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Doctoral course, Université Catholique de Louvain, 19-20 Nov 2015

Prof. Damiano Brigo
Chair, Mathematical Finance and Stochastic Analysis Groups

Dept. of Mathematics
http://www.damianobrigo.it

Univ. Catholique de Louvain



Content I

1 PART I. OPTION PRICING AND DERIVATIVES MARKETS
The Black Scholes and Merton Analysis
Contingent Claims
Strategies, Value process, Gains
Self financing Strategies, attainable claims & arbitrage
The Feynman Kac theorem, Girsanov and the Martingale
Measure
Fundamental Theorems: No arbitrage and completeness
Martingales and numeraires
Hedging
What does it all mean?
10 × planet GDP: Thales, Bachelier and de Finetti
From 1997 Nobel to crises: ... 1998, 2007, 2008...
The Crisis: Multiple Curves, Liquidity Effects. Credit, Bases
Incorporating valuation adjustments?

(c) 2010-15 D. Brigo (www.damianobrigo.it) Nonlinear Valuation and XVA Univ. Catholique de Louvain 2 / 513



Content II

2 PART II: CREDIT RISK PRODUCTS and MODELS
CDS and Defaultable bonds
Market implied default probabilities
CDS and Defaultable Bonds: Intensity Models
Intensity models: Constant Intensity
Intensity models: Deterministic Intensity
Intensity models: Stochastic Intensity
Merton’s Firm Value Model
A link between credit and equity
Black & Cox and AT1P Firm Value Models
A formula killed Wall Street? Really?
CDS index and CDO tranche payoffs and spreads
Copula models: Base correlation and its many problems
Nobody knew? Not really
Beyond Copulas: Dynamic Loss Models for CDOs

(c) 2010-15 D. Brigo (www.damianobrigo.it) Nonlinear Valuation and XVA Univ. Catholique de Louvain 3 / 513



Content III
GPL Model: Calibration and performances in 2006-2010
The role of Mathematics and Statistics
Data?

3 PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA
Valuation Adjustments
Intro to Counterparty Risk: Q & A
Credit VaR and CVA
The mathematics of counterparty risk valuation
General formula, Symmetry vs Asymmetry
Unilateral Credit Valuation Adjustment (UCVA)
Unilateral Debit Valuation Adjustment (UDVA)
Bilateral Risk and DVA
DVA Hedging?
Risk Free Closeout or Replacement Closeout?
Can we neglect first to default risk?

(c) 2010-15 D. Brigo (www.damianobrigo.it) Nonlinear Valuation and XVA Univ. Catholique de Louvain 4 / 513



Content IV
Payoff Risk
CVA with Wrong Way Risk: Modeling examples
CVA for Interest Rate Products
Stressing underlying vols, credit spread vols, and correlations
CVA for Commodities
CVA for Credit Default Swaps
Equity
Model Risk?
Collateralization, Gap Risk and Re-Hypothecation

4 PART IV. Including FUNDING COSTS: FVA, FCA & FBA
Adding Collateral Margining Costs and Funding rigorously
Valuation under Funding Costs
The recursive non-decomposable nature of adjusted prices
Funding inclusive valuation equations
Funding and Credit VA’s in case of EFB policy

(c) 2010-15 D. Brigo (www.damianobrigo.it) Nonlinear Valuation and XVA Univ. Catholique de Louvain 5 / 513



Content V
V 0, CVA, DVA, LVA, FCA, FBA, CVAF , DVAF
Double counting in the EFB case
Funding and Credit VA’s in case of RBB policy
V 0, CVA, DVA, LVA, FCA, FBA=DVA, DVAF
Double counting in the RBB policy case
Adjustments go in different parts of the bank
The benchmark case: Black Scholes
Nonlinear effects: PDEs and BSDEs
Black Scholes benchmark case
Funding costs, aggregation and nonlinearities
Nonlinearity Valuation Adjustment
Capital Valuation Adjustment: KVA?

5 PART V: MULTIPLE INTEREST RATE CURVES
Intro
Pricing and Hedging on the Money Market

(c) 2010-15 D. Brigo (www.damianobrigo.it) Nonlinear Valuation and XVA Univ. Catholique de Louvain 6 / 513



Content VI
Hedging Instruments and Multiple Rates definitions
Multiple-Curve HJM/LMM Models
Multiple curves with Non-Perfect -Collateralization
Convexity Adjustments for LIBOR Rates

6 PART VI: CCPs, INITIAL MARGINS
CCPs: Initial margins, clearing members defaults, delays...
Numerical example of CCP costs
Numerical example of CCP vs SCSA costs

7 PART VII: CVA (FVA? XVA?) DESKS
CVA and FVA Desks: Best Practice

8 References

(c) 2010-15 D. Brigo (www.damianobrigo.it) Nonlinear Valuation and XVA Univ. Catholique de Louvain 7 / 513
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PART I. OPTION PRICING AND DERIVATIVES MARKETS

PART I. OPTION PRICING AND DERIVATIVES
MARKETS

In this quick introductory part we introduce the Black Scholes and
Merton result, their precursors (Bachelier, DeFinetti...) and the
refinements of their theory (Harrison, Kreps, Pliska....) into
no-arbitrage valuation, pointing out its significance, successes and
failures.

We also look at the derivatives markets and their significance

This is all well known but sets the stage for the developments we will
face later, leading to nonlinear valuation problems pushing the
boundaries of the no-arbitrage framework.
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PART I. OPTION PRICING AND DERIVATIVES MARKETS The Black Scholes and Merton Analysis

The Black Scholes and Merton Analysis

We will follows these steps:
Arbitrage as self-financing trading strategy with zero initial cost
attaining a positive payout at maturity.
Portfolio replication theory plus Ito’s formula to derive the Black
and Scholes PDE for the option price under certain assumptions
on the dynamics of the underlying stock price.
The Feynman-Kac theorem to interpret the solution of the Black
and Scholes PDE as an expected value of a function of the stock
price with a modified dynamics.
The Girsanov theorem to interpret the modified dynamics of the
stock price as a dynamics under a different (martingale)
probability measure.
No-arbitrage theorem (Harrison, Kreps and Pliska): There is no
arbitrage opportunity if and only if there exists a martingale
measure.
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PART I. OPTION PRICING AND DERIVATIVES MARKETS The Black Scholes and Merton Analysis

Description of the economy

We consider:

A probability space with a r.c. filtration (Ω,F , (Ft : 0 ≤ t ≤ T ),P)

(& assume FT = F). In the given economy, two securities are
traded continuously from time 0 until time T . The first one (a bond)
is riskless and its (deterministic) price Bt evolves according to

dBt = Bt rdt , B0 = 1, (1)

which is equivalent to
Bt = ert , (2)

where r is a nonnegative number. To state it differently, the short
term interest rate is assumed to be constant and equal to r
through time.
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PART I. OPTION PRICING AND DERIVATIVES MARKETS The Black Scholes and Merton Analysis

Description of the economy

As for the second one, given the (Ft ,P)-Wiener process Wt ,
consider the following stochastic differential equation

dSt = St [µdt + σdWt ], 0 ≤ t ≤ T , (3)

with initial condition S0 > 0, and where µ and σ are positive
constants. Equation (3) has a unique (strong) solution which is
given by

St = S0 exp
{(

µ− 1
2
σ2
)

t + σWt

}
, 0 ≤ t ≤ T . (4)
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PART I. OPTION PRICING AND DERIVATIVES MARKETS Contingent Claims

The risky asset, The B e S Assumptions, and
Contingent Claims

dBt = Bt rdt , B0 = 1,

dSt = St [µdt + σdWt ], 0 ≤ t ≤ T ,

The second asset (a stock) is risky and its price is described by the
process St . Furthermore, it is assumed that

(i) there are no transaction costs in trading the stock;
(ii) the stock pays no dividends or other distributions;
(iii) shares are infinitely divisible;
(iv) short selling is allowed without any restriction or penalty.

We refer to these assumptions as to Black and Scholes’ ideal
conditions.
Example of risky asset dynamics over 5 years:
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PART I. OPTION PRICING AND DERIVATIVES MARKETS Contingent Claims

S0 = 100, (µ, σ) = (5%,10%), (10,10), (10,1), (1,20)
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PART I. OPTION PRICING AND DERIVATIVES MARKETS Contingent Claims

Contingent claims, pricing problem

A contingent claim Y for the maturity T is any square-integrable and
positive random variable in (Ω,FT ,P), which is in particular
FT –measurable.

In this introductory part we limit ourselves to simple contingent claims,
i.e. claims of the form Y = f (ST ).

The idea behind a claim is that it represents an amount that will be
paid at maturity to the holder of the contract.

The Pricing Problem is giving a fair price to such a contract.
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PART I. OPTION PRICING AND DERIVATIVES MARKETS Strategies, Value process, Gains

Trading strategies, Value process, gain process I

A trading strategy is a pair of stochastic processes φ = (φB, φS) on
(Ω,F , (Ft : 0 ≤ t ≤ T ),P) that are locally bounded and predictable
(and, therefore, Ft–adapted). The pair (φB

t , φ
S
t ) represents respectively

amounts of bond and stock to be held at time t .
Predictability is assumed to reduce the investor freedom at jump times
and assumes that the vakue φt will be known immediately before t .
However, in our Black Scholes setting, where the paths of the assets
are continuous, this issue is not relevant.

The value process is the process V describing the value of the
portfolio constructed by following the strategy φ,

Vt (φ) = φB
t Bt + φS

t St .

We will call later Ht = φS
t St the risky asset part of the strategy and

Ft = φB
t Bt the cash part.
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PART I. OPTION PRICING AND DERIVATIVES MARKETS Strategies, Value process, Gains

Trading strategies, Value process, gain process II

The gain process is defined as

Gt (φ) =

∫ t

0
φB

u dBu +

∫ t

0
φS

u dSu .

and represents the income one obtains thanks to price movements in
bond and stock when following the trading strategy φ.

The strategy is self–financing if Vt (φ) ≥ 0 and Vt (φ) = V0(φ) + Gt (φ),
or

φB
t Bt + φS

t St − (φB
0 B0 + φS

0 S0) = Gt (φ) ,

or, in differential terms, d Vt (φ) = d Gt (φ), i.e.

d(φB
t Bt + φS

t St ) = φB
t dBt + φS

t dSt . (5)
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PART I. OPTION PRICING AND DERIVATIVES MARKETS Self financing Strategies, attainable claims & arbitrage

Self–finaincing strategies, arbitrage

d(φB
t Bt + φS

t St ) = φB
t dBt + φS

t dSt .

Intuitively, this means that the changes in value of the portfolio
described by the strategy φ are only due to gains/losses coming from
price movements, i.e. to changes in the prices B and S, without any
cash inflow and outflow.

An important use of self-financing strategies is in defining arbitrage.
An arbitrage opportunity is a self–financing strategy φ such that
(recall Vt (φ) ≥ 0)

φB
0 B0 + φS

0 S0 = 0 , P(φB
T BT + φS

T ST > 0) > 0 .

Basically, an arbitrage opportunity is a strategy which creates a
positive cash inflow from nothing with positive proability and never
creates a loss or negative flow. It is sometimes called a free lunch.

The market arbitrage–free if there are no arbitrage opportunities.
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PART I. OPTION PRICING AND DERIVATIVES MARKETS Self financing Strategies, attainable claims & arbitrage

Self–financing strategies, attainable claims, price

Self-financing strategies are important also because they allow us to
define attainable contingent claims. A contingent claim Y is
attainable if ∃ self-financing φ such that VT (φ) = Y .

We say that φ generates Y , & Vt (φ) is the price at time t for Y .

We thus have a first notion of price as the value of a self-financing
trading strategy attaining (or sometimes we’ll say “replicating”) the
claim.
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PART I. OPTION PRICING AND DERIVATIVES MARKETS Self financing Strategies, attainable claims & arbitrage

Example of Claim: European Call Option

Figure: A one-year maturity Gamble on an equity stock. Call Option.
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PART I. OPTION PRICING AND DERIVATIVES MARKETS Self financing Strategies, attainable claims & arbitrage

Example of Claim: European Call Option I

Suppose we have to price a simple claim Y = f (ST ) at time t .

We focus on the case of a European call option: Let K be its strike
price and T its maturity. The option payoff (to a long position) is
represented by Y = (ST − K )+ = max(ST − K ,0).

This is a contract which at maturity-time T pays nothing if the
risky–asset price ST is smaller than the strike price K , whereas it pays
the difference between the two prices in the other case.

An investor who expects the risky–asset value to increase
considerably can speculate by buying a call option.
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PART I. OPTION PRICING AND DERIVATIVES MARKETS Self financing Strategies, attainable claims & arbitrage

Example of Claim: European Call Option II
Example of use of a call option: Suppose now we are at time 0 and we
plan to buy one share (unit) of a certain stock at time T . We wish to
pay this stock the same price K = S0 it has now, rather than the price it
will have at time T , which could be much higher. What one can do in
this situation is to buy a call option on the stock with maturity time T
and strike price S0.

He then buys the stock at time T paying ST and receives (ST − S0)+

from the option payoff. Clearly, the total amount he pays in T is then
ST − (ST −S0)+ which equals ST if ST ≤ S0 and equals S0 if ST ≥ S0.
Therefore, an European call option can be seen as a contract which
locks the stock price at a desired value to be paid at maturity time T .
This locking has of course a price, which we wish to determine.

We now sketch a derivation of the Black Scholes PDE for the
“attainable-claim” price of an option. This is an informal derivation.
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PART I. OPTION PRICING AND DERIVATIVES MARKETS Self financing Strategies, attainable claims & arbitrage

The Black and Scholes PDE

Let Vt = V (t ,St ) be the candidate claim (option) value at time t .
Assume the function V (t ,St ) of time t and of the stock price St to have
regularity V ∈ C1,2([0,T ]× R+).
Apply Ito’s Lemma to V so as to obtain

dV (t ,St ) =

(
∂V
∂t

(t ,St ) +
∂V
∂S

(t ,St )µSt +
1
2
∂2V
∂S2 (t ,St )σ

2S2
t

)
dt

(6)

+
∂V
∂S

(t ,St )σStdWt .

Set, for each 0 ≤ t ≤ T ,

φS
t =

∂V
∂S

(t ,St ), φB
t = (Vt − φS

t St )/Bt . (7)

By construction, the value of this strategy at time t is V itself, since
clearly V (t ,St ) = φB

t Bt + φS
t St .
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PART I. OPTION PRICING AND DERIVATIVES MARKETS Self financing Strategies, attainable claims & arbitrage

The Black and Scholes PDE

Now assume φ to be self–financing. Since φ is self-financing

dVt = φB
t dBt + φS

t dSt (8)

=

[
V (t ,St )−

∂V
∂S

(t ,St )St

]
rdt +

∂V
∂S

(t ,St )St (µdt + σdWt ).

Then by equating (6) and (8) (ITO + SELF FINANCING), we obtain
that Vt satisfies

∂V
∂t

(t ,St ) +
∂V
∂S

(t ,St )rSt +
1
2
∂2V
∂S2 (t ,St )σ

2S2
t = rV (t ,St ), (9)

which is the celebrated Black and Scholes partial differential equation
with terminal condition VT = (ST − K )+.
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PART I. OPTION PRICING AND DERIVATIVES MARKETS Self financing Strategies, attainable claims & arbitrage

Black and Scholes’ famous formula

The strategy (φB, φS) has final value equal to the claim Y we wish to
price (terminal condition of the PDE), and during its life the strategy
does not involve cash inflows or outflows (self–financing condition). As
a consequence, its initial value Vt at time t must be equal to the unique
claim price to avoid arbitrage opportunities.
The solution of the above equation is given by

VBS(t) = VBS(t ,St ,K ,T , σ, r) := St Φ(d1(t))− Ke−r(T−t)Φ(d2(t)), (10)

where

d1(t) :=
ln(St/K ) + (r + σ2/2)(T − t)

σ
√

T − t
,

d2(t) := d1(t)− σ
√

T − t ,

and Φ(·) denotes the cumulative standard normal distribution function.
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PART I. OPTION PRICING AND DERIVATIVES MARKETS Self financing Strategies, attainable claims & arbitrage

Black and Scholes’ famous formula

Expression (10) is the celebrated Black and Scholes option pricing
formula which provides the unique no-arbitrage price for the given
European call option.

Notice that the coefficient µ does not appear in (10), indicating that
investors, though having different risk preferences or predictions about
the future stock price behaviour, must yet agree on this unique option
price.

MORE ON THE SIGNIFICANCE OF THIS LATER.
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PART I. OPTION PRICING AND DERIVATIVES MARKETS Self financing Strategies, attainable claims & arbitrage

Numerical example

Suppose the current stock value is S0 = 100.
Suppose the risk free interest rate is r = 2% = 0.02.
Suppose that the strike K = 100 (at the money option).
Assume the volatility σ = 0.2 = 20%.
Take a maturity of T = 5y . CALL PRICE IS VBS(0) = 22.02.

For example, in Matlab this is obtained through commands
S0=100; sig=0.2; r=0.02; K=100; T=5;
d1 = (r + 0.5*sig*sig)*T/(sig*sqrt(T));
d2 = (r - 0.5*sig*sig)*T/(sig*sqrt(T));
V0 = S0*normcdf(d1)-K*exp(-r*T)*normcdf(d2);
The same calculation with lower volatility σ = 0.05 = 5% would give

VBS(0)|σ=0.05 = 10.5943, VBS(0)|σ=0.0001 = 9.52.

The last value is very close to the intrinsic value S0 − Ke−rT .
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PART I. OPTION PRICING AND DERIVATIVES MARKETS Self financing Strategies, attainable claims & arbitrage

Numerical example

Acme today is worth S0 = 100.
The more the value of acme goes up in 5 years, the more we gain
as S5y − S0 grows. In a scenario where S5y = 200, we gain 100.
If however Acme goes down instead, S5y − S0 goes negative but
the option (S5y − S0)+ caps it at zero and we lose nothing. For
example, in a scenario where Acme goes down to 60, we get
(60− 100)+ = (−40)+ = 0 ie we lose nothing
With the original data, entering the gamble costs initially 22 USD
out of 100 of stock notional. It is expensive. On the other hand, it
is a gamble where we can only win and in principle have
scenarios with unlimited profit.
You will notice that:

↑ σ ⇒ VCallBS ↑, ↑ S0 ⇒ VCallBS ↑, ↓ K ⇒ VCallBS ↑ ....

(c) 2010-15 D. Brigo (www.damianobrigo.it) Nonlinear Valuation and XVA Univ. Catholique de Louvain 29 / 513



PART I. OPTION PRICING AND DERIVATIVES MARKETS Self financing Strategies, attainable claims & arbitrage

Another numerical example

Take one more example where now the strike K is at the money
forward and volatility very low, namely
S0=100; sig=0.0001; r=0.02; T=5; K=S0*exp(r*T);
Then

VBS(0) = 0 ≈ S0 − Ke−rT = S0 − S0 = 0.

(c) 2010-15 D. Brigo (www.damianobrigo.it) Nonlinear Valuation and XVA Univ. Catholique de Louvain 30 / 513



PART I. OPTION PRICING AND DERIVATIVES MARKETS Self financing Strategies, attainable claims & arbitrage

Verifying the Self financing condition

Going back to the general Black Scholes result, we then prove that the
strategy

φS
t =

∂VBS

∂S
(t ,St ), φB

t = (VBS(t)− φS
t St )/Bt(

VBS(t) = VBS(t ,St ,K ,T , σ, r) := St Φ(d1(t))− Ke−r(T−t)Φ(d2(t))
)
,

is indeed self-financing. By Ito’s Lemma, in fact, we have

dVBS(t) =
∂

∂t
VBS(t)dt +

∂

∂S
VBS(t)dSt +

1
2
∂2

∂S2 VBS(t)σ2S2
t dt . (11)
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PART I. OPTION PRICING AND DERIVATIVES MARKETS Self financing Strategies, attainable claims & arbitrage

Verifying the Self financing condition

Since straightforward differentiation of VBS expression leads to

∂

∂t
VBS(t) = −St Φ

′(d1(t))σ

2
√

T − t
− rXe−r(T−t)Φ(d2(t)),

∂2

∂S2 VBS(t) =
Φ′(d1(t))

Stσ
√

T − t
,

where Φ′(x) := 1√
2π

e−
1
2 x2

, then it is enough to substitute φS and φB

expressions given above to obtain from (11) that
dVBS(t) = φS

t dSt + φB
t dBt , which is the self–financing condition in

differential form.
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PART I. OPTION PRICING AND DERIVATIVES MARKETS The Feynman Kac theorem, Girsanov and the Martingale Measure

The Feynman Kac theorem for Risk Neutral Valuation

Different interpretation: the Feynman-Kac Theorem allows to interpret
the solution of a parabolic PDE such as the Black and Scholes PDE in
terms of expected values of a diffusion process. In general, given
suitable regularity and integrability conditions, the solution of the PDE

∂V
∂t

(t , x)+
∂V
∂x

(t , x)b(x)+
1
2
∂2V
∂x2 (t , x)σ2(x) = rV (t , x), V (T , x) = f (x),

(12)
can be expressed as

V (t , x) = e−r(T−t)EQ
t ,x{f (XT )|Ft} (13)

where the diffusion process X has dynamics starting from x at time t

dXs = b(Xs)ds + σ(Xs)dW Q
s , s ≥ t , Xt = x (14)

under the probability measure Q under which the expectation EQ
t ,x{·} is

taken. The process W Q is a standard Brownian motion under Q.
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PART I. OPTION PRICING AND DERIVATIVES MARKETS The Feynman Kac theorem, Girsanov and the Martingale Measure

Risk Neutral interpretation of the B e S’s formula

By applying this theorem to the Black and Scholes setup, with
b(x) = rx , σ(x) = σ x (so that the general PDE of the theorem
coincides with the BeS PDE) we obtain:
The unique no-arbitrage price of the integrable contingent claim
Y = (ST − K )+ (European call option) at time t , 0 ≤ t ≤ T , is given by

VBS(t) = EQ
(

e−r(T−t)Y |Ft

)
. (15)

The expectation is taken with respect to the so-called martingale
measure Q, i.e. a probability measure Q ∼ P under which the
risky–asset price St/Bt = e−rtSt measured with respect to the risk-free
asset price Bt is a martingale, which is equivalent to S having drift rate
r under Q:

dSt = St [rdt + σdW Q
t ], 0 ≤ t ≤ T , (16)
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PART I. OPTION PRICING AND DERIVATIVES MARKETS The Feynman Kac theorem, Girsanov and the Martingale Measure

An expression for Q: Girsanov’s theorem

We give an informal account. Consider on a probability space
(Ω,F ,Ft ,P) a stochastic differential equation

d Xt = b(Xt ) dt + v(Xt ) dWt , X0.

Under the relevant technical conditions, define the measure Q by

dQ
dP

∣∣∣∣
Ft

= exp

{
−1

2

∫ t

0

(
bQ(Xs)− b(Xs)

v(Xs)

)2

ds +

∫ t

0

bQ(Xs)− b(Xs)

v(Xs)
dWs

}
.

Then under Q ∼ P we have that

dW Q
t = −(bQ(Xt )− b(Xt ))/v(Xt )dt + dWt

is a Brownian motion and

d Xt = bQ(Xt ) dt + v(Xt ) dW Q
t , X0.
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PART I. OPTION PRICING AND DERIVATIVES MARKETS The Feynman Kac theorem, Girsanov and the Martingale Measure

The Risk Neutral measure via Girsanov’s theorem

We apply Girsanov’s theorem to move from

d St = µSt dt + σSt dWt

to

d St = rSt dt + σSt dW Q
t

We obtain

dQ
dP

= exp

{
−1

2

(
µ− r
σ

)2

T − µ− r
σ

WT

}
. (17)
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PART I. OPTION PRICING AND DERIVATIVES MARKETS Fundamental Theorems: No arbitrage and completeness

No arbitrage: Main steps followed so far I

1 Self Financing Condition (Portfolio replication theory) plus Ito’s
formula to derive the Black and Scholes PDE for any attainable
payout claim in ST :

d St = µSt dt + σSt dWt

∂V
∂t

(t ,St ) +
∂V
∂S

(t ,St )rSt +
1
2
∂2V
∂S2 (t ,St )σ

2S2
t = rV (t ,St ),

VT = φ(ST )

2 If each such claim can be replicated/attained with a unique self
financing strategy then there is a unique claim price equal to the
initial cost of the strategy (and given by the PDE).
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PART I. OPTION PRICING AND DERIVATIVES MARKETS Fundamental Theorems: No arbitrage and completeness

No arbitrage: Main steps followed so far II

3 The Feynman-Kac theorem to interpret the price solution of the
Black and Scholes PDE as an expected value of a function of the
stock price with modified dynamics

V (t ,St ) = EQ{e−r(T−t)φ(ST )|Ft}

d St = rSt dt + σSt dW Q
t

4 The Girsanov theorem to interpret the modified dynamics of the
stock price as a dynamics under a new (Risk neutral or
martingale) probability measure Q:

dQ
dP

= exp

{
−1

2

(
µ− r
σ

)2

T − µ− r
σ

WT

}
.
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No arbitrage: Main steps followed so far III

5 Hence the notion of attainable/replication claim price obtained
from the PDE (self-financing condition & Ito’s formula) coincides
with a second notion of price: expectation of the claim payout
under a risk neutral measure where the risky asset local mean
grows at the risk free rate. This is a second way to express
no-arbitrage via the condition that S/B is a martingale (more on
martingales in a minute), ie a fair game. Hence no arbitrage will
be related to the market for the underlying risky asset S to be a
fair game.
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PART I. OPTION PRICING AND DERIVATIVES MARKETS Fundamental Theorems: No arbitrage and completeness

Fundamental Theorems I
Pricing, no arbitrage, complete markets

The two approaches attainable claim PDE/ Risk neutral expectation
are more generally related by the full theory of Harrison, Kreps and
Pliska, and following extensions, and they are equivalent to the
absence of arbitrage opportunities as defined earlier. Without
specifying fully all the technical details, we report a high level
summary:

Theorem. ∃ a martingale measure Q ⇐⇒ @ arbitrage opportunities.

Theorem. ∃ a martingale measure Q⇒ ∃! attainable claim price that
can be computed as a Q expectation of the discounted claim.
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PART I. OPTION PRICING AND DERIVATIVES MARKETS Fundamental Theorems: No arbitrage and completeness

Fundamental Theorems II
Pricing, no arbitrage, complete markets

The fundamental result here is that existence of a martingale measure
is equivalent to no arbitrage: if Q ∃ there is no arbitrage opportunity, ie
there is no self–financing φ producing positive wealth with positive
probability with zero costs and without losses.

There is a second result related to the uniqueness (rather than
existence) of the martingale measure. This is related to complete
markets.

A market is complete if every contingent claim is attainable.

Theorem. The market is arbitrage free & complete ⇐⇒ ∃! martingale
measure Q
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PART I. OPTION PRICING AND DERIVATIVES MARKETS Fundamental Theorems: No arbitrage and completeness

Fundamental Theorems III
Pricing, no arbitrage, complete markets

If the market is arbitrage free but not complete, the price of any
attainable clain is still uniquely given, either as the value of the
replicating strategy or as the risk neutral expectation under any
equivalent martingale measure.

The Black Scholes market (Bt ,St ) we have seen above is arbitrage
free and complete.

In reality markets are never complete, and we will explore several
sources of incompleteness.
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PART I. OPTION PRICING AND DERIVATIVES MARKETS Fundamental Theorems: No arbitrage and completeness

Fundamental Theorems IV
Pricing, no arbitrage, complete markets

The above framework can be applied easily to markets with n diffusive
underlying assets S1, . . . ,Sn, each similar to the Black Scholes equity
process, and with a bank or cash account Bt . The definitions and
results on arbitrage opportunities, attainable claims, price, martingale
measure, market completeness extend to the n-dimensional case
easily and also to non-simple claims that are path dependent or early
exercise.
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PART I. OPTION PRICING AND DERIVATIVES MARKETS Martingales and numeraires

The idea behind the martingale approach

Why martingales?
A martingale is a stochastic process representing a fair game. Loosely
speaking, the above proposition states that in order to price under
uncertainty one must price in a world where the probability measure is
such that the risky asset evolves as a fair game when expressed in
units of the risk–free asset.

Hence in our case St/Bt must be a fair game, ie a martingale.

martingales: local mean =0
For regular diffusion processes Xt martingale means ”zero-drift”, no up
or down local direction: dXt = 0dt + σ(t ,Xt )dWt .

Indeed, show that the drift of the SDE for d(St/Bt ) is zero under Q.
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PART I. OPTION PRICING AND DERIVATIVES MARKETS Martingales and numeraires

The idea behind the martingale approach

Numeraire
When we consider St/Bt we may say that we are looking at S
measured with respect to the numeraire Bt .
In general, as we shall see later on, it is possible to adopt any
non-dividend paying asset price as numeraire, and price under the
particular probability measure associated with that numeraire.
However, the canonical numeraire is the bank account B we have used
now and the probability measure associated with the numeraire B is
the risk neutral measure Q.
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PART I. OPTION PRICING AND DERIVATIVES MARKETS Martingales and numeraires

The idea behind the martingale approach

No need to know the real expected return
We noticed earlier that the coefficient µ does not appear in (10),
indicating that investors, though having different risk preferences or
predictions about the future stock price behaviour, must yet agree on
this unique option price.

This property can also be inferred from (16), since, under Q, the drift
rate of the stock price process equals the risk-free interest rate while
the variance rate is unchanged. For this reason the pricing rule (15) is
often referred to as risk-neutral valuation, and the measure Q
defines what is called the risk-neutral world.

Intuitively, in a risk-neutral world the expected rate of return on all
securities is the risk-free interest rate, implying that investors do not
require any risk premium for trading stocks.
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PART I. OPTION PRICING AND DERIVATIVES MARKETS Martingales and numeraires

Weak point of the derivation: Uniqueness of φ

The above derivation, however, is still not fully satisfactory, since we
have implicitly assumed that (φB, φS) is the unique self-financing
strategy replicating the claim with payoff f (ST ). This uniqueness,
anyway, can be obtained by applying the more general theory on
complete markets, which is beyond the scope of this introduction.
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PART I. OPTION PRICING AND DERIVATIVES MARKETS Hedging

Dynamic Hedging I

In the process of deriving the BS formula, we have also found a way to
perfectly hedge the risk embedded in this contract.

Indeed look at the option pricing problem from the following point of
view:

You are the bank and you just sold a call option to the client.
At the future time T you will have to pay (ST − K )+ to your client
You client pays you V0 for the option now, at time 0
Clearly, if the equity goes up a lot in the future, (ST − K )+ could
be very large
You wish to avoid any risks and decide to hedge away the risk in
this contract you sold.
How should you do that?
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PART I. OPTION PRICING AND DERIVATIVES MARKETS Hedging

Dynamic Hedging II

The answer to this question is in our derivation above.

You cash in V0 from the client and use it to buy, at time 0,

∂V0

∂S0
= Φ(d1(0)) =: φS

0 =: ∆0 stock and

φB
0 = (V0 −∆0S0)/B0 bank account / bond (cash).

You then implement the self-financing trading strategy,
rebalancing continuously (hence dynamic hedging) your φS

t , φ
B
t

amounts of S and B according to

φS
t =

∂Vt

∂St
= Φ(d1(t)) =: ∆t stock and

φB
t = (Vt −∆tSt )/Bt bank account / bond (cash).

(c) 2010-15 D. Brigo (www.damianobrigo.it) Nonlinear Valuation and XVA Univ. Catholique de Louvain 49 / 513



PART I. OPTION PRICING AND DERIVATIVES MARKETS Hedging

Dynamic Hedging III

Because the strategy is self-financing, this rebalancing can be
financed thanks to price movements of B and S and you need not
add any cash or assets from outside.
At final maturity we know that the final value will be
VT = (ST − K )+ as we posed this as boundary condition in our
pricing problem.
Hence by following the above strategy, set up with the initial V0
and with no subsequent cost, we end up with the payout
(ST − K )+ at maturity.
We can then deliver this payout to our client and face no risk.
Basically, our self financing trading strategy in the underlying S,
set up with the initial payment V0, completely replicated the claim
we sold to our client.
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PART I. OPTION PRICING AND DERIVATIVES MARKETS Hedging

Dynamic Hedging IV

An obvious but often overlooked point it this: If we are perfectly
hedged, all the money we received from the client (V0) is spent to
set up the hedge, and we as a bank make no gain.
That’s why in reality only partial hedges are often implememented,
in an attempt not to erode all potential profit.

The above framework is called ”delta-hedging”.

Basically one holds an amount of risky asset equal to the sensitivity of
the contract price to the risky asset itself (delta).

This strategy is possible only in markets where all risks are directly
linked to tradable assets and viceversa (roughly: ”complete markets”).
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Dynamic Hedging V

Metatheorem/folklore: A market is complete if there are as many
assets as independent sources of randomness.

In reality markets are incomplete, as there are some risks that are
covered by no direct assets, and there are more risks than assets.

This can be partly addressed by including a few derivatives themselves
among the basic assets, but it is hard to keep the market complete

For example, in credit risk with intensity models, where the default time
is τ = Λ−1(ξ), and Λ is the cumulated instantaneous credit spread and
ξ is the jump to default exponential variable, we have that ξ cannot be
hedged unless we introduce a credit derivative depending on ξ itself in
the pool of our basic assets. And even then the hedge remains partial.
We cannot hedge recovery rates, correlations...
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Dynamic Hedging VI

A further problem is that continuous rebalancing does not happen.
Real hedging happens in discrete time and this will imply an hedging
error with respect to the idealized case

In the end hedging is more an art than a science, and it involves many
pragmatic choices and rules of thumbs. However, a sound
understanding of the idealized case is crucial to appreciate the
subtleties in real market applications.
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PART I. OPTION PRICING AND DERIVATIVES MARKETS Hedging

The sensitivities (or greeks) I

When hedging derivatives, often sensitivities (or greeks) are used in
practice.

A sensitivity is the partial derivative of the price or of another sensitivity
with respect to one of the parameters. It tells us how much a small
change of the parameter impacts a change in the price or sensitivity
we are examining.

We have already met one of the most important sensitivities, delta.

∆(t) =
∂V (t)
∂S

which, for a call option price under Black Scholes, is equal to Φ(d1(t)),
as we have seen above. Delta measures how much the option price V
changes when there is a small change in the underlying asset price S.
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The sensitivities (or greeks) II

In general a large sensitivity with respect to a parameter means that
the trade is quite sensitive to that parameter, and the trader may
consider trades that reduce the sensitivity if she wishes to be more
prudent with respect to that parameter. If the trader is more aggressive
she may decide to trade to increase the sensitivity further.

Other sensitivities or greeks are: Time decay or Θ, sensitivity to time,

Θt =
∂V (t)
∂t

= − ∂V (t)
∂(T − t)

Gamma, the sensitivity of delta to the underlying:

Γt =
∂∆(t)
∂S

=
∂2V (t)
∂S2
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The sensitivities (or greeks) III

At this point we may write an equation linking the three sensitivities just
introduced. Recall Ito’s formula we have seen earlier

dV (t ,St ) =
∂V
∂t

(t ,St )dt +
∂V
∂S

(t ,St )dSt +
1
2
∂2V
∂S2 (t ,St )σ

2S2
t dt .

