much the same results. Running a search

on a subset of the data will likely work as well.

× ×

[click]

The mode predictor is significantly smaller than regular upsample

networks and is much cheaper to evaluate.

[click]

The job of the mode predictor is not to classify a block into one specific

mode, but rather to predict how well each mode can encode a block.

Therefore, instead of using a softmax to predict the single best mode, it

outputs expected error for all modes. This means that even when it

does not select the best mode, it will still select one that’s good enough.

[click]

This network is trained with errors obtained from blocks produced by

the upsample networks to account for both compression error and error

introduced by upsampling.

[click]

For upsample networks, we now only need endpoints and indices for

one block, which means that we can also get away with a much smaller

network.

[click]

We use downsampled textures as training input for all these networks. These

are downsampled with a box filter, which matches how we generate mipmaps

in the build system. The inputs are also BC7 compressed and decompressed

to mimic how textures will be compressed in the game.

[click]

Each 4x4 output block corresponds to 2x2 pixels in the input image. In

addition, we provide context information with pixels around the 2x2 block.

Based on our experimentation, a one-pixel border strikes a good balance

between quality and model size.

And now, we’d like to solve the last issue as well: we want to get rid of

the neural network decoder.

[click]

An important observation is that the BC7 decompression process is

mostly differentiable, which means that we can replicate the process in

a differentiable manner and gradients will flow through naturally.

[click]

It consists of mostly interpolation and quantization steps, of which only

quantization is not differentiable.

[click]

We used a naïve solution which is to simply quantize the values and

leave the gradients intact. This worked reasonably well in practice.

⋮

Finally, our updated process looks like this.

⋮

The image pixels are first fed into the mode predictor for errors.

[click]

Which is used to select the best network to use.

[click]

The pixels are then passed through the selected network.

[click]

And the resulting parameters are encoded into the block.

[click]

When training, we instead use the differentiable decoder and compare

the result with the reference.

[click]

And finally, we also use these errors to train the mode predictor.

Here are what the results now look like in the middle, compared to

bilinear upsampling on the left and the old results on the right.

There are less artifacts, and small features are better preserved.

This is the method that we used in the final game.

Here’s another example for normal maps. In this example, we’re using a

different set of networks trained specifically for normals.

We have a non-neural-network-based upsampling and compression

solution provided by Tom Madams at SIE Tools and Technology.

Here is an example of a normal map being upsampled and compressed

using both methods. The labels below these images show how they are

upsampled.

Compared to the approach from SIE, the main benefit of our method is

that it is better at enhancing details such as edges. You can see

sharper edges in the image on the right compared to the image in the

middle.

On the other hand, our method is more unpredictable and prone to

artifacts such as color shifts and block artifacts, which you can also see

in this example. For this reason, we preferred the SIE method for

diffuse textures and used neural networks primarily for normal maps.

This table shows what methods we ended up using for the final game

for different types of textures.

The SIE method has certain limitations on the input, in which case we

fall back to our method.

[click]

We ran a test by progressing normally through the game and monitoring

how much data is being produced. In 10 minutes, the system produced

760 million BC1 and BC7 blocks with both our method and the method

provided by Sony, which is around 10 gigabytes of BC1 and BC7 blocks

if no other form of compression is used. Around 70% of the 10

gigabytes of data is produced by neural networks, which is equivalent to

around 42 4k textures per minute.

[NOTES]

Alfheim with Tyr, 10 min:

4,092,592,128 BC1 pixels with Tom‘s upscaler (255,787,008 blocks,

2,046,296,064 bytes)

878,706,688 BC7 pixels with Tom‘s upscaler (54,919,168 blocks, 878,706,688

bytes)

7,114,588,160 BC7 pixels with NN (444,661,760 blocks, 7,114,588,160 bytes)

Here’s an example of in-game visual improvements. These can be fairly

subtle, but you can see higher resolution patterns on the rock on the

right, and more detailed specular highlights on the left.

Here’s an example of in-game visual improvements. These can be fairly

subtle, but you can see higher resolution patterns on the rock on the

right, and more detailed specular highlights on the left.

Here’s another example on the in-game character, Freya. Notice how

her shoulder plates now have more definition.

[pause]

Here’s another example on the in-game character, Freya. Notice how

her shoulder plates now have more definition.

[pause]

[click]

This method can be easily extended to other BC modes or any other

compression schemes that are based on interpolation. We have an

experimental version for BC1 that we ended up using only as a fallback.

[click]

One drawback with this approach is the quality of the results. We have

a peak signal-to-noise ratio of around 26 which is relatively low

compared to even some of the earliest convolutional neural network

based upsampling methods.

[click]

For context, here’s an example of an image with a PSNR of 31 on the

right, where you can already see a lot of banding. Banding is rare for

our method, but still, there are plenty of room for improvements.

Convolutional networks have much larger reception fields instead of our

tiny 4x4 window. This gives them the opportunity to react to global

characteristics of the image and add in more details.

https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio

Unfortunately, switching to convolutional networks requires extensive changes

to how we evaluate them at run time, which we’ll introduce shortly.

You can see some of the most visible cases of artifacts in the image on

the right.

Since BC7 works with 4x4 pixel blocks, the networks sometimes

produce block artifacts. This is especially visible for highly specular

surfaces under direct lighting.

We attempted to fix this by training with four neighboring blocks at the

same time and adding first and second order gradients to the loss

function. These helped somewhat but the issue was still visible.

[click]

We ended up creating a table of known bad textures that are rejected

by the upsampling system.

So far, everything we’ve been doing has been with PyTorch on a PC.

We need a way to evaluate these networks on a PS5.

PyTorch is too large to directly embed into our engine. It would take too

much effort to trim the package down, and the result would likely not run

optimally either.

We decided to implement network evaluation ourselves specifically for

the hardware that we’ll be running on.

[click]

We also decided to try evaluating the entire network in a single shader

and see how far conventional optimization methods take us.

[click]

In our early attempts, we started out processing one block per thread,

since we thought that our networks are small enough. Unfortunately, it

didn’t work out.

[click]

We don’t have enough space in registers or LDS to store intermediate

results while keeping high occupancy.

[click]

And writing intermediate results back to memory caused cache thrashing.

[NOTES]

Embedding constants in the shader caused instruction cache thrashing. FMA

instructions with embedded constants take 3 DWORDs. Regular VALU

instructions are 1 or 2 DWORDs.

WaveReadLaneAt()

[click]

Since we cannot process data on the finest granularity – one block per

thread – we move on to the next level of granularity, which is

wavefronts. Can we process one block per wavefront? Upon

investigation, this opens up another way of storing the intermediate

vectors,

[click]

Which is to store them across the lanes of one or more VGPRs. This

means that we store the first element of the vector in the first lane of the

VGPR, and the second element in the second lane of the same VGPR,

and so on. We go to the next VGPR when there are more elements in

the vector than lanes in a wave. Because the widest part of our

networks are 128-wide, assuming 64 lanes per wave, we can store the

intermediate results in just 2 VGPRs.

We don’t need to worry about matrices since they are constants that we

read from buffers, which means that we can store and read them

however we like.

[click]

With this setup, elementwise vector arithmetic is trivial. Matrix-vector

multiplication usually requires reading and writing to arbitrary elements.

[click]

Reading from a lane is simple and fast: We can use WaveReadLaneAt() or

equivalent, but it’s limited to the same lane for the entire wave.

[click]

It’s inefficient to write to a specific lane. But, as we’ll see, these drawbacks can

be easily worked around.

[NOTES]

There are two ways to formulate the multiplication:

1. Each element of the output vector is the dot product of one row of the

matrix with the input vector.

We’ll need to use CrossLaneAdd() and write the result back to a specific lane

which is not efficient.

2. The output vector is the sum of each column of the matrix times the

corresponding element in the input vector.

Each element of the input vector can be easily and efficiently extracted using

ReadLane(), and the summation maps naturally to the addition of regular

variables that are stored in VGPRs.

We can reformulate matrix multiplication by evaluating it as the sum of a

series of vector-scalar products.

For each iteration, we read one column of the matrix from memory, and

fetch the corresponding element of the input vector by reading the

corresponding lane. It’s then trivial to multiply them together and

accumulate into a new VGPR.