We can rewrite this as

dV (t ,St ) = Θtdt +
1
2

Γtσ
2S2

t dt + ∆tdSt

On the other hand we have, from the self financing condition,

dV (t ,St ) = ∆tdSt + [(V (t ,St )−∆tSt )/Bt ]dBt
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The sensitivities (or greeks) IV

(the quantity inside square brackets being previously called ηt ). By
matching the two expressions we have

[(V (t ,St )−∆tSt )/Bt ]dBt = Θtdt +
1
2

Γtσ
2S2

t dt

or
[(V (t ,St )−∆tSt )]rt = Θtdt +

1
2

Γtσ
2S2

t dt

or
rtV (t ,St ) = rt ∆tSt + Θtdt +

1
2

Γtσ
2S2

t

Back to definitions, Vega is the sensitivity to volatility, namely

νt =
∂V (t)
∂σ

(c) 2010-15 D. Brigo (www.damianobrigo.it) Nonlinear Valuation and XVA Univ. Catholique de Louvain 57 / 513



PART I. OPTION PRICING AND DERIVATIVES MARKETS Hedging

The sensitivities (or greeks) V

ρ is the sensitivity to interest rates r , namely ρt = ∂V (t)
∂r .

These greeks can be computed in closed form in Black Scholes for call
and put options, for example. There are further higher order greeks
Vanna, Charm, Vomma/volga, Veta, Yoghurt, Speed, Zomma, Color
Ultima, Totto... (sounds crazy I know... and one on this list is fake)

The higher the order of the greeks we use, the smoother we are
assuming prices to be. For example, Speed = ∂3V/∂S3 requires the
price V to be three times differentiable with respect to the underlying
S. While this may hold in simple models like Black Scholes for specific
payoffs, in general assuming excessive smoothness is not realistic,
and therefore using high order greeks has to be done very carefully,
especially when the greeks are computed with numerical methods.
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What does it all mean

So far we have tried to follow a technical path, but it is time to
appreciate the significance of what we have done so far.

We now ask ourselves: What are the implications of what we have
calculated on the big picture?

Quantitative Finance deals in large part with Derivatives. So,
following our derivation above, why are derivatives so important,
so popular and, often, unpopular?
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What does it all mean? Call option and Gambling

Assume we wish to enter into a gamble (call option) against a bank,
where:

If the future price of the ACME stock in 1y is larger than the value
of ACME today, we receive from the bank the difference between
the two prices (on a given notional).
If the future price of the ACME stock in 1y is smaller or equal than
the value of ACME today, nothing happens.

The bank will charge us for entering this wage, since we can only win
or get into a draw, whereas the bank can only lose or get to a draw.
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PART I. OPTION PRICING AND DERIVATIVES MARKETS What does it all mean?

Figure: A one-year maturity Gamble on an equity stock. Call Option.
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PART I. OPTION PRICING AND DERIVATIVES MARKETS What does it all mean?

Call option and Gambling

We have an investor buying a call option on ACME with a 1y maturity.

The Bank’s problem is finding the correct price of this option today.
This price will be charged to the investor, who may also go to other
banks.

This is an option pricing problem.

The market introduced options and more generally financial derivatives
that may be much more complex than the above example. Such
derivatives often work on different sectors: Foreign Exchange Rates,
Interest Rates, Default Events, Metheorological events, Energy, etc.

Derivatives can be bought to protect or hedge some risk, but also for
speculation or ”gambling”.
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PART I. OPTION PRICING AND DERIVATIVES MARKETS 10× planet GDP: Thales, Bachelier and de Finetti

Options and Derivatives

Derivatives outstanding notional as of June 2011 (BIS) is estimated at
708 trillions USD (US GDP 2011: 15 Trillions; World GDP: 79 Trillions)

708000 billions, 708,000,000,000,000, 7.08× 1014 USD

How did it start? It has always been there. Around 580 B.C., Thales
purchased options on the future use of olive presses and made a
fortune when the olives crop was as abundant as he had predicted,
and presses were in high demand. (Thales is also considered to be
the father of the sciences and of western philosophy, as you know).
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PART I. OPTION PRICING AND DERIVATIVES MARKETS 10× planet GDP: Thales, Bachelier and de Finetti

Options and Derivatives valuation: precursors

Louis Bachelier (1870 – 1946) (First to introduce Brownian
motion Wt in Finance, First in the modern study of Options);
Bruno de Finetti (1906 – 1985) (Father of the subjective interpret
of probability). Shows betting quotients (claim prices?) avoid sure
exploitation from gambling broker (market?) if and only if they
satisfy axioms of a probability measure. See also Frank Ramsey
(1903-1930).

Modern theory follows Nobel awarded Black, Scholes and Merton
(and then Harrison and Kreps etc) on the correct pricing of options.
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Black and Scholes: What does it mean?

We have derived the Black Scholes formula for a call option earlier. Let
us recall the key points.

Let St be the equity price for ACME at time t .
For the value of the ACME stock St let us assume, as before, a SDE
dSt = µStdt + σStdWt or also

dSt

St︸︷︷︸ = µ︸︷︷︸ dt + σ︸︷︷︸ dWt︸︷︷︸
relative change instantaneous volatility New
in stock ACME ”mean” return for ACME random

between of ACME shock
t and t + dt between t and t + dt
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Black and Scholes: What does it mean?

Then we have seen there exists a formula (Black and Scholes’)
providing a unique fair price for the above gamble (option) on ACME in
one year.

This Black Scholes formula depends on the volatility σ of ACME, and
from the initial value S0 of ACME today, but does NOT depend on the
expected return µ of ACME.

This means that two investors with very different expectations on the
future performance of ACME (for example one investor believes ACME
will grow, the other one that ACME will go down) will be charged the
same price from the bank to enter into the option.
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The Gamble price does not depend on the investor perception of future
markets. One would think that Red Investor should be willing to pay a
higher price for the option with respect to Blue Investor. Instead, both
will have to pay the gamble according to the green scenarios, where
ACME grows with the same returns as a riskless asset
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Derivatives prices independent of expected returns???

This seemingly counterintuitive result renders derivatives pricing
independent of the expected returns of their underlying assets.

This makes derivatives valuations quite objective, and has contributed
to derivatives growth worldwide.

Today, derivatives are used for several purposes by banks and
corporates all over the world

A mathematical result has contributed to create new markets that
reached 708 trillions (US GDP: 15 Trillions)

But keep in mind that the derivation of the Black Scholes result holds
only under the 4 ideal conditions and actually many more assumptions:
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The Black Scholes Merton analysis assumptions

Short selling is allowed without restrictions
Infinitely divisible shares
No transaction costs
No dividends in the stock
No default risk of the parties in the deal
No funding costs: Cash can be borrowed or lent at the risk
free rate r . Remove this and Valuation becomes Nonlinear
(Semi-Linear PDEs, FBSDEs, see several papers B. & Pallavicini
2011-2015)
Continuous time and continuous trading/hedging
Perfect market information, Complete markets
....

Many of the above assumptions are no longer tenable, especially after
2007-2008, but were already unrealistic well before 2008.
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Crisis

After Black Scholes 1973...
Market players introduced derivatives that may be much more complex
functionals of underlying assets and events than the above call option

Gamble/speculate/hedge/protect on anything?
Derivatives on different sectors: Foreign Exchange Rates, Interest
Rates, Default Events, Meteorology, Energy, population Longevity...

Aggressive market participants extrapolating the basic theory

The initial Black Scholes theory of 1973 (Nobel award 1997) has often
been extrapolated beyond its limits to address new derivatives. One of
the most controversial extrapolations is Credit Derivatives and CDOs in
particular, which we will address specifically below in the credit part.
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Sometimes the timing of the Nobel committee is funny, and we are not
talking about the peace Nobel prize. Warning: anedoctal

1997: Nobel award.

1998: the US Long-Term Capital Management hedge fund has to be
bailed out after a huge loss. The fund had Merton and Scholes in their
board and made high use of leverage (derivatives). This leads us to...
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PART I. OPTION PRICING AND DERIVATIVES MARKETS The Crisis: Multiple Curves, Liquidity Effects. Credit, Bases

The crisis (2008-current). Multiple curves

Following the 7[8] credit events happening to Financials in one month
of 2008,

Fannie Mae, Freddie Mac, Lehman Brothers, Washington Mutual,
Landsbanki, Glitnir and Kaupthing [and Merrill Lynch]

the market broke up and interest rates that used to be very close to
each other and were used to model risk free rates for different
maturities started to diverge.
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PART I. OPTION PRICING AND DERIVATIVES MARKETS The Crisis: Multiple Curves, Liquidity Effects. Credit, Bases

Multiple curves: LIBOR?

Credit/Default-free interest rates rt , L(t ,T ), F (t ,Ti−1,Ti) etc?

So it is not clear what is the risk free rate rt anymore, but especially
credit/default-free interest rates with finite (rather than infinitesimal)
tenor T − t are hard to define: What is the credit/default-free L(t ,T ),
i.e. the simple compounding credit- and liquidity- risk free rate
associated with default free bonds? In the classical theory we identify
it with LIBOR interbank rates, ie interest rates banks charge each other
for lending and borrowing. However, after the credit events above,
banks can no longer be considered as default free, so that Interbank
rates, and LIBOR rates in particular, are contaminated by counterparty
credit risk and liquidity risk.

LIBOR has been also subject to illegal manipulation (see the LIBOR
rigging scandal involving a number of major banks), but this is fraud
risk and is another story.
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PART I. OPTION PRICING AND DERIVATIVES MARKETS The Crisis: Multiple Curves, Liquidity Effects. Credit, Bases

Multiple curves: OIS?

Besides LIBOR, other rates have been considered as default/credit
risk free rates in the past. One of the most popular is the overnight
rate. This is an interest rate O(ti−1, ti) applied at time ti−1 to a loan that
is closed one or two days later at ti . Hence the credit risk embedded in
the overnight rate is only on one day and is limited. Furthermore,
overnight rates are harder to manipulate illegally (some are quoted by
central banks).

There are swaps built on overnight rates, and they are called Overnight
Indexed Swaps (OIS).
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PART I. OPTION PRICING AND DERIVATIVES MARKETS The Crisis: Multiple Curves, Liquidity Effects. Credit, Bases

Multiple curves: OIS?

OIS have been introduced back in the mid nineties. The maturities T of
OISs range from 1 week to 2 years or longer.

Overnight swaps
At maturity T , the swap parties calculate the final payment as a
difference between the accrued interest of the fixed rate K and the
geometric average LO(0,T ) of the floating index rates O(ti−1, ti) on the
swap notional for ti ranging from the initial time tfirst = 0 to the swap
maturity tlast = T . Since the net difference is exchanged, rather than
swapping the actual rates, OISs have little counterparty credit risk.

Overnight swaps vs LIBOR indexed swaps: Counterparty risk

In a LIBOR based swap where we pay L and receive K , if our
counterparty defaults (say with zero recovery) we still pay L and we
lose the whole K . If the net rate were exhanged as in OIS, at default
we would only lose K − L if positive.
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Figure: Spread between 3 months Libor and 3 months ONIA (OIS) swaps. Plotting
t 7→ L(t , t + 3m)− LO(t , t + 3m) (proxy of credit and liquidty risk). From Economic
Synopses 2008, Number 25, FRB of St Louis



PART I. OPTION PRICING AND DERIVATIVES MARKETS The Crisis: Multiple Curves, Liquidity Effects. Credit, Bases

The crisis (2008-current). Multiple curves

At the moment it is no longer realistic to neglect credit risk and liquidity
effects in interest rate modeling, pretending there is a risk free rate that
is governing the LIBOR and interbank markets.

The OIS rate partly solves the problem as it is a best proxy for a
default- and liquidity-free interest rate. Residual credit risk is still
present and liquidity effects may still be visible, especially under strong
stress scenarios.

These days one tends to use overnight swap rates as proxies for the
risk free rates, whereas LIBOR and LIBOR-based swap rates have to
be managed more carefully. There are multiple curves that can be
built for discounting, some LIBOR based, other OIS based, and
yet other different ones.

The following table is taken by a presentation of Marco Bianchetti
(2011)
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PART I. OPTION PRICING AND DERIVATIVES MARKETS The Crisis: Multiple Curves, Liquidity Effects. Credit, Bases

The crisis (2008-current). Multiple curves
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PART I. OPTION PRICING AND DERIVATIVES MARKETS The Crisis: Multiple Curves, Liquidity Effects. Credit, Bases

The crisis (2008-current). Multiple curves

The uncertainty on which rate could be considered as a natural
discounting rate is pushing banks to use multiple curves, trying to
patch them together, at times in inconsistent ways.

Much work needs to be done to include consistently credit and liquidity
effects in interest rate theory from the start, thus avoiding the confusion
of unexplained multiple curves. The industry is looking at this now.
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PART I. OPTION PRICING AND DERIVATIVES MARKETS Incorporating valuation adjustments?

Multiple curves explained as synthesis of more
fundamental Credit, Liquidity and Funding effects

Multiple curves explained as synthesis of more fundamental Credit,
Liquidity and Funding effects.

Rather than taking the curves as fundamental objects, we need to
interpret them as incorporating fundamental effects that need to be
modeled first.

These effects are Credit Risk and Liquidity Funding Risk.

We face this challenge later. To do this, we need to look at credit risk
modeling and products. We do this now.
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PART II: CREDIT RISK PRODUCTS and MODELS CDS and Defaultable bonds

Intro to Basic Credit Risk Products and Models

Before dealing with the current topical issues of Counterparty Credit
Risk, CVA, DVA and Funding, we need to introduce some basic
elements of Credit Risk Products and Credit Risk Modelling.

We now briefly look at:
Products: Credit Default Swaps (CDS) and Defaultable Bonds
Payoffs and prices of such products
Market implied Q probabilities of default defined by such models
Intensity models and probabilities of defaults as credit spreads
Credit spreads as possibly constant, curved or even stochastic
Credit spread volatility (stochastic credit spreads)
Firm value models: Merton, Black Cox and AT1P
Multi-name Credit derivatives
Copula Models, implied correlation and the CDO crisis
The CDO crisis in the media
Dynamic Loss models... Where now in credit risk?
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PART II: CREDIT RISK PRODUCTS and MODELS CDS and Defaultable bonds

Defaultable (corporate) zero coupon bonds

We started this course by defining the zero coupon bond price P(t ,T ).
Similarly to P(t ,T ) being one of the possible fundamental quantities
for describing the interest-rate curve, we now consider a defaultable
bond P̄(t ,T ) as a possible fundamental variable for describing the
defaultable market.

DEFAULT FREE

time t time T
: ←− :

P(t ,T ) 1

with DEFAULT

time t time T :
: ←− NO DEFAULT: 1

P̄(t ,T ) DEFAULT: 0

When considering default, we have a random time τ representing the time at
which the bond issuer defaults. τ : Default time of the issuer
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PART II: CREDIT RISK PRODUCTS and MODELS CDS and Defaultable bonds

Defaultable (corporate) zero coupon bonds I

The value of a bond issued by the company and promising the
payment of 1 at time T , as seen from time t , is the risk neutral
expectation of the discounted payoff
BondPrice = Expectation[ Discount x Payoff ]

P(t ,T ) = E{D(t ,T ) 1 |Ft}, 1{τ>t}P̄(t ,T ) := E{D(t ,T )1{τ>T}|Gt}

where Gt represents the flow of information on whether default
occurred before t and if so at what time exactly, and on the default free
market variables (like for example the risk free rate rt ) up to t . The
filtration of default-free market variables is denoted by Ft . Formally, we
assume

Gt = Ft ∨ σ({τ ≤ u}, 0 ≤ u ≤ t).

D is the stochastic discount factor between two dates, depending on
interest rates, and represents discounting.
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PART II: CREDIT RISK PRODUCTS and MODELS CDS and Defaultable bonds

Defaultable (corporate) zero coupon bonds II

The “indicator” function 1condition is 1 if “condition” is satisfied and 0
otherwise. In particular, 1{τ>T} reads 1 if default τ did not occur before
T , and 0 in the other case.

We understand then that (ignoring recovery) 1{τ>T} is the correct
payoff for a corporate bond at time T : the contract pays 1 if the
company has not defaulted, and 0 if it defaulted before T , according to
our earlier stylized description.
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PART II: CREDIT RISK PRODUCTS and MODELS CDS and Defaultable bonds

Defaultable (corporate) zero coupon bonds

If we include a recovery amount REC to be paid at default τ in case of
early default, we have as discounted payoff at time t

D(t ,T )1{τ>T} + RECD(t , τ)1{τ≤T}

If we include a recovery amount REC paid at maturity T , we have as
discounted payoff

D(t ,T )1{τ>T} + RECD(t ,T )1{τ≤T}

Taking E[·|Gt ] on the above expressions gives the price of the bond.
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PART II: CREDIT RISK PRODUCTS and MODELS CDS and Defaultable bonds

A Lehman bond price example, maturity June 2046, Default on Sep 14, 2008 with
indicative recovery 7.625 at the time (auction for CDS will give 8.62%, see below)
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PART II: CREDIT RISK PRODUCTS and MODELS CDS and Defaultable bonds

Fundamental Credit Derivatives: Credit Default Swaps

Credit Default Swaps are basic protection contracts that became quite
liquid on a large number of entities after their introduction in 1991-94.

CDS reached a notional of $3.7 trillion in 2003, $62.2 trillion in 2007,
$38.6 trillion in 2008, $25 tr 2012 (ISDA).

CDS’s are now actively traded and are a sort of basic product of the
credit derivatives area, analogously to interest-rate swaps and FRA’s
being basic products in the interest-rate derivatives world.

Then we don’t need a model to value CDS’s, but rather we need a
model that can be calibrated to CDS’s, i.e. to take CDS’s as model
inputs (rather than outputs), in order to price more complex derivatives.

As for options, single name CDS options have never been liquid, as
there is more liquidity in the CDS index options. We may expect
models will have to incorporate CDS index options quotes rather than
price them, similarly to what happened to CDS themselves.
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PART II: CREDIT RISK PRODUCTS and MODELS CDS and Defaultable bonds

Fundamental Credit Derivatives: CDS’s

A CDS contract ensures protection against default. Two companies “A”
(Protection buyer) and “B” (Protection seller) agree on the following.
If a third company “C” (Reference Credit) defaults at time τ , with
Ta < τ < Tb, “B” pays to “A” a certain (deterministic) cash amount LGD.
In turn, “A” pays to ”B” a rate R at times Ta+1, . . . ,Tb or until default.
Set αi = Ti − Ti−1 and T0 = 0.

Protection
Seller B

→ protection LGD at default τC if Ta < τC ≤ Tb →
← rate R at Ta+1, . . . ,Tb or until default τC ←

Protection
Buyer A

(protection leg and premium leg respectively). The cash amount LGD is
a protection for “A” in case “C” defaults. Typically LGD = notional, or
“notional - recovery” = 1− REC.
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PART II: CREDIT RISK PRODUCTS and MODELS CDS and Defaultable bonds

Fundamental Credit Derivatives: CDS’s

A typical stylized case occurs when “A” has bought a corporate bond
issued by “C” and is waiting for the coupons and final notional payment
from “C”: If “C” defaults before the corporate bond maturity, “A” does
not receive such payments. “A” then goes to “B” and buys some
protection against this risk, asking “B” a payment that roughly amounts
to the loss on the bond (e.g. notional minus deterministic recovery)
that A would face in case “C” defaults.

Or again ”A” has a portfolio of several instruments with a large
exposure to counterparty ”C”. To partly hedge such exposure, ”A”
enters into a CDS where it buys protection from a bank ”B” against the
default of ”C”.
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PART II: CREDIT RISK PRODUCTS and MODELS CDS and Defaultable bonds

Fundamental Credit Derivatives: CDS’s I

What counts as a credit event triggering τC?

Bankruptcy of “C”
Failure to pay of “C”;
Obligation acceleration, when “C” is requested to pay debt ahead
of schedule because “C” didn’t meet the terms of the loan
Restructuring, when “C” undergoes reorganization to consolidate
its debt (there are several types of restructuring and definitions
may be different in Europe and US)
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PART II: CREDIT RISK PRODUCTS and MODELS CDS and Defaultable bonds

Fundamental Credit Derivatives: CDS’s II

What happens in a CDS contract at default of “C”?
Cash Settlement. Protection seller pays to the buyer the loss in
value of the referenced instruments (e.g. “C” issued bonds)
following the credit event. Bonds or loans are not transferred.
When more instruments can be referenced the cheapest to deliver
price variation is used (see below).
Physical Settlement. The protection buyer receives a cash
payment, typically the “insured” face value, from the protection
seller, and the seller takes possession of the defaulted loan
instrument or bonds for an equivalent notional amount.
Physical S.: most CDS allow the protection buyer to choose
deliverables from a pool of defaulted bonds with equal seniority.
Cheapest to deliver bond is typically chosen (different value in a
reorganization, higher accrued interest...)
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PART II: CREDIT RISK PRODUCTS and MODELS CDS and Defaultable bonds

Fundamental Credit Derivatives: CDS’s III

Physical S: Auction. If there are not enough bonds to match the
insured face value, a credit event auction occurs, and the payment
received is usually substantially less than the face value of the
loan.

Recovery rate REC is implicitly defined by these procedures and
by market value decline after credit event and is very hard to
estimate a priori.
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PART II: CREDIT RISK PRODUCTS and MODELS CDS and Defaultable bonds

Fundamental Credit Derivatives: CDS’s IV
Recovery Rate?

Prior to 2007 assume REC = 40% in most cases and 50% for
financials. Lehman REC in immediate auction was 8.625%!a

Lehman asset liquidations is still ongoing. Recovery has led to
legal battles. The final recovery might exceed 40%.
ISDA 2009 big bang recommends REC = 20% or REC = 40%
Analysis is mostly possible in aggregate on large pools of bonds
or loans with similar ratings
Only few studies available. In aggregate, an inverse relationship
between Recovery rates and credit risk/spread or default rates.
Postulate inverse relationships between spreads and recoveries,
but no consensus on how this should be shaped precisely.

a
A final value of 8.625% was set on the bonds of Lehman Brothers [...], in an auction intended to cash-settle

credit default swap (CDS) trades linked to the toppled dealer. Over 350 firms participated in the auction protocol,
according to ISDA. The final price is about four points lower than that for Lehmans actual defaulted debt, according to
Morgan Stanley. It means protection sellers will pay 91.375% of par to settle defaulted CDSs (Risk Magazine)
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Based on Corporate Bond data 1982-2001, Altman, Brady, Resti, Sironi, Journal of
Business, 2005, vol. 78, no. 6, 2005
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Fundamental Credit Derivatives: CDS’s

Protection
Seller B

→ protection LGD at default τC if Ta < τC ≤ Tb →
← rate R at Ta+1, . . . ,Tb or until default τC ←

Protection
Buyer A

Formally we may write the (Running) CDS discounted payoff to “B” at
time t < Ta as

ΠRCDSa,b(t) := D(t , τ)(τ − Tβ(τ)−1)R1{Ta<τ<Tb} +
b∑

i=a+1

D(t ,Ti)αiR1{τ>Ti}

−1{Ta<τ≤Tb}D(t , τ) LGD

where Tβ(τ) is the first of the Ti ’s following τ .
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PART II: CREDIT RISK PRODUCTS and MODELS CDS and Defaultable bonds

CDS payout to Protection seller (receiver CDS)

The 3 terms in the payout are as follows (they are seen from the
protection seller, receiver CDS):

Discounted Accrued rate at default : This is supposed to
compensate the protection seller for the protection he provided
from the last Ti before default until default τ :

D(t , τ)(τ − Tβ(τ)−1)R1{Ta<τ<Tb}

CDS Rate premium payments if no default: This is the premium
received by the protection seller for the protection being provided

b∑
i=a+1

D(t ,Ti)αiR1{τ>Ti}

Payment of protection at default if this happens before final Tb

−1{Ta<τ≤Tb}D(t , τ) LGD

These are random discounted cash flows, not yet the CDS price.
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CDS’s: Risk Neutral Valuation Formula

Denote by CDSa,b(t ,R,LGD) the time t price of the above Running
standard CDS’s payoffs.

As usual, the price associated to a discounted payoff is its risk neutral
expectation.

The resulting pricing formula depends on the assumptions on
interest-rate dynamics and on the default time τ (reduced form
models, structural models...).
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PART II: CREDIT RISK PRODUCTS and MODELS CDS and Defaultable bonds

CDS’s: Risk Neutral Valuation

In general by risk-neutral valuation we can compute the CDS price at
time 0 (or at any other time similarly):

CDSa,b(0,R,LGD) = E{ΠRCDSa,b(0)},

with the CDS discounted payoffs defined earlier. As usual, E denotes
the risk-neutral expectation, the related measure being denoted by Q.

However, we will not use the formulas resulting from this approach to
price CDS that are already quoted in the market. Rather, we will invert
these formulas in correspondence of market CDS quotes to calibrate
our models to the CDS quotes themselves. We will give examples of
this later.

Now let us have a look at some particular formulas resulting from the
general risk neutral approach through some simplifying assumptions.

(c) 2010-15 D. Brigo (www.damianobrigo.it) Nonlinear Valuation and XVA Univ. Catholique de Louvain 96 / 513



PART II: CREDIT RISK PRODUCTS and MODELS CDS and Defaultable bonds

CDS Model-independent formulas

Assume the stochastic discount factors D(s, t) to be independent
of the default time τ for all possible 0 < s < t . The price of the
premium leg of the CDS at time 0 is:

PremiumLega,b(R) = E[D(0, τ)(τ − Tβ(τ)−1)R1{Ta<τ<Tb}] +

+
b∑

i=a+1

E[D(0,Ti)αiR1{τ≥Ti}]

= E
[∫ ∞

t=0
D(0, t)(t − Tβ(t)−1)R1{Ta<t<Tb}1{τ∈[t ,t+dt]}

]
+

b∑
i=a+1

E[D(0,Ti)]αiR E[1{τ≥Ti}] =

For those who know the theory of distributions (Dirac’s delta etc), read
1{τ∈[t ,t+dt]} = δτ (t)dt .
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PART II: CREDIT RISK PRODUCTS and MODELS CDS and Defaultable bonds

CDS Model-independent formulas

PremiumLega,b(R) =

∫ Tb

t=Ta

E[D(0, t)(t − Tβ(t)−1)R 1{τ∈[t ,t+dt]}] +

+
b∑

i=a+1

P(0,Ti)αiR Q(τ ≥ Ti) =

=

∫ Tb

t=Ta

E[D(0, t)](t − Tβ(t)−1)R E[1{τ∈[t ,t+dt]}] +
b∑

i=a+1

P(0,Ti)αiR Q(τ ≥ Ti)

= R
∫ Tb

t=Ta

P(0, t)(t − Tβ(t)−1)Q(τ ∈ [t , t + dt)) +

+R
b∑

i=a+1

P(0,Ti)αiQ(τ ≥ Ti),

where we have used independence in factoring terms.
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PART II: CREDIT RISK PRODUCTS and MODELS CDS and Defaultable bonds

CDS Model-independent formulas

We have thus, by rearranging terms and introducing a “unit-premium”
premium leg (sometimes called “DV01”, “Risky duration” or “annuity”):

PremiumLega,b(R; P(0, ·),Q(τ > ·)) = R PremiumLeg1a,b(P(0, ·),Q(τ > ·)),

PremiumLeg1a,b(P(0, ·),Q(τ > ·)) :=

∫ Tb

Ta

P(0, t)(t − Tβ(t)−1)dt Q(τ ≤ t)

+
b∑

i=a+1

P(0,Ti)αi Q(τ ≥ Ti) (18)

This model independent formula uses the initial market zero coupon
curve (bonds) at time 0 (i.e. P(0, ·)) and the survival probabilities
Q(τ ≥ ·) at time 0 (terms in the boxes).

A similar formula holds for the protection leg, again under
independence between default τ and interest rates.
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CDS Model-independent formulas

ProtecLega,b(LGD) = E[1{Ta<τ≤Tb}D(0, τ) LGD]

= LGD E
[∫ ∞

t=0
1{Ta<t≤Tb}D(0, t)1{τ∈[t ,t+dt]}

]
= LGD

[∫ Tb

t=Ta

E[D(0, t)1{τ∈[t ,t+dt]}]

]

= LGD

∫ Tb

t=Ta

E[D(0, t)]E[1{τ∈[t ,t+dt]}]

= LGD

∫ Tb

t=Ta

P(0, t)Q(τ ∈ [t , t + dt))

= LGD

∫ Tb

t=Ta

P(0, t)dtQ(τ ≤ t)

(again interpret 1{τ∈[t ,t+dt]} = δτ (t)dt)
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PART II: CREDIT RISK PRODUCTS and MODELS CDS and Defaultable bonds

CDS Model-independent formulas

so that we have, by introducing a “unit-notional” protection leg:

ProtecLega,b(LGD; P(0, ·),Q(τ > ·)) = LGD ProtecLeg1a,b(P(0, ·),Q(τ > ·)),

ProtecLeg1a,b(P(0, ·),Q(τ > ·)) :=

∫ Tb

Ta

P(0, t) dt Q(τ ≤ t)

This formula too is model independent given the initial zero coupon
curve (bonds) at time 0 observed in the market and given the survival
probabilities at time 0 (term in the box).
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PART II: CREDIT RISK PRODUCTS and MODELS CDS and Defaultable bonds

(Receiver) CDS Model-independent formulas

We have

CDSa,b(t ,R,LGD;Q(τ ≤ ·)) = −LGD

[∫ Tb

Ta

P(0, t) dt Q(τ ≤ t)

]
+

R

∫ Tb

Ta

P(0, t)(t − Tβ(t)−1)dt Q(τ ≤ t) +
b∑

i=a+1

P(0,Ti)αi Q(τ ≥ Ti)


The integrals in the survival probabilities given in the above formulas
can be valued as Stieltjes integrals in the survival probabilities
themselves, and can easily be approximated numerically by
summations through Riemann-Stieltjes sums, considering a low
enough discretization time step.
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PART II: CREDIT RISK PRODUCTS and MODELS Market implied default probabilities

CDS Model-independent formulas

The market quotes, at time 0, the fair R = Rmkt MID
0,b (0) coming from bid

and ask quotes for this fair R.

This fair R equates the two legs for a set of CDS with initial protection
time Ta = 0 and final protection time
Tb ∈ {1y ,2y ,3y ,4y ,5y ,6y .7y ,8y ,9y ,10y}, although often only a
subset of the maturities {1y ,3y ,5y ,7y ,10y} is available.

Solve then
CDS0,b(t ,RmktMID

0,b (0),LGD;Q(τ > ·)) = 0

in portions of Q(τ > ·) starting from Tb = 1y , finding the market
implied survival {Q(τ ≥ t), t ≤ 1y}; plugging this into the Tb = 2y CDS
legs formulas, and then solving the same equation with Tb = 2y , we
find the market implied survival {Q(τ ≥ t), t ∈ (1y ,2y ]}, and so on up
to Tb = 10y .
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CDS Model-independent formulas

This is a way to strip survival (or equivalently default)
probabilities from CDS quotes in a model independent way. No
need to assume an intensity or a structural model for default here.

However, the market in doing the above stripping typically resorts to
intensities (also called hazard rates), assuming existence of intensities
associated with the default time.

We will refer to the method just highlighted as ”CDS stripping”.
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CDS and Defaultable Bonds: Intensity Models

In intensity models the random default time τ is assumed to be
exponentially distributed.

A strictly positive stochastic process t 7→ λt called default intensity (or
hazard rate) is given for the bond issuer or the CDS reference name.

The cumulated intensity (or hazard function) is the process
t 7→

∫ t
0 λs ds =: Λt . Since λ is positive, Λ is increasing in time.

The default time is defined as the inverse of the cumulative intensity on
an exponential random variable ξ with mean 1 and independent of λ

τ = Λ−1(ξ).

Recall that

Q(ξ > u) = e−u, Q(ξ < u) = 1− e−u, E(ξ) = 1.
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CDS and Defaultable Bonds: Intensity Models

A few calculations: Probability of surviving time t :

Q(τ > t) = Q(Λ−1(ξ) > t) = Q(ξ > Λ(t)) =→

Let’s use the tower property of conditional expectation and the fact that
Λ is independent of ξ:

→= E[Q(ξ > Λ(t)|Λ(t))] = E[e−Λ(t)] = E[e−
∫ t

0 λs ds]

This looks exactly like a bond price if we replace r by λ!
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CDS and Defaultable Bonds: Intensity Models

Let’s price a defaultable zero coupon bond with zero recovery. Assume
that ξ is also independent of r .

P̄(0,T ) = E[D(0,T )1{τ>T}] = E[e−
∫ T

0 rs ds1{Λ−1(ξ)>T}] =

= E[e−
∫ T

0 rs ds1{ξ>Λ(T )}] = E[E{e−
∫ T

0 rs ds1{ξ>Λ(T )}|Λ, r}]

= E[e−
∫ T

0 rs dsE{1{ξ>Λ(T )}|Λ, r}]

= E[e−
∫ T

0 rs dsQ{ξ > Λ(T )|Λ}] = E[e−
∫ T

0 rs dse−Λ(T )] =

= E[e−
∫ T

0 rs ds−
∫ T

0 λs ds = E[e
−
∫ T

0 (rs + λs) ds
]

So the price of a defaultable bond is like the price of a default-free
bond where the risk free discount short rate r has been replaced by r
plus a spread λ.
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CDS and Defaultable Bonds: Intensity Models

This is why in intensity models, the intensity is interpreted as a credit
spread.

Because of properties of the exponential random variable, one can
also prove that

Q(τ ∈ [t , t + dt)|τ > t , ”λ[0, t ]”) = λt dt

and the intensity λt dt is also a local probability of defaulting around t .

So:
λ is an instantaneous credit spread or local default probability

ξ is pure jump to default risk
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Intensity models and Interest Rate Models

As is now clear, the exponential structure of τ in intensity models
makes the modeling of credit risk very similar to interest rate models.

The spread/intensity λ behaves exactly like an interest rate in
discounting

Then it is possible to use a lot of techniques from interest rate modeling
(short rate models for r , first choice seen earlier) for credit as well.
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Intensity: Constant, time dependent or stochastic

Constant λt : in this case λt = γ for a deterministic constant credit
spread (intensity);
Time dependent deterministic intensity λt : in this case λt = γ(t)
for a deterministic curve in time γ(t). This is a model with a term
structure of credit spreads but without credit spread volatility.
Time dependent and stochastic intensity λt : in this case λt is a full
stochastic process. This allows us to model the term structue of
credit spreads but also their volatility.
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The case with constant intensity λt = γ: CDS

Assume as an approximation that the CDS premium leg pays
continuously.

Instead of paying (Ti − Ti−1)R at Ti as the standard CDS, given that
there has been no default before Ti , we approximate this premium leg
by assuming that it pays ”dt R” in [t , t + dt) it there has been no default
before t + dt .