1 static const uint kNumLanes = 64;

2 VgprPack multiply(Matrix mat, VgprPack vec) { // Assumes mat.width == vec.size

3 VgprPack result = (VgprPack)0;

4 const uint laneID = WaveGetLaneIndex();

5 for (uint elemIn = 0; elemIn < vec.size; ++elemIn) {

6 float input = WaveReadLaneAt(vec[elemIn / kNumLanes], elemIn % kNumLanes);

7 for (uint vgprOut = 0; vgprOut * kNumLanes < mat.height; ++vgprOut) {

8 float parameter = mat[/*x=*/elemIn][/*y=*/vgprOut * kNumLanes + laneID];

9 result[vgprOut] += parameter * input;

10 }

11 }

12 return result;

13 }

And here is the pseudocode for it.

This is the most basic version of what can be achieved using this

method: we’re reading one element on line 6 and updating one element

on line 9. This method allows for a lot of flexibility in how many

elements can be processed in one iteration – we can independently

adjust line 6 and line 9 to process ‘blocks’ of the matrix. We’ll see how

this helps with optimization later.

This initial naïve implementation upsamples one 2k by 2k image to 4k in

42.7 milliseconds.

half

One of the simplest optimization is adopting 16-bit floats, also known as

half-precision floats or halves.

[click]

This change reduces VGPR usage…

[click]

…and reduces the size of the weights buffer and relieves cache

thrashing.

[click]

It also speeds up computation with packed 16-bit operations because

they effectively double the amount of computation we can perform per

cycle.

[click]

Though, packed operations must process 2 elements at the same time.

We’ll come back to this later.

[click]

Using halves does bring some precision concerns,

[click]

But in our case, we didn’t observe significant changes in the results.

[click]

Another potential downside is wasting computation. This is an inherent issue

with this approach but using halfves compounds it. Assuming that wave size

stays at 64, the network width now needs to be a multiple of 128 to avoid

wasting computation. And that’s the widest part of our networks.

You can see an illustration on the right, where the stripe pattern indicates

unused registers.

[click]

However, we can reduce the number of lanes by half by switching to wave32,

and achieve roughly the same amount of waste as before.

Overall, there’s very little downside to switching to halves.

This version upsamples one 2k image to 4k in 37.1 milliseconds. It’s a

decent improvement but not as large as it theoretically should.

[click]

ALU utilization turned out to be lower than the previous version.

[click]

We can see what’s wrong: we have a lot of stalls from waiting to issue

memory loads,

[click]

because the shader is frequently stalled due to the queue for memory

requests being full.

This version upsamples one 2k image to 4k in 37.1 milliseconds. It’s a

decent improvement but not as large as it theoretically should.

[click]

ALU utilization turned out to be lower than the previous version.

[click]

We can see what’s wrong: we have a lot of stalls from waiting to issue

memory loads,

[click]

because the shader is frequently stalled due to the queue for memory

requests being full.

buffer_load_dwordx4 half

From a macroscopic perspective, this is confirmed by the instruction

statistics chart of the shader.

[click]

Only a bit over a half of the instructions are vector arithmetic – as

indicated by the blue area – and that includes the instructions used for

address computation.

[click]

At the same time, buffer loads and waits make up a third of the shader.

The assembly shows that the shader is only loading 32-bits per

instruction.

[click]

We can drastically cut down the number of load requests by loading as

much data per instruction as possible.

On a PS5, we can use the buffer_load_dwordx4 instruction which loads

128 bits or 8 half’s at once.

[click]

We accommodated this by switching to processing 4 rows and 2 columns per

loop.

Here’s how the matrix multiplication procedure is adjusted to

accommodate these optimizations.

The light gray area in the matrix represents all computation performed

by a wavefront in a single iteration. In this example it spans the entire

height of the matrix, but it’s not always the case when the matrix is

large. The colored area represents computation performed by a single

thread.

For clarity I’m representing the matrix with its conventional layout, but in

practice it’s converted to halves and packed in a way that the

highlighted elements are adjacent in memory.

[click]

In the middle are packed operations for computing intermediate results.

[click]

And on the right are the non-packed operations required to compute the

final result.

These are inefficient, so instead of performing the accumulation every

iteration, we use double the number of registers to store results from the

second column until the entire sum has finished, before doing the non-packed

sums on the third column.

[NOTES]

This setup of processing a 4-by-2 block of the matrix every thread is a result of

trying to simultaneously minimize:

• The number of ReadLane()s that we need to do (to load the input

vector)

• The amount of non-packed operations

• Number of registers needed to store intermediate results

• Number of parameter loads (max 8 halfs at a time)

Looking at the stats again, we now have a much healthier portion of

arithmetic instructions, shown in blue,

[click]

and a lot less waits and buffer loads.