We also use Q(τ ≤ t) = 1−Q(τ > t) and
dtQ(τ ≤ t) = −dtQ(τ > t)
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The case with constant intensity λt = γ: CDS

This amounts to replace the original pricing formula of a CDS (receiver
case, spot CDS with Ta = 0 = today)

CDS0,b(0,R,LGD;Q(τ > ·)) = R

[
−
∫ Tb

0
P(0, t)(t − Tβ(t)−1)dtQ(τ ≥ t)

+
b∑

i=1

P(0,Ti)αiQ(τ ≥ Ti)

]
+ LGD

[∫ Tb

0
P(0, t) dt Q(τ ≥ t)

]
with (accrual term vanishes because payments continuous now)

R
∫ Tb

0
P(0, t)Q(τ ≥ t)dt + LGD

∫ Tb

0
P(0, t) dtQ(τ ≥ t)
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The case with constant intensity λt = γ: CDS

If the intensity is a constant γ we have

Q(τ > t) = e−γt , dtQ(τ > t) = −γe−γtdt = −γQ(τ > t)dt ,

and the receiver CDS price we have seen earlier becomes

CDS0,b(t ,R,LGD;Q(τ > ·)) = −LGD

[∫ Tb

0
P(0, t)γQ(τ ≥ t)dt

]

+R

[∫ Tb

0
P(0, t)Q(τ ≥ t)dt

]
If we insert the market CDS rate R = Rmkt MID

0,b (0) in the premium leg,
then the CDS present value should be zero. Solve

CDSa,b(t ,R,LGD;Q(τ > ·)) = 0 in R

to obtain γ =
Rmkt MID

0,b (0)

LGD
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The case with constant intensity λt = γ: CDS

from which we see that also the CDS premium rate R is indeed a
sort of CREDIT SPREAD, or INTENSITY.

We can play with this formula with a few examples.

CDS of FIAT trades at 300bps for 5y, with recovery 0.3

What is a quick rough calcul for the risk neutral probability that FIAT
survives 10 years?

γ =
Rmkt FIAT

0,b (0)

LGD
=

300/10000
1− 0.3

= 4.29%

(c) 2010-15 D. Brigo (www.damianobrigo.it) Nonlinear Valuation and XVA Univ. Catholique de Louvain 117 / 513



PART II: CREDIT RISK PRODUCTS and MODELS Intensity models: Constant Intensity

The case with constant intensity λt = γ: CDS

Survive 10 years:

Q(τ > 10y) = exp(−γ10) = exp(−0.0429 ∗ 10) = 65.1%

Default between 3 and 5 years:

Q(τ > 3y)−Q(τ > 5y) = exp(−γ3)− exp(−γ5)

= exp(−0.0429 ∗ 3)− exp(−0.0429 ∗ 5) = 7.2%

If RCDS goes up and REC remains the same, γ goes up and survival
probabilities go down (default probs go up)

If REC goes up and RCDS remains the same, LGD goes down and γ
goes up - default probabilities go up
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The case with time dependent intensity λt = γ(t): CDS

We consider now deterministic time-varying intensity γ(t), which we
assume to be a positive and piecewise continuous function. We define

Γ(t) :=

∫ t

0
γ(u)du,

the cumulated intensity, cumulated hazard rate, or also Hazard
function.

From the exponential assumption, we have easily

Q{s < τ ≤ t} = Q{s < Γ−1(ξ) ≤ t} = Q{Γ(s) < ξ ≤ Γ(t)} =

= Q{ξ > Γ(s)} −Q{ξ > Γ(t)} = exp(−Γ(s))− exp(−Γ(t)) i.e.

“prob of default between s and t is “e−
∫ s

0 γ(u)du − e−
∫ t

0 γ(u)du≈
∫ t

s γ(u)du”
(where the final approximation is good ONLY for small exponents).
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CDS Calibration and Implied Hazard Rates/Intensities

Reduced form models are the models that are most commonly used in
the market to infer implied default probabilities from market quotes.

Market instruments from which these probabilities are drawn are
especially CDS and Bonds.

We just implement the stripping algorithm sketched earlier for ”CDS
stripping”, but now taking into account that the probabilities are
expressed as exponentials of the deterministic intensity γ, that is
assumed to be piecewise constant.

By adding iteratively CDS with longer and longer maturities, at each
step we will strip the new part of the intensity γ(t) associated with the
last added CDS, while keeping the previous values of γ, for earlier
times, that were used to fit CDS with shorter maturities.
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A Case Study of CDS stripping: Lehman Brothers

Here we show an intensity model with piecewise constant λ obtained
by CDS stripping.

We also show the AT1P structural / firm value model by Brigo et al
(2004-2010). This will not be subject for this course, but in case of
interest, for details on AT1P see

http://arxiv.org/abs/0912.3028
http://arxiv.org/abs/0912.3031
http://arxiv.org/abs/0912.4404

Otherwise ignore the AT1P and σi parts of the tables.
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August 23, 2007: Lehman announces that it is going to shut one
of its home lending units (BNC Mortgage) and lay off 1,200
employees. The bank says it would take a $52 million charge to
third-quarter earnings.
March 18, 2008: Lehman announces better than expected
first-quarter results (but profits have more than halved).
June 9, 2008: Lehman confirms the booking of a $2.8 billion loss
and announces plans to raise $6 billion in fresh capital by selling
stock. Lehman shares lose more than 9% in afternoon trade.
June 12, 2008: Lehman shakes up its management; its chief
operating officer and president, and its chief financial officer are
removed from their posts.
August 28, 2008: Lehman prepares to lay off 1,500 people. The
Lehman executives have been knocking on doors all over the
world seeking a capital infusion.
September 9, 2008: Lehman shares fall 45%.
September 14, 2008: Lehman files for bankruptcy protection and
hurtles toward liquidation after it failed to find a buyer.
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Lehman Brothers CDS Calibration: July 10th, 2007

On the left part of this Table we report the values of the quoted CDS
spreads before the beginning of the crisis. We see that the spreads
are very low. In the middle of Table 4 we have the results of the exact
calibration obtained using a piecewise constant intensity model.

Ti Ri (bps) λi (bps) Surv (Int) σi Surv (AT1P)
10 Jul 2007 100.0% 100.0%

1y 16 0.267% 99.7% 29.2% 99.7%
3y 29 0.601% 98.5% 14.0% 98.5%
5y 45 1.217% 96.2% 14.5% 96.1%
7y 50 1.096% 94.1% 12.0% 94.1%
10y 58 1.407% 90.2% 12.7% 90.2%

Table: Results of calibration for July 10th, 2007.
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Lehman Brothers CDS Calibration: June 12th, 2008

We are in the middle of the crisis. We see that the CDS spreads Ri
have increased with respect to the previous case, but are not very
high, indicating the fact that the market is aware of the difficulties
suffered by Lehman but thinks that it can come out of the crisis. Notice
that now the term structure of both R and intensities is inverted. This is
typical of names in crisis

Ti Ri (bps) λi (bps) Surv (Int) σi Surv (AT1P)
12 Jun 2008 100.0% 100.0%

1y 397 6.563% 93.6% 45.0% 93.5%
3y 315 4.440% 85.7% 21.9% 85.6%
5y 277 3.411% 80.0% 18.6% 79.9%
7y 258 3.207% 75.1% 18.1% 75.0%

10y 240 2.907% 68.8% 17.5% 68.7%

Table: Results of calibration for June 12th, 2008.
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Lehman Brothers CDS Calibration: Sept 12th, 2008

In this Table we report the results of the calibration on September 12th,
2008, just before Lehman’s default. We see that the spreads are now
very high, corresponding to lower survival probability and higher
intensities than before.

Ti Ri (bps) λi (bps) Surv (Int) σi Surv (AT1P)
12 Sep 2008 100.0% 100.0%

1y 1437 23.260% 79.2% 62.2% 78.4%
3y 902 9.248% 65.9% 30.8% 65.5%
5y 710 5.245% 59.3% 24.3% 59.1%
7y 636 5.947% 52.7% 26.9% 52.5%

10y 588 6.422% 43.4% 29.5% 43.4%

Table: Results of calibration for September 12th, 2008.
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Until the end, rating agencies maintained a good rating for Lehman1

In our [S&P] view, Lehman [...] had adequate liquidity relative to
reasonably severe and foreseeable temporary stresses. [...] We
believe the downfall of Lehman reflected escalating fears that led to a
loss of confidence – ultimately becoming a real threat to Lehmans
viability in a way that fundamental credit analysis could not have
anticipated with greater levels of certainty

If we check from published transition matrices what has been the
probability that a S&P ”A” rated name defaulted we have

P(A rated name defaults within 1y) = 0 in 2005/6/7, and 0.38% in 2008

Compare with CDS market: Q default prob in 1y: 21%.
0.38% vs 21%. Huge risk premium between P and Q for Lehman.
This is a regular feature: market implied Q default probabilities are
always larger than fundamental history-based ones under P.

1http://ww2.cfo.com/banking-capital-markets/2008/09/
/rating-itself-sp-defends-lehmans-a/ accessed Sept 9 2014
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CDS-Bond Basis (funding liquidity proxy)

The above stripping method could allow us to obtain intensities both
from bonds (Z-spread) γb(t) and CDS (fair spread) γc(t).

Since Bonds are funded instruments and CDS are not, the CDS-bond
basis is considered to be an indicator of funding liquidity

`(t) = γc(t)− γb(t).

The basis has been both “+” and “−” through history. Traders may set
up basis trades if convinced arbitrage opportunities are showing up.

Bond funding cost: ` ↓
CDS counterparty risk: ` ↓
Shorting credit: Easier buying CDS protection than shorting
bonds. CDS more attractive and default leg more expensive ` ↑.
CDS protect from more general defaults than bonds and have
cheapest do deliver advantages when buying protection, as one
delivers a less valuable bond in exchange for face value: ` ↑.
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Stochastic Intensity. The CIR++ model

We have seen in detail CDS calibration in presence of deterministic
and time varying intensity or hazard rates, γ(t)dt = Q{τ ∈ dt |τ > t}

As explained, this accounts for credit spread structure but not for
volatility.

The latter is obtained moving to stochastic intensity (Cox process).
The deterministic function t 7→ γ(t) is replaced by a stochastic process
t 7→ λ(t) = λt . The Hazard function Γ(t) =

∫ t
0 γ(u)du is replaced by the

Hazard process (or cumulated intensity) Λ(t) =
∫ t

0 λ(u)du.
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CIR++ stochastic intensity λ

We model the stochastic intensity as follows: consider

λt = yt + ψ(t ;β) , t ≥ 0,

where the intensity has a random component y and a deterministic
component ψ to fit the CDS term structure. For y we take a Jump-CIR
model

dyt = κ(µ− yt )dt + ν
√

ytdZt + dJt , β = (κ, µ, ν, y0), 2κµ > ν2.

Jumps are taken themselves independent of anything else, with
exponential arrival times with intensity η and exponential jump size
with a given parameter.

In this course we will focus on the case with no jumps J, see B and
El-Bachir (2006) or B and M (2006) for the case with jumps.
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CIR++ stochastic intensity λ.
Calibrating Implied Default Probabilities

With no jumps, y follows a noncentral chi-square distribution; Very
important: y > 0 as must be for an intensity model (Vasicek would not
work). This is the CIR++ model we have seen earlier for interest rates.

About the parameters of CIR:

dyt = κ(µ− yt )dt + ν
√

ytdZt

κ: speed of mean reversion
µ: long term mean reversion level
ν: volatility.
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CIR++ stochastic intensity λ. I
Calibrating Implied Default Probabilities

E [yt ] = y0e−κt + µ(1− e−κt )

VAR(yt ) = λ0
ν2

κ
(e−κt − e−2κt ) + µ

ν2

2κ
(1− e−κt )2

After a long time the process reaches (asymptotically) a stationary
distribution around the mean µ and with a corridor of variance µν2/2κ.
The largest κ, the fastest the process converges to the stationary state.
So, ceteris paribus, increasing κ kills the volatility of the credit spread.
The largest µ, the highest the long term mean, so the model will tend
to higher spreads in the future in average.
The largest ν, the largest the volatility. Notice however that κ and ν
fight each other as far as the influence on volatility is concerned.
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CIR++ stochastic intensity λ. II
Calibrating Implied Default Probabilities

Figure: y0 = 0.0165, κ = 0.4, µ = 0.05, ν = 0.04
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CIR++ stochastic intensity λ. I
Calibrating Implied Default Probabilities

For restrictions on the β’s that keep ψ and hence λ positive,
as is required in intensity models, we may use the results in B. and

M. (2001) or (2006). We will often use the hazard process
Λ(t) =

∫ t
0 λsds, and also Y (t) =

∫ t
0 ysds and Ψ(t , β) =

∫ t
0 ψ(s, β)ds.

If we can read from the market some implied risk-neutral default
probabilities, and associate to them implied hazard functions ΓMkt (as
we have done in the Lehman example), we may wish our stochastic
intensity model to agree with them. By recalling that survival
probabilities look exactly like bonds formulas in short rate models for r ,
we see that our model agrees with the market if

exp(−ΓMkt(t)) = exp (−Ψ(t , β))E[e−
∫ t

0 ysds]
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CIR++ stochastic intensity λ. II
Calibrating Implied Default Probabilities

IMPORTANT 1: This is possible only if λ is strictly positive;
IMPORTANT 2: It is fundamental, if we aim at calibrating default
probabilities, that the last expected value can be computed analytically.
The only known diffusion model used in interest rates satisfying
both constraints is CIR++
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CIR++ stochastic intensity λ
Calibrating Implied Default Probabilities

exp(−ΓMkt(t)) = Q{τ > t} = exp (−Ψ(t , β))E[e−
∫ t

0 ysds]

Now notice that E[e−
∫ t

0 ysds] is simply the bond price for a CIR interest
rate model with short rate given by y , so that it is known analytically.
We denote it by Py (0, t , y0;β).

Similarly to the interest-rate case, λ is calibrated to the market implied
hazard function ΓMkt if we set

Ψ(t , β) := ΓMkt(t) + ln(Py (0, t , y0;β))

where we choose the parameters β in order to have a positive function
ψ, by resorting to the condition seen earlier.
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Firm Value (structural) models

The other family of important credit models, other than the
intensity/reduced form models, is the family of

Firm Value (or Structural) Models.

These models have more economics content and are more link to
traditional economics/finance.

Indeed with intensity models we have defined τ = Λ−1(ξ) but we have
no answer to the question ”what are the economic causes of default
and how do they manifest themselves in ξ and λt ”? Hence the name
”reduced form” for intensity models.

It will be possible to answer a question like this in firm value models.
Hence the name ”structural models”.
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The Basic Idea of Structural Models I

The stylized structure of the firm economy is modeled through:
V (t): stochastic process for the value of the firm
t 7→ H(t) barrier representing debt and safety covenants. This is
often estimated based on balance sheet data: Short term debt,
long term debt, etc.
τ : The default time is the first time instant where the value of
the firm V touches the safety barrier H.

Important difference with Intensity: In basic structural models
there is nothing external to the basic market information in the
default process, nothing like ξ. Default is induced by a completely
observable (? More on this later) variable, the firm value.
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Intensity and Structural Models: Different Uses I

Intensity models suited to model credit spreads; easier to calibrate
to corporate bond or CDS data;
Suited to refined relative value pricing (CDS options, CMCDS,
bonds with optionalities, etc);
Structural models easier to use in situations where we need to
model also equity;
More suited to ”fundamental pricing/risk analysis” than to relative
value pricing, even if often used for the latter through some tricks;
difficult to calibrate with precision to CDS or Bonds;
Cases include equity return swaps with counterparty risk, total
rate of return swaps, and counterparty risk in any equity product,
and Equity Default Swaps
more naturally extended to multi-name situation (no “out of the
blue” copula) than stochastic intensity models;
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Structural Models: Merton’s Model I

The first Structural Model is due to Merton (1974). The value of the
firm V is assumed to follow a Geometric Brownian Motion.

dV (t) = mV (t)dt + σV (t)dW (t), m = µ under P, m = r − k under Q

(µ is return under historical measure, r is the risk free rate, k is the
payout ratio and σ is the volatility, all constant).

This dynamics is lognormal; Crouhy et al. notice that “this assumption
[lognormal V] is quite robust and, according to KMVs own empirical
studies, actual data conform quite well to this hypothesis.”.

V is seen as composed by the equity part S and the debt part D,

Firm Value = Debt Value + Equity, V (t) = D(t) + S(t)
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Structural Models: Merton’s Model II

Debt structure simple: zero coupon debt maturity T̄ & face value L.

Default linked to capability of firm to pay back all debt issued.

If at maturity T̄ the firm value V is greater than L, then all the debt is
paid back and the firm survives; if V is smaller than L then the
company is not able to pay the bondholders and then there is the
default. Default can happen only at the debt maturity T̄ . Quite
restrictive assumption. We will see later how it can be relaxed.
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Some basic calculation in Merton’s Model I

Prob{VT < L} = Φ

 log L
V (0) − (m − σ2

2 )T

σ
√

T

 = Φ(−d2)

(Black Scholes term) where Φ is the CDF of standard normal random
variable, is the default probability. Hazard rate:

lim
T↓0

Prob{τ ≤ T}
T

= 0

(see for example B. Morini Pallavicini (2013)). Compare with a
standard constant hazard rate / intensity model, where

Q(τ ≤ T ) = 1− e−γT ⇒ lim
T↓0

Q{τ ≤ T}
T

= γ > 0.
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Some basic calculation in Merton’s Model II

This is an important difference: basic structural models like Merton
have no short term credit spreads (the limit is zero). Intensity models
instead have non-zero short term credit spread. This is a modeling
advantage of intensity models. It means that for very short maturities
the Merton model will have great difficulties in fitting nonzero spreads,
whereas the intensity model will have no problem.

Keep this in mind.
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Debt and equity in Merton’s model I

The value of debt at maturity is hence DT̄ = min(VT̄ ,L), from which,
since we assume V (t) = D(t) + S(t), we have equity as

S(t) = V (t)− D(t) =

= Call(t , T̄ ; V (t), σ2,L) = V (t)Φ(d1)− P(t , T̄ )LΦ(d2)(19)

(Black Scholes) d1 =
ln
(

V (t)
L

)
+

(
r−k+σ2

2

)
(T̄−t)

σ
√

T̄−t
and d2 = d1 − σ

√
T̄ − t

Then, as is well known, in Merton’s model the equity can be
interpreted as a call option on the value of the firm.
If we have estimates for the drift and volatilities we can evaluate
particular payoff depending on V or just default probabilities. While r
and k can be simple to estimate, σ is not: V is not directly observable.
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Debt and equity in Merton’s model II

A possible way to estimate σ is to link it to the equity volatility,
available by market data. To avoid confusion: σV is the firm value
volatility, σS is the equity volatility. Compute

dS(t) = dcall(V (t)) = (...)dt +
∂call
∂V

σV V (t)dW (t).

Comparing with an hypothetical dynamics
dS(t) = (r − q)S(t)dt + σS(t)S(t)dW (t) we immediately find the
following important relation between σV and σS

σS = σV ∆call
V
S
, ∆call =

∂call
∂V

= Φ(d1) (20)

(c) 2010-15 D. Brigo (www.damianobrigo.it) Nonlinear Valuation and XVA Univ. Catholique de Louvain 146 / 513
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Debt and equity in Merton’s model III

We may now derive V > 0 and σV from equity data: given equity data
S0, σS, solve the following system in V0 and σV (this is partly the KMV
methodology){

S0 = V (0)Φ(d1(V0, σV ))− P(0, T̄ )LΦ(d2(V0, σV ))

σS = σV Φ(d1(V0, σV ))V0
S0

However equity gives information on default only when it is near zero.
Otherwise equity implied vols are too far from the critical zone S = 0 to
provide reliable credit information via the above strategy.

Rating agencies occasionally use Equity implied ratings and other
firms use equity information to deduce default probabilities, but this is
dubious.
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Structural Models: AT1P I

Drawbacks of Merton: default only at the debt maturity T̄ .
Unsatisfactory: there could be scenarios in which default happens
before T̄ , related to problems of optimal capital structure and
stockholders decisions to reorganize the firm.

Black and Cox (1976) assume a barrier representing safety covenants
for the firm. Default is triggered by the firm value V hitting this barrier
from above. At default the firm reimburses the debt-holders. However,
too few parameters. We generalize BC to an Analytically Tractable 1st
Passage model (AT1P)
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Structural Models: CDS Calibration? AT1P Model

Our strategy: (CDS Calibration? )

RMktCDS
0,1y

RMktCDS
0,2y

...
RMktCDS

0,10y

←→


dV (t) = (r − k)V (t)dt + σV (t) V (t)dW (t)
H(t) = ...

model parameters: t 7→ σV (t), t 7→ H(t)

Now we would have infinite parameters (all the values of σ(t), for
example) to account for 10 CDS quotes. The problem is: can we insert
a time-dependent V dynamics and preserve barrier-like analytical
formulas for survival probabilities Q(τ > t) (and thus CDS etc?)?
This works if the barrier has a special but reasonable shape (AT1P
model)

Ĥ(t) =
H
V0

E [Vt ] e−B
∫ t

0 σ
2
s ds
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CDS Calibration with the structural model I

AT1P can calibrate exactly CDS market quotes, and the survival
probabilities obtained are in accordance with those obtained using an
intensity model (as should be, as they are model independent)

We now go back to the Lehman example and look at the last two
columns.

We also find:

- Scarce relevance of the barrier in calibration: the barrier
parameter H has been fixed before calibration and everything is
left to the volatility calibration;

- High discrepancy between first volatility bucket and the following
values (related to no short term credit spreads).
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PART II: CREDIT RISK PRODUCTS and MODELS Black & Cox and AT1P Firm Value Models

August 23, 2007: Lehman announces that it is going to shut one
of its home lending units (BNC Mortgage) and lay off 1,200
employees. The bank says it would take a $52 million charge to
third-quarter earnings.
March 18, 2008: Lehman announces better than expected
first-quarter results (but profits have more than halved).
June 9, 2008: Lehman confirms the booking of a $2.8 billion loss
and announces plans to raise $6 billion in fresh capital by selling
stock. Lehman shares lose more than 9% in afternoon trade.
June 12, 2008: Lehman shakes up its management; its chief
operating officer and president, and its chief financial officer are
removed from their posts.
August 28, 2008: Lehman prepares to lay off 1,500 people. The
Lehman executives have been knocking on doors all over the
world seeking a capital infusion.
September 9, 2008: Lehman shares fall 45%.
September 14, 2008: Lehman files for bankruptcy protection and
hurtles toward liquidation after it failed to find a buyer.
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PART II: CREDIT RISK PRODUCTS and MODELS Black & Cox and AT1P Firm Value Models

Lehman Brothers CDS Calibration: July 10th, 2007

On the left part of this Table we report the values of the quoted CDS
spreads before the beginning of the crisis. We see that the spreads
are very low. In the middle of Table 4 we have the results of the exact
calibration obtained using a piecewise constant intensity model.
Now look at the last two columns
Recovery at 40%! Actual one will be ≈ 8%.

Ti Ri (bps) γi Surv (Int) σi Surv (AT1P)
10 Jul 2007 100.0% 100.0%

1y 16 0.267% 99.7% 29.2% 99.7%
3y 29 0.601% 98.5% 14.0% 98.5%
5y 45 1.217% 96.2% 14.5% 96.1%
7y 50 1.096% 94.1% 12.0% 94.1%
10y 58 1.407% 90.2% 12.7% 90.2%

Table: Results of calibration for July 10th, 2007.
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Lehman Brothers CDS Calibration: June 12th, 2008

Middle of the crisis. CDS spreads Ri have increased with respect to
the previous case, but are not very high, indicating the fact that the
market is aware of the difficulties suffered by Lehman but thinks that it
can come out of the crisis. Notice that now the term structure of both R
and intensities is inverted. This is typical of names in crisis (buyers
worry more about short term default than long term one, locally)

Ti Ri (bps) γi Surv (Int) σi Surv (AT1P)
12 Jun 2008 100.0% 100.0%

1y 397 6.563% 93.6% 45.0% 93.5%
3y 315 4.440% 85.7% 21.9% 85.6%
5y 277 3.411% 80.0% 18.6% 79.9%
7y 258 3.207% 75.1% 18.1% 75.0%

10y 240 2.907% 68.8% 17.5% 68.7%

Table: Results of calibration for June 12th, 2008.
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Lehman Brothers CDS Calibration: Sept 12th, 2008

In this Table we report the results of the calibration on September 12th,
2008, just before Lehman’s default. We see that the spreads are now
very high, corresponding to lower survival probability and higher
intensities than before.

Ti Ri (bps) γi Surv (Int) σi Surv (AT1P)
12 Sep 2008 100.0% 100.0%

1y 1437 23.260% 79.2% 62.2% 78.4%
3y 902 9.248% 65.9% 30.8% 65.5%
5y 710 5.245% 59.3% 24.3% 59.1%
7y 636 5.947% 52.7% 26.9% 52.5%

10y 588 6.422% 43.4% 29.5% 43.4%

Table: Results of calibration for September 12th, 2008.
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Comments and Generalizations I

In AT1P, H is known. To take market uncertainty into account, H can
be replaced by a random variable assuming different values in different
scenarios (SBTV model).

This has been used successfully and with more stable outputs than in
AT1P for Parmalat and Lehman for example. See
http://arxiv.org/abs/0912.4404
also in: Brigo, D., Morini, M., and Tarenghi, M. (2011). Credit
Calibration with Structural Models and Equity Return Swap valuation
under Counterparty Risk. In: Bielecki, Brigo and Patras (Editors),
Credit Risk Frontiers: Sub- prime crisis, Pricing and Hedging, CVA,
MBS, Ratings and Liquidity, Wiley.

We now present a brief introduction to the problems caused in the
market by multi-name credit products in 2007-2008.
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The Credit Crisis: Is this Mathematics fault?

Quantitative Analysts (”quants”) and Academics guilty?
Recent past: articles disputed role of Mathematics in Finance,
especially in relationship with Counterparty Credit Risk and Credit
Derivatives (esp. CDOs). Quants accused of being unaware of models
limitations & of providing the market with false sense of security.

“The formula that killed Wall Street”2

“The formula that fell Wall Street”3

“Wall Street Math Wizards forgot a few variables”4

“Misplaced reliance on sophisticated (mathematical) models”5

BUT WHAT ARE THIS FORMULA and CDOs PRECISELY?
2Recipe for disaster. Wired Magazine, 17.03.
3The Financial Times, Jones, S. (2009). April 24 2009.
4Lohr (2009), New York Times of September 12.
5Turner, J.A. (2009). The Turner Review. 03/2009. FSA, UK.

www.fsa.gov.uk/pubs/other/turner review.pdf.
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CDS Index and tranches (iTraxx, CDX...) I

DJ-iTRAXX is a family of CDS indices, which spans the main credit
market in Europe.

This family was created with the purpose to standardize market
quotes, and also to create a reference liquid multi-name credit
derivative. These indices constitute now the most liquid quotations in
the credit-derivatives market.

Since the quotation paradigm is standardized (we see the details
below) the index tranche reference quotes are practically the only safe
source of market cross-sectional default correlation.

There are also indices for different areas. We can find indices relative
to Europe, the US (CDX), Japan, Asia, Australia, high yields and
emerging markets.
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CDS Index and tranches (iTraxx, CDX...) II

The credit indices are constructed in order to provide exposure to the
most liquid segments of the credit markets. This is achieved by
selecting the most liquid CDS in the market and equally weighting
them in the index

Each index is subject to regular rebalancing every 6 months in March
and September. Rebalancing follows the same rules as the initial
composition of the indices.

Here we focus on the main index and its tranches.

- DJ iTraxx Benchmark (“main index”) - Top 125 European
names in terms of the CDS volumes traded by the market makers
in the past six months. Dealer liquidity poll every six months.
Sectorial diversification; 3,5,7 and 10y maturities
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CDS Index and tranches (iTraxx, CDX...) III

DJ iTraxx Europe can easily be used as a simple and cheap
instrument to trade the general direction of credit spreads. It has a
number of advantages:

Immediate diversification. DJ iTraxx Europe enables the investor
to gain immediate diversification in a single liquid transaction.
Accurate market tracking. The inclusion of only the most liquid
names and the fact that these are updated every six months,
ensures that DJ iTraxx Europe accurately reflects the composition
of the European credit market.
Low bid/offer spread compared to single names.
High liquidity. The large number of market makers ensures that
investors can trade large sizes without affecting the market.
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CDS Index and tranches (iTraxx, CDX...) IV
The index can be traded also in terms of tranches (red graph).

DJ-iTraxx Europe: Equity tranche, responsible for all losses between
A = 0% and B = 3%, then other mezzanine and senior tranches

A− B : 3%− 6%, 6%− 9%, 9%− 12%, 12%− 22%, 22%− 100%.

For the main US index, the DJ CDX NA the tranche sizes are different:

0%− 3%, 3%− 7%, 7%− 10%, 10%− 15% 15%− 30%, 30%− 100%.

During the crisis, the need to hedge systemic risk brought about the
supersenior tranche 60%-100%. It has traded at 24bps.
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CDS index (CDO) tranche trade example I

Example: Investor sells EUR 10mn protection on the 3%-6% tranche.
We assume a credit spread RA,B of 135bp. Therefore, the market
maker pays the investor 135bp per annum quarterly on a notional of
EUR 10mn. We assume (!) REC = 40% for all names (LGD = 0.6).

- Each single name in the portfolio has a credit position in the index
of 1/125 = 0.8% and participates to the aggregate loss in terms of
0.8% x LGD = 0.8% x 0.6 = 0.48%.

- This means that each default corresponds to a loss of 0.48% in
the global portfolio.

- After 6 defaults, the total loss in the portfolio is EUR 0.48% x 6 =
2.88%, and the tranche buyer is still protected.

- When the 7th name in the pool defaults the total loss amounts to
3.36% and the lower attachment point of the tranche is reached.
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CDS index (CDO) tranche trade example II

- To compute loss of the tranche we have to normalize total loss wrt
the tranche size: The net loss is then (3.36%-3%)/3% x 10mn =
EUR 1.2mn which is immediately paid by the protection seller.

- The notional on which the premium is paid reduces to 10mn -
1.2mn = EUR 8.8mn, and the investor receives monthly a 135bp
premium on EUR 8.8mn until maturity or the next default.

- Each following default leads to change in the tranche loss (paid by
the protection seller) of 0.48%/3% x 10mn = EUR 1.6mn, and the
tranche notional decreases correspondingly.

- After the 13th default the total loss exceeds 6% (13 x 0.48% =
6.24%) and the tranche is completely wiped out.

- In this case one last payment is made of (6%-5.76%)/3% x 10mn
= EUR 0.8mn to the protection buyer, which in turn stops paying
the premium since the outstanding notional has reduced to zero.
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CDS Indices: DJ-iTRAXX tranches. Quotes examples

Quotes in bps;
0-3% equity tranche is quoted upfront + 500bps running
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CDOs: The standard synthetic case I

Let’s look at this more carefully. Portfolio of say N = 125 names
(eg iTraxx Europe or CDX US). Names may default at random
times τ1, . . . , τN , generating losses.
A tranche is a portion of the loss between two percentages. The
3%− 6% tranche focuses on the losses between A = 3%
(attachment point) and B = 6% (detachment point).
The CDO protection seller agrees to pay to the buyer all notional
default losses (minus the recoveries) in the portfolio whenever
they occur due to one or more defaults, within A = 3% and
B = 6% of the total pool loss.
In exchange for this, the buyer pays the seller a periodic fee on the
notional given by the portion of the tranche that is still “alive” in
each relevant period.
Valuation problem: What is the fair price of this “insurance”?
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CDOs: Copula I
LOSS(T ) =

1
N

N∑
i=1

(1− RECi)1{τi≤T},

LOSS
tr
A,B(t) :=

1
B − A

[
(LOSS(t)− A)1{A<LOSS(t)≤B} + (B − A)1{LOSS(t)>B}

]
.

(single name default times τi enter index & tranche payoff). Industry:

τ1 = Λ−1
1 (− ln(1− Φ(X1))), ..., τN = Λ−1

N (− ln(1− Φ(XN))).

where intensities Λi are DETERMINISTIC (no spread volatility...BAD!),
Xi ’s are correlated std Gaussians (we are under pricing measure Q)

Xi =
√
ρi M +

√
1− ρi Yi , (21)

with M common systemic factor, M,Yi i.i.d standard Gaussian.
Industry assumes all ρ are the same across the pool.

ρi = ρ ≥ 0 for all i ⇒ Corr(Xi ,Xj) = ρ for all i , j
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Tranches and Correlations

The dependence of the tranche on “correlation” is crucial. The market
assumes a Gaussian Copula connecting the defaults of the 125
names, parametrized by a correlation matrix with 125*124/2 = 7750
entries. However, when looking at a tranche:

7750 parameters −→ 1 parameter.

How does the loss change with correlation?
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Tranches and Correlations

Example. Take 125 names with same spread 100bps = 1%, assume
recovery is 0.4. We now show the two loss distributions in 5 years for
the two extreme values of ρ: 0 and 1.

ρ = 1⇒ Q(Loss5y = 0%) = 0.951, Q(Loss5y = 100%) = 0.049,

and all other loss values have zero probability. Extreme bimodal case:
either all default, or no one does. No other case.

ρ = 0⇒ Q(Loss5y = 0.6
n

125
%) =

(
125
n

)
0.049n0.951125−n,

loss distribution smooth and bell shaped, almost normal with mean
number of defaults 6.125 and standard dev 2.41.

ρ = 0⇒ Q(Loss5y = 0%) ≈ 0.002, Q(Loss5y = 100%) ≈ 2 · 10−164.
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Tranches and Correlations I

With correlation zero, the 30-60 tranche has positive payoff in states
where probability is always zero (green distribution).

The expected tranched loss is in this case is zero because probability
is always zero.

With correlation one, the armageddon state of 125 defaults (total pool
loss) has a positive probability of 0.049. The only other possible state
is a loss of zero. The expected tranched loss:

60 ∗ (1− Rec) ∗ 0.049 = 60 ∗ 0.6 ∗ 0.049 = 1.764

ρ = 1: every tranche with the same B − A has the same price
irrespective of A and B. Loss jumps directly at 125 defaults wiping off
all tranches equally!
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Tranches and Correlations II

ρ ↓⇒ equity tranche protection cost ↑, senior tranche protection cost ↓,
mezzanine mixed.
Protection buyer in equity (senior) tranche is short (long) correlation.

HOWEVER this presupposes a flat correlation that is constant across
the pool. The mini-crisis of 2005 showed that this notion of long and
short correlation can be quite dangerous. The loss distribution is much
more structured, as we’ll see in a minute.

Even in our simple example however the cost of protection for 30-60
names is very different in the two cases: it is zero with ρ = 0 and 1.764
with ρ = 1 (interest rates 0).
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Tranches and Correlations

This model is applied in a very blunt way in the market.

The unique parameter ρ is reverse-engineered to reproduce the price
of the liquid tranche under examination. ”Implied correlation”. Once
obtained it is used to value related products.

Problem with this implied ”compound correlation”

If at a given time the 3%− 6% tranche for a five year maturity has a
given implied correlation, the 6%− 9% tranche for the same maturity
will have a different one. The two tranches on the same pool are priced
(and hedged!!!) with two inconsistent loss distributions
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Pricing (marking to market) a tranche: taking Q expectation of the
future tranche losses under the pricing measure.
From nonlinearity, the tranche expectation will depend on the loss
distribution: marginal distributions of the single names defaults
and dependency among different names’ defaults. Dependency is
commonly called “correlation”.
Abuse of language: correlation is a complete description of
dependence for jointly Gaussians, but more generally it is not.
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Copulas

CDO Valuation: The culprit.