Not only that, but the shader is also around 38 percent shorter than the

previous version.

This version upsamples one 2k image to 4k in around 18.5ms.

If we profile this version, the stalls are gone, but two things are

apparent:

[click]

Firstly, ALU usage is still low at just over fifty percent.

[click]

And second, the reason why it’s low is because of memory loads: On

average each load costs around 600 cycles.

[click]

In addition, we can see that we have a lot of L0 misses, but not a lot of

L1 misses, which is an indication of L0 cache thrashing.

[click]

And we can reduce the amount of data loaded from L1 by loading part

of the weights into LDS beforehand. This presented some subtle

challenges that we had to solve.

[click]

LDS is cleared between thread groups, and is only shared within thread

groups and not between them. This means that our initial approach of

launching new thread groups each containing a single wavefront every

time we evaluate the network will not work.

[click]

The solution is to saturate the GPU with a batch of large thread groups,

where we load the weights first, then loop through all inputs and

repeatedly execute the same network. We need to avoid idle

wavefronts or reduced occupancy caused by having too many threads

in a group, which requires careful balancing and is highly hardware

dependent.

[click]

Most of our networks don’t fit into LDS, but the mode prediction networks

turned out to be small enough to fit. Interestingly, when we tried loading all

their parameters into LDS, it caused a noticeable performance drop, compared

to when the parameters are split between LDS and cache. Our theory is that

data can be loaded from LDS and L0 concurrently by different waves.

At this point, the shaders have over 92% VALU utilization, and

upsampling a 2k image to 4k takes around 10.8 milliseconds. It’s in a

decent state.

[click]

Looking at the composition of the shader, we have a lot of arithmetic

instructions and very little I/O, which is exactly what we want.

But we’re not done here.

Since our method is VGPR-efficient, it turned out that we can process

more blocks at a time without affecting occupancy. This means that

we’ll be reading the weights once but using it to process multiple blocks.

[click]

When processing 2 blocks at a time, it upsamples one 2k texture to 4k

in around 9.5 milliseconds, shaving off over a whole millisecond.

[click]

We have the same number of I/O instructions,

[click]

but almost double the number of VALU instructions. This is what we

shipped in the final game.

[click]

As I was preparing this presentation, I realized that it’s possible to bump this

number up to 3 and get yet another small performance gain of around 0.4

milliseconds. But as shown in the stats, we’re starting to get diminishing

returns.

[NOTES]

VALU numbers here don’t include warming up – i.e., loading things into LDS

and warming up the cache. Compared to the upsampling process it usually

takes a negligible amount of time.

[click]

We encode network evaluation results into BC7 blocks with scalar ALUs

to exploit the fact that we’re operating in waves rather than threads.

[click]

The floating point results are quantized to integers with vector ALUs

beforehand to work around the fact that scalar ALUs barely have any

floating-point capabilities.

Thanks to the system being designed to handle each submode with a

unique shader, almost all constants and table lookups can be inlined,

and loops can be unrolled.

This results in extremely optimized encoding code that runs “in parallel”

with network evaluation.

[click]

We use code generation to produce the shaders from dumped PyTorch

models.

[click]

We disassemble network nodes into more primitive operations. We also define

rules of optimization and run them over this intermediate representation.

[click]

Every frame, the texture streaming system detects textures that require

upsampling, and sends them over to the upsampling system. It also retrieves

finished requests from previous frames.

[click]

The way we determine how much BC7 blocks to upsample is by tracking

running averages of excess frame time and the duration of one evaluation of

any specific network. We also try to be conservative by clamping excess frame

time down to last frame’s value, and by only using a percentage of the budget.

This simple approach worked well enough in practice.

[NOTES]

If an elementwise multiply and an elementwise add immediately follows a

matrix multiplication and an elementwise add, the multiply-add can be folded

into it.

𝐂 𝐌𝒙 +𝒃 +𝒅 = 𝐂𝐌 𝒙+ 𝐂𝒃 +𝒅 , where 𝐂 = diag 𝒄

Although performant, the way we evaluate the networks has a few

limitations.