One-factor Gaussian copula Xi =
√
ρi M +

√
1− ρi Yi

“MEA COPULA!” From Nobel award to universal scapegoat

Introduced in Credit Risk modeling by David X. Li. Commentators went
from suggesting a Nobel award to blaming Li for the whole Crisis.

David Li, 2005, Wall Street Journal
[...] ”The most dangerous part,” Mr. Li himself says of the model, ”is
when people believe everything coming out of it.” Investors who put too
much trust in it or don’t understand all its subtleties may think they’ve
eliminated their risks when they haven’t.

Indeed, these models are static. they ignore Credit Spread Volatilities,
that in Credit can be 100%; this has paradoxical consequences
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Tranches and Correlations

The dependence of the tranche on “correlation” is crucial. The market
assumes a Gaussian Copula connecting the defaults of the 125
names, parametrized by a correlation matrix with 125*124/2 = 7750
entries. However, when looking at a tranche:

7750 parameters ρi,j (or 125 ρi with 1-factor model) −→ 1 param ρ̄

The unique parameter is reverse-engineered to reproduce the price of
the liquid tranche under examination. ”Implied correlation”. Once
obtained it is used to value related products.

Problem with this implied ”compound correlation”

If at a given time the 3%− 6% tranche for a five year maturity has a
given implied correlation ρ̄3%,6%, the 6%− 9% tranche for the same
maturity will have a different one ρ̄6%,9%. The two tranches on the same
pool are priced (and hedged!!!) with two inconsistent loss distributions
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Figure: Compound correlation inconsistency
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Figure: Plot [A%,B%] 7→ ρ̄[A%,B%] (After Edvard Munch’s The Scream;
Compound correlation DJ-iTraxx S5, 10y on 3 Aug 2005)
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Figure: Non-invertibility compound correl DJ-iTraxx S5, 10y on 3 Aug 2005
(red line is the market, curved line is the model for all possible ρ̄[6%,9%])
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Base correlation I

As a possible remedy for non-invertibility of compound correlation and
other matters, the market introduced Base Correlation, ρ̃B% = ρ̄[0%,B%]

which is still prevailing in the market.

Problems with base correlation
Base correlation is easier to interpolate but is inconsistent even at
single tranche level, in that it prices the 3%− 6% tranche by
decomposing it into the 0%− 3% tranche and 0%− 6% tranche and
using two different correlations (and hence distributions) for those.
This inconsistency shows up occasionally in negative losses (i.e. in
defaulted names resurrecting).

[in the graph we use put-call parity to simplify]
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Base correlation II

Figure: Base correlation inconsistency
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Base correlation III

Figure: (Base correl B% 7→ ρ̃B% for DJ-iTraxx S5, 10y on 3 Aug 2005)
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Base correlation

Figure: T 7→ E[LOSS
tr
[6%,12%](T )]: Expected tranche loss coming from Base

correl calibration, 3/08/2005, 1st published 2006. Locally negative loss distrib
⇒ defaulted names RESURRECT with positive probability
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Press: Nobody knew? Some facts

Proceedings of a Conference
held in London in 2006 by
Merrill Lynch.
A number of proposals to
improve the static copula
models used (and abused) for
credit derivatives have been
presented. I was there.
Quants and Academics were
well aware (and had been for
years) of the models
limitations and were trying to
overcome them.
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A few journalist have very short memory...

12 Sept 2005. None of the commentators above was reading WSJ?

How a Formula [Base correlation + Gaussian Copula] Ignited Market
That Burned Some Big Investors (Wall St Journal).

Many other publications pre-2007 questioning the use of the Gaussian
copula and the notion of implied and base correlation. For example:

B., Pallavicini & Torresetti. Implied Correlation: A paradigm to be
handled with care, 2006, http://ssrn.com/abstract=946755

Now we turn to one of the solutions in 2006, beyond static and flat
implied correlation models.

Top Down Dynamic Loss Model
Models that build the Loss from τ1, . . . , τN are called bottom up. We
now present a 2006 Top Down model that models the Loss directly as
a stochastic process (under Q) with sensible properties.

(c) 2010-15 D. Brigo (www.damianobrigo.it) Nonlinear Valuation and XVA Univ. Catholique de Louvain 184 / 513



PART II: CREDIT RISK PRODUCTS and MODELS Beyond Copulas: Dynamic Loss Models for CDOs

Figure: This book collects research published originally in 2006, warning
against the flaws of the industry credit derivatives models. Related papers in
the journals Mathematical Finance, Risk Magazine, IJTAF
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Beyond copulas: GPL and GPCL Models (2006-on)

We model the total number of defaults in the pool by t as

Zt :=
n∑

j=1

δjZj(t)

(for integers δj ) where Zj are independent Poissons with intensity Λi .
This is consistent with the Common Poisson Shock framework, where
defaults are linked by a Marshall Olkin copula (Lindskog and McNeil).

Example : n = 125, Zt = 1 Z1(t) + 2 Z2(t) + . . .+ 125 Z125(t).

If Z1 jumps there is just one default (idiosyncratic), if Z125 jumps there
are 125 ones and the whole pool defaults one shot (total systemic
risk), otherwise for other Zi ’s we have intermediate situations (sectors).
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The GPL and GPCL Models: Default clusters?

Thrifts in the early 90s at the height of the loan and deposit crisis.
Airliners after 2001.
Autos and financials more recently. From the September, 7 2008
to the October, 8 2008, we witnessed seven credit events: Fannie
Mae, Freddie Mac, Lehman Brothers, Washington Mutual,
Landsbanki, Glitnir, Kaupthing.

S&P ratings and default clusters

Moreover, S&P issued a request for comments related to changes in
the rating criteria of corporate CDO. Tranches rated ’AAA’ should be
able to withstand the default of the largest single industry in the pool
with zero recoveries. Stressed but plausible scenario that a cluster of
defaults in the objective measure exists.
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The GPL and GPCL Models

Problem: infinite defaults. Solution 1: GPL: Modify the aggregated
pool default counting process so that this does not exceed the number
of names, by simply capping Zt to n, regardless of cluster structures:

Ct := min(Zt ,n)

Solution 2: GPCL. Force clusters to jump only once and deduce single
names defaults consistently.
The first choice is ok at top level but it does not really go down towards
single names. The second choice is a real top down model, but
combinatorially more complex.
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Market data on March 6, 2006

Tranche data and DJi-TRAXX fixings, along with bid-ask spreads
(I=index,T=Tranche,Tl=Tranchelet). Focus on March 6. Base
correlation would require 15 different inconsistent static models ρ̃B% to
explain this table. GPL will be a single, consistent, arbitrage-free
dynamic model.

Att-Det March, 1 2006 March, 6 2006
[A%,B%] 5y 7y 3y 5y 7y

I 35(1) 48(1) 20(1) 35(1) 48(1)
T 0-3 2600(50) 4788(50) 500(20) 2655(25) 4825(25)

3-6 71.00(2.00) 210.00(5.00) 7.50(2.50) 67.50(1.00) 225.50(2.50)
6-9 22.00(2.00) 49.00(2.00) 1.25(0.75) 22.00(1.00) 51.00(1.00)

9-12 10.00(2.00) 29.00(2.00) 0.50(0.25) 10.50(1.00) 28.50(1.00)
12-22 4.25(1.00) 11.00(1.00) 0.15(0.05) 4.50(0.50) 10.25(0.50)

Tl 0-1 6100(200) 7400(300)
1-2 1085(70) 5025(300)
2-3 393(45) 850(60)
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Calibration: All standard tranches up to seven years

As a first calibration example we consider standard DJi-TRAXX
tranches up to a maturity of 7y with constant recovery rate of 40%.
The calibration procedure selects five Poisson processes. The 18
market quotes used by the calibration procedure are almost perfectly
recovered. In particular all instruments are calibrated within the
bid-ask spread (we show the ratio calibration error / bid ask spread).

Calibr Att-Det Maturities
Error [A%,B%] 3y 5y 7y
Index -0.4 -0.2 -0.9

Tranche 0-3 0.1 0.0 -0.7
3-6 0.0 0.0 0.7
6-9 0.0 0.0 -0.2

9-12 0.0 0.0 0.0
12-22 0.0 0.0 0.2

GPL Λ(T )
δ 3y 5y 7y
1 0.535 2.366 4.930
3 0.197 0.266 0.267

16 0.000 0.007 0.024
21 0.000 0.003 0.003
88 0.000 0.002 0.007
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Loss distribution of the calibrated GPL model at different times
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October 2 2006, GPL, Calibration up to 10y
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October 2 2006, GPL tail
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October 2 2006, GPCL, Calibration up to 10y
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October 2 2006, GPCL tail

0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−3

Loss

 

 
3y
5y
7y
10y

(c) 2010-15 D. Brigo (www.damianobrigo.it) Nonlinear Valuation and XVA Univ. Catholique de Louvain 196 / 513



PART II: CREDIT RISK PRODUCTS and MODELS GPL Model: Calibration and performances in 2006-2010

Calibration comments I

Sector / systemic calibration:
Notice the large portion of mass concentrated near the origin, the
subsequent modes (default clusters) when moving along the loss
distribution for increasing values, and the bumps in the far tail.
Modes in the tail represent risk of default for large sectors. This is
systemic risk as perceived by the dynamical model from the CDO
quotes. With the crisis these probabilities have become larger, but they
were already observable pre-crisis. Difficult to get this with parametric
copula models.

History of calibration in-crisis with a different parametrization (α’s fixed
a priori):
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Calibration comments II
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Loss distribution in GPL through the crisis

The loss distribution in the GPL model is arbitrage free, rich in
structure and consistent with all market quotes, a feat impossible for
implied correlation models.

The following movie shows how structured the loss dynamics can be,
as highlighted by the GPL model.

Animation showing how the loss distribution evolved in 2005+ is here
http://www.youtube.com/watch?v=YZO-HeaGHkk&t=62m40s
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The synthetic CDO case?

We have illustrated how a complex situation in CDO markets has
been trivialized by media and even regulators
Models (such as base correl) were indeed inadequate, but...
... we have seen the example of the good GPL model 2006
Industry did not adopt such models for a number of reasons:
difficulty to go down to single names, IT/infrastructure inertia,
slowing down business, almost death of credit correlation in 2007
But why didn’t the media pick up GPL, and especially missed the
2005 CDO crisis commentary in the Wall Street Journal?
Losses came from Mortgage CDO’s (RMBS), different products,
base correl is not used there! RMBS have poor input data, below.
Lack of rigour in a broad part of investigative journalism
Cannot blame (even poor) modeling for policy, regulation,
incentives, banking model, greedy culture, poor governance...
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Is Mathematics Guilty and Wrong?

Mathematical models are a simplification of reality, and as such,
are always ”wrong”, even if they try to capture the salient features
of the problem at hand.
”All models are wrong, but some models are useful” (Prof.
George E.P. Box)
But mathematics is not wrong. The core mathematical theory
behind derivatives valuation is correct...
... but the assumptions on which the theory is based may not
reflect the real world when the market evolves over the years
... and input data may be inadequate for even simple models
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Is Mathematics guilty?

Although the models used in Credit Derivatives and counterparty
risk have limits that have been highlighted before the crisis by
several researchers, the ongoing crisis is due to factors that go
well beyond any methodological inadequacy: the killer formula∫ +∞

−∞

125∏
i=1

Φ

(
Φ−1(1− exp(−Λi(T )))−√ρim√

1− ρi

)
ϕ(m)dm.

Versus
The Crisis:
US real estate policy, Originate to Distribute (to Hold?) system fragility,
volatile monetary policies,
myopic compensation and incentives system, lack of homogeneity in
regulation, underestimation of liquidity risk, lack of data, fraud
corrupted data...(Szegö 2009, The crash sonata in D major, JRMFI).
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PART II: CREDIT RISK PRODUCTS and MODELS Data?

And what about the data?

Data and Inputs quality
For many financial products, and especially RMBS (Residential
Mortgage Backed Securities), quite related to the asset class that
triggered the crisis, the problem is in the data rather than in the models.

Risk of fraud
At times data for valuation in mortgages CDOs (RMBS and CDO of
RMBS) can be distorted by fraud (see for example the FBI Mortgage
fraud report, 2007,
www.fbi.gov/publications/fraud/mortgage fraud07.htm.
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PART II: CREDIT RISK PRODUCTS and MODELS Data?

Pricing a CDO on this underlying:

Figure: The above photos are from condos that were involved in a mortgage
fraud. The appraisal described ”recently renovated condominiums” to include
Brazilian hardwood, granite countertops, and a value of 275,000 USD
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PART II: CREDIT RISK PRODUCTS and MODELS Data?

And what about the data?

At times it is not even clear what is in the portfolio: From the offering
circular of a huge RMBS (more than 300.000 mortgages)

Type of property % of Total
Detached Bungalow 2.65%

Detached House 16.16%
Flat 13.25%

Maisonette 1.53%
Not Known 2.49 %

New Property 0.02%
Other 0.21%

Semi Detached Bungalow 1.45%
Semi Detached House 27.46%

Terraced House 34.78%
Total 100.00%
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PART II: CREDIT RISK PRODUCTS and MODELS Data?

Mathematics or Magic?

All this is before modeling. Models obey a simple rule that is popularly
summarized by the acronym GIGO (Garbage In→ Garbage Out). As
Charles Babbage (1791–1871) famously put it:

On two occasions I have been asked,
“Pray, Mr. Babbage, if you put into the machine
wrong figures, will the right answers come out?”
I am not able rightly to apprehend
the kind of confusion of ideas
that could provoke such a question.

Concluding: should we give up?
Models have been inadequate, but their fallacies were eclipsed by
problems of policy, banking models, business culture, and data quality
and availability. Should we give up modeling and mathematics in
Finance, as some commentators implicitly suggested?
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PART II: CREDIT RISK PRODUCTS and MODELS Data?

Interesting times. We need better models...

... as opposed to no models. We need models that account for the
types of risks that had been neglected. Some such risks are nonlinear
⇒We need to enhance consistency of models in different areas

We need to understand systemic risk, contagion, the dynamics of
dependence, and how to deal with scarcity of data and data proxying...

Optimization is becoming more and more fundamental: Optimal trade
execution, algorithmic trading, risk optimization...

All these areas, and many more, require quantitative input and good
quantitative finance. Let’s keep working and doing our best, and
disregard blaming quantitative finance for failures that are more
managerial, political and behavioural in nature.
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Valuation Adjustments

From credit derivatives to Valuation Adjustments...

This concludes our introduction to both single name and multi name
credit derivatives and models.

We now turn to using such tools in one of the problems the industry is
facing right now:

Pricing of counterparty credit risk, leading to the notion of Credit
Valuation Adjustment (CVA)
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Intro to Counterparty Risk: Q & A

Context
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Intro to Counterparty Risk: Q & A

Q & A: What is Counterparty Credit Risk?

Q What is counterparty risk in general?
A The risk taken on by an entity entering an OTC contract with a

counterparty having a relevant default probability. As such, the
counterparty might not respect its payment obligations.

The counterparty credit risk is defined as the risk that the
counterparty to a transaction could default before the final
settlement of the transaction’s cash flows. An economic loss would
occur if the transactions or portfolio of transactions with the
counterparty has a positive economic value at the time of default.
[Basel II, Annex IV, 2/A]
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Credit VaR and CVA

Q & A: Credit VaR and CVA

Q What is the difference between Credit VaR and CVA?
A They are both related to credit risk.
Credit VaR is a Value at Risk type measure, a Risk Measure. it
measures a potential loss due to counterparty default.
CVA is a price, it stands for Credit Valuation Adjustment and is a
price adjustment. CVA is obtained by pricing the counterparty risk
component of a deal, similarly to how one would price a credit
derivative.
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Credit VaR and CVA

Q & A: Credit VaR and CVA

Q What is the difference in practical use?
A Credit VaR answers the question:
”How much can I lose of this portfolio, within (say) one year, at a
confidence level of 99%, due to default risk and exposure?”
CVA instead answers the question:
”How much discount do I get on the price of this deal due to the
fact that you, my counterparty, can default? I would trade this
product with a default free party. To trade it with you, who are
default risky, I require a discount.”

Clearly, a price needs to be more precise than a risk measure, so the
techniques will be different.
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Credit VaR and CVA

Q & A: Credit VaR and CVA

Q Different? Are the methodologies for Credit VaR and CVA not
similar?

A There are analogies but CVA needs to be more precise in
general. Also, Credit VaR should use statistics under the physical
measure whereas CVA should use statistics under the pricing measure
Q What are the regulatory bodies involved?

A There are many, for Credit VaR type measures it is mostly Basel
II and now III, whereas for CVA we have IAS, FASB and ISDA. But the
picture is now blurring since Basel III is quite interested in CVA too and
on measuring risk on future CVA losses in particular
Q What is the focus of this presentation?

A We will focus on CVA.
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Credit VaR and CVA

Q & A: Credit VaR and CVA
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Credit VaR and CVA

Q & A: CVA and Model Risk, WWR

Q What impacts counterparty risk CVA?
A The OTC contract’s underlying volatility, the statistical

dependence (“correlation”) between the underlying and default of the
counterparty, and the counterparty credit spreads volatility.
Q Is it model dependent?

A It is highly model dependent even if the original portfolio without
counterparty risk was not. There is a lot of model risk.
Q What about wrong way risk?

A The amplified risk when i) the reference underlying portfolio
value in the future and ii) the counterparty default are strongly
correlated in the wrong direction.
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Credit VaR and CVA

Q & A: Collateral

Q What is collateral?
A It is a guarantee (liquid and secure asset, cash) that is deposited

in a collateral account in favour of the investor party facing the
exposure. If the depositing counterparty defaults, thus not being able
to fulfill payments associated to the above mentioned exposure,
Collateral can be used by the investor to offset its loss.
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Credit VaR and CVA

Q & A: Netting

Q What is netting?
A This is the agreement to net all positions towards a counterparty

in the event of the counterparty default. This way, at counterparty
default, positions with negative PV can be offset by positions with
positive PV and the overall loss due to counterparty default is reduced.
This because the option on a sum is smaller than the sum of the
options: (NPV1 + NPV2)+ ≤NPV1++NPV2+, CVA1+2 ≤ CVA1+CVA2.
CVA is typically computed on large netting sets.
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Credit VaR and CVA

For an introductory dialogue on Counterparty Risk see

CVA Q&A
D. Brigo (2012). Counterparty Risk Q&A: Credit VaR, CVA, DVA,
Closeout, Netting, Collateral, Re-hypothecation, Wrong Way Risk,
Basel, Funding, and Margin Lending. SSRN.com and arXiv.org.
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Credit VaR and CVA

Check also

(c) 2010-15 D. Brigo (www.damianobrigo.it) Nonlinear Valuation and XVA Univ. Catholique de Louvain 235 / 513



PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Credit VaR and CVA

General Notation

We will call “Bank” or sometimes the ”investor” the party interested
in the counterparty adjustment. This is denoted by “B”
We will call “counterparty” the party with whom the Bank is
trading, and whose default may affect negatively the Bank. This is
denoted by “C”.
“1” will be occasionally used for the underlying name/risk factor(s)
of the contract, or for the whole netting set underling CVA
The counterparty’s default time is denoted with τC and the
recovery rate for unsecured claims with RECC (we often use
LGDC := 1− RECC).
ΠB(t ,T ) is the netting set discounted payout without default risk
seen by ‘B’ (sum of all future cash flows between t and T ,
discounted back at t). ΠC(t ,T ) = −ΠB(t ,T ) is same but seen
from ‘C’. When we omit the index B or C we mean ‘B’.
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Credit VaR and CVA

Examples of products Π

If ”B” enters an interest rate swap where ”B” pays fixed K and receives
from ”C” LIBOR L with tenor Tα,Tα+1, . . . ,Tβ, then the payout is
written as

Π(0,Tβ) =

β∑
i=α+1

D(0,Ti)(Ti − Ti−1)(L(Ti−1,Ti)− K ).

where L(S,T ) is the LIBOR rate resetting at time S for maturity T . In
this example the netting set consists of a single swap. The majority of
the instruments that are subject to Counterparty risk is given by
Interest Rate Swaps.
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Credit VaR and CVA

General Notation

We define NPVB(t ,T ) = Et [Π(t ,T )]. When T is clear from the
context we omit it and write NPV(t).

Π(s, t) + D(s, t)Π(t ,u) = Π(s,u)

E0[D(0,u)NPV (u,T )] = E0[D(0,u)Eu[Π(u,T )]] =

= E0[D(0,u)Π(u,T )] = NPV (0,T )− E0[Π(0,u)]

= NPV (0,T )− NPV (0,u)
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA The mathematics of counterparty risk valuation

Unilateral counterparty risk

We now look into unilateral counterparty risk.

This is a situation where counterparty risk pricing is computed by
assuming that only the counterparty can default, whereas the investor
or bank doing the calculation is assumed to be default free.

Hence we will only consider here the default time τC of the
counterparty. We will address the bilateral case later on.
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA The mathematics of counterparty risk valuation

The mechanics of Evaluating unilateral counterparty
risk

payoff under
counterparty
default risk

counterparty
defaults after
final maturity

original payoff of the instrument

counterparty
defaults before
final maturity

all cash flows before default
⊕ recovery of the residual NPV at
default if positive
	 Total residual NPV at default if
negative
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA General formula, Symmetry vs Asymmetry

General Formulation under Asymmetry

ΠD
B (t ,T ) = 1τC>T ΠB(t ,T ) + 1t<τC≤T

[
ΠB(t , τC) +

+D(t , τC)
(
RECC (NPVB(τC))+ − (−NPVB(τC))+) ] (∗∗)

This last expression is the general payoff seen from the point of view of
‘B’ (ΠB, NPVB) under unilateral counterparty default risk. Indeed,

1 if there is no early default, this expression reduces to first term on
the right hand side, which is the payoff of a default-free claim.

2 In case of early default of the counterparty, the payments due
before default occurs are received (second term)

3 and then if the residual net present value is positive only the
recovery value of the counterparty RECC is received (third term),

4 whereas if it is negative it is paid in full by the investor/ Bank
(fourth term).
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Unilateral Credit Valuation Adjustment (UCVA)

General Formulation under Asymmetry

If one simplifies the cash flows and takes the risk neutral expectation,
one obtains the fundamental formula for the valuation of counterparty
risk when the investor/ Bank B is default free:

Et
{

ΠD
B (t ,T )

}
=

111{τC>t}Et {ΠB(t ,T )} − Et
{

LGDC111{t<τC≤T}D(t, τC) [NPVB(τC)]+
}

(∗)

First term : Value without counterparty risk.
Second term : Unilateral Counterparty Valuation Adjustment
NPV(τC) = EτC [Π(τC ,T )] is the value of the transaction on the
counterparty default date. LGD = 1 - REC counterparty.

UCVA0 = Et
{

LGDC111{t<τC≤T}D(t, τC) [NPVB(τC)]+
}
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Unilateral Credit Valuation Adjustment (UCVA)

Proof of the formula

In the proof we omit indices: τ = τC , REC=RECC , LGD=LGDC ,
NPV=NPVB, Π = ΠB. The proof is obtained easily putting together the
following steps to go from (*) to valuation of (**). Since

1{τ>t}Π(t ,T ) = 1{τ>T}Π(t ,T ) + 1{t<τ≤T}Π(t ,T )

we can rewrite the terms inside the expectation in the right hand side
of the simplified formula (*) as

111{τ>t}Π(t ,T )−
{

LGD111{t<τ≤T}D(t , τ) [NPV(τ)]+
}

= 1{τ>T}Π(t ,T ) + 1{t<τ≤T}Π(t ,T )

+ {(REC− 1)[1{t<τ≤T}D(t , τ)(NPV(τ))+]}
= 1{τ>T}Π(t ,T ) + 1{t<τ≤T}Π(t ,T )

+ REC 1{t<τ≤T}D(t , τ)(NPV(τ))+ − 1{t<τ≤T}D(t , τ)(NPV(τ))+

Conditional on the information at τ the second and the fourth terms
values (in red) are equal to
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Unilateral Credit Valuation Adjustment (UCVA)

Proof (cont’d)

Eτ [1{t<τ≤T}Π(t ,T )− 1{t<τ≤T}D(t , τ)(NPV(τ))+]

= Eτ [1{t<τ≤T}[Π(t , τ) + D(t , τ)Π(τ,T )− D(t , τ)(Eτ [Π(τ,T )])+]]

= 1{t<τ≤T}[Π(t , τ) + D(t , τ)Eτ [Π(τ,T )]− D(t , τ)(Eτ [Π(τ,T )])+]

= 1{t<τ≤T}[Π(t , τ)− D(t , τ)(−Eτ [Π(τ,T )])+]

= 1{t<τ≤T}[Π(t , τ)− D(t , τ)(−NPV(τ))+]

since

1{t<τ≤T}Π(t ,T ) = 1{t<τ≤T}{Π(t , τ) + D(t , τ)Π(τ,T )}

and f = f + − (−f )+.
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Unilateral Credit Valuation Adjustment (UCVA)

Proof (cont’d)

Hence

Et
[
111{τ>t}Π(t ,T )−

{
LGD111{t<τ≤T}D(t , τ) [NPV(τ)]+

} ]
= Et

[
Eτ
[
111{τ>t}Π(t ,T )−

{
LGD111{t<τ≤T}D(t , τ) [NPV(τ)]+

} ]]
= Et

[
Eτ
[
1{τ>T}Π(t ,T ) + 1{t<τ≤T}Π(t ,T )

+ REC 1{t<τ≤T}D(t , τ)(NPV(τ))+ − 1{t<τ≤T}D(t , τ)(NPV(τ))+
]]

= Et

[
1{τ>T}Π(t ,T ) + REC 1{t<τ≤T}D(t , τ)(NPV(τ))+

+ 1{t<τ≤T}[Π(t , τ)− D(t , τ)(−NPV(τ))+]

]

We have reached valuation of (**) starting from (*), QED
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Unilateral Credit Valuation Adjustment (UCVA)

What we can observe

Et
{

ΠD
B (t ,T )

}
=

111{τC>t}Et {ΠB(t ,T )} − Et
{

LGDC111{t<τC≤T}D(t, τC) [NPVB(τC)]+
}

(∗)

Including counterparty risk in the valuation of an otherwise
default-free derivative =⇒ credit (hybrid) derivative.

Counterparty risk adds a level of optionality to the payoff.
In particular, model independent products become model
dependent also in the underlying market.
=⇒ Counterparty Risk analysis incorporates an opinion
about the underlying market dynamics and volatility.
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Unilateral Debit Valuation Adjustment (UDVA)

The point of view of the counterparty “C”

The deal from the point of view of ‘C’, while staying in a world where
only ‘C” may default.

ΠD
C(t ,T ) = 1τC>T ΠC(t ,T ) + 1t<τC≤T

[
ΠC(t , τC)

+D(t , τC)
(
(NPVC(τC))+ − RECC (−NPVC(τC))+) ]

This last expression is the general payoff seen from the point of view of
‘C’ (ΠC , NPVC) under unilateral counterparty default risk. Indeed,

1 if there is no early default, this expression reduces to first term on
the right hand side, which is the payoff of a default-free claim.

2 In case of early default of the counterparty ‘C”, the payments due
before default occurs go through (second term)

3 and then if the residual net present value is positive to the
defaulted ‘C’, it is received in full from ‘B’ (third term),

4 whereas if negative, only RECC fraction it is paid to ‘B’ (term 4).
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Unilateral Debit Valuation Adjustment (UDVA)

The point of view of the counterparty “C”

The above formula simplifies to

Et
{

ΠD
C(t ,T )

}
=

111τC>tEt {ΠC(t ,T )}+ Et
{

LGDC111t<τC≤TD(t, τC) [−NPVC(τC)]+
}

and the adjustment term with respect to the risk free price
Et {ΠC(t ,T )} is called

UNILATERAL DEBIT VALUATION ADJUSTMENT

UDVAC(t) = Et
{

LGDC111{t<τC≤T}D(t, τC) [−NPVC(τC)]+
}

The cash flow is triggered only when NPV is negative to the calculating
agent, hence when the calculating agent is in “debt”. We note that
UDVAC = UCVAB.
Notice also that in this universe UDVAB = UCVAC = 0 as “B” is
assumed default-free.
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Bilateral Risk and DVA

Including the investor/ Bank default or not?

Often the investor, when computing a counterparty risk adjustment,
considers itself to be default-free. This can be either a unrealistic
assumption or an approximation for the case when the counterparty
has a much higher default probability than the investor.

If this assumption is made when no party is actually default-free, the
unilateral valuation adjustment is asymmetric: if “C” were to consider
itself as default free and “B” as counterparty, and if “C” computed the
counterparty risk adjustment, this would not be the opposite of the one
computed by “B” in the straight case.

Also, the total NPV including counterparty risk is similarly asymmetric,
in that the total value of the position to “B” is not the opposite of the
total value of the position to “C”. There is no cash conservation.
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Bilateral Risk and DVA

Including the investor/ Bank default or not?

We get back symmetry if we allow for default of the investor/ Bank in
computing counterparty risk. This also results in an adjustment that is
cheaper to the counterparty “C”.

The counterparty “C” may then be willing to ask the investor/ Bank “B”
to include the investor default event into the model, when the
Counterparty risk adjustment is computed by the investor
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Bilateral Risk and DVA

The case of symmetric counterparty risk

Suppose now that we allow for both parties to default. Counterparty
risk adjustment allowing for default of “B”?
“B” : the investor; “C”: the counterparty;
τB, τC : default times of “B” and “C”. T : final maturity
We consider the following events, forming a partition

Four events ordering the default times

We assume simultaneous defaults are exluded, ie Q(τC = τB) = 0.
This assumption can be removed (eg Marshall Olkin).

A = {τB ≤ τC ≤ T} E = {T ≤ τB ≤ τC}
B = {τB ≤ T ≤ τC} F = {T ≤ τC ≤ τB}
C = {τC ≤ τB ≤ T}
D = {τC ≤ T ≤ τB}

Define NPV{B,C}(t) := Et [Π{B,C}(t ,T )], and recall ΠB = −ΠC .
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Bilateral Risk and DVA

The case of symmetric counterparty risk
ΠD

B (t ,T ) = 1E∪F ΠB(t ,T )

+1C∪D
[
ΠB(t , τC) + D(t , τC)

(
RECC (NPVB(τC))+ − (−NPVB(τC))+)]

+1A∪B
[
ΠB(t , τB) + D(t , τB)

(
(NPVB(τB))+ − RECB (−NPVB(τB))+)]

1 If no early default⇒ payoff of a default-free claim (1st term).
2 In case of early default of the counterparty, the payments due

before default occurs are received (second term),
3 and then if the residual net present value is positive only the

recovery value of the counterparty RECC is received (third term),
4 whereas if negative, it is paid in full by the investor/ Bank (4th

term).
5 In case of early default of the investor, the payments due before

default occurs are received (fifth term),
6 and then if the residual net present value is positive it is paid in full

by the counterparty to the investor/ Bank (sixth term),
7 whereas if it is negative only the recovery value of the investor/

Bank RECB is paid to the counterparty (seventh term).
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Bilateral Risk and DVA

The case of symmetric counterparty risk

Et

{
ΠD

B (t ,T )
}

= 1{τ1st>t}Et {ΠB(t ,T )}+ DVAB(t)− CVAB(t)

DVAB(t) = Et
{

LGDB · 111(t < τ 1st = τB < T) · D(t, τB) · [−NPVB(τB)]+
}

CVAB(t) = Et
{

LGDC · 111(t < τ 1st = τC < T) · D(t, τC) · [NPVB(τC)]+
}

1(A ∪ B) = 1(t < τ1st = τB < T ), 1(C ∪ D) = 1(t < τ1st = τC < T )

Obtained simplifying the previous formula and taking expectation.
2nd term : adj due to scenarios τB < τC . This is positive to the
investor/ Bank B and is called ”Debit Valuation Adjustment” (DVA)
3d term : Counterparty risk adj due to scenarios τC < τB
Bilateral Valuation Adjustment as seen from B:
BVAB = DVAB − CVAB. Note: τ1st = min(τB, τC), the 1st default.
If computed from the opposite point of view of “C” having
counterparty “B”, BVAC = −BVAB. Symmetry. “Your CVA is my
DVA & your DVA is my CVA”.
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Bilateral Risk and DVA

CVA, DVA: Closeout

V̄t = Et

{
ΠD

B (t ,T )
}

=

V 0
t︷ ︸︸ ︷

Et {ΠB(t ,T )}+DVAB(t)− CVAB(t)

DVAB(t) = Et

LGDB · 111{t<τ 1st=τB<T} · D(t, τB) ·

−NPVB(τB)︸ ︷︷ ︸
V0
τB

or V̄τB ?


+

CVAB(t) = Et

LGDC · 111{t<τ 1st=τC<T} · D(t, τC) ·

NPVB(τC)︸ ︷︷ ︸
V0
τC

or V̄τC ?


+

V 0 risk free closeout (much easier but discontinuity), V̄ replacement
closeout - recursive problem but more continuous. More in a minute.
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Bilateral Risk and DVA

The case of symmetric counterparty risk

Strange consequences of the formula new mid term, i.e. DVA

credit quality of investor WORSENS⇒ books POSITIVE MARK
TO MKT
credit quality of investor IMPROVES⇒ books NEGATIVE MARK
TO MKT
Citigroup in its press release on the first quarter revenues of 2009
reported a positive mark to market due to its worsened credit
quality: “Revenues also included [...] a net 2.5$ billion positive
CVA on derivative positions, excluding monolines, mainly due to
the widening of Citi’s CDS spreads”
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA DVA Hedging?

The case of symmetric counterparty risk: DVA?

October 18, 2011, 3:59 PM ET, WSJ. Goldman Sachs
Hedges Its Way to Less Volatile Earnings.

Goldman’s DVA gains in the third quarter totaled $450 million [...] That
amount is comparatively smaller than the $1.9 billion in DVA gains that
J.P. Morgan Chase and Citigroup each recorded for the third quarter.
Bank of America reported $1.7 billion of DVA gains in its investment
bank. Analysts estimated that Morgan Stanley will record $1.5 billion of
net DVA gains when it reports earnings on Wednesday [...]

Is DVA real? DVA Hedging. Buying back bonds? Proxying?

DVA hedge? One should sell protection on oneself, impossible, unless
one buys back bonds that he had issued earlier. Very Difficult.
Most times: proxying. Instead of selling protection on oneself, one
sells protection on a number of names that one thinks are highly
correlated to oneself.
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA DVA Hedging?

The case of symmetric counterparty risk: DVA?

Again from the WSJ article above:

[...] Goldman Sachs CFO David Viniar said Tuesday that the company
attempts to hedge [DVA] using a basket of different financials.
A Goldman spokesman confirmed that the company did this by selling
CDS on a range of financial firms. [...] Goldman wouldn’t say what
specific financials were in the basket, but Viniar confirmed [...] that the
basket contained ’a peer group.’

This can approximately hedge the spread risk of DVA, but not the jump
to default risk. Merrill hedging DVA risk by selling protection on
Lehman would not have been a good idea. Worsens systemic risk.
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA DVA Hedging?

DVA or no DVA? Accounting VS Capital Requirements

NO DVA: Basel III, page 37, July 2011 release

This CVA loss is calculated without taking into account any offsetting
debit valuation adjustments which have been deducted from capital
under paragraph 75.

YES DVA: FAS 157
Because nonperformance risk (the risk that the obligation will not be
fulfilled) includes the reporting entitys credit risk, the reporting entity
should consider the effect of its credit risk (credit standing) on the fair
value of the liability in all periods in which the liability is measured at
fair value under other accounting pronouncements FAS 157 (see also
IAS 39)
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA DVA Hedging?

DVA or no DVA? Accounting VS Capital Requirements

Stefan Walter says:

”The potential for perverse incentives resulting from profit being linked
to decreasing creditworthiness means capital requirements cannot
recognise it, says Stefan Walter, secretary-general of the Basel
Committee: The main reason for not recognising DVA as an offset is
that it would be inconsistent with the overarching supervisory prudence
principle under which we do not give credit for increases in regulatory
capital arising from a deterioration in the firms own credit quality.”
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA DVA Hedging?

Funding and DVA

We will look at this more carefully when dealing with funding costs. For
now:

DVA a component of FVA?
DVA is related to funding costs when the payout is uni-directional, eg
shorting/issuing a bond, borrowing in a loan, or going short a call
option.

Indeed, if we are short simple products that are uni-directional, we are
basically borrowing.

As we shorted a bond or a call option, for example, we received cash
V0 in the beginning, and we will have to pay the product payout in the
end.

This cash can be used by us to fund other activities, and allows us to
spare the costs of fuding this cash V0 from our treasury.
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA DVA Hedging?

Funding and DVA

Our treasury usually funds in the market, and the market charges our
treasury a cost of funding that is related to the borrowed amount V0, to
the period T and to our own bank credit risk τB < T .

In this sense the funding cost we are sparing when we avoid borrowing
looks similar to DVA: it is related to the price of the object we are
shorting and to our own credit risk.

However quite a number of assumptions is needed to identify DVA with
a pure funding benefit, as we will see below.
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA DVA Hedging?

The case of symmetric counterparty risk: DVA?

When allowing for the investor to default: symmetry

DVA: One more term with respect to the unilateral case.
depending on credit spreads and correlations, the total adjustment
to be subtracted (CVA-DVA) can now be either positive or
negative. In the unilateral case it can only be positive.
Ignoring the symmetry is clearly more expensive for the
counterparty and cheaper for the investor.
Hedging DVA is difficult. Hedging “by peers” ignores jump to
default risk
We assume the unilateral case in most of the numerical
presentations
WE TAKE THE POINT OF VIEW OF ‘B” from now on, so we omit
the subscript ‘B’. We denote the counterparty as ‘C”.
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA DVA Hedging?

CVA, DVA: A useful derivation in view of funding

Immersion hypothesis for credit risk: work under default-free
filtration Ft as much as possible.
Assume conditional independence of defaults: spreads λ’s may be
correlated, but jump to defaults ξ’s will be independent.
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA DVA Hedging?

Conditional independence of defaults I

Recall that we are assuming

Gt = Ft ∨ (∨iσ({τi ≤ u},u ≤ t))

with i indexing all the default times in the system. Working under
F-immersion usually means that the risks in the basic cash flows Π are
assumed not to be credit sensitive but to depend only on the filtration
F of pre-default or default-free market information, eg default free
interest rate swaps portfolio.
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA DVA Hedging?

Conditional independence of defaults II
We are also assuming default times to be F-conditionally independent:

if τB = Λ−1
B (ξB), τC = Λ−1

C (ξC), (τ = min(τB, τC))

then this means assuming that ξB and ξC are independent. Intensities
λB(t) and λC(t) are taken Ft adapted (& can be correlated) and

Q(τ > t) = Q(min(τB, τC) > t) = Q(τB > t ∩ τC > t) =

We use the tower property + independence of ξ’s on each other and F :

= E[Q(τB > t ∩ τC > t |Ft )] = E[Q(τB > t |Ft )Q(τC > t |Ft )] =

= E[e−ΛB(t)e−ΛC(t)] = E[e−ΛB(t)−ΛC(t)] = E[e−
∫ t

0 (λB(s)+λC(s))ds]

Similarly, one can show the first to default time τ intensity λ

is Q(τ ∈ [t , t + dt)|τ > t ,Ft ) = λt dt = (λB(t) + λC(t))dt .
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA DVA Hedging?

Conditional independence of defaults III

Summing up:
Whenever we use the immersion hypothesis, meaning that we switch
filtration from G to F , we assume the ξ to be conditionally independent
and the basic cash flows Π(s, t) to be Ft adapted for all s ≤ t .

Switching to the filtration F typically transforms indicators such as
1{τ>t} into their F expectations e−

∫ t
0 (λB(s)+λC(s))ds. This is often

collected in the discount term D(0, t ; r) that becomes D(0, t ; r + λ).

D(0, t ; r)1{τ>t} = e−
∫ t

0 rsds1{τ>t} goes e−
∫ t

0 rsdse−
∫ t

0 λsds = D(0, t ; r +λ)

The switching also transforms 1{τ∈dt} into λte−
∫ t

0 λsdsdt .

We now present the calculation of CVA and DVA under immersion.
Here V will denote either V 0 or V̄ .
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA DVA Hedging?

CVA, DVA: A useful derivation in view of funding
CVAB(t) = Et

{
LGDC · 111(t < τ 1st = τC < T) · D(t, τC) · [V(τC)]+

}
= Et

{
LGDC

∫ T

t
1{τ1st∈du}1{τB>u}D(t ,u) [V (u)]+

}

= LGDC

∫ T

t
Et
{

1{τC∈du}1{τB>u}D(t ,u) (V (u))+}
= LGDC

∫ T

t
Et
{
E
[
1{τC∈du}1{τB>u}D(t ,u) (V (u))+ |FT

]}
= LGDC

∫ T

t
Et
{

D(t ,u) (V (u))+ E
[
1{τC∈du}1{τB>u+du}|FT

]}
= . . .(

E
[
1{τC∈du}1{τB>u+du}|FT

]
= E

[
1{τC∈du}|F

]
E
[
1{τB>u+du}|F

]
=

= λC(u)du e(−
∫ u

t λC(s)ds)e(−
∫ u

t λB(s)ds) = λC(u)du e(−
∫ u

t (λC(s)+λB(s))ds)

= λC(u)e−
∫ u

t λ(s)ds du
)

= Et

{
LGDC

∫ T

t
D(t ,u; r + λ)λC(u) (V (u))+ du

}
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA DVA Hedging?

CVA, DVA: A useful derivation in view of funding

CVAB(t) = Et

{∫ T

t
D(t ,u; r + λ)LGDC λC(u) (V (u))+ du

}

DVAB(t) = Et

{∫ T

t
D(t ,u; r + λ)LGDB λB(u) (−V (u))+ du

}
and we will see later that (without collateral and under the Reduced
Borrowing Benefit case) Funding Cost and Benefit Adjustments (FCA,
FBA) are (notice the formal analogies, used in industry)

FCAB(t) = Et

{∫ T

t
D(t ,u; r + λ)LGDB λB(u) (V (u))+ du

}

FBAB(t) = Et

{∫ T

t
D(t ,u; r + λ)LGDB λB(u) (−V (u))+ du

}
= DVAB(t)
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Closeout and contagion

Closeout: Replacement (ISDA?) VS Risk Free

When we computed the bilateral adjustment formula from

ΠD
B (t ,T ) = 1E∪F ΠB(t ,T )

+1C∪D
[
ΠB(t , τC) + D(t , τC)

(
RECC (NPVB(τC))+ − (−NPVB(τC))+)]

+1A∪B
[
ΠB(t , τB) + D(t , τB)

(
(−NPVC(τB))+ − RECB (NPVC(τB))+)]

(where we now substituted NPVB = −NPVC in the last two terms) we
used the risk free NPV upon the first default, to close the deal. But
what if upon default of the first entity, the deal needs to be valued by
taking into account the credit quality of the surviving party (we ignore
the credit risk of the new entity replacing the defaulted one for now)?
What if we make the Replacements

NPVB(τC)→ NPVB(τC) + UDVAB(τC)

NPVC(τB)→ NPVC(τB) + UDVAC(τB)?
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Closeout and contagion

Closeout: Replacement (ISDA?) VS Risk Free

ISDA (2009) Close-out Amount Protocol.
”In determining a Close-out Amount, the Determining Party may
consider any relevant information, including, [...] quotations (either firm
or indicative) for replacement transactions supplied by one or more
third parties that may take into account the creditworthiness of the
Determining Party at the time the quotation is provided”

This makes valuation more continuous: upon default we still price
including the DVA, as we were doing before default.
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Closeout and contagion

Closeout: Replacement (ISDA?) VS Risk Free

The final formula with subsitution closeout is quite complicated:

ΠD
B (t ,T ) = 1E∪F ΠB(t ,T )

+1C∪D

[
ΠB(t , τC) + D(t , τC)

·
(
RECC (NPVB(τC) + UDVAB(τC))+ − (−NPVB(τC)− UDVAB(τC))+) ]

+1A∪B

[
ΠB(t , τB) + D(t , τB)

·
(
(−NPVC(τB)− UDVAC(τB))+ − RECB (NPVC(τB) + UDVAC(τB))+) ]
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Closeout and contagion

Closeout: Replacement (ISDA?) VS Risk Free

B. and Morini (2010)
We analyze the Risk Free closeout formula in Comparison with the
replacement Closeout formula for a Zero coupon bond when:
1. Default of ‘B’ and ‘C” are independent
2. Default of ‘B’ and ‘C” are co-monotonic

Suppose ‘B’ (the lender) holds the bond,
and ‘C’ (the borrower) will pay the notional 1 at maturity T .

The risk free price of the bond at time 0 to ’B’ is denoted by P(0,T ).

In this case UDVAB =0 at any time, since the NPV to B is positive at
any point in time. Instead, UDVAC > 0 at any time as NPV to C is
always negative.
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Closeout and contagion

Closeout: Replacement (ISDA?) VS Risk Free

Suppose ‘B’ (the lender) holds the bond, and ‘C’ (the borrower) will pay
the notional 1 at maturity T .
The risk free price of the bond at time 0 to ’B’ is denoted by P(0,T ).
If we assume deterministic interest rates, the above formulas reduce to

PD,Repl(0,T ) = P(0,T )[Q(τC > T ) + RECCQ(τC ≤ T )]

PD,Free(0,T ) = P(0,T )[Q(τC > T ) + Q(τB < τC < T )

+RECCQ(τC ≤ min(τB,T ))]

= P(0,T )[Q(τC > T ) + RECCQ(τC ≤ T ) + LGDCQ(τB < τC < T )]

Risk Free Closeout and Credit Risk of the Lender
The adjusted price of the bond DEPENDS ON THE CREDIT RISK OF
THE LENDER ‘B’ IF WE USE THE RISK FREE CLOSEOUT. This is
counterintuitive and undesirable.
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Closeout and contagion

Closeout: Replacement (ISDA?) VS Risk Free

Co-Monotonic Case
If we assume the default of B and C to be co-monotonic, and the
spread of the lender ‘B” to be larger, we have that the lender ‘B”
defaults first in ALL SCENARIOS (e.g. ‘C’ is a subsidiary of ‘B’, or a
company whose well being is completely driven by ‘B’: ‘C’ is a trye
factory whose only client is car producer ‘B”). In this case

PD,Repl(0,T ) = P(0,T )[Q(τC > T ) + RECCQ(τC ≤ T )]

PD,Free(0,T ) = P(0,T )[Q(τC > T ) + Q(τC < T )] = P(0,T )

Risk free closeout is correct. Either ‘B” does not default, and then ‘C”
does not default either, or if ‘B” defaults, at that precise time C is
solvent, and B recovers the whole payment. Credit risk of ‘C” should
not impact the deal.
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Closeout and contagion

Closeout: Replacement (ISDA?) VS Risk Free

Contagion. What happens at default of the Lender

PD,Subs(t ,T ) = P(t ,T )[Qt (τC > T ) + RECCQt (τC ≤ T )]

PD,Free(t ,T ) = PD,Subs(t ,T ) + P(t ,T )LGDCQt (τB < τC < T )

We focus on two cases:
τB and τC are independent. Take t < T .

Qt−∆t (τB < τC < T ) 7→ {τB = t} 7→ Qt+∆t (τC < T )

and this effect can be quite sizeable.
τB and τC are comonotonic. Take an example where τB = t < T
implies τC = u < T with u > t . Then

Qt−∆t (τC > T ) 7→ {τB = t , τC = u} 7→ 0

Qt−∆t (τC ≤ T ) 7→ {τB = t , τC = u} 7→ 1

Qt−∆t (τB < τC < T ) 7→ {τB = t , τC = u} 7→ 1
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Closeout and contagion

Closeout: Replacement (ISDA?) VS Risk Free

Let us put the pieces together:

τB and τC are independent. Take t < T .

PD,Subs(t −∆t ,T ) 7→ {τB = t} 7→ no change

PD,Free(t −∆t ,T ) 7→ {τB = t} 7→ add Qt−∆t (τB > τC , τC < T )

and this effect can be quite sizeable.
τB and τC are comonotonic. Take an example where τB = t < T
implies τC = u < T with u > t . Then

PD,Subs(t −∆t ,T ) 7→ {τB = t} 7→ subtract X

X = LGDCP(t ,T )Qt−∆t (τC > T )

PD,Free(t −∆t ,T ) 7→ {τB = t} 7→ no change
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Closeout and contagion

Closeout: Replacement (ISDA?) VS Risk Free

The independence case: Contagion with Risk Free closeout
The Risk Free closeout shows that upon default of the lender, the mark
to market to the lender itself jumps up, or equivalently the mark to
market to the borrower jumps down. The effect can be quite
dramatic.
The replacement closeout instead shows no such contagion, as the
mark to market does not change upon default of the lender.

The co-monotonic case: Contagion with replacement closeout
The Risk Free closeout behaves nicely in the co-monotonic case, and
there is no change upon default of the lender.
Instead the replacement closeout shows that upon default of the lender
the mark to market to the lender jumps down, or equivalently the mark
to market to the borrower jumps up.
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Closeout and contagion

Closeout: Replacement (ISDA?) VS Risk Free

Impact of an early default of the Lender on the value of a loan (we
would like to have no impact)

Dependence(τB, τC) :→ independence co-monotonicity

Closeout↓
Risk Free Negatively affects No impact

Borrower (bad) (good)

Replacement No impact Further Negatively
(good) affects Lender (bad)

For a numerical case study and more details see Brigo and Morini
(2010, 2011).
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Can we neglect first to default risk?

A simplified formula without τ1st for bilateral VA
DVAB(t) = Et

{
LGDB · 111(t <����

τ1st = τB < T) · D(t, τB) · [−NPVB(τB)]+
}

CVAB(t) = Et
{

LGDC · 111(t <����
τ1st = τC < T) · D(t, τC) · [+NPVB(τC)]+

}
Simplified formula is only a simplified representation of bilateral
risk & neglects that upon the first default closeout proceedings are
started, thus involving double counting
It is attractive because it allows for the construction of a bilateral
counterparty risk pricing system based only on a unilateral one.
The correct formula involves default dependence between the two
parties through τ1st and allows no such incremental construction
A simplified bilateral formula is possible also in case of
replacement closeout, but it turns out to be identical to the
simplified formula of the risk free closeout case.
We analyze the impact of default dependence between investor
‘B’ and counterparty ‘C’ on the difference between the two
formulas by looking at an equity forward.
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Can we neglect first to default risk?

A simplified formula without τ1st for bilateral VA

One can show easily that the difference between the full correct
DVA-CVA formula and the simplified DVA-DVA formula is

E0[1{τB<τC<T}LGDCD(0, τC)(EτC (Π(τC ,T )))+] (22)
− E0[1{τC<τB<T}LGDBD(0, τB)(−EτB (Π(τB,T )))+].
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Can we neglect first to default risk?

A simplified formula without τ1st : The case of a Zero
Coupon Bond

We work under deterministic interest rates. We consider P(t ,T ) held
by ‘B” (lender) who will receive the notional 1 from ‘C”(borrower) at
final maturity T if there has been no default of ‘C”.

The difference between the correct bilateral formula and the simplified
one is, under risk free closeout,

LGDCP(0,T )Q(τB < τC < T ).

The case with replacement closeout is instead trivial and the difference
is null. For a bond, the simplified formula coincides with the full
substitution closeout formula.

Therefore the difference above is the same difference between risk
free closeout and replacement closeout formulas, and has been
examined earlier, also in terms of contagion.
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Can we neglect first to default risk?

A simplified formula without τ1st : The case of an
Equity forward

In this case the payoff at maturity time T is given by ST − K

where ST is the price of the underlying equity at time T and K the
strike price of the forward contract (typically K = S0, ‘at the money’, or
K = S0/P(0,T ), ‘at the money forward’).

We compute the difference DBC between the correct bilateral risk free
closeout formula for DVA-CVA and the simplified one.

(c) 2010-15 D. Brigo (www.damianobrigo.it) Nonlinear Valuation and XVA Univ. Catholique de Louvain 282 / 513



PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Can we neglect first to default risk?

A simplified formula without τ1st : The case of an
Equity forward

DBC := A1 − A2, where

A1 = E0
{

1{τB<τC<T}LGDCD(0, τC)(SτC − P(τC ,T )K )+
}

A2 = E0
{

1{τC<τB<T}LGDBD(0, τB)(P(τB,T )K − SτB )+
}

The worst cases will be the ones where the terms A1 and A2 do not
compensate. For example assume there is a high probability that
τB < τC and that the forward contract is deep in the money. In such
case A1 will be large and A2 will be small.

Similarly, a case where τC < τB is very likely and where the forward is
deep out of the money will lead to a large A2 and to a small A1.

However, we show with a numerical example that even when the
forward is at the money the difference can be relevant. For more
details see Brigo and Buescu (2011).
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Can we neglect first to default risk?

Figure: DBC plotted against Kendall’s tau between τB and τC , all other
quantities being equal: S0 = 1, T = 5, σ = 0.4, K = 1, λB = 0.1, λC = 0.05.
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Payoff Risk

PAYOFF RISK

The exact payout corresponding with the Credit and Debit valuation
adjustment is not clear.

DVA or not?
Which Closeout?
First to default risk or not?
How are collateral and funding accounted for exactly?

Worse than model risk: Payout risk. WHICH PAYOUT?
At a recent industry panel (WBS) on CVA it was stated that 5 banks
might compute CVA in 15 different ways.
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA CVA with Wrong Way Risk: Modeling examples

Methodology
1 Assumption: The Bank/investor enters a transaction with a

counterparty and, when dealing with Unilateral Risk, the investor
considers itself default free.
Note : All the payoffs seen from the point of view of the investor.

2 We model and calibrate the default time of the counterparty using
a stochastic intensity default model, except in the equity case
where we will use a firm value model.

3 We model the transaction underlying and estimate the deal NPV
at default.

4 We allow for the counterparty default time and the contract
underlying to be correlated.

5 We start however from the case when such correlation can be
neglected.
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Modeling the underlying

Approximation: Default Bucketing
General Formulation

1 Model (underlying) to estimate the NPV of the transaction.

2 Simulations are run allowing for correlation between the credit and
underlying models, to determine the counterparty default time and the
underlying deal NPV respectively.

Approximated Formulation under default bucketing

E0ΠD(0,T ) := E0Π(0,T )− LGDE0[1{τ<Tb} D(0, τ)(EτΠ(τ,T ))+]

= E0Π(0,T )− LGDE0[(
b∑

j=1

1{τ ∈ (Tj−1,Tj ]}) D(0, τ)(EτΠ(τ,T ))+]

= E0Π(0,T )− LGD

b∑
j=1

E0[1{τ ∈ (Tj−1,Tj ]} D(0, τ)(EτΠ(τ,T ))+]

≈ E0Π(0,T )− LGD

b∑
j=1

E0[1{τ ∈ (Tj−1,Tj ]} D(0,Tj )(ETj Π(Tj ,T ))+]
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Modeling the underlying

Approximation: Default Bucketing and Independence

1 In this formulation defaults are bucketed but we still need a joint
model for τ and the underlying Π including their correlation.

2 Option model for Π is implicitly needed in τ scenarios.

Approximated Formulation under independence (and 0 correlation)

E0ΠD(0,T ) := E0Π(0,T )

−LGD

b∑
j=1

Q{τ ∈ (Tj−1,Tj ]} E0[D(0,Tj )(ETj Π(Tj ,T ))+]

1 In this formulation defaults are bucketed and only survival probabilities
are needed (no default model).

2 Option model is STILL needed for the underlying of Π.
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Modeling the credit part

Ctrparty default model: CIR++ stochastic intensity

If we cannot assume independence, we need a default model.
Counterparty instantaneous credit spread: λ(t) = y(t) + ψ(t ;β)

1 y(t) is a CIR process with possible jumps

dyt = κ(µ−yt )dt+ν
√

ytdW y
t +dJt , τC = Λ−1(ξ), Λ(T ) =

∫ T

0
λ(s)ds

2 ψ(t ;β) is the shift that matches a given CDS curve
3 ξ is standard exponential independent of all brownian driven

stochastic processes
4 In CDS calibration we assume deterministic interest rates.
5 Calibration : Closed form Fitting of model survival probabilities to

counterparty CDS quotes
6 B and El Bachir (2010) (Mathematical Finance) show that this

model with jumps has closed form solutions for CDS options.
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Modeling the credit part

Literature on CVA across asset classes

Impact of dynamics, volatilities, correlations, wrong way risk

Interest Rate Swaps and Derivatives Portfolios (B. Masetti
(2005), B. Pallavicini 2007, 2008, B. Capponi P. Papatheodorou
2011, B. C. P. P. 2012 with collateral and gap risk)
Commodities swaps (Oil) (B. and Bakkar 2009)
Credit: CDS on a reference credit (B. and Chourdakis 2009, B.
C. Pallavicini 2012 Mathematical Finance)
Equity Return Swaps (B. and Tarenghi 2004, B. T. Morini 2011)
Equity uses AT1P firm value model of B. and T. (2004) (barrier
options with time-inhomogeneous GBM) and extensions (random
barriers for risk of fraud).

Further asset classes are studied in the literature. For example see
Biffis et al (2011) for CVA on longevity swaps.
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Modeling the credit part

Interest Rate and Commodities swaps and derivatives

We now examine UCVA with WWR for:
Interest Rate Swaps and Derivatives Portfolios
Commodities swaps
CDS
Equity Returs Swaps

Interest rate swaps are the vast majority of market contracts on which
CVA is computed.
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Interest rate swaps

Interest Rates Swap Case
Formulation for IRS under independence (no correlation)

IRSD(t ,K ) = IRS(t .K )

−LGD

b−1∑
i=a+1

Q{τ ∈ (Ti−1,Ti ]}SWAPTIONi,b(t ; K ,Si,b(t), σi,b)

Modeling Approach with corr.
Gaussian 2-factor G2++ short-rate r(t) model:
r(t) = x(t) + z(t) + ϕ(t ;α), r(0) = r0

dx(t) = −ax(t)dt + σdWx
dz(t) = −bz(t)dt + ηdWz

dWx dWz = ρx,zdt

α = [r0, a, b, σ, η, ρ1,2]

dWx dWy = ρx,y dt , dWzdWy = ρz,y dt

Calibration

The function ϕ(·;α) is deterministic and is
used to calibrate the initial curve observed
in the market.

We use swaptions and zero curve data to
calibrate the model.

The r factors x and z and the intensity are
taken to be correlated.
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Interest rate swaps

Interest Rates Swap Case

Total Correlation Counterparty default / rates

ρ̄ = Corr(drt ,dλt ) =
σρx ,y + ηρz,y√

σ2 + η2 + 2σηρx ,z

√
1 + 2βγ2

ν2yt

.

where β is the intensity of arrival of λ jumps and γ is the mean of the
exponentially distributed jump sizes.

Without jumps (β = 0)

ρ̄ = Corr(drt ,dλt ) =
σρx ,y + ηρz,y√
σ2 + η2 + 2σηρx ,z

.
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Interest rate swaps

IRS: Case Study
1) Single Interest Rate Swaps (IRS)
At-the-money fix-receiver forward interest-rate-swap (IRS) paying on
the EUR market.
The IRS’s fixed legs pay annually a 30E/360 strike rate, while the
floating legs pay LIBOR twice per year.
2) Netted portfolios of IRS.
- Portfolios of at-the-money IRS either with different starting dates or
with different maturities.

1 (Π1) annually spaced dates {Ti : i = 0 . . .N}, T0 two business
days from trade date; portfolio of swaps maturing at each Ti , with
i > 0, all starting at T0.

2 (Π2) portfolio of swaps starting at each Ti all maturing at TN .
Can also do exotics (Ratchets, CMS spreads, Bermudan)
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Interest rate swaps

IRS Case Study: Payment schedules

T

Π2

T

Π1
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Stressing underlying vols, credit spread vols, and correlations

IRS Results
Counterparty risk price for netted receiver IRS portfolios Π1 and Π2
and simple IRS (maturity 10Y). Every IRS, constituting the portfolios,
has unit notional and is at equilibrium. Prices are in bps.
λ correlation ρ̄ Π1 Π2 IRS

3% -1 -140 -294 -36
0 -84 -190 -22
1 -47 -115 -13

5% -1 -181 -377 -46
0 -132 -290 -34
1 -99 -227 -26

7% -1 -218 -447 -54
0 -173 -369 -44
1 -143 -316 -37
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Stressing underlying vols, credit spread vols, and correlations

Compare with ”Basel 2” deduced adjustments

Basel 2, under the ”Internal Model Method”, models wrong way risk by
means of a 1.4 multiplying factor to be applied to the zero correlation
case, even if banks have the option to compute their own estimate of
the multiplier, which can never go below 1.2 anyway.

Is this confirmed by our model?

(140− 84)/84 ≈ 66% > 40%

(54− 44)/44 ≈ 23% < 40%

So this really depends on the portfolio and on the situation.
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Stressing underlying vols, credit spread vols, and correlations

A bilateral example and correlation risk

Finally, in the bilateral case for Receiver IRS, 10y maturity, high risk
counterparty and mid risk investor, we notice that depending on the
correlations

ρ̄0 = Corr(drt ,dλ0
t ), ρ̄2 = Corr(drt ,dλ2

t ), ρCopula
0,2 = 0

the DVA - CVA or Bilateral CVA does change sign, and in particular for
portfolios Π1 and IRS the sign of the adjustment follows the sign of the
correlations.

ρ̄2 ρ̄0 Π1 Π2 10×IRS
-60% 0% -117(7) -382(12) -237(16)
-40% 0% -74(6) -297(11) -138(15)
-20% 0% -32(6) -210(10) -40(14)
0% 0% -1(5) -148(9) 31(13)

20% 0% 24(5) -96(9) 87(12)
40% 0% 44(4) -50(8) 131(11)
60% 0% 57(4) -22(7) 159(11)
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Stressing underlying vols, credit spread vols, and correlations

Payer vs Receiver

Counterparty Risk (CR) has a relevant impact on interest-rate
payoffs prices and, in turn, correlation between interest-rates and
default (intensity) has a relevant impact on the CR adjustment.
The (positive) CR adjustment to be subtracted from the default
free price decreases with correlation for receiver payoffs.
Natural: If default intensities increase, with high positive
correlation their correlated interest rates will increase more than
with low correlation, and thus a receiver swaption embedded in
the adjustment decreases more, reducing the adjustment.
The adjustment for payer payoffs increases with correlation.
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Stressing underlying vols, credit spread vols, and correlations

Further Stylized Facts

As the default probability implied by the counterparty CDS
increases, the size of the adjustment increases as well, but the
impact of correlation on it decreases.
Financially reasonable: Given large default probabilities for the
counterparty, fine details on the dynamics such as the correlation
with interest rates become less relevant
The conclusion is that we should take into account
interest-rate/ default correlation in valuing CR interest-rate
payoffs.
In the bilateral case correlation risk can cause the adjustment to
change sign
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Stressing underlying vols, credit spread vols, and correlations

Exotics

For examples on exotics, including Bermudan Swaptions and CMS
spread Options, see

Papers with Exotics and Bilateral Risk
Brigo, D., and Pallavicini, A. (2007). Counterparty Risk under
Correlation between Default and Interest Rates. In: Miller, J.,
Edelman, D., and Appleby, J. (Editors), Numerical Methods for
Finance, Chapman Hall.
Brigo, D., Pallavicini, A., and Papatheodorou, V. (2009). Bilateral
counterparty risk valuation for interest-rate products: impact of
volatilities and correlations. Available at Defaultrisk.com, SSRN
and arXiv
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA CVA for Commodities

Commodities and WWR

The correlation between interest rates drt (LIBOR, OIS) and credit
intensities dλt , if measured historically, if often quite small in absolute
value. Hence interest rates are a case where including correlation is
good for stress tests and conservative hedging of CVA, but a number
of market participant think that CVA can be computed by assuming
zero correlations.

Whether one agrees or not, there are other asset classes on which
CVA can be computed and where there is agreement on the necessity
of including correlation in CVA pricing. We provide an example: Oil
swaps traded with an airline.

It’s natural to think that the future credit quality of the airline will be
correlated with prices of oil.
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA CVA for Commodities

Commodities: Futures, Forwards and Swaps

Forward: OTC contract to buy a commodity to be delivered at a
maturity date T at a price specified today. The cash/commodity
exchange happens at time T.
Future: Listed Contract to buy a commodity to be delivered at a
maturity date T. Each day between today and T margins are called
and there are payments to adjust the position.
Commodity Swap: Oil Example:
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA CVA for Commodities

Commodities: Modeling Approach

Schwartz-Smith Model

ln(St ) = xt + lt + ϕ(t)
dxt = −kxtdt + σxdWx

dlt = µdt + σldWl

dWx dWl = ρx,ldt

Correlation with credit

dWx dWy = ρx ,ydt ,
dWl dWy = ρl,ydt

Variables
St : Spot oil price;
xt , lt : short and long term
components of St ;
This can be re-cast in a classic
convenience yield model

Calibration
ϕ: defined to exactly fit the oil forward
curve.
Dynamic parameters k , µ, σ, ρ are
calibrated to At the money implied
volatilities on Futures options.
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA CVA for Commodities

Commodities

Total correlation Commodities - Counterparty default

ρ̄ = corr(dλt , dSt ) =
σxρx ,y + σLρL,y√
σ2

x + σ2
L + 2ρx ,LσxσL

We assumed no jumps in the intensity

We show the counterparty risk CVA computed by the AIRLINE on the
BANK. This is because after 2008 a number of bank’s credit quality
deteriorated and an airline might have checked CVA on the bank with
whom the swap was negotiated.
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA CVA for Commodities

Commodities: Commodity Volatility Effect
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA CVA for Commodities

Commodities: Commodity Volatility Effect

Notice: In this example where CVA is calculated by the AIRLINE,
positive correlation implies larger CVA.

This is natural: if the Bank credit spread widens, and the bank default
becomes more likely, with positive correlation also OIL goes up.

Now CVA computed by the airline is an option, with maturity the default
of the bank=counterparty, on the residual value of a Payer swap. As
the price of OIL will go up at default due to the positive correlation
above, the payer oil-swap will move in-the-money and the OIL option
embedded in CVA will become more in-the-money, so that CVA will
increase.
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA CVA for commodities: Credit Volatility Effect
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA CVA for commodities: Credit Volatility Effect

Commodities1 : Credit volatility effect

ρ̄ intensity volatility νR 0.025 0.25 0.50
-88.5 Payer adj 2.742 1.584 1.307

Receiver adj 1.878 2.546 3.066
-63.2 Payer adj 2.813 1.902 1.63

Receiver adj 1.858 2.282 2.632
-25.3 Payer adj 2.92 2.419 2.238

Receiver adj 1.813 1.911 2.0242
-12.6 Payer adj 2.96 2.602 2.471

Receiver adj 1.802 1.792 1.863
0 Payer adj 2.999 2.79 2.719

Receiver adj 1.79 1.676 1.691
+12.6 Payer adj 3.036 2.985 2.981

Receiver adj 1.775 1.562 1.527
+25.3 Payer adj 3.071 3.184 3.258

Receiver adj 1.758 1.45 1.371
+63.2 Payer adj 3.184 3.852 4.205

Receiver adj 1.717 1.154 0.977
+88.5 Payer adj 3.229 4.368 4.973

Receiver adj 1.664 0.988 0.798
Fixed Leg Price maturity 7Y: 7345.39 USD for a notional of 1 Barrel per Month

1adjusment expressed as % of the fixed leg price
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA CVA for commodities

Commodities2 : Commodity volatility effect

ρ̄ Commodity spot volatility σS 0.0005 0.232 0.46 0.93
-88.5 Payer adj 0.322 0.795 1.584 3.607

Receiver adj 0 1.268 2.546 4.495
-63.2 Payer adj 0.322 0.94 1.902 4.577

Receiver adj 0 1.165 2.282 4.137
-25.3 Payer adj 0.323 1.164 2.419 6.015

Receiver adj 0 0.977 1.911 3.527
-12.6 Payer adj 0.323 1.246 2.602 6.508

Receiver adj 0 0.917 1.792 3.325
0 Payer adj 0.324 1.332 2.79 6.999

Receiver adj 0 0.857 1.676 3.115
+12.6 Payer adj 0.324 1.422 2.985 7.501

Receiver adj 0 0.799 1.562 2.907
+25.3 Payer adj 0.324 1.516 3.184 8.011

Receiver adj 0 0.742 1.45 2.702
+63.2 Payer adj 0.325 1.818 3.8525 9.581

Receiver adj 0 0.573 1.154 2.107
+88.5 Payer adj 0.326 2.05 4.368 10.771

Receiver adj 0 0.457 0.988 1.715
Fixed Leg Price maturity 7Y: 7345.39 USD for a notional of 1 Barrel per Month

2adjusment expressed as % of the fixed leg price
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA CVA for commodities

Wrong Way Risk?

Basel 2, under the ”Internal Model Method”, models wrong way risk by
means of a 1.4 multiplying factor to be applied to the zero correlation
case, even if banks have the option to compute their own estimate of
the multiplier, which can never go below 1.2 anyway.
What did we get in our cases? Two examples:

(4.973− 2.719)/2.719 = 82% >> 40%

(1.878− 1.79)/1.79 ≈ 5% << 20%
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA CVA for Credit Default Swaps

CVA for Credit Default Swaps (CDS) I
Model equations: (”1” = CDS underlying, ”2” = “C”= counterparty )

dλj (t) = kj (µj − λj (t))dt + νj
√
λj (t)dZj (t), j = 1,2

CIR models. The Brownian motions Z1 and Z2 driving λ1 and λ2 are
assumed to be independent.

Cumulative intensities are defined as : Λ(t) =
∫ t

0 λ(s)ds.

Default times are τj = Λ−1
j (ξj ). Exponential triggers ξ1 and ξ2 are

connected through a gaussian copula with correlation parameter ρ:

ξ1 = − ln(1−Φ(
√
ρM +

√
1− ρY1)), ξ2 = − ln(1−Φ(

√
ρM +

√
1− ρY2)),

with M,Y1,Y2 i.i.d. standard normals, Φ the standard normal CDF. M:
systemic factor.