[click]

Firstly, as we’ve already mentioned, when the width of the network is

not a multiple of wave size, some computation is wasted. It’s easy to

enforce this for hidden layers but input/output layers usually have a

fixed size.

[click]

And secondly, when evaluating larger models, we quickly hit limits

imposed by cache size and VGPR count. It may be possible to work

around this issue by creating a hybrid where some intermediate results

are saved to memory/LDS.

[click]

The system is heavily optimized for PS5 and will likely perform poorly

without adjustments on different hardware.

Let’s conclude this talk by looking back at the initial list of goals that we

started with and look at how we may improve the system.

[click]

The system succeeds in increasing texture resolution on PS5, but we

would like to make quality improvements in the future. We also learn the

lesson that it’s important to assess quality in-game early in production,

in addition to looking at raw numbers and textures.

[click]

We primarily use this method for normal maps which are compressed

exclusively using BC7, but it’s easy to extend this method to other

texture types and compression methods.

[click]

We’re able to avoid an additional compression step, although we do

need help from the extra mode predictor network. We considered

switching to a rule-based mode predictor for the specific submodes that

we use but never got around to it.

[click]

And by optimizing specifically for the PS5, we were able to almost fully utilize

the hardware while keeping the system extremely adaptive.

That’s it! Thank you for attending my talk.

I would like to thank our technical director Josh Hobson and our

rendering lead Stephen McAuley for providing ideas and feedback for

this project, my advisor Olivier Pomarez for helping with the

presentation, and all members of the rendering team for their help and

support.

JOIN US AT GDC 2023 BUILD YOUR GOD OF WAR GDC AT:
SCHEDULE.GDCONF.COM

ERICA PINTO LEAD NARRATIVE ANIMATOR

MEHDI YSSEF LEAD GAMEPLAY ANIMATOR

BRUNO VELAZQUEZ ANIMATION DIRECTOR
DAVID GIBSON ANIMATION DIRECTOR

SUE PACETE SR USER RESEARCHER

PAOLO SURRICCHIO SR STAFF PROGRAMMER

BEN HINES SR STAFF DEVOPS ENGINEER

ETHAN AYER SR ENVIRONMENT ARTIST

XUANYI ZHOU PROGRAMMER

GÖKSU UĞUR AI LEAD

VICKI SMITH SR STAFF LEVEL DESIGNER

STEPHEN McAULEY LEAD RENDERING PROGRAMMER

ERIC GOTTESMAN SR STAFF DEVOPS ENGINEER

SAM STERNKLAR SR PROGRAMMER

ADAM OLIVER SR COMBAT DESIGNER

GÖKSU UĞUR AI LEAD

ZACH BOHN SR STAFF TECHNICAL UI DESIGNER

SALAAR KOHARI PROGRAMMER

TENGHAO WANG SR PROGRAMMER

HARLEIGH AWNER TECHNICAL NARRATIVE DESIGNER

Here are all talks from Santa Monica Studio at this year’s GDC. Feel

free to check them out.

And finally, we’re hiring!

http://sms.playstation.com/careers
mailto:sms.recruiting@sony.com?subject=We're%20Hiring%20Inquiry

I will be happy to take any questions you may have.

𝑥, 𝑦, 𝛼 𝑥, 𝑦, 𝑧

We can either represent normals with a direction in the X-Y plane and

its angle against the Z axis, or a basic 3D vector.

The first approach guarantees that the endpoints are normalized while

the second version doesn’t. We eventually went with the second version

since it resulted in higher PSNR. We manually stretch the endpoints to

slightly longer than unit length before encoding.

Not being able to have 255 values has a significant implication for

normal maps, since our shading depends on the length of the normal

vectors.

In mode 1, normals are quantized using 6 bits. (0, 1, 0) will be

converted to (0.5, 1, 0.5), which will become (63/127, 126/127, 63/127)

assuming all P-bits are set to 0, which will be decoded as (-1/127,

125/127, -1/127), which has length 15627/16129≈0.968876.

The SALU trick still applies during the process – we’re quantizing first

before doing all the testing with integers. We ended up not losing any

performance.