Copula functions have undergone a lot of criticism, see again the 2007
credit crisis and the related discussion, especially in relation with
Collateralized Debt Obligations (CDOs).
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PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA CVA for Credit Default Swaps

CVA for Credit Default Swaps (CDS) II

Copulas however are necessary here: simply correlating τ ’s via a
non-zero covariation in the Brownians Z1 and Z2 in the λ’s, while keeping
ξ1 and ξ2 independent, would not create a strong enough link between τ1
and τ2. We need to put a copula between ξ1 and ξ2 and give up
independence on ξ1 ξ2 to achieve a strong link. The strong link is
fundamental in the case of CDS as wrong way risk is a key risk for CVA
on CDS.

In our approach, we take into account default correlation between default
times τ1 and τC & credit spreads volatility νj , j = 1,2.

Important: volatility can amplify default time uncertainty, while high
correlation reduces conditional default time uncertainty.
Taking into account ρ and ν =⇒ better representation of market
information and behavior, especially for wrong way risk.
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Numerical example

We now show a CVA calculation on a CDS (both payer and receiver) in
two cases: one with low credit spread vol ν1 (blue) and one with high
ν1 (red). We plot the CVA for the CDS when the correlation parameter
ρ in the copula increases from −1 to 1. The interesting case is the
payer case, where we compute the CVA on a CDS where we are
buying protection from another bank “C”.

The plot shows the wrong way risk profile in the payer case when the
correlation increases. However, something strange happens to the
blue line of wrong way risk on the right hand side: for very high
correlations, CVA suddenly drops dramatically and wrong way risk
seems to disappear. What is going on?
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Credit Spread Volatility as a Smoothing Parameter

The dropping blue correlation pattern is due to a feature inherent in the
copula notion (any copula).
Take for example the case with constant deterministic (zero volatility)
intensities for simplicity. Push dependence to co-monotonicity (ρ = 1 in
the Gaussian case and ξ1 = ξ2 =: ξ), so that

τ1 =
ξ

λ1
τC =

ξ

λC
(∗)

Usually λ1 > λC because one does not buy default protection for name
1 from an entity C that is riskier than 1.
Then τ1 < τC in all scenarios.
Then whenever τC hits, the CDS has already defaulted and there is no
loss faced by B. This is why CVA drops to zero when ρ→ 1.
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Credit Spread Volatility as a Smoothing Parameter

τ1 =
ξ

λ1
τC =

ξ

λC
(∗)

However, if we increase Credit Volatility ν to values that are realistic
(Brigo 2005 on CDS options) the uncertainty in (*) comes back in the
”denominator” and the pattern goes back to be increasing.

The fundamental role of Credit Volatility
Credit Vol is a fundamental risk factor and should be taken into
account. Current models for multiname credit derivatives (CDO,
Default Baskets) ignore credit volatility assuming it is zero. This can
lead to very funny results when the correlation becomes very high
(unrealistic representation of systemic risk)
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Equity: Intensity vs Firm value models

If we have equity St of a name ‘1’ as contract underlying and we have
the default of the counterparty

τC = Λ−1
C (ξC)

it’s hard to correlate τC and S1 enough, given that the exponential
random variable ξC and any Brownian motion W1 driving S1 will
necessarily be independent.

Underlying Equity/ Counterparty Default correlation
The only hope to create correlation is to put a stochastic λC and
correlate it with W1 driving S1. However, since most of the randomness
of τC comes from ξC , this does not create enough correlation.

With equity we change family of credit models, and resort to Firm
Value (or structural) models for the default of the counterparty.
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Equity: Intensity vs Firm Value models

Intensity VS Firm Value models

τC = Λ−1
C (ξC) vs τC = inf{t : V (t) ≤ H(t)}

Default of the counterparty is the first time when the counterparty firm
value V hits a default barrier H.

Equity/Credit Correlation with Firm Value Models
Now if the underlying equity S1 is driven by a brownian motion W1,

dS1(t) = (r − y1)S1(t)dt + σ1(t)S1(t)dW1(t)

and the counterparty V = VC is also driven by a brownian motion WC ,

dV (t) = (r − q)V (t)dt + σ(t)V (t)dWC(t)

then an effective way to create correlation is dW1dWC = ρ1Cdt
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Equity: Firm Value models for the counterparty default

AT1P model

Let the risk neutral firm value V dynamics and the default barrier Ĥ(t)
of the counterparty ‘C‘ be

dV (t) = V (t)(r(t)− q(t))dt + V (t)σ(t)dWC(t)

H(t) =
H
V0

E [Vt ] e(−B
∫ t

0 σ
2
s ds)

and let the default time τ be the 1st time VC hits H(t) from above,
starting from V0 > H. Here H > 0 and B are free parameters we may
use to shape the barrier.

Then the survival probability is given analytically in close form by a
barrier option type formula (see Brigo and Tarenghi (2005) and Brigo,
Morini and Tarenghi (2011)).
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Firm Value model Calibration to CDS data

It is possible to fit exactly the CDS spreads for the counterparty
through the firm value volatility σ(t) using a bootstrapping procedure.

SMktCDS
0,1y

SMktCDS
0,2y

...
SMktCDS

0,10y

←→


dV (t) = (r − q)V (t)dt + σV (t)V (t)dW (t)
H(t)

model parameters: σV (t)

This ensures that the firm value model is consistent with liquid credit
data of the counterparty.
In the papers we give examples based on Lehman and Parmalat.
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Counterparty risk in equity return swap (ERS)

Initial Time 0: NO FLOWS, or (23)

B −→ KS0 cash −→ C
←− K equity ←−

....

Time Ti : −→ equity dividends −→

B ←− Libor + Spread ←− C
....

Final Time Tb : −→ K equity or KSTb cash −→

B ←− KS0 cash ←− C
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Counterparty risk in equity return swap (ERS)

We are a default-free company (bank) “B” entering a contract with
counterparty “C” (corporate). The reference underlying equity is
“1”.
“B” and “C” agree on an amount K of stocks of “1” (with price S) to
be taken as nominal (N = K S0). The contract starts in Ta = 0 and
has final maturity Tb = T .
At t = 0 there is no exchange of cash (alternatively, we can think
that “C” delivers to “B” an amount K of “1” stock and receives a
cash amount equal to KS0).
At intermediate times “B” pays to “C” the dividend flows of the
stocks (if any) in exchange for a periodic risk free rate plus a
spread X .
At final maturity T = Tb, “B” pays KST to “C” (or gives back the
amount K of stocks) and receives a payment KS0.

The (fair) spread X is chosen in order to obtain a contract whose value
at inception is zero.
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Counterparty risk in equity return swap (ERS)

S0 = 20, volatility σ = 20% and constant dividend yield y = 0.80%.
The simulation date is September 16th, 2009. The contract has
maturity T = 5y and the settlement of the risk free rate has a
semi-annual frequency. Finally, we included a recovery rate REC = 40%
for the counterparty default.

Ti SBID,CDS
i (bps) SASK ,CDS

i (bps)
1y 25 31
3y 34 39
5y 42 47
7y 46 51
10y 50 55

Table: CDS spreads used for the counterparty “B” credit quality in the
valuation of the equity return swap.

(c) 2010-15 D. Brigo (www.damianobrigo.it) Nonlinear Valuation and XVA Univ. Catholique de Louvain 323 / 513



PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Equity Return Swaps

Counterparty risk in equity return swap (ERS)

Fair spread X is driven by CVA
We compute the unilateral CVA adjustment by simulation in the model
above. We search for the spread X such that the total value of the ERS
INLCUDING THE CVA ADJUSTMENT is zero. In fact, it can be proven
that without counterparty credit risk the theoretical fair spread X would
be 0. We see that the spread X is due entirely to counterparty risk.

ρ X (AT1P)
-1 0.0

-0.2 3.0
0 5.5

0.5 14.7
1 24.9

Table: Fair spread X (in basis points) of the Equity Return Swap in five
different correlation cases for AT1P.
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Compare with ”Basel 2” deduced adjustments

Basel 2, under the ”Internal Model Method”, models wrong way risk by
means of a 1.4 multiplying factor to be applied to the zero correlation
case, even if banks have the option to compute their own estimate of
the multiplier, which can never go below 1.2 anyway.

Is this confirmed by our model?

(24.9− 5.5)/5.5 ≈ 353% >> 40%
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Model Risk?

We have seen earlier that CVA/DVA may be subject to Payout Risk, in
that we are not sure about the payout (closeout? First to default?)

However, as we have seen comparing the equity with the rates or
credit examples, models can be different too, leading to model risk (eg
firm value vs intensity models for credit)

Precise assessment of model risk is very difficult. Model validation
departments should be looking into this.

A possibility is calibrating different models to the same data and see
how the pricing of CVA/DVA changes.
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Collateral Management and Gap Risk I

Collateral (CSA) is considered to be the solution to counterparty risk.
Periodically, the position is re-valued (”marked to market”) and a
quantity related to the change in value is posted on the collateral
account from the party who is penalized by the change in value.

This way, the collateral account, at the periodic dates, contains an
amount that is close to the actual value of the portfolio and if one
counterparty were to default, the amount would be used by the
surviving party as a guarantee (and viceversa).
Gap Risk is the residual risk that is left due to the fact that the
realingment is only periodical. If the market were to move a lot
between two realigning (”margining”) dates, a significant loss would
still be faced.

Folklore: Collateral completely kills CVA and gap risk is negligible.
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Collateral Management and Gap Risk I

Folklore: Collateral completely kills CVA and gap risk is negligible.
We are going to show that there are cases where this is not the case at
all (B. Capponi and Pallavicini 2012, Mathematical Finance)

Risk-neutral evaluation of counterparty risk in presence of
collateral management can be a difficult task, due to the
complexity of clauses.
Only few papers in the literature deal with it. Among them we cite
Cherubini (2005), Alavian et al. (2008), Yi (2009), Assefa et al.
(2009), Brigo et al (2011) and citations therein.
Example: Collateralized bilateral CVA for a netted portfolio of IRS
with 10y maturity and 1y coupon tenor for different default-time
correlations with (and without) collateral re-hypothecation. See B,
Capponi, Pallavicini and Papatheodorou (2011)
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Collateral Management and Gap Risk II
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Figure explanation

Bilateral valuation adjustment, margining and rehypotecation

The figure shows the BVA(DVA-CVA) for a ten-year IRS under
collateralization through margining as a function of the update
frequency δ with zero correlation between rates and counterparty
spread, zero correlation between rates and investor spread, and zero
correlation between the counterparty and the investor defaults. The
model allows for nonzero correlations as well.
Continuous lines represent the re-hypothecation case, while dotted
lines represent the opposite case. The red line represents an investor
riskier than the counterparty, while the blue line represents an investor
less risky than the counterparty. All values are in basis points.

See the full paper by Brigo, Capponi, Pallavicini and Papatheodorou
‘Collateral Margining in Arbitrage-Free Counterparty Valuation
Adjustment including Re-Hypotecation and Netting”
available at http://arxiv.org/abs/1101.3926
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Figure explanation

From the fig, we see that the case of an investor riskier than the
counterparty (M/H) leads to positive value for DVA-CVA, while the case
of an investor less risky than the counterparty has the opposite
behaviour. If we inspect the DVA and CVA terms as in the paper we
see that when the investor is riskier the DVA part of the correction
dominates, while when the investor is less risky the counterparty has
the opposite behaviour.
Re-hypothecation enhances the absolute size of the correction, a
reasonable behaviour, since, in such case, each party has a greater
risk because of being unsecured on the collateral amount posted to
the other party in case of default.

Let us now look at a case with more contagion: a CDS.
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Collateral Management and Gap Risk I
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Collateral Management and Gap Risk II

The figure refers to a payer CDS contract as underlying. See the full
paper by Brigo, Capponi and Pallavicini (2011) for more cases.

If the investor holds a payer CDS, he is buying protection from the
counterparty, i.e. he is a protection buyer.

We assume that the spread in the fixed leg of the CDS is 100 while the
initial equilibrium spread is about 250.

Given that the payer CDS will be positive in most scenarios, when the
investor defaults it is quite unlikely that the net present value be in
favor of the counterparty.

We then expect the CVA term to be relevant, given that the related
option will be mostly in the money. This is confirmed by our outputs.

(c) 2010-15 D. Brigo (www.damianobrigo.it) Nonlinear Valuation and XVA Univ. Catholique de Louvain 333 / 513



PART III. VALUATION with CREDIT & COLLATERAL: CVA/DVA Collateralization, Gap Risk and Re-Hypothecation

Collateral Management and Gap Risk III

We see in the figure a relevant CVA component (part of the bilateral
DVA - CVA) starting at 10 and ending up at 60 bps when under high
correlation.

We also see that, for zero correlation, collateralization succeeds in
completely removing CVA, which goes from 10 to 0 basis points.

However, collateralization seems to become less effective as default
dependence grows, in that collateralized and uncollateralized CVA
become closer and closer, and for high correlations we still get 60
basis points of CVA, even under collateralization.

The reason for this is the instantaneous default contagion that, under
positive dependency, pushes up the intensity of the survived entities,
as soon as there is a default of the counterparty.
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Collateral Management and Gap Risk IV

Indeed, the term structure of the on-default survival probabilities (see
paper) lies significantly below the one of the pre-default survival
probabilities conditioned on Gτ−, especially for large default correlation.

The result is that the default leg of the CDS will increase in value due
to contagion, and instantaneously the Payer CDS will be worth more.
This will instantly increase the loss to the investor, and most of the
CVA value will come from this jump.

Given the instantaneous nature of the jump, the value at default will be
quite different from the value at the last date of collateral posting,
before the jump, and this explains the limited effectiveness of collateral
under significantly positive default dependence.
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Collateral Management and Gap Risk V

The precise payout of residual CVA and DVA adjustment cash flows
after collateralization will be introduced in the Funding Costs modeling
part below, and will be called ΠCVAcoll and ΠDVAcoll. These are the
terms that have been priced in the above examples.
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Inclusion of Funding Cost

When we work on CVA and DVA we are focusing on cash flows
contingent on the first default, and on their valuation.

There are however other cash flows that are not related directly to the
default event, but to the funding costs. We work on this now.
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Inclusion of Funding Cost

When managing a trading position, one needs to obtain cash in order
to do a number of operations:

borrowing / lending cash to implement the replication strategy,
possibly repo-lending or stock-lending the replication risky asset,
borrowing cash to post collateral
receiving interest on posted collateral
paying interest on received collateral
using received collateral to reduce borrowing from treasury
borrowing to pay a closeout cash flow upon default

and so on. Where are such founds obtained from?
Obtain cash from her Treasury department or in the market.
receive cash as a consequence of being in the position.

All such flows need to be remunerated:
if one is ”borrowing”, this will have a cost,
and if one is ”lending”, this will provide revenues.
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Introduction to Quant. Analysis of Funding Costs I

We now present an introduction to funding costs modeling. Motivation?

Funding Value Adjustment Proves Costly to J.P. Morgan’s 4Q Results
(Michael Rapoport, Wall St Journal, Jan 14, 2014)

”[...] So what is a funding valuation adjustment, and why did it cost J.P.
Morgan Chase $1.5 billion?

We now approach funding costs modeling by incorporating
funding costs into valuation.

We start from scratch from the product cash flows and add
collateralization, cost of collateral, CVA and DVA after collateral, and
funding costs for collateral and for the replication of the product.

In the following τI denotes the default time of the investor / bank doing
the calculation of the price (previously τB). ”C”: counterparty as before.
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Adjustments Cash Flows

Π(t ,T ) will be the credit-collateral-funding free cash flows of the
trade from t to T , discounted back at t with the risk free rate, as in
our CVA notation earlier;
γ will be the cost-of-collateralization cash flows, representing
flows of interest remuneration or cost due to collateral posting or
receiving;
θ will be the closeout cash flows at the first default
τ = τ1 = min(τI , τC), inclusive of the trading CVA and trading DVA
cash flows after collateralization;
ϕ will be cost-of-funding-the-hedge cash flows for the replication
strategy of the trade, representing flows of interest remuneration
or cost due to the implementation of the hedging strategy;
ψ will be the closeout cash flows for the external borrowing and
lending activity the treasury of our bank is doing to fund our
trading activities;
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Basic Payout plus Credit and Collateral: Cash Flows I

We calculate prices by discounting cash-flows under the pricing
measure. Collateral and funding are modeled as additional
cashflows (as for CVA and DVA)
We start from derivative’s basic cash flows without credit,
collateral of funding risks

V̄t := Et [ Π(t ,T ∧ τ) + . . . ]

where
−→ τ := τC ∧ τI is the first default time, and
−→ Π(t ,u) is the sum of all payoff terms from t to u, discounted at t

Cash flows are stopped either at the first default or at portfolio’s
expiry if defaults happen later.
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Basic Payout plus Credit and Collateral: Cash Flows II

Note that we can write the credit-collateral-funding free price as

V 0
t := Et [ Π(t ,T ) ] = Et

[
Π(t ,T ∧ τ) + 1{τ≤T}D(t , τ)V 0

τ

]
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Basic Payout plus Credit and Collateral: Cash Flows

As second contribution we consider the collateralization procedure
and we add its cash flows.

V̄t := Et [ Π(t ,T ∧ τ) ] + Et [ γ(t ,T ∧ τ ; C) + . . . ]

where
−→ Ct is the collateral account defined by the CSA,
−→ γ(t ,u; C) are the collateral margining costs up to time u.

The second expected value originates what is occasionally called
Liquidity Valuation Adjustment (LVA) in simplified versions of this
analysis. We will show this in detail later.
If C > 0 collateral has been overall posted by the counterparty to
protect us, and we have to pay interest c+.
If C < 0 we posted collateral for the counterparty (and we are
remunerated at interest c−).
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Basic Payout plus Credit and Collateral: Cash Flows

The cash flows due to the margining procedure are

γ(t ,u; C) =

∫ u

t
D(t , s)Cs(rs − c̃s)ds

where the collateral accrual rates are given by

c̃t := c+
t 1{Ct>0} + c−t 1{Ct<0}

Note that if the collateral rates in c̃ are both equal to the risk free
rate, then this term is zero.

We should also include all the collateral updates and how the
collateral nets with the mark to market at each margin call daily,
including thresholds, minimum transfer amounts, etc. This can be
done. Most terms cancel via telescopic sums and what is left is
the γ term here. For full details see the B. Morini Pallavicini book.
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Close-Out: Trading-CVA/DVA under Collateral – I

As third contribution we consider the cash flow happening at 1st
default, and we have

V̄t := Et [ Π(t ,T ∧ τ) ]

+ Et [ γ(t ,T ∧ τ ; C) ]

+ Et
[

1{τ<T}D(t , τ)θτ (C, ε) + . . .
]

where
−→ ετ is the close-out amount, or residual value of the deal at default,

which we called NPV earlier,
ετ = V 0

τ = NPV (τ,T ) = Eτ [Π(τ,T )] with risk free closeout,
whereas ετ = V̄τ with replacement closeout;

−→ θτ (C, ε) is the on-default cash flow.

θτ will contain collateral adjusted CVA and DVA payouts for the
instument cash flows
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Close-Out: Trading-CVA/DVA under Collateral – II

We define θτ including the pre-default value of the collateral
account since it is used by the close-out netting rule to reduce
exposure.
The final expressions for θ we give below result from accounting
formulas similar to the ones leading to the bilateral CVA/ DVA but
inclusive of collateral netting. Full calculations and proofs are in
the B. Morini Pallavicini book, here we only present the final
formulas;
An important issue here is collateral re-hypothecation. Often the
collateral agreement (CSA) grants the collateral taker relatively
unrestricted use of the collateral for his liquidity and trading needs
until it is returned to the collateral provider.
Under rehypothecation, Collateral can be re-invested and this
lowers its remuneration cost.
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Close-Out: Trading-CVA/DVA under Collateral – III

However, while without rehypothecation the collateral provider can
expect to get any excess collateral returned after honoring the
amount payable on the deal, if rehypothecation is allowed the
collateral provider runs the risk of losing a fraction or all of the
excess collateral in case of default on the collateral taker’s part.

Suppose we have a mark to market today of 100 against us. We
post 100 cash collateral in the account. There is re-hypothecation.
The other party can re-invest the collateral. One day later the
mark to market swings heavily in our favor. We now have a mark
to market of 80 in our favor. What should happen now is that the
the counterparty gives us back the 100 collateral we posted
yesterday and further posts 80 cash collateral in our favor as a
guarantee for the trade. However before any of this can happen,
the counterparty defaults.
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Close-Out: Trading-CVA/DVA under Collateral – IV

In this scenario we face two losses: we lose the collateral we
posted yesterday, receiving only a recovery of it from the defaulted
counterparty that reinvested it, and we face a full uncollateralized
loss on the 80 we were expecting now from the mark to market.

We denote the recovery fraction on the rehypothecated collateral
by REC′I (and set LGD′I = 1−REC’I) when the investor is the
collateral taker and by REC′C (and set LGD′C = 1−REC′C) when
the counterparty is the collateral taker. The collateral provider
typically has precedence over other creditors of the defaulting
party in getting back any excess capital, which means
RECI 6REC′I 6 1 and similarly for REC′C . If no rehypothecation is
allowed and the collateral is kept safe in a segregated account, we
have that REC′I =REC′C = 1.
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Close-Out: Trading-CVA/DVA under Collateral – V

The on-default cash flow θτ (C, ε) can be calculated by following
ISDA documentation. We obtain

θτ (C, ε) := ετ − 1{τ=τC<τI}ΠCVAcoll + 1{τ=τI<τC}ΠDVAcoll
ΠCVAcoll = LGDC(ε+

τ − C+
τ−)+ + LGD

′
C(−(−ετ )+ + (−Cτ−)+)+

ΠDVAcoll = LGDI((−ετ )+ − (−Cτ−)+)+ + LGD
′
I(C

+
τ− − ε+

τ )+

In case of re-hypothecation, when LGDC = LGD
′
C and LGDI = LGD

′
I , we

obtain a simpler relationship with

ΠDVAcoll = LGDI(−(ετ − Cτ−))+, ΠCVAcoll = LGDC(ετ − Cτ−)+.
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Close-Out: Trading-CVA/DVA under Collateral – VI

In case of no collateral re-hypothecation (see full paper for all
cases)

ΠCVAcoll = LGDC(ε+
τ − C+

τ−)+

ΠDVAcoll = LGDI((−ετ )+ − (−Cτ−)+)+

Recall once again that in all the above formulas under
replacement closeout, ετ = V̄τ (nonlinearity/recursion!). Under
risk-free closeout, ετ = V 0

τ (easier)
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Funding Costs of the Replication Strategy – I

As fourth contribution we consider the cost of funding for the
hedging procedures and we add the relevant cash flows.

V̄t := Et [ Π(t ,T ∧ τ) ] + Et
[
γ(t ,T ∧ τ ; C) + 1{τ<T}D(t , τ)θτ (C, ε)

]
+ Et [ϕ(t ,T ∧ τ ; F ,H) ]

The last term, especially in simplified versions, is related to what
is called FVA in the industry. We will point this out once we get rid
of the rate r .
−→ Ft is the cash account for the replication of the trade,
−→ Ht is the risky-asset account in the replication,
−→ ϕ(t ,u; F ,H) are the cash F and hedging H funding costs up to u.

In classical Black Scholes on Equity, for a call option (no credit
risk, no collateral, no funding costs),

V̄ Call
t = ∆tSt + ηtBt =: Ht + Ft , τ = +∞, C = γ = ϕ = 0.
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Funding Costs of the Replication Strategy – II

Now whenever we borrow amounts H and F from the treasury we
need to pay interest f +, whereas when we lend amounts H and F
in a short hedge position we receive interest f−. We write such
cash flows now.
Continuously compounding format:

ϕ(t ,u) =

∫ u

t
D(t , s)(Fs + Hs)

(
rs − f̃s

)
ds

−
∫ u

t
D(t , s)Hs

(
rs − h̃s

)
ds

f̃t := f +
t 1{Ft +Ht>0} + f−t 1{Ft +Ht<0} h̃t := h+

t 1{Ht>0} + h−t 1{Ht<0}
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Funding Costs of the Replication Strategy – III

The expected value of ϕ is related to the so called FVA. If the
treasury funding rates f̃ are same as asset lending/borrowing h̃

ϕ(t ,u) =

∫ u

t
D(t , s)Fs

(
rs − f̃s

)
ds

We will use this assumption when deriving the generalized Black
Scholes example. In that case we assume

f̃t := f +
t 1{Ft≥0} + f−t 1{Ft<0}

If further treasury borrows/lends at risk free f̃ = r ⇒ ϕ = FVA = 0.
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Funding Costs of the Replication Strategy – IV

Replica: F cash & H risky asset. Cash is borrowed F > 0 from the
treasury at an interest f + (cost) or is lent F < 0 at a rate f− (revenue)

Risky asset position in replica is worth H. Cash needed to buy H > 0
is borrowed at interest f from treasury; in this case H can be used for
asset lending (Repo for example) at a rate h+ (revenue); etc (H < 0...)

Include default risk of funder and funded ψ, leading to CVAF & DVAF .

f + & f− policy driven and related to λI , λC , more in a minute.

IMPORTANT: FVA coming from f + & f− is largely offset by ψ terms
valuation as we will see.

(c) 2010-15 D. Brigo (www.damianobrigo.it) Nonlinear Valuation and XVA Univ. Catholique de Louvain 359 / 513



PART IV. Including FUNDING COSTS: FVA, FCA & FBA Valuation under Funding Costs

A Trader’s explanation of the funding cash flows I

We now show how the adjusted cash flows originate assuming we buy
a call option on an equity asset ST with strike K .

We analyze the operations a trader would enact with the treasury and
the repo market in order to fund the trade, and we map these
operations to the related cash flows.

We go through the following steps in each small interval [t , t + dt ],
seen from the point of view of the trader/investor buying the option.
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A Trader’s explanation of the funding cash flows II
Time t :

1 I wish to buy a call option with maturity T whose current price is
Vt = V (t ,St ). I need Vt cash to do that. So I borrow Vt cash from
my bank treasury and buy the call.

2 I receive the collateral Ct for the call, that I give to the treasury.
3 Now I wish to hedge the call option I bought. To do this, I plan to

repo-borrow ∆t = ∂SVt stock on the repo-market.
4 To do this, I borrow Ht = ∆tSt cash at time t from the treasury.
5 I repo-borrow an amount ∆t of stock, posting cash Ht guarantee.
6 I sell the stock I just obtained from the repo to the market, getting

back the price Ht in cash.
7 I give Ht back to treasury.
8 Outstanding: I hold the Call; My debt to the treasury is Vt − Ct ;

I am Repo borrowing ∆t stock.
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A Trader’s explanation of the funding cash flows III

Time t + dt :
9 I need to close the repo. To do that I need to give back ∆t stock. I

need to buy this stock from the market. To do that I need ∆tSt+dt
cash.

10 I thus borrow ∆tSt+dt cash from the bank treasury.
11 I buy ∆t stock and I give it back to close the repo and I get back

the cash Ht deposited at time t plus interest htHt .
12 I give back to the treasury the cash Ht I just obtained, so that the

net value of the repo operation has been

Ht (1 + ht dt)−∆tSt+dt = −∆t dSt + htHt dt

Notice that this −∆tdSt is the right amount I needed to hedge V in
a classic delta hedging setting.
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A Trader’s explanation of the funding cash flows IV

13 I close the derivative position, the call option, and get Vt+dt cash.
14 I have to pay back the collateral plus interest, so I ask the treasury

the amount Ct (1 + ct dt) that I give back to the counterparty.
15 My outstanding debt plus interest (at rate f ) to the treasury is

Vt −Ct + Ct (1 + ct dt) + (Vt −Ct )ft dt = Vt (1 + ft dt) + Ct (ct − ft dt).
I then give to the treasury the cash Vt+dt I just obtained, the net
effect being

Vt+dt − Vt (1 + ft dt)− Ct (ct − ft ) dt = dVt − ftVt dt − Ct (ct − ft ) dt

16 I now have that the total amount of flows is :

−∆t dSt + htHt dt + dVt − ftVt dt − Ct (ct − ft ) dt
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A Trader’s explanation of the funding cash flows V
17 Now I present–value the above flows in t in a risk neutral setting.

Et [−∆t dSt + htHt dt + dVt − ftVt dt − Ct (ct − ft ) dt ] =

= −∆t (rt − ht )St dt + (rt − ft )Vt dt − Ct (ct − ft ) dt − dϕ(t)

= −Ht (rt − ht ) dt + (rt − ft )(Ht + Ft + Ct ) dt −Ct (ct − ft ) dt − dϕ(t)

= (ht − ft )Ht dt + (rt − ft )Ft dt + (rt − ct )Ct dt − dϕ(t)

This derivation holds assuming that Et [dSt ] = rtSt dt and
Et [dVt ] = rtVt dt − dϕ(t), where dϕ is a dividend of V in [t , t + dt)
expressing the funding costs. Setting the above expression to
zero we obtain

dϕ(t) = (ht − ft )Ht dt + (rt − ft )Ft dt + (rt − ct )Ct dt

which coincides with the definition given earlier.
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Default flows ψ for the Funding part I

V̄t := Et [ Π(t ,T ∧ τ) ] + Et
[
γ(t ,T ∧ τ ; C) + 1{τ<T}D(t , τ)θτ (C, ε)

]
+ Et [ϕ(t ,T ∧ τ ; F ,H) ] + Et [ψ(t , τF , τ,T ) ]

When our bank treasury is borrowing in the market from bank F, F
charges our bank a CVA due to our credit risk. Seen from our bank,
this charge is a DVAF (“treasury DVA”, as opposed to our earlier
“trading DVA”) that makes the loan more expensive.

This means that if we fix the final notional, we will be able to borrow
less than if we were default free. If we fix the amount borrowed now,
we will have to repay more at the end. Overall the loan will be more
expensive because of our bank credit risk. This is a cost.

Similarly, when our bank treasury lends externally, it measures a CVAF
(treasury CVA, as opposed to the trading CVA) on the loan due to the
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Default flows ψ for the Funding part II

possibility that the borrower defaults. Loan is more remunerative due to
upfront CVAF charged to external Borrower (External Funder Benefit).

IMPORTANT
We are adding the ψ treasury DVA-CVA term to our Equation but the
Eq terms would ideally sit in different parts of the bank.

The value of the ψ part is with the treasury,
while the other parts are with the trading desk.
We will shortly see the different ways the treasury may pass the
cost/benefits in ψ to the desk
This is controlled with the rates f + and f− in the funding
cost-benefit term ϕ through suitable credit spreads

(c) 2010-15 D. Brigo (www.damianobrigo.it) Nonlinear Valuation and XVA Univ. Catholique de Louvain 367 / 513



PART IV. Including FUNDING COSTS: FVA, FCA & FBA Valuation under Funding Costs

Default flows ψ for the Funding part III

In the following couple of slides we assume f̃ = h̃ for simplicity, or
H = 0 (perfectly collateralized risky hedge with collateral included in
rehypothecation), since in this case external borrowing/lending
reduces to F .
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External Funder Benefit (EFB, blue arrow)
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PART IV. Including FUNDING COSTS: FVA, FCA & FBA Valuation under Funding Costs

Default flows ψ for the Funding part I

Total value of claim includes cash flows from debit and credit risk in the
funding strategy that are seen by the treasury:

ψEFB(t , τF , τ,T ) = D(t , τ)1{τ=τI<T}LGDI(Fτ )+

−D(t , τF )1{τ∧τF =τF<T}LGDF (−FτF )+

The first term on the right hand side is the funding DVA cash flow
(leading to what is called occasionally DVA2 or FDA, “Funding Debit
Adjustment”). We will call the value of this cash flow DVAF . This is
triggered when our treasury is borrowing and defaults first, causing a
loss to the external lender.

The second term on the right hand side is the funding credit valuation
adjustment cash flow, that is triggered when our treasury is lending
externally and the borrower defaults first. The value of this cash flow is
called -CVAF . There is a possibly different definition for ψ:
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Reduced Borrowing Benefit (RBB).
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Default flows ψ for the Funding part I

If the treasury considers the desk as net borrowing, the lending of
(−F )+ will be considered not as a loan but as a reduction in borrowing.

In this sense there will be no CVAF term now, since no lending is
considered by the treasury.

In this case the cash flows of the credit adjustment for the funding part
consist only of the debit adjustment part and are called Reduced
Borrowing Benefit:

ψRBB(t , τF , τ,T ) = D(t , τ)1{τ=τI<T}LGDI(Fτ )+

The two cases of External Funder Benefit (EFB) and Reduced
Borrowing Benefit (RBB) will be discussed shortly also in connection
with interest rates f̃ .
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(∗) V̄t = Et
[

Π(t ,T ∧ τ) + γ(t) + 1{τ<T}D(t , τ)θτ + ϕ(t) + ψ(t , τF , τ)
]

Can we interpret:
Et
[

Π(t ,T ∧ τ) + 1{τ<T}D(t , τ)θτ (C, ε)
]

: RiskFree Price + DVA - CVA?
Et [ γ(t ,T ∧ τ) + ϕ(t ,T ∧ τ ; F ,H) ] : Funding adjustment LVA+FVA?

Et [ψ(t , τF , τ,T ) ] : Treasury CVAF and DVAF

Not really. This is not a decomposition. It is an equation. In fact since

V̄t = Ft + Ht + Ct (re–hypo)

we see that the ϕ present value term depends (via f̃ ) on future
Ft + Ht = V̄t−Ct and generally the closeouts θ ψ, via ε,F and C,
depend on future V̄ too. All terms feed each other and there is no neat
separation of risks. Recursive pricing: Nonlinear PDE’s / BSDEs for V̄
”FinalV = RiskFreeV (+ DVA?) - CVA + FVA” not possible...
... in theory. Approx and linearization in practice.
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Funding incusive valuation equations I

We now substitute in (*) for V̄ all the earlier expressions for the
terms Π, γ, θ, ϕ and ψ.
We use the notation (in the sense of distributions, so πt may
contain dirac deltas in general for example)

πt dt = Π(t , t + dt).

Substituting we obtain

V̄t =

∫ T

t
E
{

D(t ,u)

[
1τ>u(πu + (ru − c̃u)Cu)du + θu1τ∈du + EQFund0

+1τ>u((ru − f̃u)(Fu + Hu) + (h̃u − ru)Hu)du

+1{τ>u,τI∈du}LGDI(Fu)+ − 1{τ>u,τF∈du}LGDF (−Fu)+

]
|Gt

}
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Funding incusive valuation equations II

Switch to filtration F , assume conditional independence of τ ’s
(independent ξ’s) and Π(t ,u) to be Fu measurable (immersion)

V̄t =

∫ T

t
E{D(t ,u; r + λ)[πu + (ru − c̃u)Cu + λuθu + EQFund1

+(ru−f̃u)(Fu+Hu)+(h̃u−ru)Hu+λI
uLGDI(Fu)+−λF

u LGDF (−Fu)+]|Ft}du

Set Z u = λI
uLGDI(Fu)+ − λF

u LGDF (−Fu)+, the Treasury DVA-CVA
term, and subtract ε = V̄ , assuming replacement closeout, from θ,
so as to isolate the Trading CVA and DVA terms. Use V=F+H+C

V̄t =

∫ T

t
E{D(t ,u; r +λ)[πu+λu(θu−V̄u)+(f̃u−c̃u)Cu+ EQFund2

+(ru − f̃u + λu)V̄u + (h̃u − ru)Hu + Zu]|Ft}du
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Funding incusive valuation equations III

Use Feynman Kac: we know that

V̄t = Et

[∫ T

t
D(t ,u;µ)[αu + βuV̄u]du

]
= Et

[∫ T

t
D(t ,u;µ− β)αudu

]

Then from EQFund2 we have, absorbing λV in the discount:

V̄t =

∫ T

t
E{D(t ,u; r)[πu +λu(θu− V̄u) + (f̃u− c̃u)Cu + EQFund3

+(ru − f̃u)V̄u + (h̃u − ru)Hu + Zu]|Ft}du
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Funding incusive valuation equations IV

or alternatively, absorbing the whole (r − f + λ)V

V̄t =

∫ T

t
E{D(t ,u; f̃ )[πu +λu(θu − V̄u) + (f̃u − c̃u)Cu + EQFund4

+(h̃u − ru)Hu + Zu]|Ft}du

Assuming H = 0 (rolled par swaps or, better, perfectly
collateralized hedge with collateral incuded)

V̄t =

∫ T

t
E{D(t ,u; f̃ )[πu+λu(θu−V̄u)+(f̃u−c̃u)Cu+Zu]|Ft}du EQFund4’
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Funding incusive valuation equations V
If H 6= 0, assume now generalized delta hedging (in vector sense)

Hu = Su
∂V̄ (u,S)

∂S

and use Feynam Kac again:

V̄t = Er
∫ T

t
D(t ,u;µ)[αu + m(u,Su)

∂V̄
∂S

]du = Er+m
t

[∫ T

t
D(t ,u;µ)αudu

]

where in general Em is a probability measure where S grows at
rate m, ie with drift mS.
Note: these are formal steps that are not fully justified mathematically, but they
can be by using the theory of FBSDEs and semilinear PDEs. See B.,
Francischello and Pallavicini (2015) arXiv:1506.00686 or
http://ssrn.com/abstract=2613010 for a fully rigorous treatement with
proofs of existence and uniqueness of solutions.
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Funding incusive valuation equations VI
EqFund4 with delta hedging becomes ((h − r)H = (h − r)∂SV̄ )

V̄t =

∫ T

t
Eh{D(t ,u; f̃ )[πu+λu(θu−V̄u)+(f̃u−c̃u)Cu+Zu]|Ft}du EQFund5

This last equation depends only on market rates. There is no
theoretical risk free rate or risk neutral measure in this Eq.
Invariance Theorem: The pricing equation is invariant wrt the
specification of the short rate rt .
Recall: h are repo/stock lending rates for underlying risky assets,
(θu − V̄u) are trading CVA and DVA after collateralization
(f̃u − c̃u)Cu is the cost of funding collateral with the treasury
Zu is the treasury CVAF and DVAF on the funding process
NO Explicit funding term for the replica as this has been
absorbed in the discount curve and in the collateral cost
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Funding incusive valuation equations VII
The last equation can be written as a semi-linear PDE or a BSDE
As we explained, Eh is the expected value under a probability
measure where the underlying assets evolve with a drift rate
(return) of h̃. Remember that h̃ depends on H, and hence on V .
Therefore the PRICING MEASURE DEPENDS ON THE FUTURE
VALUES OF THE VERY PRICE V WE ARE COMPUTING.
NONLINEAR EXPECTATION. THE PRICING MEASURE
BECOMES DEAL DEPENDENT.
Under the assumption H = 0 we can avoid the last Feynman Kac
step and the deal dependent measure: we still price under the risk
neutral measure (≈ OIS) but the terms in EQFund4’ bear the
same description as EQFund5 we just commented.
Notice that in EQFund5 or the simpler EQFund4’ we DISCOUNT
AT FUNDING directly. Some industry parties use this version and
a funding discount curve.
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Funding incusive valuation equations VIII

Let’s take a step back. Write EqFund1-2 more in detail.

V̄t =

∫ T

t
E{D(t ,u; r + λ)[πu + λuθu + (ru − c̃u)Cu + EQFund1’

+(ru − f̃u)(V̄u − Cu) + (h̃u − ru)Hu + Zu]|Ft}du

We can see easily that (again Feynman Kac)∫ T

t
E{D(t ,u; r + λ)[πu + λuV 0

u ]}du =

∫ T

t
E{D(t ,u; r)πu} du = V 0

t

and, given θu = εu − 1{u=τC<τI}ΠCVAcoll(u) + 1{u=τI<τC}ΠDVAcoll(u),
under rehypotecation and under F it is tempting to write EQFund1’ as
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Funding incusive valuation equations IX
V̄ = RiskFreePrice - CVA + DVA + LVA + FVA -CVAF + DVAF

RiskFreePrice = V 0
t , LVA =

∫ T

t
E
{

D(t ,u; r + λ)(ru − c̃u)Cu|Ft

}
du

−CVA =

∫ T

t
E
{

D(t ,u; r + λ)
[
− LGDCλC(u)(V̄u − Cu−)+

]
|Ft

}
du

DVA =

∫ T

t
E
{

D(t ,u; r + λ)
[
LGDIλI(u)(−(V̄u − Cu−))+

]
|Ft

}
du

FVA = −
∫ T

t
E
{

D(t ,u; r + λ)

[
(f̃u − ru)(V̄u − Cu)− (h̃u − ru)Hu

]
|Ft

}
du

−CVAF =

∫ T

t
E
{

D(t ,u; r + λ)

[
LGDFλF (u)(−(V̄u − Cu − Hu))+

]
|Ft

}
du

DVAF =

∫ T

t
E
{

D(t ,u; r + λ)

[
LGDIλI(u)(V̄u − Cu − Hu)+

]
|Ft

}
du
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Funding incusive valuation equations X
If we insist in applying these equations, rather than the r -independent
EQFund5, then we need to find a proxy for r . This can be taken as the
overnight rate (OIS discounting).

Further, if we assume that Hu is zero as it is perfectly collateralized
and includes its collateral, then

FVA = −
∫ T

t
E
{

D(t ,u; r + λ)

[
(f̃u − ru)(V̄u − Cu)

]
|Ft

}
du

Notice that when we are borrowing cash F = V − C, since usually
f > r , FVA is negative and is a cost. Also LVA can be negative.
Occasionally LVA and FVA are added together in a sort of total
FVAtot = LVA + FVA.

FVAtot =

∫ T

t
E
{

D(t ,u; r + λ)

[
− (f̃u − ru)V̄u + (f̃u − c̃u)Cu

]
|Ft

}
du
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Funding incusive valuation equations XI

Define FVA = −FCA + FBA where −FCA will be a Cost, and hence
negative, while FBA will be a Benefit, hence positive.

FCA =

∫ T

t
E
{

D(t ,u; r + λ)

[
(f +

u − ru)(V̄u − Cu)+

]
|Ft

}
du

FBA =

∫ T

t
E
{

D(t ,u; r + λ)

[
(f−u − ru)(−(V̄u − Cu))+

]
|Ft

}
du

Notice the structural analogies with the expressions for CVA and DVA
respectively.
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Funding incusive valuation equations: EFB vs RBB

To further specify the equations we need to distinguish the
assumptions on external lending by the treasury, and we will deal now
separately with the two cases:

External Funder Benefit (EFB)
Reduced Borrower Benefit (RBB)
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Funding incusive valuation equations: EFB case
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Funding incusive valuation equations: EFB case

Assume that we use the EFB funding rates f̃ inclusive of credit risk, so
that (set sI,C,F = λI,C,F LGDI,C,F )
f + = r + sI + `+, f− = r + sF + `−

−FCA = −
∫ T

t
E
{

D(t ,u; r + λ)

[
(sI + `+)(V̄u − Cu)+

]
|Ft

}
du

FBA =

∫ T

t
E
{

D(t ,u; r + λ)

[
(sF + `−)(−(V̄u − Cu))+

]
|Ft

}
du

where FCA` is the part in `+, and FBA` is the part in `−. We see
−FCA =: −DVAF − FCA`, FBA =: CVAF + FBA` where CVAF and
DVAF are implicitly defined and coincide with the corresponding ψ
valuation terms for treasury C/DVA’s.
The presence of Credit Spreads in f̃ leads to components in FBA
and FCA that offset the Treasury DVAF and CVAF . Summing up:
V = V0 − CVA + LVA + DVA− FCA + FBA + DVAF − CVAF where
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PART IV. Including FUNDING COSTS: FVA, FCA & FBA V 0, CVA, DVA, LVA, FCA, FBA, CVAF , DVAF

V0 =

∫ T

t
E
{

D(t ,u; r)πu|Ft

}
du, LVA =

∫ T

t
E
{

D(t ,u; r+λ)(ru−c̃u)Cu|Ft

}
du

−FCA(= −DVAF−FCA`) = −
∫ T

t
E
{

D(t ,u; r+λ)(sI(u)+`+(t))(V̄u−Cu)+

]
|Ft

}
du

FBA(= CVAF +FBA`) =

∫ T

t
E
{

D(t ,u; r +λ)

[
(sF +`−)(−(V̄u−Cu))+

]
|Ft

}
du

−CVA =

∫ T

t
E
{

D(t ,u; r + λ)
[
− sC(V̄u − Cu−)+

]
|Ft

}
du

DVA =

∫ T

t
E
{

D(t ,u; r + λ)
[
sI(−(V̄u − Cu−))+

]
|Ft

}
du

DVAF =

∫ T

t
E
{

D(t ,u; r + λ)sI(u)(V̄u − Cu)+

]
|Ft

}
du

−CVAF = −
∫ T

t
E
{

D(t ,u; r + λ)

[
sF (−(V̄u − Cu))+

]
|Ft

}
du
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Double Counting: EFB Case

Summing up: V = V0(risk free)+

−CVA + DVA︸ ︷︷ ︸
Trading CVA DVA

Coll cost & benefit︷ ︸︸ ︷
+LVA −FCA + FBA︸ ︷︷ ︸

Replica funding cost & benefit

+

Funding CVA DVA︷ ︸︸ ︷
DVAF − CVAF

Remember also what we just found for FCA and FBA:

V = V0 − CVA + DVA + LVA −FCA︸ ︷︷ ︸
−DVAF−FCA`

+ FBA︸︷︷︸
CVAF +FBA`

+DVAF − CVAF

The blue and red terms are passed by the treasury to the desk so the
total net value for the whole bank cancels
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Double Counting: EFB Case
Keeping the full formula without simplifying

V = V0 − CVA + DVA + LVA −FCA︸ ︷︷ ︸
−DVAF−FCA`

+ FBA︸︷︷︸
CVAF +FBA`

+DVAF − CVAF

If bases ` = 0 then Funding costs are offset by the treasury CVAF
and DVAF and ”there are no funding costs” overall.
However, for the trading desk (TDesk) there is still a cost
FCA = DVAF + FCA` to be paid to Treasury. This happens via the
FVA desk if that exists, or via the CVA desk otherwise.
TDesk also sees a benefit FBA = CVAF + FBA` received from
treasury via the FVA desk if existing, or CVA desk otherwise.
Treasury pays DVAF at time 0 to Funder, charging that as a cost
FCA to Tdesk, and receives CVAF at time 0 from funder, and
passes that to the TDesk as benefit. All this via F/CVA desk
CVA desk still deals with trading CVA and DVA
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Funding incusive valuation equations: RBB case
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PART IV. Including FUNDING COSTS: FVA, FCA & FBA Funding and Credit VA’s in case of RBB policy

Funding incusive valuation equations: RBB case

We are now going to specialize the funding equations

FCA =

∫ T

t
E
{

D(t ,u; r + λ)

[
(f +

u − ru)(V̄u − Cu)+

]
|Ft

}
du

FBA =

∫ T

t
E
{

D(t ,u; r + λ)

[
(f−u − ru)(−(V̄u − Cu))+

]
|Ft

}
du

to the RBB case where

f + − r = sI + `+, f− − r = sI + `−.

We also take ψ = ψRBB (no CVAF part).
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Funding incusive valuation equations: RBB case

The FCA term remains as in the EFB case.

However, notice what happens to FBA now, in the RBB case.

FBA =

∫ T

t
E
{

D(t ,u; r+λ)

[
(sI+`

−)(−(V̄u−Cu))+

]
|Ft

}
du = DVA+FBA`

We have that FBA includes a copy of the trading DVA
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PART IV. Including FUNDING COSTS: FVA, FCA & FBA V 0, CVA, DVA, LVA, FCA, FBA=DVA, DVAF

V0 =

∫ T

t
E
{

D(t ,u; r)πu|Ft

}
du, LVA =

∫ T

t
E
{

D(t ,u; r+λ)(ru−c̃u)Cu|Ft

}
du

−FCA(= −DVAF−FCA`) = −
∫ T

t
E
{

D(t ,u; r+λ)(sI(u)+`+(t))(V̄u−Cu)+

]
|Ft

}
du

FBA(= DVA + FBA`) =

∫ T

t
E
{

D(t ,u; r + λ)

[
(sI + `−)(−(V̄u − Cu))+

]
|Ft

}
du

−CVA =

∫ T

t
E
{

D(t ,u; r + λ)
[
− sC(V̄u − Cu−)+

]
|Ft

}
du

DVA =

∫ T

t
E
{

D(t ,u; r + λ)
[
sI(−(V̄u − Cu−))+

]
|Ft

}
du

DVAF =

∫ T

t
E
{

D(t ,u; r + λ)sI(u)(V̄u − Cu)+

]
|Ft

}
du

−CVAF = 0; One of the two DVA must go.
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Funding incusive valuation equations: RBB case I

V = V0 − CVA + DVA + LVA −FCA︸ ︷︷ ︸
−DVAF−FCA`

+ FBA︸︷︷︸
DVA+FBA`

+DVAF

Now we no longer have exact offsetting terms. The DVA inside FBA
will not be offset by a CVAF . The problem is that the formula contains
two identical DVA’s.

Compare with the EFB case:

V = V0 − CVA + DVA + LVA −FCA︸ ︷︷ ︸
−DVAF−FCA`

+ FBA︸︷︷︸
CVAF +FBA`

+DVAF − CVAF
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Funding incusive valuation equations: RBB case II

When we compute the funding rate f− we use our own sI = λILGDI as a
gain spread, based on the “reduced borrowing” argument.

But receiving back interest sI as a benefit of reduced borrowing means
we are in fact computing a rolling-DVA for F as [t , t + dt) spans the
whole trading interval. Since F = V − C, we are basically computing
again the trading DVA by means of the funding rate f−.

We are thus counting our own default risk twice on the same exposure
scenario (−(V − C))+. This is why, save for the basis term `−, we
should take one of the two DVA’s out to avoid double counting.
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Funding incusive valuation equations: RBB case III

We thus have two possible choices:

1: Privilege Credit Adjustments over Funding ones

V = V0 − CVA + DVA + LVA −FCA︸ ︷︷ ︸
−DVAF−FCA`

+ FBA︸︷︷︸
��DVA+FBA`

+DVAF

Treasury is charged initially DVAF , and charges this back to TDesk as
part of FCA via FVADesk if ∃, else CVADesk.
For the reduced borrowing TDesk sees a benefit FBA`, obtained from
treasury via FVADesk as a payment reduction, and TDesk is still
charged DVA at time 0 and receives CVA at time 0 from counterparty
via CVADesk. Overall (notice that if ` = 0 there’s no funding
adjustment)

V = V0 − CVA + DVA + LVA− FCA` + FBA`.
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Funding incusive valuation equations: RBB case IV

2: Privilege Funding adjustments over the Credit ones

V = V0 − CVA +���DVA + LVA −FCA︸ ︷︷ ︸
−DVAF−FCA`

+ FBA︸︷︷︸
DVA+FBA`

+DVAF

resulting in

V = V0 − CVA + LVA− FCA` + FBA︸︷︷︸
DVA+FBA`

Now DVA is managed by the FVA Desk. Notice that if liquidity basis
` = 0 then V = V0 − CVA + LVA + FBA︸︷︷︸

DVA

and the only funding term is

the benefit term given by trading DVA
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Current best practice?

As of January 2015, the RBB formulas above with

V 0, LVA, CVA, FBA (inclusive of trading DVA), FCA and DVAF

are as close as possible to what one of the top global banks is doing.

From several conversations I believe that also other global banks are
doign something very similar.
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Adjustments go in different parts of the bank

The ψ term: treasury component of V̄

As we said earlier, we added into the V̄ cash flows ψ, the treasury
DVA-CVA term, leading to CVAF and DVAF in EFB or to 2 DVA in RBB.
However, in reality the Eq terms sit in different parts of the bank.

The value of the ψ part is with the treasury,
while the other parts are with the trading desk.
We have seen two different ways the treasury may pass the
cost/benefits in ψ to the desk (EBF and RBB) but the desk is still
charged, so the term ψ is often omitted when doing valuation from
the desk
and the ψ terms stay with the treasury
Hence the trading desk applies the above formulas but without
adding the ψ terms valuation
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Funding valuation: Black Scholes (only funding) I

To get a feel for how all this translates into the familiar option pricing
framework of Black Scholes we start with pricing a CALL option in the
standard Black Scholes model under funding costs.

Equity Call (ST − K )+, underlying S, maurity T , strike K .
dSt = rStdt + σStdWt under Q.
r = 0.01 = 100 bps, σ = 0.25 = 25%, S0 = 100, K = 80, T = 3y
Classic price (no credit / collateral / funding) V 0

0 = 28.9

V 0
t = St Φ(d1(t))−Ke−r(T−t)Φ(d2(t)), d1,2 =

ln St
K + (r ± σ2/2)(T − t)

σ
√

T − t
.

We first look at the case without default and collateralization (so only
funding). We compare full Monte Carlo to four simplified approaches.
f + = f− = f̂ and sf = f̂ − r funding spread. We assume h = f (so the
H term in ϕ goes to zero) and there is no repo rate effect on funding.
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Funding valuation: Black Scholes (only funding) II

(i) f discounting of the risk-free Black-Scholes (hat means f + = f−)

V (i)
t = e−f̂ T

(
St Φ(d1(t))− Ke−r(T−t)Φ(d2(t))

)
(ii) Black-Scholes with drift h = f and discount f :

V (ii)
t = St Φ(g1(t))−Ke−f̂ (T−t)Φ(g2(t)), g1,2 =

ln(St/K ) + (f̂ ± σ2/2)(T − t)
σ
√

T − t

(iii) FVA approximated formula keeping in mind
Ft = −Ke−r(T−t)Φ(d2(t)):

FVA(iii)
0 = (r−f̂ )

∫ T

0
E0

{
e−rs[Fs]

}
ds = (f̂−r)Ke−rT

∫ T

0
E0

{
Φ(d2(s))

}
ds

FVA(i,ii) = V (i,ii) − V 0.
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Funding valuation: Black Scholes (only funding) III
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Funding valuation: Black Scholes I

We now include credit & collateral. We consider a discrete probability
distribution of default. Both“I” and “C” can only default at year 1 or year
2. The localized joint default probabilities are in the D matrix.

The rows denote τ I values and columns denote τC . For example, in D
the event (τI = 2yr , τC = 1yr) has a 3% probability

Simultaneous defaults are introduced and we determine the close-out
entity by a random draw from a standard uniform distribution wrt 0.5.

D =


1yr 2yr n.d .

1yr 0.01 0.01 0.03
2yr 0.03 0.01 0.05
n.d . 0.07 0.09 0.70

 , τK (D) = 0.21 (24)

where n.d . means no default and τK denotes the rank correlation as
measured by Kendall’s tau.
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Funding valuation: Black Scholes II
Note also that the distributions are skewed in the sense that the
counterparty has a higher default probability than the investor.

The loss given default is 50% for both the investor and the counterparty
and the loss on any posted collateral is considered the same.

The collateral rates c̃ are chosen to be equal to r so LVA= 0.

We assume that the collateral account is equal to the risk-free price at
each margin date, Ct = V 0

t . This is reasonable as the dealer and client
will be able to agree on this price. Also, choosing the collateral this
way has the added advantage that the collateral account C works as a
control variate, reducing the variance of the least-squares Monte Carlo
estimator of the deal price.

CVA (V − C)+ & DVA (−(V − C))+ are small due to collateral but they
can make V higher or lower than V 0 & trigger costs.
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Funding valuation: Black Scholes & re-hypothec I

Finally, assuming cash collateral, we consider rehypothecation & allow
parties to use collateral as a funding source.

If the collateral is posted to the investor, this means it effectively
reduces his costs of funding the delta-hedging strategy. As the payoff
of the call is one-sided, the investor only receives collateral when he
holds a long position in the call option. But as he hedges this position
by short-selling the underlying stock and lending the excess cash
proceeds, the collateral adds to his cash lending position and
increases the funding benefit of the deal.

Analogously, if the investor has a short position, he posts collateral to
the counterparty and a higher borrowing rate would increase his costs
of funding the collateral he has to post as well as his delta-hedge.

The following Table reports the results for the short and long positions
in the call option when rehypothecation is allowed.
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PART IV. Including FUNDING COSTS: FVA, FCA & FBA Nonlinear effects: PDEs and BSDEs

Nonlinear valuation: Black Scholes I
More generally, go back to the r -indepdendent formula EQFund5.

V̄t =

∫ T

t
Eh{D(t ,u; f̃ )[πu+λu(θu−V̄u)+(f̃u−c̃u)Cu+Zu]|Ft}du EQFund5

Write this last eq as a BSDEs by completing the martingale term.
Add and subtract

∫ t
0 , then notice that one term becomes

∫ T
0 and

its Et is a martingale Mt . Use the martingale representation
theorem (see B. and Pallavicini [36], JFE 1, pp 1-60 for details).

dV̄t − [f̃t V̄t + (f̃t − c̃t )Ct +πt +λt (θ(Ct , V̄t )− V̄t )− (r − h̃)Ht + Zt ]dt = dMt ,

V̄t = Ht + Ft + Ct , εt = V̄t (replacement closeout), V̄T = 0.

Recall that f̃ depends on V̄ nonlinearly, and so does c̃ on C and h̃
on H. M is a martingale under the pre-default filtration.
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PART IV. Including FUNDING COSTS: FVA, FCA & FBA Nonlinear effects: PDEs and BSDEs

Nonlinear valuation: Black Scholes II

Assume a Markovian vector of underlying assets S (pre- credit
and funding) with diffusive generator Lr ,σ under Q. Let this be
associated with brownian W under Q.

dS = rSdt + σ(t ,S)SdWt , Lr ,σu(t ,S) = rS∂Su +
1
2
σ(t ,S)2S2∂2

Su

Use Ito’s formula on V̄ (t ,S) and match dt (and dW ) terms from
BSDE: obtain PDE (& explicit representation for BSDE term
ZdW ). Details are given in the Pallavicini Perini and B. (2011,
2012) reports.
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PART IV. Including FUNDING COSTS: FVA, FCA & FBA Nonlinear effects: PDEs and BSDEs

Nonlinear valuation: Black Scholes III

This leads to the following PDE with terminal condition V̄T = 0.

(∂t−f̃t−λt +Lr ,σ)V̄t +(f̃t−c̃t )Ct +πt +λtθ(Ct , V̄t )−(r−h̃)Ht +Zt = 0 [NPDE1]

V̄t = Ht + Ft + Ct , εt = V̄t (replacement closeout)

Alternatively, the funding/credit risk free price can be used for closeout
(risk free closeout), simplifying calculations.
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PART IV. Including FUNDING COSTS: FVA, FCA & FBA Nonlinear effects: PDEs and BSDEs

Nonlinear valuation: Black Scholes IV
The above PDE can be simplified further by assuming Delta Hedging:

Ht = St
∂V̄t

∂S
(delta hedging), leading to

(∂t− f̃t−λt +Lh̃,σ)V̄t +(f̃t−c̃t )Ct +πt +λtθ(Ct , V̄t )+Zt (Ft ) = 0, [NPDE2]

This PDE is NON-LINEAR not only because of θ, but also because f̃
depends on F , and h̃ on H, and hence both on V̄ itself.

IMPORTANT: Again invariance theorem.
PDE DOES NOT DEPEND ON r .
This is good, since r is a theoretical rate that does not correspond to
any market observable.

IMPORTANT: If valuing from the trading desk point of view, we should
take out the Z term (treasury CVAF and DVAF ).
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PART IV. Including FUNDING COSTS: FVA, FCA & FBA Nonlinear effects: PDEs and BSDEs

Nonlinear valuation: Black Scholes V

We now try to bring this PDE closer to the classical Black Scholes
PDE. Assume collateral is a variable fraction αt > 0 of mark to market,
with αt being Ft adapted, typically non-negative and smaller than one.
Recall that we assume h̃ = f̃ and

f̃t = f+1F≥0+f−1F≤0, c̃t = c+1V̄t≥0+c−1V̄t≤0, f+,− and c+,− constants.

∂tV−(f+−sI)(V−St∂SVt−αV )++(f−−sF )(−V +St∂SVt +αV )+−λtV +

+
1
2
σ2S2∂2

SV − c+αt (Vt )
+ + c−αt (−Vt )

+ + πt + λtθt (Vt ) = 0

NONLINEAR PDE (SEMILINEAR).
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PART IV. Including FUNDING COSTS: FVA, FCA & FBA Nonlinear effects: PDEs and BSDEs

Nonlinear valuation: Black Scholes VI

∂tV−(f+−sI)(V−St∂SVt−αV )++(f−−sF )(−V +St∂SVt +αV )+−λtV +

+
1
2
σ2S2∂2

SV − c+αt (Vt )
+ + c−αt (−Vt )

+ + πt + λtθt (Vt ) = 0

λ is the first to default intensity, π is the ongoing dividend cash flow
process of the payout, θ are the complex optional contractual cash
flows at default including CVA and DVA payouts after collateral. c+ and
c− are the borrowing and lending rates for collateral, sI,F = λI,F LGDI,F ,
spread of investment bank & funder from Z (treasury CVA and DVA).

We can use Lipschitz coefficients results to investigate ∃! of viscosity
solutions. Classical soultions may also be found but require much
stronger assumptions and regularizations.

None of this is much applicable in practical situations.
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PART IV. Including FUNDING COSTS: FVA, FCA & FBA Black Scholes benchmark case

The Black Scholes Benchmark Case I

∂tV−(f+−sI)(V−St∂SVt−αV )++(f−−sF )(−V +St∂SVt +αV )+−λtV +

+
1
2
σ2S2∂2

SV − c+αt (Vt )
+ + c−αt (−Vt )

+ + πt + λtθt (Vt ) = 0

Notice that
if f+ = f− = r (symmetric risk free borrowing and lending),
α = 0 (no collateral),
λ = 0 (no credit risk),

then we get back the Black Scholes LINEAR (parabolic) PDE.

∂tV + rSt∂SVt +
1
2
σ2S2∂2

SV − rV + π = 0.
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PART IV. Including FUNDING COSTS: FVA, FCA & FBA Funding costs, aggregation and nonlinearities

In Theory: Nonlinearities due to funding I

So what is the THEORY telling us?
We know that NONLINEAR PDEs cannot be solved as Feynman Kac
expectations.

Backward Stochastic Differential Equations (BSDEs)
For NPDEs, the correct translation in stochastic terms are BSDEs. The
equations have a recursive nature and simulation is quite complicated.
Or we keep the PDE.
BSDEs due to asymmetric rates had been briefly introduced in El
Karoui, Peng and Quenez (1997). We added credit gap risk &
collateral processes, adding more nonlinearity into the picture.
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PART IV. Including FUNDING COSTS: FVA, FCA & FBA Funding costs, aggregation and nonlinearities

In Theory: Nonlinearities due to funding II

Aggregation–dependent and asymmetric valuation
Worse, the valuation of a portfolio is aggregation dependent and is
different for the two parties in a deal. In the classical pricing theory a la
Black Scholes, if we have 2 or more derivatives in a portfolio we can
price each separately and then add up. Not so with funding and
replacement closeout at default. Moreover, without funding the price to
one entity is minus the price to the other one. This is no longer true.

Aggregation levels decided a priori and somewhat arbitrarily.
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PART IV. Including FUNDING COSTS: FVA, FCA & FBA Funding costs, aggregation and nonlinearities

In Theory: Nonlinearities due to funding III

Consistent global modeling across asset classes and risks

Once the level of aggregation is set, the funding valuation problem is
non–separable. An holistic approach is needed and consistent
modeling across trading desks and asset classes is needed. Internal
competition in banks does not favour this.

Furthermore, the classical transaction-independent arbitrage free price
is lost, now the price depends on the specific entities trading the
product and on their policies (λ, f , `). Recall Eh and PDE coefficients
depending on V̄ nonlinearly.
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PART IV. Including FUNDING COSTS: FVA, FCA & FBA Funding costs, aggregation and nonlinearities

In Theory: Nonlinearities due to funding IV

The end of Platonic pricing?
There is no Platonic measure Q in the sky to price all derivatives with
an expectation where all assets have the risk free return r .
Now the pricing measure is product dependent, and every trade will
have a specific measure. This is an implication of the PDE
non-linearity.

When basic financial sense leads to complex mathematics
Notice that, in theory, adherence to real banking policies does not
make the problem ”boring, purely accounting–like and trivial”. Rather,
valuation becomes aggregation dependent and holistic. We need
BSDEs rather than expected values, or nonlinear PDEs rather than
linear ones.
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PART IV. Including FUNDING COSTS: FVA, FCA & FBA Funding costs, aggregation and nonlinearities

In Theory: Nonlinearities due to funding V

This would open many problems of operational efficiency and
efficiency of implementation.

However, in practice things are implemented quite differently, as we’ll
see in a minute...

Before looking at that, now that we have seen how to compute funding
costs, a fundamental question.
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PART IV. Including FUNDING COSTS: FVA, FCA & FBA Funding costs, aggregation and nonlinearities

Price of Value?

Why should the client pay for our funding policy choices?

Again recall entity specific (λ, f , `), Eh and PDE coefficients depending
on V̄ .

Each entity computes a different funding adjusted price for the same
product

and “prices” change with aggregation.

The funding adjusted ”price” is not a price in the conventional sense.
We may use it for cost/profitability analysis or to pay our treasury, but
can we charge it to a client?

Can the client charge us too as she has funding costs?
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PART IV. Including FUNDING COSTS: FVA, FCA & FBA Funding costs, aggregation and nonlinearities

Price of Value?

Accessibility of valuation parameters
How can the client check our price is fair if she has no access to our
funding policy (less transparent than credit standing) and vice versa?

It is more a ”value” than a ”price”.

Provocative question. Why do not we charge an Electricity Bill
Valuation Adjustment (EBVA)?
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PART IV. Including FUNDING COSTS: FVA, FCA & FBA Funding costs, aggregation and nonlinearities

Should funding costs be zero?

In a number of papers, Hull and White argued that there should be no
funding costs.

They invoked the Modigliani Miller theorem. A folk version of the
theorem is this:

“If market price processes follow random walks, and there are no
taxes,
bankruptcy costs,
agency costs,
asymmetric information

and if the market is efficient then the value of a firm does not depend
on how the firm is financed.
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PART IV. Including FUNDING COSTS: FVA, FCA & FBA Funding costs, aggregation and nonlinearities

Should funding costs be zero?

However the above assumptions do not hold in practice.

The very presence of liquidity bases ` violates the assumptions.

However we saw in the above calculations that if ` = 0 then there are
indeed no funding costs. For example, in the EFB framework

V = V0 − CVA + DVA + LVA −FCA︸ ︷︷ ︸
−DVAF−FCA`

+ FBA︸︷︷︸
CVAF +FBA`

+DVAF − CVAF

we see that if ` = 0 and c̃ = r we end up with

V = V0 − CVA + DVA

and there are no funding costs indeed.
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PART IV. Including FUNDING COSTS: FVA, FCA & FBA Funding costs, aggregation and nonlinearities

Should funding costs be zero?

So it is a matter of qualifying the assumptions in the Modigliani Miller
theorem.

Market imperfections such as the bases `, among others, may make
the theorem not valid and hence funding costs become relevant.

We now go back to the implications of nonlinearities of aggregation
dependent values and nonlinear valuation. We analyzed the
theoretical implications. But are banks taking those into account?
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PART IV. Including FUNDING COSTS: FVA, FCA & FBA Funding costs, aggregation and nonlinearities

Nonlinearities in theory. What about practice?

... in practical implementation, in many cases one forces symmetries
and linearization so as to go back to a linear setting and have either
funding included as simple discounting or a linear pricing problem.
This is not accurate in general but allows the quick calculation of a
funding valuation adjustment (FVA).

In our earlier formulas for the Reduced Borrowing Benefit (RBB) case:
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PART IV. Including FUNDING COSTS: FVA, FCA & FBA Funding costs, aggregation and nonlinearities

V0 =

∫ T

t
E
{

D(t ,u; r)πu|Ft

}
du, LVA =

∫ T

t
E
{

D(t ,u; r+λ)(ru−c̃u)Cu|Ft

}
du

−FCA(= −DVAF−FCA`) = −
∫ T

t
E
{

D(t ,u; r+λ)(sI(u)+`+(t))(V̄u−Cu)+

]
|Ft

}
du

FBA(= DVA + FBA`) =

∫ T

t
E
{

D(t ,u; r + λ)

[
(sI + `−)(−(V̄u − Cu))+

]
|Ft

}
du

−CVA =

∫ T

t
E
{

D(t ,u; r + λ)
[
− sC(V̄u − Cu−)+

]
|Ft

}
du

DVA =

∫ T

t
E
{

D(t ,u; r + λ)
[
sI(−(V̄u − Cu−))+

]
|Ft

}
du

DVAF =

∫ T

t
E
{

D(t ,u; r + λ)sI(u)(V̄u − Cu)+

]
|Ft

}
du

−CVAF = 0; One of the two DVA must go.
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PART IV. Including FUNDING COSTS: FVA, FCA & FBA Nonlinearity Valuation Adjustment

In Theory: Nonlinearities due to funding

Here if we assume `+ ≈ `−, and closeout term is the risk free price
V 0(τ) rather than the replacement value V̄ (τ), then the problem
becomes linear and is much more manageable. In practice everyone
assumes this and applies a posteriori corrections if needed.

NVA
In the recent paper http://ssrn.com/abstract=2430696 we
introduce a Nonlinearity Valuation Adjustment (NVA), which analyzes
the double counting involved in forcing linearization. Our numerical
examples for simple call options show that NVA can easily reach 2 or
3% of the deal value even in relatively standard settings.