𝑛 𝑎𝑛
𝑚

𝑎𝑚 𝑚 < 𝑛

• 𝑎𝑚 =
2𝑚−1

2𝑛−1
𝑎𝑛+

1

2
=

2𝑚+1−2 𝑎𝑛+2
𝑛−1

2𝑛+1−2

• 𝑎𝑚 =
2𝑚−1 𝑎𝑛+2

𝑛−1

2𝑛
+

2𝑚−1 𝑎𝑛
2𝑛 2𝑛−1

=
𝑎𝑛+2

𝑛−𝑚−1

2𝑛−𝑚
−

2𝑛−𝑚−1 𝑎𝑛
2𝑛−𝑚 2𝑛−1

•
2𝑚−1 𝑎𝑛
2𝑛 2𝑛−1

<
1

2𝑛−𝑚
,

2𝑛−𝑚−1 𝑎𝑛
2𝑛−𝑚 2𝑛−1

< 1

Care must be taken when converting from quantizing using m bits and

quantizing using n bits: Because we’re handling ranges [0, 1] instead of

[0, 1-1/2^k], it’s not a simple matter of truncating the binary

representation or padding with zeros.

For example, if we were to requantize a unorm represented by 2 bits to

3 bits by padding with zeros, we would get the results shown in yellow,

and the last 2 are obviously incorrect (correct values are shown in

green).

Since integer division rounds down, and both the numerator and the

denominator are integers, we can avoid involving floating-point

operations. Unfortunately, there’s the possibility of overflowing roughly

when 𝑚+𝑛 ≥ 32.

I’ve shown two ways to transform the expression, from which

approximations can be obtained by taking only the first term. Also

shown are the bounds of their errors. Both approximations avoid the

division, but only the second one helps avoid overflows.

Additionally, a lot of n and m pairs cover small enough values that we

can iterate over all possible values and check if the approximations are

exact.

Towards the end of the project, we experimented with adjusting gloss

together with upsampling normals. We use Toksvig’s method to adjust

gloss when using mipmapped normals based on the lengths of the

normals, and the inverse should apply when upsampling the image.

It would be difficult to modify gloss directly because it’s packed together

with other channels. Thus, we decided to encode it in the alpha channel

of the normal map. We were not previously using the channel and we’re

going to sample normal anyway, so this was an obvious choice.

Modifications to the network are minimal – we’re just outputting an

additional channel.

Due to time constraints this did not make it into the final game.

https://developer.download.nvidia.com/whitepapers/2006/Mipmapping_Normal_Maps.pdf
https://developer.download.nvidia.com/whitepapers/2006/Mipmapping_Normal_Maps.pdf

	Introduction
	Slide 1: Neural Image Upsampling in God of War: Ragnarök
	Slide 2: Agenda

	Background
	Slide 3: Design Goals
	Slide 4: BC7 (“Block Compression 7”)
	Slide 5: BC7 Partitions
	Slide 6: BC7 Modes

	Network Design
	Slide 7: Network Design
	Slide 8: First Version
	Slide 9: First Version
	Slide 10: Initial Results
	Slide 11: Initial Results
	Slide 12: Issues
	Slide 13: Splitting the Problem
	Slide 14: Network Details
	Slide 15: Eliminating the NN Decoder
	Slide 16
	Slide 17
	Slide 18: Results
	Slide 19: Results
	Slide 20: Production
	Slide 21: Production
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Pros & Cons
	Slide 27: Pros & Cons

	Implementation
	Slide 28: Network Evaluation and Implementation Details
	Slide 29: Can’t embed PyTorch into the game!
	Slide 30: Analysis
	Slide 31: Matrix Multiplication
	Slide 32: Matrix Multiplication: Pseudocode
	Slide 33: Float16 (half)
	Slide 34: Profiling Results
	Slide 35: Profiling Results
	Slide 36: Bandwidth Issues: Memory Read Requests
	Slide 37: Processing Blocks
	Slide 38
	Slide 39
	Slide 40: Bandwidth Issues: L1 Thrashing
	Slide 41
	Slide 42: More Performance
	Slide 43: Implementation
	Slide 44: Limitations

	End
	Slide 45: Conclusion & Future Work
	Slide 46: Thank You!
	Slide 47
	Slide 48
	Slide 49: Q & A
	Slide 50
	Slide 51: In-Game Results
	Slide 52
	Slide 53
	Slide 54
	Slide 55: Upsampling Normals
	Slide 56: P-bit Handling
	Slide 57: P-bit Handling: Quantization
	Slide 58: Experiment: Gloss Adjustment