Equity call option (long or short), r = 0.01, σ = 0.25, S0 = 100,
K = 80, T = 3y , V0 = 28.9 (no credit risk or funding/collateral costs).
Precise credit curves are given in the paper. No ψ (value for Desk)

NVA = V̄0(nonlinear)− V̄0(linearized)
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PART IV. Including FUNDING COSTS: FVA, FCA & FBA Nonlinearity Valuation Adjustment

NVA

Table: NVA with default risk and collateralization

Default risk, lowa Default risk, highb

Funding Rates bps Long Short Long Short

f + f− f̂
300 100 200 -3.27 (11.9%) -3.60 (10.5%) -3.16 (11.4%) -3.50 (10.1%)
100 300 200 3.63 (10.6%) 3.25 (11.8%) 3.52 (10.2%) 3.13 (11.3%)

The percentage of the total call price corresponding to NVA is reported in parentheses.
a Based on the joint default distribution Dlow with low dependence.
b Based on the joint default distribution Dhigh with high dependence.
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PART IV. Including FUNDING COSTS: FVA, FCA & FBA Nonlinearity Valuation Adjustment

NVA

Table: NVA with default risk, collateralization and rehypothecation

Default risk, lowa Default risk, highb

Funding Rates bps Long Short Long Short

f + f− f̂
300 100 200 -4.02 (14.7%) -4.45 (12.4%) -3.91 (14.0%) -4.35 (12.0%)
100 300 200 4.50 (12.5%) 4.03 (14.7%) 4.40 (12.2%) 3.92 (14.0%)

The percentage of the total call price corresponding to NVA is reported in parentheses.
a Based on the joint default distribution Dlow with low dependence.
b Based on the joint default distribution Dhigh with high dependence.
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PART IV. Including FUNDING COSTS: FVA, FCA & FBA Nonlinearity Valuation Adjustment

NVA for long call as a function of f + − f−, with f− = 1%, f + increasing over
1% and f̂ increasing accordingly. NVA expressed as an additive price
component on a notional of 100, risk free option price 29. Risk free closeout.
For example, f +−f− = 25bps results in NVA=-0.5 circa, 50 bps⇒ NVA = -1
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PART IV. Including FUNDING COSTS: FVA, FCA & FBA Nonlinearity Valuation Adjustment

NVA for long call as a function of f + − f−, with f− = 1%, f + increasing over
1% and f̂ increasing accordingly. NVA expressed as a percentage (in bps) of
the linearized f̂ price. For example, f + − f− = 25bps results in NVA=-100bps
= -1% circa, replacement closeout relevant (red/blue) for large f + − f−
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PART IV. Including FUNDING COSTS: FVA, FCA & FBA Capital Valuation Adjustment: KVA?

The Role of Capital and Kapital Valuation Adjustment

The industry is now dealing with the role of capital in pricing derivative
contracts and the related Kapital Valuation Adjustment (KVA). There
are mainly two ways in which capital affects trading

Capital can be used as a source of funding (then related to FVA)
How much capital is used?
Capital requirements as proxy? (P vs Q modeling)
Does it really matter? (Modigliani Miller strikes again)

Capital requirements as a limit for the amount of possible trades
per unit of capital

Treasury penalizes capital-expensive deals with ad-hoc funding
policies and charges to trading desks, then passed to clients?
Target Return On Investment? Utility (??) based approach?

Problems: (i) Capital not traded asset, can’t be inserted in the
replica. Even more dubious than for D/FVA.
(ii) KVA should consider capital requirements on CVA VaR (Basel
III). A Valuation adjustment built on another one. Adding up?
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PART IV. Including FUNDING COSTS: FVA, FCA & FBA Capital Valuation Adjustment: KVA?

The Role of Capital and Kapital Valuation Adjustment

KVA should be investigated and managed differently than other
valuation adjustments, given its link with a non-tradable entity like
capital.

Most authors (in the industry) treat KVA as a tradable quantity and
compute it with a replication approach. We have seen how dubious
this is for C/D/FVA. For KVA it becomes almost impossible to believe.

If there has to be an explicit KVA charge, this appears to be very
different in nature wrt other VA’s, and the idea of simply adding it up to
C/D/FVA’s is debatable to say the least.

A lot of fundamental work remains to be done in this respect.
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PART V: MULTIPLE INTEREST RATE CURVES

Multiple Interest Rate Curves

Derive interest rate dynamics consistently with credit, collateral and
funding costs as per the above master valuation equations.

We use our maket based (no rt ) master equation to price OIS &
find OIS equilibrium rates. Collateral fees will be relevant here,
driving forward OIS rates.
Use master equation to price also one period swaps based on
LIBOR market rates. LIBORs are market given and not modeled
from first principles from bonds etc. Forward LIBOR rates
obtained by zeroing one period swap and driven both from
primitive market LIBOR rates and by collateral fees.
We’ll model OIS rates and forward LIBOR/SWAP jointly, using a
mixed HJM/LMM setup
In the paper we look at non-perfectly collateralized deals too,
where we need to model treasury funding rates.
See http://ssrn.com/abstract=2244580
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Figure: Spread between 3 months Libor and 3 months ONIA (OIS) swaps. Plotting
t 7→ L(t , t + 3m)− LO(t , t + 3m) (proxy of credit and liquidty risk). From Economic
Synopses 2008, Number 25, FRB of St Louis



PART V: MULTIPLE INTEREST RATE CURVES Intro

Multiple Interest Rate Curves I

We now briefly introduce multiple curves and then connect them to the
above analysis of credit and funding costs and collateralization.

From summer 2007 and especially Sept-Oct 2008, market quotes of
forward LIBOR rates and zero-coupon (OIS) bonds began to violate
standard no-arbitrage relationships.

F LIBOR
t (T0,T1) 6= 1

T1 − T0

(
POIS

t (T0)

POIS
t (T1)

− 1
)

= F OIS
t (T0,T1) .

We will now derive interest rate dynamics consistently with credit,
collateral and funding costs as per the above master valuation
equations.
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PART V: MULTIPLE INTEREST RATE CURVES Pricing and Hedging on the Money Market

Collateralization and Gap Risk – I

All liquid market quotes on the money market are daily
collateralized at overnight rate et .
We assume that daily collateralization can be considered as a
perfect collateralization, and, in particular, we disregard gap risk.
−→ See B., Capponi, Pallavicini, Papatheodorou (2011) for a discussion

on the impact of partial collateralization on interest-rate derivatives.
−→ See B., Capponi and Pallavicini (2011) for gap-risk analysis for

credit derivatives.
Since we can disregard gap risk for the interest-rate derivatives,
we can assume that derivative mark-to-market is continuous in
time.
−→ A different approximation, which allows for gap risk and accounts

for Initial Margins (CCPs. Standard CSA) as well is in B. and
Pallavicini (2014).
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PART V: MULTIPLE INTEREST RATE CURVES Pricing and Hedging on the Money Market

Effective Discount Approximation – I

Hence, we can follow Pallavicini and B. (2013), to introduce a
particular form for collateral and close-out prices.

Ct
.

= αt V̄t , ετ
.

= V̄τ

where αt ≥ 0 is the collateral fraction.
We have some special cases:

1 no collateralization: αt = 0, e.g. IRS with a corporate;
2 partial collateralization: 0 < αt < 1, e.g. IRS with asymmetric CSA;
3 perfect collateralization: αt = 1, e.g. standard IRS;
4 over-collateralization: αt > 1, e.g. IRS with a CCP requiring initial

margin. This is a rough way to include initial margins. A more
realistic approach is given in B. and Pallavicini (2014).
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PART V: MULTIPLE INTEREST RATE CURVES Pricing and Hedging on the Money Market

Effective Discount Approximation – II

Recall (leaving out term Zu for Treasury CVAF and DVAF )

V̄t =

∫ T

t
Eh̃{D(t ,u; f̃ )[πu +λu(θu− V̄u) + (f̃u− c̃u)Cu]|Ft}du EQFund5

In the special case C = αV̄ this specializes to

V̄t =

∫ T

t
du Eh̃

t

[
πuD(t ,u; f̃ + ξ̃)

∣∣F ]
where (λC<I

t dt = Q(τC ∈ dt , τC < τI |τC ≥ t) etc)

ξ̃t := (1− αt )
+
(
λC<I

t LGDC1{V̄t>0} + λI<C
t LGDI1{V̄t<0}

)
− (αt − 1)+

(
λI<C

t LGDI1{V̄t>0} + λC<I
t LGDC1{V̄t<0}

)
− αt (f̃t − c̃t )
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PART V: MULTIPLE INTEREST RATE CURVES Pricing and Hedging on the Money Market

Effective Discount Approximation – III

Since the rates ξ̃, f̃ and h̃ depend on the derivative price V̄ , we
must resort in the general case to numerical simulations to
calculate the prices (nonlinearities, as discussed earlier).
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PART V: MULTIPLE INTEREST RATE CURVES Pricing and Hedging on the Money Market

Effective Discount Approximation – IV
In case of over-collateralization the second term contributing to ξ̃
come from the assumption of re-hypothecation.
−→ Thus, if re-hypothecation is forbidden the over-collateralization case

is simply: ξ̃t
.

= −αt (f̃t − c̃t ).
The discount factor appearing in the above pricing equation
depends on the hedging strategy through the choice of hedging
instruments.
−→ We imply the growth rate h̃t from market quotes, so that we obtain

different prices only if the market is segmented.
In the case of interest-rate derivatives we assume as hedging
instruments liquid instruments quoted on the money market: e.g.
OIS and IRS.
−→ All such instruments are daily collateralized at overnight rate et .
−→ We will use such (collateralized) instruments also to hedge

non-perfectly-collateralized products.

−→ In this case h̃t = et , even though we keep writing Eh̃.
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PART V: MULTIPLE INTEREST RATE CURVES Hedging Instruments and Multiple Rates definitions

Overnight and OIS Rates – I

Since we are going to price OIS under the assumption of perfect
collateralization, namely we are assuming that daily
collateralization may be viewed as done on a continuous basis, we
approximate also daily compounding in the OIS floating leg with
continuous compounding
Thus, we can price one-period OIS contracts on a generic rate K
as given by

Eh̃
t

[(
1 + xK − exp

{∫ T

T−x
du eu

})
D(t ,T ; e)

∣∣F ]
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PART V: MULTIPLE INTEREST RATE CURVES Hedging Instruments and Multiple Rates definitions

Overnight and OIS Rates – II

One-period OIS rates are implicitly defined as the rates making
the corresponding OIS contract fair, so that

Et (T , x ; e) :=
1
x

(
Pt (T − x ; e)

Pt (T ; e)
− 1
)

where is useful to introduce the collateralized zero-coupon bonds
as

Pt (T ; e) := Eh̃
t
[

D(t ,T ; e)
∣∣F ]

One-period OIS rates Et (T , x ; e), along with multi-period ones,
are actively traded on the market.
−→ We can bootstrap collateralized zero-coupon bonds from such

quotes.

(c) 2010-15 D. Brigo (www.damianobrigo.it) Nonlinear Valuation and XVA Univ. Catholique de Louvain 446 / 513



PART V: MULTIPLE INTEREST RATE CURVES Hedging Instruments and Multiple Rates definitions

LIBOR Rates – I

We introduce the (par) fix rates Ft (T , x ; e) which makes the
one-period IRS contracts fair. They are implicitly defined as

Eh̃
t
[

(xFt (T , x ; e)− xLT−x (T )) D(t ,T ; e)
∣∣F ] = 0

leading to

Ft (T , x ; e) :=
1

Pt (T ; e)
Eh̃

t
[

LT−x (T )D(t ,T ; e)
∣∣F ]

We assume that LIBOR forward rates are quoted on the market,
so that we do not derive them from non-arbitrage relationships as
in single-curve approaches. In other terms, now LT−x is a
primitive market rate.

(c) 2010-15 D. Brigo (www.damianobrigo.it) Nonlinear Valuation and XVA Univ. Catholique de Louvain 447 / 513



PART V: MULTIPLE INTEREST RATE CURVES Hedging Instruments and Multiple Rates definitions

LIBOR Rates – II

We can simplify the above expression by considering the following
Radon-Nikodym derivative

dQh̃,T ;e

dQh̃

∣∣∣∣∣
Ft

:= Eh̃
t
[

D(0,T ; e)
∣∣F ] = D(0, t ; e)Pt (T ; e)

which is a positive Qh̃-martingale.
For any payoff φT , perfectly collateralized at overnight rate, we can
switch to the collateralized T -forward (equivalent) measure Qh̃,T ;e,
and we get

Eh̃
t
[
φT D(t ,T ; e)

∣∣F ] = Pt (T ; e)Eh̃,T ;e
t

[
φT
∣∣F ]

(c) 2010-15 D. Brigo (www.damianobrigo.it) Nonlinear Valuation and XVA Univ. Catholique de Louvain 448 / 513



PART V: MULTIPLE INTEREST RATE CURVES Hedging Instruments and Multiple Rates definitions

LIBOR Rates – III

In particular, we can write the forward LIBOR rate as

Ft (T , x ; e) = Eh̃,T ;e
t

[
LT−x (T )

∣∣F ]
One-period forward rates Ft (T , x ; e), along with multi-period ones
(swap rates), are actively traded on the market.
−→ Once collateralized zero-coupon bonds are derived, we can

bootstrap forward rate curves from such quotes.
−→ See, for instance, Ametrano and Bianchetti (2009) or Pallavicini and

Tarenghi (2010) for a discussion on bootstrapping algorithms.
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PART V: MULTIPLE INTEREST RATE CURVES Multiple-Curve HJM/LMM Models

Modelling Constraints – I

Our aim is to setup a multiple-curve dynamical model starting
from:
−→ collateralized zero-coupon bonds Pt (T ; e), and
−→ collateralized forward LIBOR rates Ft (T , x ; e).

Thus, we can define collateralized zero-coupon bonds under Qh̃

as
dPt (T ; e)

Pt (T ; e)
= et dt − αt (T ) · dW h̃

t

and forward LIBOR rates under Qh̃,T ;e as

dFt (T , x ; e) = γt (T , x) · dZ h̃,T ;e
t

where Wt and Zt are correlated standard Brownian motions with
correlation matrix ρ, and the volatility processes may depend on
bonds and rates themselves.
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PART V: MULTIPLE INTEREST RATE CURVES Multiple-Curve HJM/LMM Models

Modelling Constraints – II

Starting from collateralized zero-coupon bonds we can define
instantaneous forward rates ft (T ; e) as given by

ft (T ; e) := − ∂

∂T
log Pt (T ; e)

We can derive instantaneous forward-rate dynamics by Itô lemma,
and we get under Qh̃,T ;e measure

dft (T ; e) = σ∗t (T ) · dW h̃,T ;e
t , σt (T ) :=

∂

∂T
αt (T )

Furthermore, we have et = ft (t ; e).
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PART V: MULTIPLE INTEREST RATE CURVES Multiple-Curve HJM/LMM Models

Multiple-Curve HJM Models I

Hence, we obtain the dynamical framework by Pallavicini and
Brigo (2013) under Qh̃,T ;e measure as given by

dft (T ; e) = σt (T ) · dW h̃,T ;e
t , dFt (T , x ; e) = γt (T , x) · dZ h̃,T ;e

t

This is where the multiple curve picture finally shows up:

We have LIBOR curve based forward rates Ft (T , x ; e): collateral
adjusted expectation of LIBOR market rates LT−x (T ) we take as
primitive rates from the market, driven both by LIBOR and by
collateral fees,
and we have instantaneous OIS-based forward rates ft (T ; e) driven
by collateral fees

We wish to stress an important property of the above dynamics,
namely that it does not depend on unobservable rates such as the
risk-free rate rt .
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PART V: MULTIPLE INTEREST RATE CURVES Multiple-Curve HJM/LMM Models

Multiple-Curve HJM Models II

Now the framework for multiple curves is ready and we may start
populating the specific dynamics with modeling choices. We refer
to our paper http://ssrn.com/abstract=2244580 for the
details.
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PART V: MULTIPLE INTEREST RATE CURVES Multiple curves with Non-Perfect -Collateralization

Multiple curves with Non-Perfect -Collateralization

Independently of the collateralization policy, when we trade an
interest-rate derivative contract, we can hedge interest-rate risks
by trading money-market liquid instruments (e.g. OIS, IRS).
On the money market the liquid contracts are usually
collateralized on a daily basis at overnight rate et , while, in
general, the collateral accrual rate c̃t of the deal may be different.
Thus, whatever the collateralization policy of the contract is, we
assume to implement the hedging strategy by means of
overnight collateralized contracts.
In the following we study a partially collateralized IRS
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PART V: MULTIPLE INTEREST RATE CURVES Multiple curves with Non-Perfect -Collateralization

Funding Rates and Liquidity Policies – I

When we consider non-perfectly-collateralized contracts, we must
model the Treasury funding rates f̃ .
−→ Funding rates are determined by the Treasury department

according to the Bank funding policies.
Thus, a term structure of funding rates is known, but it is far from
being unambiguously derived from market quotes.
−→ For instance, long maturities in the term structure of funding rates

are calculated by rolling over short-term funding positions, and not
by entering into a long-term funding position.

−→ The Treasury department may implement a maturity transformation
policy along with a fund transfer price (FTP) process.

It is very difficult to forecast the future strategies followed by the
Treasury.
−→ The term structure of funding rates is model-depend.
−→ The option market (e.g. contingent funding derivatives) is missing.
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PART V: MULTIPLE INTEREST RATE CURVES Multiple curves with Non-Perfect -Collateralization

Funding Rates and Liquidity Policies – II

A tempting possibility is using the LIBOR rates as a proxy of
funding rates.
−→ This choice is widespread, but problematic, since it implies that the

funding policies of the Treasury department are based on inter-bank
deposits (not to mention frauds in LIBOR published rates).

−→ After the crisis only a small part of funding comes from this source.

The main source of funding for an investment Bank is the
collateral portfolio which is mainly driven by the credit spreads of
the underlying names.
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PART V: MULTIPLE INTEREST RATE CURVES Multiple curves with Non-Perfect -Collateralization

Funding Rates and Liquidity Policies – III
Here, by following Pallavicini and Brigo (2013), we wish to select a
sensible choice for the dynamics of funding and investing rates to
perform numerical simulations.

f−t := et + w−(t) + wP(t)λP
t

and
f +
t := et + w+(t) + wP(t)λP

t + w I(t)λI
t

where the w ’s are deterministic functions of times. The w ’s are
factor weights that also help modelling dependence between f +,
f−, et and λ’s building on the initial dependence between λ’s and
e’s brownian motions.
We define also λI

t as the investor’s default intensity and λP
t as the

average default intensity of the names of the collateral portfolio.
The w ’s can be calibrated to Treasury data, since they represent
the Treasury liquidity policy.
−→ Here, we do not try to model the dynamics of liquidity policies.

(c) 2010-15 D. Brigo (www.damianobrigo.it) Nonlinear Valuation and XVA Univ. Catholique de Louvain 457 / 513



PART V: MULTIPLE INTEREST RATE CURVES Convexity Adjustments for LIBOR Rates

Convexity Adjustments for LIBOR Rates – I

As first example, we price a non-perfectly collateralized IRS,
namely

1{τ>t}Eh̃
t

[
(xK − xLT−x (T )) D(t ,T ; f̃ + ξ̃)

∣∣F ]
The above definition can be simplified by moving to Qh̃,T ;e

measure

1{τ>t}Pt (T ; e)Eh̃,T ;e
t

[
(xK − xLT−x (T )) D(t ,T ; q̃)

∣∣F ]
where we define the effective dividend rate

q̃t := f̃t + ξ̃t − et

which includes the effects of credit risk, funding, and the mismatch
in collateralization between the exotic deal and the instruments
used in its hedging strategy.
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PART V: MULTIPLE INTEREST RATE CURVES Convexity Adjustments for LIBOR Rates

Convexity Adjustments for LIBOR Rates – II
We define for τ > t the non-perfectly-collateralized (credit-risk
adjusted) zero-coupon bond as

P̄t (T ; e) := Pt (T ; e)Eh̃,T ;e
t

[
D(t ,T ; q̃)

∣∣F ]
We define for τ > t also the LIBOR non-perfectly-collateralized
(credit-risk adjusted) forward rate as

F̄t (T , x ; e) :=
Eh̃,T ;e

t

[
LT−x (T )D(t ,T ; q̃)

∣∣F ]
Eh̃,T ;e

t

[
D(t ,T ; q̃)

∣∣F ]
It is possible to check that the above rate is the par rate of the
corresponding non-perfectly-collateralized IRS contract.
Indeed, we price the non-perfectly collateralized IRS contract as

1{τ>t}P̄t (T ; e)
(
xK − xF̄t (T , x ; e)

)
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PART V: MULTIPLE INTEREST RATE CURVES Convexity Adjustments for LIBOR Rates

Convexity Adjustments for LIBOR Rates – III

Furthermore, it is possible to express F̄t (T , x ; e) in term of
Ft (T , x ; e) by means of a convexity adjustment as shown in
Pallavicini and Brigo (2013).
We can derive the result by direct calculation, and we have

F̄t (T , x ; e) = Ft (T , x ; e)(1 + γt (T , x ; e))

where γt (T , x ; e) is the partial-collateralization convexity
adjustment given by

γt (T , x ; e) :=
Covh̃,T ;e

t [ FT−x (T , x ; e),D(t ,T ; q̃) ]

Ft (T , x ; e)P̄t (T ; e)
.
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PART V: MULTIPLE INTEREST RATE CURVES Convexity Adjustments for LIBOR Rates

Convexity Adjustments for LIBOR Rates – IV

We obtain that non-perfectly-collateralized zero-coupon bonds
and forward rates depend on the price process of the contract
paying them.
−→ They have different values for different contracts.
−→ We can interpret them respectively as a per-contract

Z -spread-adjusted bonds and convexity-adjusted forward rates.

Thus, when collateralization is not perfect, we obtain that each
contract has its own curve, in line with our earlier general master
equation in presence of funding costs.

This seems to point to banks developing both ”objective” curves
for charging prices to the client, or to compute mid market prices,
and ”subjective” curves to address costs and profitability analysis.
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PART VI: CCPs, INITIAL MARGINS CCPs: Initial margins, clearing members defaults, delays...

Pricing under Initial Margins: SCSA and CCPs I

CCPs: Default of Clearing Members, Delays, Initial Margins...

Our general theory can be adapted to price under Initial Margins, both
under CCPs and SCSA.

The type of equations is slightly different but quantitative problems are
quite similar.

See B. and Pallavicini (2014) for details. See also
“Brigo, D. and A. Pallavicini (2014). Nonlinear consistent valuation of
CCP cleared or CSA bilateral trades with initial margins under credit,
funding and wrong-way risks. Journal of Financial Engineering 1 (1),
1-60.” Here we give a summary.
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PART VI: CCPs, INITIAL MARGINS CCPs: Initial margins, clearing members defaults, delays...

Pricing under Initial Margins: SCSA and CCPs II
So far all the accounts that need funding have been included within the
funding netting set defining Ft .

If additional accounts needed, for example segregated initial margins,
as with CCP or SCSA, their funding costs must be added.

Initial margins kept into a segregated account, one posted by the
investor (N I

t ≤ 0) and one by the counterparty (NC
t ≥ 0):

ϕ(t ,u) :=

∫ u

t
dv (rv − fv )Fv D(t , v)−

∫ u

t
dv (fv − hv )Hv D(t , v)(25)

+

∫ u

t
dv(f NC

v − rv )NC
v +

∫ u

t
dv(f N I

v − rv )N I
v ,

with f NC

t & f N I

t assigned by the Treasury to the initial margin accounts.
f N 6= f as initial margins not in funding netting set of the derivative.
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PART VI: CCPs, INITIAL MARGINS CCPs: Initial margins, clearing members defaults, delays...

Pricing under Initial Margins: SCSA and CCPs III

. . .+

∫ u

t
dv(f NC

v − rv )NC
v +

∫ u

t
dv(f N I

v − rv )N I
v

Assume for example f > r . The party that is posting the initial margin
has a penalty given by the cost of funding this extra collateral, while
the party which is receiving it reports a funding benefit, but only if the
contractual rules allow to invest the collatera in low-risk activity,
otherwise f = r and there are no price adjustments.

We can describe the default procedure with initial margins and delay
by assuming that at 1st default τ the surviving party enters a deal with
a cash flow ϑ, at maturity τ + δ (DELAY!).

δ 5d (CCP) or 10d (SCSA).
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PART VI: CCPs, INITIAL MARGINS CCPs: Initial margins, clearing members defaults, delays...

Pricing under Initial Margins: SCSA and CCPs IV

For a CCP cleared contract priced by the clearing member we have
N I
τ− = 0, whatever the default time, since the clearing member does

not post the initial margin.

We assume that each margining account accrues continuously at
collateral rate ct .
We may further

include funding default cloeseout and also
define the Initial Margin as a percentile of the mark to market at
time τ + δ.

This is done explicitly in the paper.

Now a few numerical examples:
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PART VI: CCPs, INITIAL MARGINS Numerical example of CCP costs

Ten-year receiver IRS traded
with a CCP.
Prices are calculated from the
point of view of the CCP client.
Mid-credit-risk for CCP clear-
ing member, high for CCP
client.
Initial margin posted at various
confidence levels q.

Prices in basis points with a notional of one Euro
Black continuous line: price inclusive of residual CVA and DVA after
margining but not funding costs
Dashed black lines represent CVA and the DVA contributions.
Red line is the price inclusive both of credit & funding costs.
Symmetric funding policy. No wrong way correlation overnight/credit.
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PART VI: CCPs, INITIAL MARGINS Numerical example of CCP costs
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PART VI: CCPs, INITIAL MARGINS Numerical example of CCP vs SCSA costs

CCP Pricing: Tables (see paper for WWR etc)

Table: Prices of a ten-year receiver IRS traded with a CCP (or bilaterally) with
a mid-risk parameter set for the clearing member (investor) and a high-risk
parameter set for the client (counterparty) for initial margin posted at various
confidence levels q. Prices are calculated from the point of view of the client
(counterparty). Symmetric funding policy. WWR correlation ρ̄ is zero. Prices
in basis points with a notional of one Euro.

Receiver, CCP, β− = β+ = 1 Receiver, Bilateral, β− = β+ = 1
q CVA DVA MVA FVA CVA DVA MVA FVA

50.0 -0.126 3.080 0.000 -0.1574 -2.1317 4.3477 0.0000 -0.0842
68.0 -0.066 1.605 -2.933 0.1251 -1.1176 2.2613 -4.1389 0.2491
90.0 -0.015 0.357 -8.037 0.5492 -0.2578 0.4997 -11.3410 0.7924
95.0 -0.007 0.154 -10.316 0.7205 -0.1149 0.2151 -14.5561 1.0250
99.0 -0.001 0.025 -14.590 1.0290 -0.0204 0.0346 -20.5869 1.4544
99.5 -0.001 0.013 -16.154 1.1402 -0.0107 0.0176 -22.7947 1.6107
99.7 -0.000 0.008 -17.233 1.2165 -0.0070 0.0114 -24.3164 1.7184
99.9 -0.000 0.004 -19.381 1.3684 -0.0035 0.0056 -27.3469 1.9326
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PART VII: CVA (FVA? XVA?) DESKS

XVA Desk?

We now move to a general discussion on the CVA/FVA (XVA?) desk
and of its role in the bank.
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PART VII: CVA (FVA? XVA?) DESKS CVA and FVA Desks: Best Practice

FVA Desk or CVA Desk, or both? XVA Desk?

First recall the role of the CVA Desk.

How do banks price and trade/hedge CVA?

The idea is to move Counterparty Risk management away from classic
asset classes trading desks by creating a specific counterparty risk
trading desk, or ”CVA desk”.

Under simplifying assumptions, this would allow ”classical” traders to
work in a counterparty risk-free world in the same way as before the
counterparty risk crisis exploded.
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PART VII: CVA (FVA? XVA?) DESKS CVA and FVA Desks: Best Practice

CVA Desks and ”Best practices”

What lead to CVA desks?
Roughly, CVA followed this historical path:

Up to 1999/2000 no CVA. Banks manage counterparty risk
through rough and static credit limits, based on exposure
measurements (related to Credit VaR: Credit Metrics 1997).
2000-2007 CVA was introduced to assess the cost of counterparty
credit risk. However, it would be charged upfront and would be
managed mostly statically, with an insurance based approach.
2007 on, banks increasingly manage CVA dynamically. Banks
become interested in CVA monitoring, in daily and even intraday
CVA calculations, in real time CVA calculations and in more
accurate CVA sensitivities, hedging and management.
CVA explodes after 7[8] financials defaults occur in one month of
2008 (Fannie Mae, Freddie Mac, Washington Mutual, Lehman,
[Merrill] and three Icelandic banks).

This contributed to the creation of CVA desks
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PART VII: CVA (FVA? XVA?) DESKS CVA and FVA Desks: Best Practice

CVA Desks and ”Best practices”

CVA desk location in a bank
Trading floor: PROS works with other trading desk, direct use of
hedge trades (especially CDS).
CONS: competition and political problems.
Treasury: PROS since it involves credit policy, collateral, good for
coordination with funding. DVA as funding benefit.
CONS: interface w/ other desks needs to be managed carefully.
Often CVA desk does systemically important operations for the
bank. Should it be part of RISK / CRO? See how Goldman CVA
desk may have saved the firm in the AIG case.a Nonprofit desk,
runs a service.
Considerable operational implications too for the bank functioning.
COO?

a
“How Goldman’s Counterparty Valuation Adjustment (CVA) Desk Saved The Firm From An AIG Blow Up”

http://www.zerohedge.com/, accessed on Dec 1, 2014
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PART VII: CVA (FVA? XVA?) DESKS CVA and FVA Desks: Best Practice

CVA Desks and ”Best practices”

CVA desk and Classical Trading desks

The CVA desk charges classical trading desks a CVA fee in order to
protect their trading activities from counterparty risk through hedging.
This may happen also with collateral/CSA in place (Gap Risk, WWR,
etc). The cost of implementing this hedge is the CVA fee the CVA desk
charges to the classical trading desk. Often the hedge is performed via
CDS trading.
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PART VII: CVA (FVA? XVA?) DESKS CVA and FVA Desks: Best Practice

CVA Desks and ”Best practices”

CVA desk in the trasury department
Charging a fee is not easy and can make a lot of P&L sensitive traders
nervous. That is one reason why some banks set the CVA desk in the
treasury for example. Being outside the trading floor can avoid some
”political” issues on P&L charges among traders.
—
Furthermore, given that the treasury often controls collateral flows and
funding policies, this would allow to coordinate CVA and FVA
calculations and charges after collateral.
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CVA Desks and ”Best practices”

How the CVA desk helps other trading desks

The CVA deska would free the classical traders from the need to:
develop advanced credit models to be coupled with classical asset
classes models (FX, equity, rates, commodities...);
know the whole netting sets trading portfolios; traders would have
to worry only about their specific deals and asset classes, as the
CVA desk takes care of ”options on whole portfolios” embedded in
counterparty risk pricing and hedging;
Hedge counterparty credit risk, which is very complicated.

aSee for example ”CVA Desk in the Bank Implementation”, Global Market
Solutions white paper
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CVA Desks and ”Best practices”

The CVA desk task looks quite difficult
The CVA desk has little/no control on inflowing trades, and has to:

quote quickly to classical trading desks a ”incremental CVA” for
specific deals, mostly for pre-deal analysis with the client;
For every classical trade that is done, the CVA desk needs to
integrate the position into the existing netting sets and in the
global CVA analysis in real time;
related to pre-deal analysis, after the trade execution CVA desk
needs to allocate CVA results for each trade (”marginal CVA”)
Manage the global CVA, and this is the core task: Hedge
counterparty credit and classical risks, including credit-classical
correlations (WWR), and check with the risk management
department the repercussions on capital requirements.
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CVA Desks and ”Best practices”

CVA Desks effectiveness if often questioned
Of course the idea of being able to relegate all CVA(/DVA/FVA) issues
to a single specialized trading desk is a little delusional.

WWR makes isolating CVA from other activities quite difficult.
In particular WWR means that the idea of hedging CVA and the
pure classical risks separately is not effective.
CVA calculations may depend on the collateral policy, which does
not depend on the CVA desk or even on the trading floor.
We have seen FVA and CVA interact

In any case a CVA desk can have different levels of sophistication and
effectiveness.

(c) 2010-15 D. Brigo (www.damianobrigo.it) Nonlinear Valuation and XVA Univ. Catholique de Louvain 477 / 513



PART VII: CVA (FVA? XVA?) DESKS CVA and FVA Desks: Best Practice

CVA Desks and ”Best practices”

Classical traders opinions
Clearly, being P&L sensitive, the CVA desk role is rather delicate.
There are mixed feelings.

Because CVA is hard to hedge (especially the jump to default risk
and WWR), occasionally classical traders feel that the CVA desk
does not really hedge their counterparty risk effectively and
question the validity of the CVA fees they pay to the CVA desk.
Other traders are more optimistic and feel protected by the
admittedly approximate hedges implemented by the CVA desk.
There is also a psychological component of relief in delegating
management of counterparty risk elsewhere.
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Including FVA. XVA Desks?

As we have seen funding costs are now an important component of
the valuation process, and FVA is calculated for the bank deals.

This may be charged internally to classical trading desks, who pay the
FVA desk for the funding costs, and in turn charge the cost to clients
externally.

XVA Desk
Both CVA and FVA reference collateral importantly, so they should be
managed together, especially given analogies in these quantities,
given DVA as funding benefit and given that one would like to avoid
double counting.

Ideally, the XVA desk should immunize classical trading desk from
credit risk and funding costs, using mirror trades that isolate those risks
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XVA Desks?

XVA Desk and Mirror Trades

Isolating Credit Risk and Funding Costs away from traditional trading
desks is made difficult by wrong way risk, where dependence makes
all risks connected. One can manage this by assigning risk reserves to
deal with wrong way risk losses.

One more difficulty is the little transparency on the bases `. They
depend on CDS-Bond basis & the bank funding policy: maturity
transformation, netting of funding sets, fund transfer pricing policy, etc.
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XVA Desks?

Cross Gammas
In this sense quantities that are helpful are cross gammas: sensitivities
of computed values to joint shocks in credit and underlying risk factor,
and possibly sensitivity to bases ` and underlying risk factors.

As own credit risk and the bases ` are difficult to hedge, a reserve is
set in place for these risks.
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Charging FVA to clients?

Charging FVA to Clients
From what we understand, most of the banks we cited earlier charge
FVA to clients. The classical trading desk pays the funding costs to the
FVA desk but then charges the FVA to the client. However, this is
controversial. The client often has no transparency on our funding
policy. Why should be pay for our choices? And what if the client
decides to charge us her funding costs? Can this be done bilaterally
given the lack of transparency?

We also debated the price vs value aspect of FVA earlier.

Possible objections to FVA charge are due to the Modigliani Miller
theorem. We addressed these earlier via market imperfections and
bases `. Banks are now satisfied with charging clients with FVA. Hence
a bank that does not do that risks to be inconsistent with the market.
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FVA Desks?

FVA separate desk?
Some tier-2 banks are considering creating a FVA desk apart from the
CVA Desk. However this is not a popular option with tier-1 banks and
most banks are trying to incorporate the FVA function in the already
existing CVA desk, that becomes a XVA desk. This is what may be
happening with all the banks we mentioned earlier.

The reason is that the split between credit and fuding is not as clearcut
as one may think. See our derivation of
CVA, DVA, LVA, FCA, FBA, CVAF , DVAF
and of all ways to recombine them.

All quantities are driven by sI , sC and `+, `−.

Recall also that in the full theory FVA and CVA are not really separable.
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KVA in XVA Desks? The next XVAs?

We have hinted at the problems the capital valuation adjustment (KVA)
raises.

KVA includes capital assessments for future CVA.

That KVA may be simply added to other VA’s appears even less
credible than for FVA.

In general this tendency of the industry to introduce more and more
valuation adjustments every year, assuming their underlying risks are
additive and non-overlapping, is worrying.

Waiting for the Electricity-bill Valuation Adjustment (EVA)....

... and for your local baker shop to charge you an explicit running water
valuation adjustment (WVA) the next time you buy some bread...

(c) 2010-15 D. Brigo (www.damianobrigo.it) Nonlinear Valuation and XVA Univ. Catholique de Louvain 484 / 513



PART VII: CVA (FVA? XVA?) DESKS CVA and FVA Desks: Best Practice

Thank you for your attention!

Questions?
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